Assessment of the frequency of SARS-CoV-2 Omicron variant escape from RNA-dependent RNA polymerase inhibitors and 3C-like protease inhibitors
The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially p...
Saved in:
Published in | Antiviral research Vol. 216; p. 105671 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially passaged in vitro in the presence of RdRP inhibitors (remdesivir and molnupiravir) and 3CLpro inhibitors (nirmatrelvir and lufotrelvir) to detect SARS-CoV-2 escape mutants. After five passages with 3CLpro inhibitors, mutant viruses that escaped from 3CLpro inhibitors emerged; however, in the presence of RdRP inhibitors all variants disappeared within 2–4 passages. Our findings suggest that the frequency of SARS-CoV-2 mutant escape from RdRP inhibitors is lower than that from 3CLpro inhibitors. We also found that Delta variants were more likely to acquire amino acid substitutions associated with resistance to 3CLpro inhibitors under the selective pressure of this drug compared with Omicron variants.
•SARS-CoV-2 Delta and Omicron variants were passaged with RdRP inhibitors and 3CLpro inhibitors in vitro.•The frequency of SARS-CoV-2 mutant escape from RdRP inhibitors was lower than that from 3CLpro inhibitors.•Omicron variants acquired substitutions associated with 3CLpro inhibitor-resistance less frequently than Delta variants. |
---|---|
AbstractList | The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially passaged in vitro in the presence of RdRP inhibitors (remdesivir and molnupiravir) and 3CLpro inhibitors (nirmatrelvir and lufotrelvir) to detect SARS-CoV-2 escape mutants. After five passages with 3CLpro inhibitors, mutant viruses that escaped from 3CLpro inhibitors emerged; however, in the presence of RdRP inhibitors all variants disappeared within 2–4 passages. Our findings suggest that the frequency of SARS-CoV-2 mutant escape from RdRP inhibitors is lower than that from 3CLpro inhibitors. We also found that Delta variants were more likely to acquire amino acid substitutions associated with resistance to 3CLpro inhibitors under the selective pressure of this drug compared with Omicron variants.
•SARS-CoV-2 Delta and Omicron variants were passaged with RdRP inhibitors and 3CLpro inhibitors in vitro.•The frequency of SARS-CoV-2 mutant escape from RdRP inhibitors was lower than that from 3CLpro inhibitors.•Omicron variants acquired substitutions associated with 3CLpro inhibitor-resistance less frequently than Delta variants. The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially passaged in vitro in the presence of RdRP inhibitors (remdesivir and molnupiravir) and 3CLpro inhibitors (nirmatrelvir and lufotrelvir) to detect SARS-CoV-2 escape mutants. After five passages with 3CLpro inhibitors, mutant viruses that escaped from 3CLpro inhibitors emerged; however, in the presence of RdRP inhibitors all variants disappeared within 2-4 passages. Our findings suggest that the frequency of SARS-CoV-2 mutant escape from RdRP inhibitors is lower than that from 3CLpro inhibitors. We also found that Delta variants were more likely to acquire amino acid substitutions associated with resistance to 3CLpro inhibitors under the selective pressure of this drug compared with Omicron variants. The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially passaged in vitro in the presence of RdRP inhibitors (remdesivir and molnupiravir) and 3CLpro inhibitors (nirmatrelvir and lufotrelvir) to detect SARS-CoV-2 escape mutants. After five passages with 3CLpro inhibitors, mutant viruses that escaped from 3CLpro inhibitors emerged; however, in the presence of RdRP inhibitors all variants disappeared within 2-4 passages. Our findings suggest that