Assessment of the frequency of SARS-CoV-2 Omicron variant escape from RNA-dependent RNA polymerase inhibitors and 3C-like protease inhibitors

The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially p...

Full description

Saved in:
Bibliographic Details
Published inAntiviral research Vol. 216; p. 105671
Main Authors Takashita, Emi, Fujisaki, Seiichiro, Morita, Hiroko, Nagata, Shiho, Miura, Hideka, Nagashima, Mami, Watanabe, Shinji, Takeda, Makoto, Kawaoka, Yoshihiro, Hasegawa, Hideki
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially passaged in vitro in the presence of RdRP inhibitors (remdesivir and molnupiravir) and 3CLpro inhibitors (nirmatrelvir and lufotrelvir) to detect SARS-CoV-2 escape mutants. After five passages with 3CLpro inhibitors, mutant viruses that escaped from 3CLpro inhibitors emerged; however, in the presence of RdRP inhibitors all variants disappeared within 2–4 passages. Our findings suggest that the frequency of SARS-CoV-2 mutant escape from RdRP inhibitors is lower than that from 3CLpro inhibitors. We also found that Delta variants were more likely to acquire amino acid substitutions associated with resistance to 3CLpro inhibitors under the selective pressure of this drug compared with Omicron variants. •SARS-CoV-2 Delta and Omicron variants were passaged with RdRP inhibitors and 3CLpro inhibitors in vitro.•The frequency of SARS-CoV-2 mutant escape from RdRP inhibitors was lower than that from 3CLpro inhibitors.•Omicron variants acquired substitutions associated with 3CLpro inhibitor-resistance less frequently than Delta variants.
AbstractList The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially passaged in vitro in the presence of RdRP inhibitors (remdesivir and molnupiravir) and 3CLpro inhibitors (nirmatrelvir and lufotrelvir) to detect SARS-CoV-2 escape mutants. After five passages with 3CLpro inhibitors, mutant viruses that escaped from 3CLpro inhibitors emerged; however, in the presence of RdRP inhibitors all variants disappeared within 2–4 passages. Our findings suggest that the frequency of SARS-CoV-2 mutant escape from RdRP inhibitors is lower than that from 3CLpro inhibitors. We also found that Delta variants were more likely to acquire amino acid substitutions associated with resistance to 3CLpro inhibitors under the selective pressure of this drug compared with Omicron variants. •SARS-CoV-2 Delta and Omicron variants were passaged with RdRP inhibitors and 3CLpro inhibitors in vitro.•The frequency of SARS-CoV-2 mutant escape from RdRP inhibitors was lower than that from 3CLpro inhibitors.•Omicron variants acquired substitutions associated with 3CLpro inhibitor-resistance less frequently than Delta variants.
The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially passaged in vitro in the presence of RdRP inhibitors (remdesivir and molnupiravir) and 3CLpro inhibitors (nirmatrelvir and lufotrelvir) to detect SARS-CoV-2 escape mutants. After five passages with 3CLpro inhibitors, mutant viruses that escaped from 3CLpro inhibitors emerged; however, in the presence of RdRP inhibitors all variants disappeared within 2-4 passages. Our findings suggest that the frequency of SARS-CoV-2 mutant escape from RdRP inhibitors is lower than that from 3CLpro inhibitors. We also found that Delta variants were more likely to acquire amino acid substitutions associated with resistance to 3CLpro inhibitors under the selective pressure of this drug compared with Omicron variants.
