Validating the Usefulness of the “Random Forests” Classifier to Diagnose Early Glaucoma With Optical Coherence Tomography
To validate the usefulness of the “Random Forests” classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT). design: Comparison of diagnostic algorithms. setting: Multiple institutional practices. study participants: Training dataset included 94 eyes of 94 open...
Saved in:
Published in | American journal of ophthalmology Vol. 174; pp. 95 - 103 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2017
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0002-9394 1879-1891 1879-1891 |
DOI | 10.1016/j.ajo.2016.11.001 |
Cover
Loading…
Abstract | To validate the usefulness of the “Random Forests” classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT).
design: Comparison of diagnostic algorithms. setting: Multiple institutional practices. study participants: Training dataset included 94 eyes of 94 open-angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects and testing dataset included 114 eyes of 114 OAG patients and 82 eyes of 82 normal subjects. In both groups, OAG eyes with mean deviation (MD) values better than −5.0 dB were included. observation procedure: Using the training dataset, classifiers were built to discriminate between glaucoma and normal eyes using 84 OCT measurements using the Random Forests method, multiple logistic regression models based on backward or bidirectional stepwise model selection, a least absolute shrinkage and selection operator regression (LASSO) model, and a Ridge regression model. main outcome measures: Diagnostic accuracy.
With the testing data, the area under the receiver operating characteristic curve (AROC) with the Random Forests method (93.0%) was significantly (P < .05) larger than those with other models of the stepwise model selections (71.9%), LASSO model (89.6%), and Ridge model (89.2%).
It is useful to analyze multiple SDOCT parameters concurrently using the Random Forests method to diagnose glaucoma in early stages. |
---|---|
AbstractList | To validate the usefulness of the “Random Forests” classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT).
design: Comparison of diagnostic algorithms. setting: Multiple institutional practices. study participants: Training dataset included 94 eyes of 94 open-angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects and testing dataset included 114 eyes of 114 OAG patients and 82 eyes of 82 normal subjects. In both groups, OAG eyes with mean deviation (MD) values better than −5.0 dB were included. observation procedure: Using the training dataset, classifiers were built to discriminate between glaucoma and normal eyes using 84 OCT measurements using the Random Forests method, multiple logistic regression models based on backward or bidirectional stepwise model selection, a least absolute shrinkage and selection operator regression (LASSO) model, and a Ridge regression model. main outcome measures: Diagnostic accuracy.
With the testing data, the area under the receiver operating characteristic curve (AROC) with the Random Forests method (93.0%) was significantly (P < .05) larger than those with other models of the stepwise model selections (71.9%), LASSO model (89.6%), and Ridge model (89.2%).
It is useful to analyze multiple SDOCT parameters concurrently using the Random Forests method to diagnose glaucoma in early stages. Purpose To validate the usefulness of the "Random Forests" classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT). Methods design: Comparison of diagnostic algorithms.setting: Multiple institutional practices.study participants: Training dataset included 94 eyes of 94 open-angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects and testing dataset included 114 eyes of 114 OAG patients and 82 eyes of 82 normal subjects. In both groups, OAG eyes with mean deviation (MD) values better than -5.0 dB were included.observation procedure: Using the training dataset, classifiers were built to discriminate between glaucoma and normal eyes using 84 OCT measurements using the Random Forests method, multiple logistic regression models based on backward or bidirectional stepwise model selection, a least absolute shrinkage and selection operator regression (LASSO) model, and a Ridge regression model.main outcome measures: Diagnostic accuracy. Results With the testing data, the area under the receiver operating characteristic curve (AROC) with the Random Forests method (93.0%) was significantly (P< .05) larger than those with other models of the stepwise model selections (71.9%), LASSO model (89.6%), and Ridge model (89.2%). Conclusion It is useful to analyze multiple SDOCT parameters concurrently using the Random Forests method to diagnose glaucoma in early stages. Abstract Purpose To validate the usefulness of the 'Random Forests’ classifier to diagnose early glaucoma with spectral domain optical coherence tomography (SD-OCT). Method Design: Comparison of diagnostic algorithms Setting: multiple institutional practice Study participants Training dataset included 94 eyes of 94 open angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects and testing dataset included 114 eyes of 114 OAG patients and 82 eyes of 82 normal subjects. In both groups, OAG eyes with mean deviation (MD) values better than -5.0 dB were included. Observation Procedure Using the training dataset, classifiers were built to discriminate between glaucoma and normal eyes using 84 OCT measurements using Random Forests method, multiple logistic regression models based on backward or bidirectional stepwise model selection, a least absolute shrinkage and selection operator regression (LASSO) model, and a Ridge regression model. Main Outcome Measures diagnostic accuracy Result With the testing data, the area under the receiver operating characteristic curve (AROC) with the Random Forests method (93.0 %) was significantly (p < 0.05) larger than those with other models of the stepwise model selections (71.9 %), LASSO model (89.6 %) and Ridge model (89.2 %). Conclusion It is useful to analyze multiple SD-OCT parameters concurrently using the Random Forests method to diagnose glaucoma in early stage. To validate the usefulness of the "Random Forests" classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT). design: Comparison of diagnostic algorithms. Multiple institutional practices. Training dataset included 94 eyes of 94 open-angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects and testing dataset included 114 eyes of 114 OAG patients and 82 eyes of 82 normal subjects. In both groups, OAG eyes with mean deviation (MD) values better than -5.0 dB were included. Using the training dataset, classifiers were built to discriminate between glaucoma and normal eyes using 84 OCT measurements using the Random Forests method, multiple logistic regression models based on backward or bidirectional stepwise model selection, a least absolute shrinkage and selection operator regression (LASSO) model, and a Ridge regression model. Diagnostic accuracy. With the testing data, the area under the receiver operating characteristic curve (AROC) with the Random Forests method (93.0%) was significantly (P < .05) larger than those with other models of the stepwise model selections (71.9%), LASSO model (89.6%), and Ridge model (89.2%). It is useful to analyze multiple SDOCT parameters concurrently using the Random Forests method to diagnose glaucoma in early stages. To validate the usefulness of the "Random Forests" classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT).PURPOSETo validate the usefulness of the "Random Forests" classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT).design: Comparison of diagnostic algorithms.METHODSdesign: Comparison of diagnostic algorithms.Multiple institutional practices.SETTINGMultiple institutional practices.Training dataset included 94 eyes of 94 open-angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects and testing dataset included 114 eyes of 114 OAG patients and 82 eyes of 82 normal subjects. In both groups, OAG eyes with mean deviation (MD) values better than -5.0 dB were included.STUDY PARTICIPANTSTraining dataset included 94 eyes of 94 open-angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects and testing dataset included 114 eyes of 114 OAG patients and 82 eyes of 82 normal subjects. In both groups, OAG eyes with mean deviation (MD) values better than -5.0 dB were included.Using the training dataset, classifiers were built to discriminate between glaucoma and normal eyes using 84 OCT measurements using the Random Forests method, multiple logistic regression models based on backward or bidirectional stepwise model selection, a least absolute shrinkage and selection operator regression (LASSO) model, and a Ridge regression model.OBSERVATION PROCEDUREUsing the training dataset, classifiers were built to discriminate between glaucoma and normal eyes using 84 OCT measurements using the Random Forests method, multiple logistic regression models based on backward or bidirectional stepwise model selection, a least absolute shrinkage and selection operator regression (LASSO) model, and a Ridge regression model.Diagnostic accuracy.MAIN OUTCOME MEASURESDiagnostic