the frequency of SARS-CoV-2 mutant escape from RdRP inhibitors is lower than that from 3CLpro inhibitors. We also found that Delta variants were more likely to acquire amino acid substitutions associated with resistance to 3CLpro inhibitors under the selective pressure of this drug compared with Omicron variants.The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially passaged in vitro in the presence of RdRP inhibitors (remdesivir and molnupiravir) and 3CLpro inhibitors (nirmatrelvir and lufotrelvir) to detect SARS-CoV-2 escape mutants. After five passages with 3CLpro inhibitors, mutant viruses that escaped from 3CLpro inhibitors emerged; however, in the presence of RdRP inhibitors all variants disappeared within 2-4 passages. Our findings suggest that the frequency of SARS-CoV-2 mutant escape from RdRP inhibitors is lower than that from 3CLpro inhibitors. We also found that Delta variants were more likely to acquire amino acid substitutions associated with resistance to 3CLpro inhibitors under the selective pressure of this drug compared with Omicron variants. |
ArticleNumber | 105671 |
Author | Takashita, Emi Kawaoka, Yoshihiro Morita, Hiroko Takeda, Makoto Watanabe, Shinji Nagashima, Mami Miura, Hideka Nagata, Shiho Fujisaki, Seiichiro Hasegawa, Hideki |
Author_xml | – sequence: 1 givenname: Emi orcidid: 0000-0002-9064-4699 surname: Takashita fullname: Takashita, Emi email: emitaka@niid.go.jp organization: Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan – sequence: 2 givenname: Seiichiro surname: Fujisaki fullname: Fujisaki, Seiichiro organization: Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan – sequence: 3 givenname: Hiroko surname: Morita fullname: Morita, Hiroko organization: Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan – sequence: 4 givenname: Shiho surname: Nagata fullname: Nagata, Shiho organization: Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan – sequence: 5 givenname: Hideka surname: Miura fullname: Miura, Hideka organization: Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan – sequence: 6 givenname: Mami surname: Nagashima fullname: Nagashima, Mami organization: Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan – sequence: 7 givenname: Shinji surname: Watanabe fullname: Watanabe, Shinji organization: Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan – sequence: 8 givenname: Makoto surname: Takeda fullname: Takeda, Makoto organization: Department of Virology Ⅲ, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan – sequence: 9 givenname: Yoshihiro surname: Kawaoka fullname: Kawaoka, Yoshihiro organization: Division of Virology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan – sequence: 10 givenname: Hideki surname: Hasegawa fullname: Hasegawa, Hideki organization: Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37451629$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuHCEQRVHkKB47-YWEZTZMePSLRRatUR6WrFiyrWwRA9Uyk27oADPSfET-ObTGjuRsvEIU51YV916gMx88IPSB0TWjrPm0W2uf3cFFPa455aJU66Zlr9CKdS0nksrmDK0K2RBRV_wcXaS0o5Q2rezeoHPRVjVruFyhP31KkNIEPuMw4PwAeIjwew_eHJfCXX97RzbhJ-H4ZnImBo8POroyHUMyel7wMOHbHz2xMIO3S6Nyw3MYjxNEnQA7_-C2LoeYsPYWiw0Z3S_AcwwZnr-_Ra8HPSZ493heovuvX-4338n1zberTX9NTNU1mQhqO87tQJnR1rABjATKgVpZ65rDMAiqtazklmpDGbDK2g6oqCwVrd0ycYk-ntqWFcpXU1aTSwbGUXsI-6R4JzpeC9bJgr5_RPfbCayao5t0PKonBwvw-QQUb1KKMCjjss4u-By1GxWjaklM7dS_xNSSmDolVvTtf_qnES8r-5MSilMHB1El40puYF0Ek5UN7sUefwEcZrdo |
CitedBy_id | crossref_primary_10_1111_1348_0421_13184 crossref_primary_10_1039_D3MD00493G crossref_primary_10_1016_j_chembiol_2024_03_008 crossref_primary_10_1021_acsptsci_3c00121 crossref_primary_10_1093_cid_ciae615 |