The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially passaged in vitro in the presence of RdRP inhibitors (remdesivir and molnupiravir) and 3CLpro inhibitors (nirmatrelvir and lufotrelvir) to detect SARS-CoV-2 escape mutants. After five passages with 3CLpro inhibitors, mutant viruses that escaped from 3CLpro inhibitors emerged; however, in the presence of RdRP inhibitors all variants disappeared within 2-4 passages. Our findings suggest that the frequency of SARS-CoV-2 mutant escape from RdRP inhibitors is lower than that from 3CLpro inhibitors. We also found that Delta variants were more likely to acquire amino acid substitutions associated with resistance to 3CLpro inhibitors under the selective pressure of this drug compared with Omicron variants.The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially passaged in vitro in the presence of RdRP inhibitors (remdesivir and molnupiravir) and 3CLpro inhibitors (nirmatrelvir and lufotrelvir) to detect SARS-CoV-2 escape mutants. After five passages with 3CLpro inhibitors, mutant viruses that escaped from 3CLpro inhibitors emerged; however, in the presence of RdRP inhibitors all variants disappeared within 2-4 passages. Our findings suggest that the frequency of SARS-CoV-2 mutant escape from RdRP inhibitors is lower than that from 3CLpro inhibitors. We also found that Delta variants were more likely to acquire amino acid substitutions associated with resistance to 3CLpro inhibitors under the selective pressure of this drug compared with Omicron variants.
ArticleNumber 105671
Author Takashita, Emi
Kawaoka, Yoshihiro
Morita, Hiroko
Takeda, Makoto
Watanabe, Shinji
Nagashima, Mami
Miura, Hideka
Nagata, Shiho
Fujisaki, Seiichiro
Hasegawa, Hideki
Author_xml – sequence: 1
  givenname: Emi
  orcidid: 0000-0002-9064-4699
  surname: Takashita
  fullname: Takashita, Emi
  email: emitaka@niid.go.jp
  organization: Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
– sequence: 2
  givenname: Seiichiro
  surname: Fujisaki
  fullname: Fujisaki, Seiichiro
  organization: Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
– sequence: 3
  givenname: Hiroko
  surname: Morita
  fullname: Morita, Hiroko
  organization: Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
– sequence: 4
  givenname: Shiho
  surname: Nagata
  fullname: Nagata, Shiho
  organization: Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
– sequence: 5
  givenname: Hideka
  surname: Miura
  fullname: Miura, Hideka
  organization: Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
– sequence: 6
  givenname: Mami
  surname: Nagashima
  fullname: Nagashima, Mami
  organization: Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
– sequence: 7
  givenname: Shinji
  surname: Watanabe
  fullname: Watanabe, Shinji
  organization: Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
– sequence: 8
  givenname: Makoto
  surname: Takeda
  fullname: Takeda, Makoto
  organization: Department of Virology Ⅲ, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
– sequence: 9
  givenname: Yoshihiro
  surname: Kawaoka
  fullname: Kawaoka, Yoshihiro
  organization: Division of Virology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