accuracy.With the testing data, the area under the receiver operating characteristic curve (AROC) with the Random Forests method (93.0%) was significantly (P < .05) larger than those with other models of the stepwise model selections (71.9%), LASSO model (89.6%), and Ridge model (89.2%).RESULTSWith the testing data, the area under the receiver operating characteristic curve (AROC) with the Random Forests method (93.0%) was significantly (P < .05) larger than those with other models of the stepwise model selections (71.9%), LASSO model (89.6%), and Ridge model (89.2%).It is useful to analyze multiple SDOCT parameters concurrently using the Random Forests method to diagnose glaucoma in early stages.CONCLUSIONIt is useful to analyze multiple SDOCT parameters concurrently using the Random Forests method to diagnose glaucoma in early stages. |
Author | Shoji, Nobuyuki Asaoka, Ryo Araie, Makoto Murata, Hiroshi Hirasawa, Kazunori Iwase, Aiko Fujino, Yuri |
Author_xml | – sequence: 1 givenname: Ryo surname: Asaoka fullname: Asaoka, Ryo email: rasaoka-tky@umin.ac.jp organization: Department of Ophthalmology, The University of Tokyo, Tokyo, Japan – sequence: 2 givenname: Kazunori surname: Hirasawa fullname: Hirasawa, Kazunori organization: Orthoptics and Visual Science, Department of Rehabilitation, School of Allied Health Sciences, Kitasato University, Kanagawa, Japan – sequence: 3 givenname: Aiko orcidid: 0000-0001-5950-4260 surname: Iwase fullname: Iwase, Aiko organization: Tajimi Iwase Eye Clinic, Tajimi, Japan – sequence: 4 givenname: Yuri orcidid: 0000-0001-6082-0738 surname: Fujino fullname: Fujino, Yuri organization: Department of Ophthalmology, The University of Tokyo, Tokyo, Japan – sequence: 5 givenname: Hiroshi surname: Murata fullname: Murata, Hiroshi organization: Department of Ophthalmology, The University of Tokyo, Tokyo, Japan – sequence: 6 givenname: Nobuyuki surname: Shoji fullname: Shoji, Nobuyuki organization: Orthoptics and Visual Science, Department of Rehabilitation, School of Allied Health Sciences, Kitasato University, Kanagawa, Japan – sequence: 7 givenname: Makoto surname: Araie fullname: Araie, Makoto organization: Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Tokyo, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27836484$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUl1rFDEUDVKx2-oP8EUCvviya-5Mmg8EQda2CoWCtupbyGQyu1kzkzWZEfZB6A9p_1x_iRm3RViwPt3ccM5J7jn3AO11obMIPQcyAwLs9WqmV2FW5OMMYEYIPEITEFxOQUjYQxNCSDGVpaT76CClVW4Zp_wJ2i-4KBkVdIJ-fdHe1bp33QL3S4svk20G39mUcGj-3NxeXX_SXR1afBKiTX26vbrBc69Tco2zEfcBv3d60YVk8bGOfoNPvR5MaDX-6volPl_3zmiP52Fpo-2MxRehDYuo18vNU_S40T7ZZ3f1EF2eHF_MP0zPzk8_zt-dTQ0VrJ8WTPCmbhiVVUWo4LqQVcmIJqxujkpqeCmNZgxoWVkOggghZFEC0bWsNHAoD9Grre46hh9DHkK1Lhnrve5sGJICUUoA4IRk6Msd6CoMscu_yygGQLOLo-CLO9RQtbZW6-haHTfq3tgM4FuAiSGlaBtlXJ9tDl0ftfMKiBojVCuVI1RjhApAbaVhh3kv_hDnzZZjs4k_cyoqGTd6XbtoTa_q4B5kv91hG--6MbTvdmPT3_lVKhRRn8e1GrcKWEmOKP2WBeS_Bf7z-G9IWtxL |
CODEN | AJOPAA |
CitedBy_id | crossref_primary_10_1001_jamaophthalmol_2019_5983 crossref_primary_10_1167_iovs_61_11_16 crossref_primary_10_1136_bjophthalmol_2019_315600 crossref_primary_10_1007_s10528_024_11010_1 crossref_primary_10_1186_s12967_019_1860_0 crossref_primary_10_1038_s41598_018_33013_w crossref_primary_10_1038_s41433_019_0577_x crossref_primary_10_1136_bjo_2022_322374 crossref_primary_10_3390_ani13142293 crossref_primary_10_1016_j_ajo_2020_04_037 crossref_primary_10_1080_02713683_2022_2124275 crossref_primary_10_1038_s41598_020_80839_4 crossref_primary_10_1016_j_ajo_2017_11_027 crossref_primary_10_1038_s41598_020_76834_4 crossref_primary_10_1038_s41598_020_79494_6 crossref_primary_10_4015_S1016237222500429 crossref_primary_10_1177_1120672120977346 crossref_primary_10_1117_1_JMI_4_4_041306 crossref_primary_10_1007_s11042_017_5487_y crossref_primary_10_1016_j_jclinepi_2019_02_004 crossref_primary_10_1515_mammalia_2016_0121 crossref_primary_10_1016_j_ajo_2018_10_007 crossref_primary_10_1016_j_compmedimag_2019_101657 crossref_primary_10_1016_j_ogla_2020_08_002 crossref_primary_10_1080_08820538_2018_1551496 crossref_primary_10_1016_j_bspc_2021_103192 crossref_primary_10_1016_j_ogla_2018_08_006 crossref_primary_10_1371_journal_pone_0190621 crossref_primary_10_1007_s13167_022_00283_4 crossref_primary_10_1155_2019_4061313 crossref_primary_10_1007_s11042_022_13540_5 crossref_primary_10_1051_matecconf_202439201108 crossref_primary_10_1038_s41598_021_83503_7 crossref_primary_10_1016_j_eswa_2022_117202 crossref_primary_10_3390_jpm14101062 crossref_primary_10_3389_fmed_2022_935408 crossref_primary_10_1167_tvst_10_13_28 crossref_primary_10_1109_JSEN_2024_3439748 |