Cites_doi | 10.1016/j.antiviral.2016.06.007 10.1128/AAC.00649-13 10.1371/journal.ppat.1009929 10.1126/scitranslmed.abq7360 10.1056/NEJMc2211845 10.1056/NEJMc2119407 10.1128/aac.00198-22 10.1056/NEJMc2201933 10.1016/j.jbc.2023.103004 10.1016/j.bmcl.2022.128629 10.1016/j.jbc.2022.101972 10.1128/JVI.02346-12 10.1073/pnas.1811345115 10.1056/NEJMc2207519 10.1021/acs.jmedchem.0c01140 10.1056/NEJMc2209952 10.1073/pnas.2002589117 10.1038/s41586-022-05514-2 10.1254/jphs.14156SC 10.1056/NEJMc2214302 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023. Published by Elsevier B.V. Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023. Published by Elsevier B.V. – notice: Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.antiviral.2023.105671 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1872-9096 |
ExternalDocumentID | 37451629 10_1016_j_antiviral_2023_105671 S0166354223001493 |
Genre | Journal Article |
GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AAAJQ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATCM AAXUO ABBQC ABFNM ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ABZDS ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CJTIS CNWQP CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMG HVGLF HZ~ IHE J1W KOM LCYCR LUGTX M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSP SSZ T5K TEORI WUQ ZGI ZXP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c486t-30d822df01cadc1fec9e02e0d95a52eff30aa949b0ac01e14dd8e034d037db13 |
IEDL.DBID | .~1 |
ISSN | 0166-3542 1872-9096 |
IngestDate | Sun Aug 24 03:35:08 EDT 2025 Wed Feb 19 02:23:31 EST 2025 Thu Apr 24 22:51:59 EDT 2025 Tue Jul 01 01:32:14 EDT 2025 Fri Feb 23 02:34:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Resistance Lufotrelvir SARS-CoV-2 Remdesivir Nirmatrelvir Molnupiravir |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2023. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-30d822df01cadc1fec9e02e0d95a52eff30aa949b0ac01e14dd8e034d037db13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9064-4699 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0166354223001493 |
PMID | 37451629 |
PQID | 2838253189 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2838253189 pubmed_primary_37451629 crossref_citationtrail_10_1016_j_antiviral_2023_105671 crossref_primary_10_1016_j_antiviral_2023_105671 elsevier_sciencedirect_doi_10_1016_j_antiviral_2023_105671 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Antiviral research |
PublicationTitleAlternate | Antiviral Res |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Goldhill, Te Velthuis, Fletcher, Langat, Zambon, Lackenby, Barclay (bib5) 2018; 115 Iketani, Mohri, Culbertson, Hong, Duan, Luck, Annavajhala, Guo, Sheng, Uhlemann, Goff, Sabo, Yang, Chavez, Ho (bib8) 2022; 613 Heilmann, Costacurta, Moghadasi, Ye, Pavan, Bassani, Volland, Ascher, Weiss, Bante, Harris, Moro, Rupp, Martinez-Sobrido, von Laer (bib7) 2023; 15 Daikoku, Yoshida, Okuda, Shiraki (bib4) 2014; 126 Nextstrain (bib12) 2023 Takashita, Yamayoshi, Fukushi, Suzuki, Maeda, Sakai-Tagawa, Ito, Uraki, Halfmann, Watanabe, Takeda, Hasegawa, Imai, Kawaoka (bib20) 2022; 387 Imai, Ito, Kiso, Yamayoshi, Uraki, Fukushi, Watanabe, Suzuki, Maeda, Sakai-Tagawa, Iwatsuki-Horimoto, Halfmann, Kawaoka (bib9) 2023; 388 Jochmans, Liu, Donckers, Stoycheva, Boland, Stevens, De Vita, Vanmechelen, Maes, Trüeb, Ebert, Thiel, De Jonghe, Vangeel, Bardiot, Jekle, Blatt, Beigelman, Symons, Raboisson, Chaltin, Marchand, Neyts, Deval, Vandyck (bib10) 2023 Noske, de Souza Silva, de Godoy, Dolci, Fernandes, Guido, Sjö, Oliva, Godoy (bib13) 2023 Sangawa, Komeno, Nishikawa, Yoshida, Takahashi, Nomura, Furuta (bib14) 2013; 57 Zhou, Gammeltoft, Ryberg, Pham, Fahnøe, Binderup, Hernandez, Offersgaard, Fernandez-Antunez, Peters, Ramirez, Bukh, Gottwein (bib25) 2022 