– sequence: 10
  givenname: Hideki
  surname: Hasegawa
  fullname: Hasegawa, Hideki
  organization: Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37451629$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuHCEQRVHkKB47-YWEZTZMePSLRRatUR6WrFiyrWwRA9Uyk27oADPSfET-ObTGjuRsvEIU51YV916gMx88IPSB0TWjrPm0W2uf3cFFPa455aJU66Zlr9CKdS0nksrmDK0K2RBRV_wcXaS0o5Q2rezeoHPRVjVruFyhP31KkNIEPuMw4PwAeIjwew_eHJfCXX97RzbhJ-H4ZnImBo8POroyHUMyel7wMOHbHz2xMIO3S6Nyw3MYjxNEnQA7_-C2LoeYsPYWiw0Z3S_AcwwZnr-_Ra8HPSZ493heovuvX-4338n1zberTX9NTNU1mQhqO87tQJnR1rABjATKgVpZ65rDMAiqtazklmpDGbDK2g6oqCwVrd0ycYk-ntqWFcpXU1aTSwbGUXsI-6R4JzpeC9bJgr5_RPfbCayao5t0PKonBwvw-QQUb1KKMCjjss4u-By1GxWjaklM7dS_xNSSmDolVvTtf_qnES8r-5MSilMHB1El40puYF0Ek5UN7sUefwEcZrdo
CitedBy_id crossref_primary_10_1111_1348_0421_13184
crossref_primary_10_1039_D3MD00493G
crossref_primary_10_1016_j_chembiol_2024_03_008
crossref_primary_10_1021_acsptsci_3c00121
crossref_primary_10_1093_cid_ciae615
Cites_doi 10.1016/j.antiviral.2016.06.007
10.1128/AAC.00649-13
10.1371/journal.ppat.1009929
10.1126/scitranslmed.abq7360
10.1056/NEJMc2211845
10.1056/NEJMc2119407
10.1128/aac.00198-22
10.1056/NEJMc2201933
10.1016/j.jbc.2023.103004
10.1016/j.bmcl.2022.128629
10.1016/j.jbc.2022.101972
10.1128/JVI.02346-12
10.1073/pnas.1811345115
10.1056/NEJMc2207519
10.1021/acs.jmedchem.0c01140
10.1056/NEJMc2209952
10.1073/pnas.2002589117
10.1038/s41586-022-05514-2
10.1254/jphs.14156SC
10.1056/NEJMc2214302
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023. Published by Elsevier B.V.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023. Published by Elsevier B.V.
– notice: Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.antiviral.2023.105671
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1872-9096
ExternalDocumentID 37451629
10_1016_j_antiviral_2023_105671
S0166354223001493
Genre Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AAAJQ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATCM
AAXUO
ABBQC
ABFNM
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CJTIS
CNWQP
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMG
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSH
SSI
SSP
SSZ
T5K
TEORI
WUQ
ZGI
ZXP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c486t-30d822df01cadc1fec9e02e0d95a52eff30aa949b0ac01e14dd8e034d037db13
IEDL.DBID .~1
ISSN 0166-3542
1872-9096
IngestDate Sun Aug 24 03:35:08 EDT 2025
Wed Feb 19 02:23:31 EST 2025
Thu Apr 24 22:51:59 EDT 2025
Tue Jul 01 01:32:14 EDT 2025
Fri Feb 23 02:34:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Resistance
Lufotrelvir
SARS-CoV-2
Remdesivir
Nirmatrelvir
Molnupiravir
Language English
License This is an open access article under the CC BY license.
Copyright © 2023. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-30d822df01cadc1fec9e02e0d95a52eff30aa949b0ac01e14dd8e034d037db13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9064-4699
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0166354223001493
PMID 37451629
PQID 2838253189
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2838253189
pubmed_primary_37451629
crossref_citationtrail_10_1016_j_antiviral_2023_105671
crossref_primary_10_1016_j_antiviral_2023_105671