Cites_doi | 10.1016/0039-6257(82)90111-4 10.1016/j.ophtha.2006.03.059 10.1371/journal.pone.0072199 10.1186/1471-2105-9-307 10.1023/A:1010933404324 10.2307/2531595 10.1155/2014/340765 10.1111/j.0006-341X.2001.00632.x 10.1167/iovs.05-0366 10.1371/journal.pone.0115572 10.1167/iovs.15-16445 10.1016/j.ophtha.2006.06.050 10.1167/iovs.11-7472 10.1167/iovs.13-11676 10.1186/1756-0500-4-299 10.1136/bjo.2005.081224 10.1167/iovs.04-0227 10.1177/0049124104268644 10.1001/archopht.1977.04450120055003 10.1167/iovs.13-12749 10.1016/j.ophtha.2009.05.025 10.1167/iovs.11-8035 10.1167/iovs.09-5053 10.2105/AJPH.86.5.726 10.1167/iovs.11-8463 10.1007/s00417-010-1585-5 10.1007/s00417-012-1994-8 10.1186/1471-2156-5-32 10.1001/archopht.1984.01040031430017 10.1136/bjo.2010.182493 10.1001/archopht.1980.01020030486010 10.1371/journal.pone.0086417 10.1016/j.ophtha.2010.01.031 10.1016/j.jcjo.2011.09.006 10.1016/0002-9394(89)90488-1 10.18637/jss.v033.i01 10.1016/S0021-5155(99)00096-9 10.1167/iovs.09-5035 10.1111/j.2517-6161.1996.tb02080.x 10.1371/journal.pone.0106117 10.1016/S0161-6420(92)32018-4 10.1038/eye.2010.139 10.1136/bmjopen-2013-003114 10.1001/archophthalmol.2010.125 10.1001/archopht.1979.01020020106002 10.1038/eye.2011.277 10.1016/S0161-6420(99)90416-5 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.1001/archopht.1991.01080010079037 10.1016/j.neuroimage.2010.11.002 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Feb 01, 2017 |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Feb 01, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 |
DOI | 10.1016/j.ajo.2016.11.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-1891 |
EndPage | 103 |
ExternalDocumentID | 4307161491 27836484 10_1016_j_ajo_2016_11_001 S000293941630544X 1_s2_0_S000293941630544X |
Genre | Validation Studies Multicenter Study Comparative Study Journal Article |
GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1CY 1P~ 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAHTB AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABCQX ABDPE ABFNM ABFRF ABJNI ABLJU ABMAC ABMZM ABOCM ABPEJ ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CS3 EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J5H K-O KOM L7B M41 MO0 N4W N9A O-L O9- OAUVE OF- OPF OQ~ OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SPCBC SSH SSZ SV3 T5K UNMZH UV1 VH1 WH7 WOW X7M XPP Z5R ZGI ZXP ~G- 3V. 7RV 7X7 8FI AACTN AFCTW AFKRA AFKWA AJOXV AMFUW AZQEC BENPR FYUFA GUQSH M1P M2O PKN RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG G8K LCYCR ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 |
ID | FETCH-LOGICAL-c486t-2687fdf649bb0487a29b360a06df534c739ca66143be718088892310ad9ba1713 |
IEDL.DBID | .~1 |
ISSN | 0002-9394 1879-1891 |
IngestDate | Fri Jul 11 15:28:46 EDT 2025 Sat Jul 26 00:08:05 EDT 2025 Wed Feb 19 02:42:49 EST 2025 Thu Jul 03 08:39:21 EDT 2025 Thu Apr 24 23:00:04 EDT 2025 Fri Feb 23 02:32:58 EST 2024 Tue Feb 25 19:57:50 EST 2025 Tue Aug 26 17:24:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Glaucoma Random Forests method Optical Coherence Tomography Area Under the Receiver Operating Characteristic Curve |
Language | English |
License | Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-2687fdf649bb0487a29b360a06df534c739ca66143be718088892310ad9ba1713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0001-6082-0738 0000-0001-5950-4260 |
PMID | 27836484 |
PQID | 1861140001 |
PQPubID | 41749 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1839111700 proquest_journals_1861140001 pubmed_primary_27836484 crossref_citationtrail_10_1016_j_ajo_2016_11_001 crossref_primary_10_1016_j_ajo_2016_11_001 elsevier_sciencedirect_doi_10_1016_j_ajo_2016_11_001 elsevier_clinicalkeyesjournals_1_s2_0_S000293941630544X elsevier_clinicalkey_doi_10_1016_j_ajo_2016_11_001 |
PublicationCentury | 2000 |
PublicationDate | 2017-02-01 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Chicago |
PublicationTitle | American journal of ophthalmology |