Checkmahomed, Carbonneau, Du Pont, Riola, Perry, Li, Paré, Simpson, Smith, Porter, Boivin (bib3) 2022; 66 Greasley, Noell, Plotnikova, Ferre, Liu, Bolanos, Fennell, Nicki, Craig, Zhu, Stewart, Steppan (bib6) 2022; 298 Takashita, Kinoshita, Yamayoshi, Sakai-Tagawa, Fujisaki, Ito, Iwatsuki-Horimoto, Chiba, Halfmann, Nagai, Saito, Adachi, Sullivan, Pekosz, Watanabe, Maeda, Imai, Yotsuyanagi, Mitsuya, Ohmagari, Takeda, Hasegawa, Kawaoka (bib18) 2022; 386 Takashita, Ejima, Ogawa, Fujisaki, Neumann, Furuta, Kawaoka, Tashiro, Odagiri (bib17) 2016; 132 Matsuyama, Nao, Shirato, Kawase, Saito, Takayama, Nagata, Sekizuka, Katoh, Kato, Sakata, Tahara, Kutsuna, Ohmagari, Kuroda, Suzuki, Kageyama, Takeda (bib11) 2020; 117 World Health Organization (bib24) 2023 Takashita, Yamayoshi, Halfmann, Wilson, Ries, Richardson, Bobholz, Vuyk, Maddox, Baker, Friedrich, O'Connor, Uraki, Ito, Sakai-Tagawa, Adachi, Saito, Koga, Tsutsumi, Iwatsuki-Horimoto, Kiso, Yotsuyanagi, Watanabe, Hasegawa, Imai, Kawaoka (bib21) 2022; 387 Ullrich, Ekanayake, Otting, Nitsche (bib23) 2022; 62 Takashita, Kinoshita, Yamayoshi, Sakai-Tagawa, Fujisaki, Ito, Iwatsuki-Horimoto, Halfmann, Watanabe, Maeda, Imai, Mitsuya, Ohmagari, Takeda, Hasegawa, Kawaoka (bib19) 2022; 386 Takashita, Yamayoshi, Simon, van Bakel, Sordillo, Pekosz, Fukushi, Suzuki, Maeda, Halfmann, Sakai-Tagawa, Ito, Watanabe, Imai, Hasegawa, Kawaoka (bib22) 2022; 387 Szemiel, Merits, Orton, MacLean, Pinto, Wickenhagen, Lieber, Turnbull, Wang, Furnon, Suarez, Mair, da Silva Filipe, Willett, Wilson, Patel, Thomson, Palmarini, Kohl, Stewart (bib16) 2021; 17 Cannalire, Cerchia, Beccari, Di Leva, Summa (bib2) 2020; 65 (bib15) 2023 Baranovich, Wong, Armstrong, Marjuki, Webby, Webster, Govorkova (bib1) 2013; 87 Iketani (10.1016/j.antiviral.2023.105671_bib8) 2022; 613 Cannalire (10.1016/j.antiviral.2023.105671_bib2) 2020; 65 Sangawa (10.1016/j.antiviral.2023.105671_bib14) 2013; 57 Baranovich (10.1016/j.antiviral.2023.105671_bib1) 2013; 87 Takashita (10.1016/j.antiviral.2023.105671_bib20) 2022; 387 Takashita (10.1016/j.antiviral.2023.105671_bib22) 2022; 387 Nextstrain (10.1016/j.antiviral.2023.105671_bib12) 2023 Ullrich (10.1016/j.antiviral.2023.105671_bib23) 2022; 62 Greasley (10.1016/j.antiviral.2023.105671_bib6) 2022; 298 Szemiel (10.1016/j.antiviral.2023.105671_bib16) 2021; 17 Daikoku (10.1016/j.antiviral.2023.105671_bib4) 2014; 126 Jochmans (10.1016/j.antiviral.2023.105671_bib10) 2023 Takashita (10.1016/j.antiviral.2023.105671_bib19) 2022; 386 Takashita (10.1016/j.antiviral.2023.105671_bib21) 2022; 387 Takashita (10.1016/j.antiviral.2023.105671_bib17) 2016; 132 Takashita (10.1016/j.antiviral.2023.105671_bib18) 2022; 386 Goldhill (10.1016/j.antiviral.2023.105671_bib5) 2018; 115 (10.1016/j.antiviral.2023.105671_bib15) 2023 Checkmahomed (10.1016/j.antiviral.2023.105671_bib3) 2022; 66 World Health Organization (10.1016/j.antiviral.2023.105671_bib24) 2023 Zhou (10.1016/j.antiviral.2023.105671_bib25) 2022 Imai (10.1016/j.antiviral.2023.105671_bib9) 2023; 388 Heilmann (10.1016/j.antiviral.2023.105671_bib7) 2023; 15 Noske (10.1016/j.antiviral.2023.105671_bib13) 2023 Matsuyama (10.1016/j.antiviral.2023.105671_bib11) 2020; 117 |