elsevier_sciencedirect_doi_10_1016_j_antiviral_2023_105671
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Antiviral research
PublicationTitleAlternate Antiviral Res
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Goldhill, Te Velthuis, Fletcher, Langat, Zambon, Lackenby, Barclay (bib5) 2018; 115
Iketani, Mohri, Culbertson, Hong, Duan, Luck, Annavajhala, Guo, Sheng, Uhlemann, Goff, Sabo, Yang, Chavez, Ho (bib8) 2022; 613
Heilmann, Costacurta, Moghadasi, Ye, Pavan, Bassani, Volland, Ascher, Weiss, Bante, Harris, Moro, Rupp, Martinez-Sobrido, von Laer (bib7) 2023; 15
Daikoku, Yoshida, Okuda, Shiraki (bib4) 2014; 126
Nextstrain (bib12) 2023
Takashita, Yamayoshi, Fukushi, Suzuki, Maeda, Sakai-Tagawa, Ito, Uraki, Halfmann, Watanabe, Takeda, Hasegawa, Imai, Kawaoka (bib20) 2022; 387
Imai, Ito, Kiso, Yamayoshi, Uraki, Fukushi, Watanabe, Suzuki, Maeda, Sakai-Tagawa, Iwatsuki-Horimoto, Halfmann, Kawaoka (bib9) 2023; 388
Jochmans, Liu, Donckers, Stoycheva, Boland, Stevens, De Vita, Vanmechelen, Maes, Trüeb, Ebert, Thiel, De Jonghe, Vangeel, Bardiot, Jekle, Blatt, Beigelman, Symons, Raboisson, Chaltin, Marchand, Neyts, Deval, Vandyck (bib10) 2023
Noske, de Souza Silva, de Godoy, Dolci, Fernandes, Guido, Sjö, Oliva, Godoy (bib13) 2023
Sangawa, Komeno, Nishikawa, Yoshida, Takahashi, Nomura, Furuta (bib14) 2013; 57
Zhou, Gammeltoft, Ryberg, Pham, Fahnøe, Binderup, Hernandez, Offersgaard, Fernandez-Antunez, Peters, Ramirez, Bukh, Gottwein (bib25) 2022
Checkmahomed, Carbonneau, Du Pont, Riola, Perry, Li, Paré, Simpson, Smith, Porter, Boivin (bib3) 2022; 66
Greasley, Noell, Plotnikova, Ferre, Liu, Bolanos, Fennell, Nicki, Craig, Zhu, Stewart, Steppan (bib6) 2022; 298
Takashita, Kinoshita, Yamayoshi, Sakai-Tagawa, Fujisaki, Ito, Iwatsuki-Horimoto, Chiba, Halfmann, Nagai, Saito, Adachi, Sullivan, Pekosz, Watanabe, Maeda, Imai, Yotsuyanagi, Mitsuya, Ohmagari, Takeda, Hasegawa, Kawaoka (bib18) 2022; 386
Takashita, Ejima, Ogawa, Fujisaki, Neumann, Furuta, Kawaoka, Tashiro, Odagiri (bib17) 2016; 132
Matsuyama, Nao, Shirato, Kawase, Saito, Takayama, Nagata, Sekizuka, Katoh, Kato, Sakata, Tahara, Kutsuna, Ohmagari, Kuroda, Suzuki, Kageyama, Takeda (bib11) 2020; 117
World Health Organization (bib24) 2023
Takashita, Yamayoshi, Halfmann, Wilson, Ries, Richardson, Bobholz, Vuyk, Maddox, Baker, Friedrich, O'Connor, Uraki, Ito, Sakai-Tagawa, Adachi, Saito, Koga, Tsutsumi, Iwatsuki-Horimoto, Kiso, Yotsuyanagi, Watanabe, Hasegawa, Imai, Kawaoka (bib21) 2022; 387
Ullrich, Ekanayake, Otting, Nitsche (bib23) 2022; 62
Takashita, Kinoshita, Yamayoshi, Sakai-Tagawa, Fujisaki, Ito, Iwatsuki-Horimoto, Halfmann, Watanabe, Maeda, Imai, Mitsuya, Ohmagari, Takeda, Hasegawa, Kawaoka (bib19) 2022; 386
Takashita, Yamayoshi, Simon, van Bakel, Sordillo, Pekosz, Fukushi, Suzuki, Maeda, Halfmann, Sakai-Tagawa, Ito, Watanabe, Imai, Hasegawa, Kawaoka (bib22) 2022; 387
Szemiel, Merits, Orton, MacLean, Pinto, Wickenhagen, Lieber, Turnbull, Wang, Furnon, Suarez, Mair, da Silva Filipe, Willett, Wilson, Patel, Thomson, Palmarini, Kohl, Stewart (bib16) 2021; 17
Cannalire, Cerchia, Beccari, Di Leva, Summa (bib2) 2020; 65
(bib15) 2023