PublicationTitleAlternate | Am J Ophthalmol |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Breiman L, Cutler A. Random Forests. Available at Yamazaki, Yoshikawa, Kunimatsu (bib63) 1999; 43 Pederson, Anderson (bib2) 1980; 98 Sommer, Quigley, Robin (bib6) 1984; 102 Demšar (bib50) 2006; 7 Burgansky-Eliash, Wollstein, Chu (bib22) 2005; 46 Jamie, Matthew, Roberto (bib55) 2008 Burnham, Anderson (bib43) 2004; 33 Moreno, Konno, Lima (bib13) 2011; 46 Liang, Yizhou, Debin (bib56) 2010 Asaoka (bib48) 2013; 8 Accessed November 30, 2016. Quigley, Broman (bib38) 2006; 90 Shoji, Nagaoka, Sato (bib64) 2012; 250 Apple, Rabb, Walsh (bib40) 1982; 27 Baskaran, Ong, Li (bib23) 2012; 53 Perera, Wong, Tay (bib60) 2010; 128 Sommer, Katz, Quigley (bib5) 1991; 109 Douglas, Harris, Yuille (bib31) 2011; 56 Fujino, Murata, Mayama (bib49) 2015; 56 Sommer, Pollack, Maumenee (bib1) 1979; 97 Harwerth, Carter-Dawson, Smith (bib9) 2004; 45 Anderson, Patella (bib39) 1999 Strobl, Boulesteix, Kneib (bib28) 2008; 9 Shields (bib19) 1997 Suzuki, Iwase, Araie (bib58) 2006; 113 DeLong, DeLong, Clarke-Pearson (bib51) 1988; 44 Quigley, Dunkelberger, Green (bib10) 1989; 107 Rao, Babu, Addepalli (bib14) 2012; 26 Lunetta, Hayward, Segal (bib32) 2004; 5 Aickin, Gensler (bib53) 1996; 86 Kim, Lee, Seong (bib15) 2010; 51 Zimmerman, Kooner (bib20) 2001 Mitchell (bib25) 1997 Rao, Zangwill, Weinreb (bib34) 2010; 117 Lisboa, Paranhos, Weinreb (bib35) 2013; 54 Bengtsson, Heijl (bib41) 2000; 41 Maroco, Silva, Rodrigues (bib30) 2011; 4 Liang, Friedman, Zhou (bib61) 2011; 52 Youden (bib54) 1950; 3 Kerrigan-Baumrind, Quigley, Pease (bib7) 2000; 41 Mitchell, Hourihan, Sandbach (bib57) 1999; 106 Cho, Sung, Lee (bib17) 2010; 51 Sugimoto, Murata, Hirasawa (bib36) 2013; 3 Yoshida, Iwase, Hirasawa (bib37) 2014; 9 Friedman, Hastie, Tibshirani (bib45) 2010; 33 Holm (bib52) 1979; 6 Garas, Vargha, Hollo (bib12) 2011; 25 Tibshirani (bib44) 1996; 58 Kim, Lee, Seong (bib65) 2011; 95 Sommer, Miller, Pollack (bib4) 1977; 95 Harwerth, Carter-Dawson, Shen (bib8) 1999; 40 Mwanza, Warren, Budenz (bib21) 2013; 54 Rao, Kumbar, Addepalli (bib16) 2012; 53 Dietterich (bib29) 2002 Schulze, Lamparter, Pfeiffer (bib18) 2011; 249 Quigley, Katz, Derick (bib3) 1992; 99 Breiman (bib26) 2001; 45 Yuki, Asaoka, Tsubota (bib46) 2014; 9 Han, Kamber, Pei (bib24) 2006 Asaoka, Nagahara, Hojo (bib47) 2014; 2014 Mayama, Tsutsumi, Saito (bib62) 2014; 9 Xu, Wang, Wang (bib59) 2007; 114 Segal, Cummings, Hubbard (bib33) 2001; 57 Tan, Chopra, Lu (bib11) 2009; 116 Japkowicz (bib42) 2011 Japkowicz (10.1016/j.ajo.2016.11.001_bib42) 2011 Friedman (10.1016/j.ajo.2016.11.001_bib45) 2010; 33 Mitchell (10.1016/j.ajo.2016.11.001_bib25) 1997 Baskaran (10.1016/j.ajo.2016.11.001_bib23) 2012; 53 Segal (10.1016/j.ajo.2016.11.001_bib33) 2001; 57 Rao (10.1016/j.ajo.2016.11.001_bib14) 2012; 26 Liang (10.1016/j.ajo.2016.11.001_bib61) 2011; 52 Breiman (10.1016/j.ajo.2016.11.001_bib26) 2001; 45 Kerrigan-Baumrind (10.1016/j.ajo.2016.11.001_bib7) 2000; 41 Quigley (10.1016/j.ajo.2016.11.001_bib3) 1992; 99 Anderson (10.1016/j.ajo.2016.11.001_bib39) 1999 Aickin (10.1016/j.ajo.2016.11.001_bib53) 1996; 86 Mayama (10.1016/j.ajo.2016.11.001_bib62) 2014; 9 Strobl (10.1016/j.ajo.2016.11.001_bib28) 2008; 9 Quigley (10.1016/j.ajo.2016.11.001_bib38) 2006; 90 Yuki (10.1016/j.ajo.2016.11.001_bib46) 2014; 9 Harwerth (10.1016/j.ajo.2016.11.001_bib8) 1999; 40 Kim (10.1016/j.ajo.2016.11.001_bib15) 2010; 51 Dietterich (10.1016/j.ajo.2016.11.001_bib29) 2002 Zimmerman (10.1016/j.ajo.2016.11.001_bib20) 2001 Maroco (10.1016/j.ajo.2016.11.001_bib30) 2011; 4 Burnham (10.1016/j.ajo.2016.11.001_bib43) 2004; 33 Cho (10.1016/j.ajo.2016.11.001_bib17) 2010; 51 Sommer (10.1016/j.ajo.2016.11.001_bib1) 1979; 97 Liang (10.1016/j.ajo.2016.11.001_bib56) 2010 Bengtsson (10.1016/j.ajo.2016.11.001_bib41) 2000; 41 Asaoka (10.1016/j.ajo.2016.11.001_bib48) 2013; 8 Schulze (10.1016/j.ajo.2016.11.001_bib18) 2011; 249 Quigley (10.1016/j.ajo.2016.11.001_bib10) 1989; 107 Burgansky-Eliash (10.1016/j.ajo.2016.11.001_bib22) 2005; 46 Tan (10.1016/j.ajo.2016.11.001_bib11) 2009; 116 Sommer (10.1016/j.ajo.2016.11.001_bib5) 1991; 109 Shields (10.1016/j.ajo.2016.11.001_bib19) 1997 Fujino (10.1016/j.ajo.2016.11.001_bib49) 2015; 56 Youden (10.1016/j.ajo.2016.11.001_bib54) 1950; 3 Asaoka (10.1016/j.ajo.2016.11.001_bib47) 2014; 2014 Kim (10.1016/j.ajo.2016.11.001_bib65) 2011; 95 Mitchell (10.1016/j.ajo.2016.11.001_bib57) 1999; 106 Demšar (10.1016/j.ajo.2016.11.001_bib50) 2006; 7 Rao (10.1016/j.ajo.2016.11.001_bib34) 2010; 117 Suzuki (10.1016/j.ajo.2016.11.001_bib58) 2006; 113 Han (10.1016/j.ajo.2016.11.001_bib24) 2006 Harwerth (10.1016/j.ajo.2016.11.001_bib9) 2004; 45 Tibshirani (10.1016/j.ajo.2016.11.001_bib44) 1996; 58 Yamazaki (10.1016/j.ajo.2016.11.001_bib63) 1999; 43 Douglas (10.1016/j.ajo.2016.11.001_bib31) 2011; 56 Pederson (10.1016/j.ajo.2016.11.001_bib2) 1980; 98 Sugimoto (10.1016/j.ajo.2016.11.001_bib36) 2013; 3 Xu (10.1016/j.ajo.2016.11.001_bib59) 2007; 114 Holm (10.1016/j.ajo.2016.11.001_bib52) 1979; 6 Rao (10.1016/j.ajo.2016.11.001_bib16) 2012; 53 Shoji (10.1016/j.ajo.2016.11.001_bib64) 2012; 250 Mwanza (10.1016/j.ajo.2016.11.001_bib21) 2013; 54 Apple (10.1016/j.ajo.2016.11.001_bib40) 1982; 27 Lunetta (10.1016/j.ajo.2016.11.001_bib32) 2004; 5 Lisboa (10.1016/j.ajo.2016.11.001_bib35) 2013; 54 Yoshida (10.1016/j.ajo.2016.11.001_bib37) 2014; 9 Sommer (10.1016/j.ajo.2016.11.001_bib6) 1984; 102 10.1016/j.ajo.2016.11.001_bib27 Garas (10.1016/j.ajo.2016.11.001_bib12) 2011; 25 Moreno (10.1016/j.ajo.2016.11.001_bib13) 2011; 46 Perera (10.1016/j.ajo.2016.11.001_bib60) 2010; 128 Jamie (10.1016/j.ajo.2016.11.001_bib55) 2008 Sommer (10.1016/j.ajo.2016.11.001_bib4) 1977; 95 DeLong (10.1016/j.ajo.2016.11.001_bib51) 1988; 44 |