References_xml | – year: 2023 ident: bib24 article-title: Tracking SARS-CoV-2 Variants – volume: 387 start-page: 2094 year: 2022 end-page: 2097 ident: bib21 article-title: In vitro efficacy of antiviral agents against Omicron subvariant BA.4.6 publication-title: N. Engl. J. Med. – volume: 57 start-page: 5202 year: 2013 end-page: 5208 ident: bib14 article-title: Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase publication-title: Antimicrob. Agents Chemother. – year: 2023 ident: bib15 article-title: SARS-CoV-2 Resistance Mutations – year: 2023 ident: bib12 article-title: Genomic Epidemiology of SARS-CoV-2 with Subsampling Focused Globally since Pandemic Start – volume: 132 start-page: 170 year: 2016 end-page: 177 ident: bib17 article-title: Antiviral susceptibility of influenza viruses isolated from patients pre- and post-administration of favipiravir publication-title: Antivir. Res. – year: 2023 ident: bib10 article-title: The Substitutions L50F, E166A, and L167F in SARS-CoV-2 3CLpro Are Selected by a Protease Inhibitor in Vitro and Confer Resistance to Nirmatrelvir – year: 2023 ident: bib13 article-title: Structural basis of nirmatrelvir and ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 Main Protease publication-title: J. Biol. Chem. – volume: 613 start-page: 558 year: 2022 end-page: 564 ident: bib8 article-title: Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir publication-title: Nature – volume: 388 start-page: 89 year: 2023 end-page: 91 ident: bib9 article-title: Efficacy of antiviral agents against Omicron subvariants BQ.1.1 and XBB publication-title: N. Engl. J. Med. – volume: 117 start-page: 7001 year: 2020 end-page: 7003 ident: bib11 article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells publication-title: Proc. Natl. Acad. Sci. U. S. A – year: 2022 ident: bib25 article-title: Nirmatrelvir resistant SARS-CoV-2 variants with high fitness in vitro publication-title: bioRxiv – volume: 387 start-page: 1236 year: 2022 end-page: 1238 ident: bib20 article-title: Efficacy of antiviral agents against the Omicron subvariant BA.2.75 publication-title: N. Engl. J. Med. – volume: 126 start-page: 281 year: 2014 end-page: 284 ident: bib4 article-title: Characterization of susceptibility variants of influenza virus grown in the presence of T-705 publication-title: J. Pharmacol. Sci. – volume: 386 start-page: 1475 year: 2022 end-page: 1477 ident: bib19 article-title: Efficacy of antiviral agents against the SARS-CoV-2 Omicron subvariant BA.2 publication-title: N. Engl. J. Med. – volume: 62 year: 2022 ident: bib23 article-title: Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir publication-title: Bioorg. Med. Chem. Lett. – volume: 15 year: 2023 ident: bib7 article-title: SARS-CoV-2 3CL(pro) mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376 publication-title: Sci. Transl. Med. – volume: 298 year: 2022 ident: bib6 article-title: Structural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variants publication-title: J. Biol. Chem. – volume: 65 start-page: 2716 year: 2020 end-page: 2746 ident: bib2 article-title: Targeting SARS-CoV-2 proteases and polymerase for COVID-19 treatment: state of the art and future opportunities publication-title: J. Med. Chem. – volume: 87 start-page: 3741 year: 2013 end-page: 3751 ident: bib1 article-title: T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro publication-title: J. Virol. – volume: 17 year: 2021 ident: bib16 article-title: In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2 publication-title: PLoS Pathog. – volume: 387 start-page: 468 year: 2022 end-page: 470 ident: bib22 article-title: Efficacy of antibodies and antiviral drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants publication-title: N. Engl. J. Med. – volume: 66 year: 2022 ident: bib3 article-title: In vitro selection of remdesivir-resistant SARS-CoV-2 demonstrates high barrier to resistance publication-title: Antimicrob. Agents Chemother. – volume: 115 start-page: 11613 year: 2018 end-page: 11618 ident: bib5 article-title: The mechanism of resistance to favipiravir in influenza publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 386 start-page: 995 year: 2022 end-page: 998 ident: bib18 article-title: Efficacy of antibodies and