Baranovich, Wong, Armstrong, Marjuki, Webby, Webster, Govorkova (bib1) 2013; 87
Iketani (10.1016/j.antiviral.2023.105671_bib8) 2022; 613
Cannalire (10.1016/j.antiviral.2023.105671_bib2) 2020; 65
Sangawa (10.1016/j.antiviral.2023.105671_bib14) 2013; 57
Baranovich (10.1016/j.antiviral.2023.105671_bib1) 2013; 87
Takashita (10.1016/j.antiviral.2023.105671_bib20) 2022; 387
Takashita (10.1016/j.antiviral.2023.105671_bib22) 2022; 387
Nextstrain (10.1016/j.antiviral.2023.105671_bib12) 2023
Ullrich (10.1016/j.antiviral.2023.105671_bib23) 2022; 62
Greasley (10.1016/j.antiviral.2023.105671_bib6) 2022; 298
Szemiel (10.1016/j.antiviral.2023.105671_bib16) 2021; 17
Daikoku (10.1016/j.antiviral.2023.105671_bib4) 2014; 126
Jochmans (10.1016/j.antiviral.2023.105671_bib10) 2023
Takashita (10.1016/j.antiviral.2023.105671_bib19) 2022; 386
Takashita (10.1016/j.antiviral.2023.105671_bib21) 2022; 387
Takashita (10.1016/j.antiviral.2023.105671_bib17) 2016; 132
Takashita (10.1016/j.antiviral.2023.105671_bib18) 2022; 386
Goldhill (10.1016/j.antiviral.2023.105671_bib5) 2018; 115
(10.1016/j.antiviral.2023.105671_bib15) 2023
Checkmahomed (10.1016/j.antiviral.2023.105671_bib3) 2022; 66
World Health Organization (10.1016/j.antiviral.2023.105671_bib24) 2023
Zhou (10.1016/j.antiviral.2023.105671_bib25) 2022
Imai (10.1016/j.antiviral.2023.105671_bib9) 2023; 388
Heilmann (10.1016/j.antiviral.2023.105671_bib7) 2023; 15
Noske (10.1016/j.antiviral.2023.105671_bib13) 2023
Matsuyama (10.1016/j.antiviral.2023.105671_bib11) 2020; 117
References_xml – year: 2023
  ident: bib24
  article-title: Tracking SARS-CoV-2 Variants
– volume: 387
  start-page: 2094
  year: 2022
  end-page: 2097
  ident: bib21
  article-title: In vitro efficacy of antiviral agents against Omicron subvariant BA.4.6
  publication-title: N. Engl. J. Med.
– volume: 57
  start-page: 5202
  year: 2013
  end-page: 5208
  ident: bib14
  article-title: Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase
  publication-title: Antimicrob. Agents Chemother.
– year: 2023
  ident: bib15
  article-title: SARS-CoV-2 Resistance Mutations
– year: 2023
  ident: bib12
  article-title: Genomic Epidemiology of SARS-CoV-2 with Subsampling Focused Globally since Pandemic Start
– volume: 132
  start-page: 170
  year: 2016
  end-page: 177
  ident: bib17
  article-title: Antiviral susceptibility of influenza viruses isolated from patients pre- and post-administration of favipiravir
  publication-title: Antivir. Res.
– year: 2023
  ident: bib10
  article-title: The Substitutions L50F, E166A, and L167F in SARS-CoV-2 3CLpro Are Selected by a Protease Inhibitor in Vitro and Confer Resistance to Nirmatrelvir
– year: 2023
  ident: bib13
  article-title: Structural basis of nirmatrelvir and ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 Main Protease
  publication-title: J. Biol. Chem.
– volume: 613
  start-page: 558
  year: 2022
  end-page: 564
  ident: bib8
  article-title: Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir
  publication-title: Nature
– volume: 388
  start-page: 89
  year: 2023
  end-page: 91
  ident: bib9
  article-title: Efficacy of antiviral agents against Omicron subvariants BQ.1.1 and XBB
  publication-title: N. Engl. J. Med.