References_xml | – year: 2006 ident: bib24 article-title: Data Mining: Concepts and Techniques. Burlington – volume: 43 start-page: 392 year: 1999 end-page: 397 ident: bib63 article-title: Influence of myopic disc shape on the diagnostic precision of the Heidelberg Retina Tomograph publication-title: Jpn J Ophthalmol – volume: 98 start-page: 490 year: 1980 end-page: 495 ident: bib2 article-title: The mode of progressive disc cupping in ocular hypertension and glaucoma publication-title: Arch Ophthalmol – volume: 33 start-page: 261 year: 2004 end-page: 304 ident: bib43 article-title: Multimodel inference: understanding: AIC and BIC in model selection publication-title: Socio Meth Res – volume: 250 start-page: 1843 year: 2012 end-page: 1849 ident: bib64 article-title: Impact of high myopia on the performance of SD-OCT parameters to detect glaucoma publication-title: Graefes Arch Clin Exp Ophthalmol – volume: 3 start-page: e003114 year: 2013 ident: bib36 article-title: Cross-sectional study: does combining optical coherence tomography measurements using the ‘Random Forest’ decision tree classifier improve the prediction of the presence of perimetric deterioration in glaucoma suspects? publication-title: BMJ Open – volume: 3 start-page: 32 year: 1950 end-page: 35 ident: bib54 article-title: Index for rating diagnostic tests publication-title: Cancer – volume: 109 start-page: 77 year: 1991 end-page: 83 ident: bib5 article-title: Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss publication-title: Arch Ophthalmol – volume: 2014 start-page: 340765 year: 2014 ident: bib47 article-title: The relationship between H. pylori infection and osteoporosis in Japan publication-title: Gastroenterol Res Pract – volume: 53 start-page: 1058 year: 2012 end-page: 1065 ident: bib16 article-title: Effect of spectrum bias on the diagnostic accuracy of spectral-domain optical coherence tomography in glaucoma publication-title: Invest Ophthalmol Vis Sci – year: 2011 ident: bib42 article-title: Evaluating Learning Algorithms: A Classification Perspective – volume: 113 start-page: 1613 year: 2006 end-page: 1617 ident: bib58 article-title: Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study publication-title: Ophthalmology – reference: . Accessed November 30, 2016. – volume: 26 start-page: 133 year: 2012 end-page: 139 ident: bib14 article-title: Retinal nerve fiber layer and macular inner retina measurements by spectral domain optical coherence tomograph in Indian eyes with early glaucoma publication-title: Eye (Lond) – volume: 99 start-page: 19 year: 1992 end-page: 28 ident: bib3 article-title: An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage publication-title: Ophthalmology – volume: 51 start-page: 6401 year: 2010 end-page: 6407 ident: bib17 article-title: Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral-domain optical coherence tomography publication-title: Invest Ophthalmol Vis Sci – volume: 9 start-page: 307 year: 2008 ident: bib28 article-title: Conditional variable importance for random forests publication-title: BMC Bioinformatics – volume: 9 start-page: e106117 year: 2014 ident: bib37 article-title: Discriminating between glaucoma and normal eyes using optical coherence tomography and the ‘Random Forests’ classifier publication-title: PLoS One – volume: 128 start-page: 900 year: 2010 end-page: 905 ident: bib60 article-title: Refractive error, axial dimensions, and primary open-angle glaucoma: the Singapore Malay Eye Study publication-title: Arch Ophthalmol – volume: 249 start-page: 1039 year: 2011 end-page: 1045 ident: bib18 article-title: Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography publication-title: Graefes Arch Clin Exp Ophthalmol – volume: 106 start-page: 2010 year: 1999 end-page: 2015 ident: bib57 article-title: The relationship between glaucoma and myopia: the Blue Mountains Eye Study publication-title: Ophthalmology – volume: 41 start-page: 741 year: 2000 end-page: 748 ident: bib7 article-title: Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons publication-title: Invest Ophthalmol Vis Sci – volume: 40 start-page: 2242 year: 1999 end-page: 2250 ident: bib8 article-title: Ganglion