antiviral drugs against covid-19 Omicron variant publication-title: N. Engl. J. Med. – volume: 132 start-page: 170 year: 2016 ident: 10.1016/j.antiviral.2023.105671_bib17 article-title: Antiviral susceptibility of influenza viruses isolated from patients pre- and post-administration of favipiravir publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2016.06.007 – volume: 57 start-page: 5202 year: 2013 ident: 10.1016/j.antiviral.2023.105671_bib14 article-title: Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00649-13 – year: 2023 ident: 10.1016/j.antiviral.2023.105671_bib10 – volume: 17 year: 2021 ident: 10.1016/j.antiviral.2023.105671_bib16 article-title: In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1009929 – volume: 15 year: 2023 ident: 10.1016/j.antiviral.2023.105671_bib7 article-title: SARS-CoV-2 3CL(pro) mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abq7360 – volume: 387 start-page: 2094 year: 2022 ident: 10.1016/j.antiviral.2023.105671_bib21 article-title: In vitro efficacy of antiviral agents against Omicron subvariant BA.4.6 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2211845 – volume: 386 start-page: 995 year: 2022 ident: 10.1016/j.antiviral.2023.105671_bib18 article-title: Efficacy of antibodies and antiviral drugs against covid-19 Omicron variant publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2119407 – volume: 66 year: 2022 ident: 10.1016/j.antiviral.2023.105671_bib3 article-title: In vitro selection of remdesivir-resistant SARS-CoV-2 demonstrates high barrier to resistance publication-title: Antimicrob. Agents Chemother. doi: 10.1128/aac.00198-22 – year: 2023 ident: 10.1016/j.antiviral.2023.105671_bib12 – volume: 386 start-page: 1475 year: 2022 ident: 10.1016/j.antiviral.2023.105671_bib19 article-title: Efficacy of antiviral agents against the SARS-CoV-2 Omicron subvariant BA.2 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2201933 – year: 2023 ident: 10.1016/j.antiviral.2023.105671_bib13 article-title: Structural basis of nirmatrelvir and ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 Main Protease publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2023.103004 – volume: 62 year: 2022 ident: 10.1016/j.antiviral.2023.105671_bib23 article-title: Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2022.128629 – volume: 298 year: 2022 ident: 10.1016/j.antiviral.2023.105671_bib6 article-title: Structural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variants publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2022.101972 – volume: 87 start-page: 3741 year: 2013 ident: 10.1016/j.antiviral.2023.105671_bib1 article-title: T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro publication-title: J. Virol. doi: 10.1128/JVI.02346-12 – volume: 115 start-page: 11613 year: 2018 ident: 10.1016/j.antiviral.2023.105671_bib5 article-title: The mechanism of resistance to favipiravir in influenza publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1811345115 – volume: 387 start-page: 468 year: 2022 ident: 10.1016/j.antiviral.2023.105671_bib22 article-title: Efficacy of antibodies and antiviral drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2207519 – volume: 65 start-page: 2716 year: 2020 ident: 10.1016/j.antiviral.2023.105671_bib2 article-title: Targeting SARS-CoV-2 proteases and polymerase for COVID-19 treatment: state of the art and future opportunities publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.0c01140 – volume: 387 start-page: 1236 year: 2022 ident: 10.1016/j.antiviral.2023.105671_bib20 article-title: Efficacy of antiviral agents against the Omicron subvariant BA.2.75 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2209952 – volume: 117 start-page: 7001 year: 