– volume: 117
  start-page: 7001
  year: 2020
  end-page: 7003
  ident: bib11
  article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– year: 2022
  ident: bib25
  article-title: Nirmatrelvir resistant SARS-CoV-2 variants with high fitness in vitro
  publication-title: bioRxiv
– volume: 387
  start-page: 1236
  year: 2022
  end-page: 1238
  ident: bib20
  article-title: Efficacy of antiviral agents against the Omicron subvariant BA.2.75
  publication-title: N. Engl. J. Med.
– volume: 126
  start-page: 281
  year: 2014
  end-page: 284
  ident: bib4
  article-title: Characterization of susceptibility variants of influenza virus grown in the presence of T-705
  publication-title: J. Pharmacol. Sci.
– volume: 386
  start-page: 1475
  year: 2022
  end-page: 1477
  ident: bib19
  article-title: Efficacy of antiviral agents against the SARS-CoV-2 Omicron subvariant BA.2
  publication-title: N. Engl. J. Med.
– volume: 62
  year: 2022
  ident: bib23
  article-title: Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 15
  year: 2023
  ident: bib7
  article-title: SARS-CoV-2 3CL(pro) mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376
  publication-title: Sci. Transl. Med.
– volume: 298
  year: 2022
  ident: bib6
  article-title: Structural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variants
  publication-title: J. Biol. Chem.
– volume: 65
  start-page: 2716
  year: 2020
  end-page: 2746
  ident: bib2
  article-title: Targeting SARS-CoV-2 proteases and polymerase for COVID-19 treatment: state of the art and future opportunities
  publication-title: J. Med. Chem.
– volume: 87
  start-page: 3741
  year: 2013
  end-page: 3751
  ident: bib1
  article-title: T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro
  publication-title: J. Virol.
– volume: 17
  year: 2021
  ident: bib16
  article-title: In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2
  publication-title: PLoS Pathog.
– volume: 387
  start-page: 468
  year: 2022
  end-page: 470
  ident: bib22
  article-title: Efficacy of antibodies and antiviral drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants
  publication-title: N. Engl. J. Med.
– volume: 66
  year: 2022
  ident: bib3
  article-title: In vitro selection of remdesivir-resistant SARS-CoV-2 demonstrates high barrier to resistance
  publication-title: Antimicrob. Agents Chemother.
– volume: 115
  start-page: 11613
  year: 2018
  end-page: 11618
  ident: bib5
  article-title: The mechanism of resistance to favipiravir in influenza
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 386
  start-page: 995
  year: 2022
  end-page: 998
  ident: bib18
  article-title: Efficacy of antibodies and antiviral drugs against covid-19 Omicron variant
  publication-title: N. Engl. J. Med.
– volume: 132
  start-page: 170
  year: 2016
  ident: 10.1016/j.antiviral.2023.105671_bib17
  article-title: Antiviral susceptibility of influenza viruses isolated from patients pre- and post-administration of favipiravir
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2016.06.007
– volume: 57
  start-page: 5202
  year: 2013
  ident: 10.1016/j.antiviral.2023.105671_bib14
  article-title: Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00649-13
– year: 2023
  ident: 10.1016/j.antiviral.2023.105671_bib10
– volume: 17
  year: 2021
  ident: 10.1016/j.antiviral.2023.105671_bib16
  article-title: In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1009929
– volume: 15
  year: 2023
  ident: 10.1016/j.antiviral.2023.105671_bib7
  article-title: SARS-CoV-2 3CL(pro) mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abq7360
– volume: 387
  start-page: 2094
  year: 2022
  ident: 10.1016/j.antiviral.2023.105671_bib21
  article-title: In vitro efficacy of antiviral agents against Omicron subvariant BA.4.6
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2211845
– volume: 386
  start-page: 995
  year: 2022
  ident: 10.1016/j.antiviral.2023.105671_bib18
  article-title: Efficacy of antibodies and antiviral drugs against covid-19 Omicron variant
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2119407
– volume: 66
  year: 2022
  ident: 10.1016/j.antiviral.2023.105671_bib3
  article-title: In vitro selection of remdesivir-resistant SARS-CoV-2 demonstrates high barrier to resistance
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/aac.00198-22
– year: 2023
  ident: 10.1016/j.antiviral.2023.105671_bib12
– volume: 386
  start-page: 1475
  year: 2022
  ident: 10.1016/j.antiviral.2023.105671_bib19
  article-title: Efficacy of antiviral agents against the SARS-CoV-2 Omicron subvariant BA.2
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2201933
– year: 2023
  ident: 10.1016/j.antiviral.2023.105671_bib13
  article-title: Structural basis of nirmatrelvir and ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 Main Protease
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2023.103004
– volume: 62
  year: 2022
  ident: 10.1016/j.antiviral.2023.105671_bib23
  article-title: Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2022.128629
– volume: 298
  year: 2022
  ident: 10.1016/j.antiviral.2023.105671_bib6
  article-title: Structural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variants
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2022.101972
– volume: 87
  start-page: 3741
  year: 2013
  ident: 10.1016/j.antiviral.2023.105671_bib1
  article-title: T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro
  publication-title: J. Virol.