cell losses underlying visual field defects from experimental glaucoma publication-title: Invest Ophthalmol Vis Sci – volume: 46 start-page: 4147 year: 2005 end-page: 4152 ident: bib22 article-title: Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study publication-title: Invest Ophthalmol Vis Sci – volume: 56 start-page: 2334 year: 2015 end-page: 2339 ident: bib49 article-title: Applying “lasso” regression to predict future visual field progression in glaucoma patients publication-title: Invest Ophthalmol Vis Sci – volume: 90 start-page: 262 year: 2006 end-page: 267 ident: bib38 article-title: The number of people with glaucoma worldwide in 2010 and 2020 publication-title: Br J Ophthalmol – year: 1999 ident: bib39 article-title: Automated Static Perimetry – start-page: 1 year: 2008 end-page: 8 ident: bib55 article-title: Semantic texton forests for image categorization and segmentation publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition – volume: 114 start-page: 216 year: 2007 end-page: 220 ident: bib59 article-title: High myopia and glaucoma susceptibility the Beijing Eye Study publication-title: Ophthalmology – volume: 53 start-page: 2314 year: 2012 end-page: 2320 ident: bib23 article-title: Classification algorithms enhance the discrimination of glaucoma from normal eyes using high-definition optical coherence tomography publication-title: Invest Ophthalmol Vis Sci – year: 1997 ident: bib19 article-title: Textbook of Glaucoma – volume: 117 start-page: 1692 year: 2010 end-page: 1699 ident: bib34 article-title: Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis publication-title: Ophthalmology – volume: 46 start-page: 543 year: 2011 end-page: 547 ident: bib13 article-title: Spectral-domain optical coherence tomography for early glaucoma assessment: analysis of macular ganglion cell complex versus peripapillary retinal nerve fiber layer publication-title: Can J Ophthalmol – volume: 27 start-page: 3 year: 1982 end-page: 41 ident: bib40 article-title: Congenital anomalies of the optic disc publication-title: Surv Ophthalmol – volume: 97 start-page: 1444 year: 1979 end-page: 1448 ident: bib1 article-title: Optic disc parameters and onset of glaucomatous field loss. I. Methods and progressive changes in disc morphology publication-title: Arch Ophthalmol – volume: 45 start-page: 3152 year: 2004 end-page: 3160 ident: bib9 article-title: Neural losses correlated with visual losses in clinical perimetry publication-title: Invest Ophthalmol Vis Sci – volume: 102 start-page: 1766 year: 1984 end-page: 1771 ident: bib6 article-title: Evaluation of nerve fiber layer assessment publication-title: Arch Ophthalmol – volume: 8 start-page: e72199 year: 2013 ident: bib48 article-title: Measuring visual field progression in the central 10 degrees using additional information from central 24 degrees visual fields and ‘lasso regression’ publication-title: PLoS One – volume: 95 start-page: 2149 year: 1977 end-page: 2156 ident: bib4 article-title: The nerve fiber layer in the diagnosis of glaucoma publication-title: Arch Ophthalmol – volume: 107 start-page: 453 year: 1989 end-page: 464 ident: bib10 article-title: Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma publication-title: Am J Ophthalmol – volume: 44 start-page: 837 year: 1988 end-page: 845 ident: bib51 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics – volume: 86 start-page: 726 year: 1996 end-page: 728 ident: bib53 article-title: Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods publication-title: Am J Public Health – volume: 25 start-page: 57 year: 2011 end-page: 65 ident: bib12 article-title: Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma publication-title: Eye (Lond) – volume: 116 year: 2009 ident: bib11 article-title: Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography publication-title: Ophthalmology – year: 2002 ident: bib29 article-title: Ensemble learning publication-title: The Handbook of Brain Theory and Neural Networks – volume: 56 start-page: 544 year: 2011 end-page: 553 ident: bib31 article-title: Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief publication-title: Neuroimage – reference: Breiman L, Cutler A. Random Forests. Available at: – start-page: 1457 year: 2010 end-page: 1460 ident: bib56 article-title: Building emerging pattern (EP) random forest for recognition publication-title: Proc IEEE Conf on Image Processing – year: 1997 ident: bib25 article-title: Machine Learning – volume: 52 start-page: 8250 year: 2011 end-page: 8257 ident: bib61 article-title: Prevalence of primary open angle glaucoma in a rural adult Chinese population: the