2020 ident: 10.1016/j.antiviral.2023.105671_bib11 article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.2002589117 – year: 2023 ident: 10.1016/j.antiviral.2023.105671_bib24 – year: 2022 ident: 10.1016/j.antiviral.2023.105671_bib25 article-title: Nirmatrelvir resistant SARS-CoV-2 variants with high fitness in vitro publication-title: bioRxiv – volume: 613 start-page: 558 year: 2022 ident: 10.1016/j.antiviral.2023.105671_bib8 article-title: Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir publication-title: Nature doi: 10.1038/s41586-022-05514-2 – volume: 126 start-page: 281 year: 2014 ident: 10.1016/j.antiviral.2023.105671_bib4 article-title: Characterization of susceptibility variants of influenza virus grown in the presence of T-705 publication-title: J. Pharmacol. Sci. doi: 10.1254/jphs.14156SC – volume: 388 start-page: 89 year: 2023 ident: 10.1016/j.antiviral.2023.105671_bib9 article-title: Efficacy of antiviral agents against Omicron subvariants BQ.1.1 and XBB publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2214302 – year: 2023 ident: 10.1016/j.antiviral.2023.105671_bib15 |
SSID | ssj0006798 |
Score | 2.43068 |
Snippet | The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105671 |
SubjectTerms | Lufotrelvir Molnupiravir Nirmatrelvir Remdesivir Resistance SARS-CoV-2 |
Title | Assessment of the frequency of SARS-CoV-2 Omicron variant escape from RNA-dependent RNA polymerase inhibitors and 3C-like protease inhibitors |
URI | https://dx.doi.org/10.1016/j.antiviral.2023.105671 https://www.ncbi.nlm.nih.gov/pubmed/37451629 https://www.proquest.com/docview/2838253189 |
Volume | 216 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqIhCXCspXW6iMxNWsYztO3Fu0otqCukjdgnqzHNtRA0uy6m6R9sI_4D_jiZOt9lD1wDFOrDieycyz53kGoQ-VlJZZILVbx4lITEpyl8MGvHK5YXmZcTgofD6Vk2_i81V6tYPGw1kYoFX2tj_a9M5a9y2jfjZHi7oezQJYCd5SBP_W4XzI-ClEBlr-8c8dzQOiDDG_tyTw9BbHKwy-Bi4txCAY76rQZ8l9Huo-BNp5otNnaK-HkLiIo3yOdnyzjx7HopLrffTkvA-Xv0B_i03eTdxWOGA9XN1E7vQaGmbFxYyM2--E4a-_gJnX4N9h7RzGi_0SmFEYTp_gi2lBhmK5K7jCi3a-ht2spcd1c12XNdTswaZxmI_JvP7pcZf_Yfv-S3R5-ulyPCF9_QViRS5XQV4uwAdX0cQaZ5PKW-Up89Sp1KTMVxWnxiihSmosTXwinMs95cJRnrky4a_QbtM2_g3CygjqpXJpaoNlZqUpk5xWShoqPWOVOkBymHJt-9zkUCJjrgcS2g-9kZUGWekoqwNENx0XMT3Hw11OBpnqLU3TwYk83Pn9oAU6_IcQXDGNb2-XOsC0sNgOFjJ8zOuoHpsR8QzKITN1-D-vPkJP4SqSD9-i3dXNrX8XANGqPO40_hg9Ks6-TKb_AMUjC80 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGELAXBIOx8WkkXkMd23HjvVUVU4G1SGtBe7Mcf4hASaq1m9SX_Qf8z_PFSVEfpj3wGDtWLr7z3dn38x1CH7wQhhoAtRvLEp7qLMltDgfw0uaa5kWfwUXh8USMvvMv59n5Dhp2d2EAVtnq_qjTG23dtvTa2ewtyrI3Dc5KsJY82LfGz2f30H0eli-UMfh4_Q_nAWGGmOBbJPD6FsgrUF8CmBaCEJQ1Zej76W0m6jYXtDFFJ0_Q49aHxINI5lO046p99CBWlVzvo4fjNl7-DP0dbBJv4trj4OxhfxHB02tomA7Opsmw_pFQ_O0PQPMqfBU2z4Fe7JYAjcJw_QSfTQZJVy13BU94Uc_XcJy1dLisfpZFCUV7sK4sZsNkXv52uEkAsd3_HM1OPs2Go6QtwJAYnotVYJgN_oP1JDXamtQ7Ix2hjliZ6Yw67xnRWnJZEG1I6lJube4I45awvi1SdoB2q7pyhwhLzYkT0maZCaqZFrpIc-Kl0EQ4Sr08QqKbcmXa5ORQI2OuOhTaL7XhlQJeqcirI0Q2AxcxP8fdQ447nqotUVPBitw9-H0nBSosRIiu6MrVl0sV_LSw2w4qMvzMiygeG4pYH-ohU_nyfz79Dj0azcan6vTz5OsrtAc9EYn4Gu2uLi7dm-AdrYq3jfTfAMSODVs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+frequency+of+SARS-CoV-2+Omicron+variant+escape+from+RNA-dependent+RNA+polymerase+inhibitors+and+3C-like+protease+inhibitors&rft.jtitle=Antiviral+research&rft.au=Takashita%2C+Emi&rft.au=Fujisaki%2C+Seiichiro&rft.au=Morita%2C+Hiroko&rft.au=Nagata%2C+Shiho&rft.date=2023-08-01&rft.eissn=1872-9096&rft.spage=105671&rft_id=info:doi/10.1016%2Fj.antiviral.2023.105671&rft_id=info%3Apmid%2F37451629&rft.externalDocID=37451629 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3542&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3542&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3542&client=summon |