  doi: 10.1128/JVI.02346-12
– volume: 115
  start-page: 11613
  year: 2018
  ident: 10.1016/j.antiviral.2023.105671_bib5
  article-title: The mechanism of resistance to favipiravir in influenza
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1811345115
– volume: 387
  start-page: 468
  year: 2022
  ident: 10.1016/j.antiviral.2023.105671_bib22
  article-title: Efficacy of antibodies and antiviral drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2207519
– volume: 65
  start-page: 2716
  year: 2020
  ident: 10.1016/j.antiviral.2023.105671_bib2
  article-title: Targeting SARS-CoV-2 proteases and polymerase for COVID-19 treatment: state of the art and future opportunities
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.0c01140
– volume: 387
  start-page: 1236
  year: 2022
  ident: 10.1016/j.antiviral.2023.105671_bib20
  article-title: Efficacy of antiviral agents against the Omicron subvariant BA.2.75
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2209952
– volume: 117
  start-page: 7001
  year: 2020
  ident: 10.1016/j.antiviral.2023.105671_bib11
  article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.2002589117
– year: 2023
  ident: 10.1016/j.antiviral.2023.105671_bib24
– year: 2022
  ident: 10.1016/j.antiviral.2023.105671_bib25
  article-title: Nirmatrelvir resistant SARS-CoV-2 variants with high fitness in vitro
  publication-title: bioRxiv
– volume: 613
  start-page: 558
  year: 2022
  ident: 10.1016/j.antiviral.2023.105671_bib8
  article-title: Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir
  publication-title: Nature
  doi: 10.1038/s41586-022-05514-2
– volume: 126
  start-page: 281
  year: 2014
  ident: 10.1016/j.antiviral.2023.105671_bib4
  article-title: Characterization of susceptibility variants of influenza virus grown in the presence of T-705
  publication-title: J. Pharmacol. Sci.
  doi: 10.1254/jphs.14156SC
– volume: 388
  start-page: 89
  year: 2023
  ident: 10.1016/j.antiviral.2023.105671_bib9
  article-title: Efficacy of antiviral agents against Omicron subvariants BQ.1.1 and XBB
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2214302
– year: 2023
  ident: 10.1016/j.antiviral.2023.105671_bib15
SSID ssj0006798
Score 2.43068
Snippet The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105671
SubjectTerms Lufotrelvir
Molnupiravir
Nirmatrelvir
Remdesivir
Resistance
SARS-CoV-2
Title Assessment of the frequency of SARS-CoV-2 Omicron variant escape from RNA-dependent RNA polymerase inhibitors and 3C-like protease inhibitors
URI https://dx.doi.org/10.1016/j.antiviral.2023.105671
https://www.ncbi.nlm.nih.gov/pubmed/37451629
https://www.proquest.com/docview/2838253189
Volume 216
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqIhCXCspXW6iMxNWsYztO3Fu0otqCukjdgnqzHNtRA0uy6m6R9sI_4D_jiZOt9lD1wDFOrDieycyz53kGoQ-VlJZZILVbx4lITEpyl8MGvHK5YXmZcTgofD6Vk2_i81V6tYPGw1kYoFX2tj_a9M5a9y2jfjZHi7oezQJYCd5SBP_W4XzI-ClEBlr-8c8dzQOiDDG_tyTw9BbHKwy-Bi4txCAY76rQZ8l9Huo-BNp5otNnaK-HkLiIo3yOdnyzjx7HopLrffTkvA-Xv0B_i03eTdxWOGA9XN1E7vQaGmbFxYyM2--E4a-_gJnX4N9h7RzGi_0SmFEYTp_gi2lBhmK5K7jCi3a-ht2spcd1c12XNdTswaZxmI_JvP7pcZf_Yfv-S3R5-ulyPCF9_QViRS5XQV4uwAdX0cQaZ5PKW-Up89Sp1KTMVxWnxiihSmosTXwinMs95cJRnrky4a_QbtM2_g3CygjqpXJpaoNlZqUpk5xWShoqPWOVOkBymHJt-9zkUCJjrgcS2g-9kZUGWekoqwNENx0XMT3Hw11OBpnqLU3TwYk83Pn9oAU6_IcQXDGNb2-XOsC0sNgOFjJ8zOuoHpsR8QzKITN1-D-vPkJP4SqSD9-i3dXNrX8XANGqPO40_hg9Ks6-TKb_AMUjC80
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGELAXBIOx8WkkXkMd23HjvVUVU4G1SGtBe7Mcf4hASaq1m9SX_Qf8z_PFSVEfpj3wGDtWLr7z3dn38x1CH7wQhhoAtRvLEp7qLMltDgfw0uaa5kWfwUXh8USMvvMv59n5Dhp2d2EAVtnq_qjTG23dtvTa2ewtyrI3Dc5KsJY82LfGz2f30H0eli-UMfh4_Q_nAWGGmOBbJPD6FsgrUF8CmBaCEJQ1Zej76W0m6jYXtDFFJ0_Q49aHxINI5lO046p99CBWlVzvo4fjNl7-DP0dbBJv4trj4OxhfxHB02tomA7Opsmw_pFQ_O0PQPMqfBU2z4Fe7JYAjcJw_QSfTQZJVy13BU94Uc_XcJy1dLisfpZFCUV7sK4sZsNkXv52uEkAsd3_HM1OPs2Go6QtwJAYnotVYJgN_oP1JDXamtQ7Ix2hjliZ6Yw67xnRWnJZEG1I6lJube4I45awvi1SdoB2q7pyhwhLzYkT0maZCaqZFrpIc-Kl0EQ4Sr08QqKbcmXa5ORQI2OuOhTaL7XhlQJeqcirI0Q2AxcxP8fdQ447nqotUVPBitw9-H0nBSosRIiu6MrVl0sV_LSw2w4qMvzMiygeG4pYH-ohU_nyfz79Dj0azcan6vTz5OsrtAc9EYn4Gu2uLi7dm-AdrYq3jfTfAMSODVs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+frequency+of+SARS-CoV-2+Omicron+variant+escape+from+RNA-dependent+RNA+polymerase+inhibitors+and+3C-like+protease+inhibitors&rft.jtitle=Antiviral+research&rft.au=Takashita%2C+Emi&rft.au=Fujisaki%2C+Seiichiro&rft.au=Morita%2C+Hiroko&rft.au=Nagata%2C+Shiho&rft.date=2023-08-01&rft.eissn=1872-9096&rft.spage=105671&rft_id=info:doi/10.1016%2Fj.antiviral.2023.105671&rft_id=info%3Apmid%2F37451629&rft.externalDocID=37451629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3542&client=summon