Handan eye study publication-title: Invest Ophthalmol Vis Sci – volume: 4 start-page: 299 year: 2011 ident: bib30 article-title: Data mining methods in the prediction of dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests publication-title: BMC Res Notes – volume: 9 start-page: e115572 year: 2014 ident: bib46 article-title: The relationship between central visual field damage and motor vehicle collisions in primary open-angle glaucoma patients publication-title: PLoS One – volume: 9 start-page: e86417 year: 2014 ident: bib62 article-title: Glaucoma-induced optic disc morphometric changes and glaucoma diagnostic ability of Heidelberg Retina Tomograph II in highly myopic eyes publication-title: PLoS One – volume: 51 start-page: 4646 year: 2010 end-page: 4651 ident: bib15 article-title: Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma publication-title: Invest Ophthalmol Vis Sci – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib26 article-title: Random Forests publication-title: Machine Learning – volume: 6 start-page: 65 year: 1979 end-page: 70 ident: bib52 article-title: A simple sequentially rejective multiple test procedure publication-title: Scand J Stat – volume: 41 start-page: 2201 year: 2000 end-page: 2204 ident: bib41 article-title: False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability? publication-title: Invest Ophthalmol Vis Sci – volume: 33 start-page: 1 year: 2010 end-page: 22 ident: bib45 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J Stat Softw – volume: 54 start-page: 8393 year: 2013 end-page: 8400 ident: bib21 article-title: Combining spectral domain optical coherence tomography structural parameters for the diagnosis of glaucoma with early visual field loss publication-title: Invest Ophthalmol Vis Sci – volume: 95 start-page: 1115 year: 2011 end-page: 1121 ident: bib65 article-title: Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia publication-title: Br J Ophthalmol – volume: 57 start-page: 632 year: 2001 end-page: 642 ident: bib33 article-title: Relating amino acid sequence to phenotype: analysis of peptide-binding data publication-title: Biometrics – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib50 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – year: 2001 ident: bib20 article-title: Clinical Pathways in Glaucoma – volume: 54 start-page: 3417 year: 2013 end-page: 3425 ident: bib35 article-title: Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma publication-title: Invest Ophthalmol Vis Sci – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib44 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc Series B – volume: 5 start-page: 32 year: 2004 ident: bib32 article-title: Screening large-scale association study data: exploiting interactions using random forests publication-title: BMC Genet – year: 1997 ident: 10.1016/j.ajo.2016.11.001_bib25 – volume: 27 start-page: 3 issue: 1 year: 1982 ident: 10.1016/j.ajo.2016.11.001_bib40 article-title: Congenital anomalies of the optic disc publication-title: Surv Ophthalmol doi: 10.1016/0039-6257(82)90111-4 – volume: 113 start-page: 1613 issue: 9 year: 2006 ident: 10.1016/j.ajo.2016.11.001_bib58 article-title: Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study publication-title: Ophthalmology doi: 10.1016/j.ophtha.2006.03.059 – volume: 41 start-page: 2201 issue: 8 year: 2000 ident: 10.1016/j.ajo.2016.11.001_bib41 article-title: False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability? publication-title: Invest Ophthalmol Vis Sci – volume: 8 start-page: e72199 issue: 8 year: 2013 ident: 10.1016/j.ajo.2016.11.001_bib48 article-title: Measuring visual field progression in the central 10 degrees using additional information from central 24 degrees visual fields and ‘lasso regression’ publication-title: PLoS One doi: 10.1371/journal.pone.0072199 – volume: 9 start-page: 307 year: 2008 ident: 10.1016/j.ajo.2016.11.001_bib28 article-title: Conditional variable importance for random forests publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-307 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.ajo.2016.11.001_bib26 article-title: Random Forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 44 start-page: 837 issue: 3 year: 1988 ident: 10.1016/j.ajo.2016.11.001_bib51 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 2014 start-page: 340765 year: 2014 ident: 10.1016/j.ajo.2016.11.001_bib47 article-title: The relationship between H. pylori infection and osteoporosis in Japan publication-title: Gastroenterol Res Pract doi: 10.1155/2014/340765 – volume: 57 start-page: 632 issue: 2 year: 2001 ident: 10.1016/j.ajo.2016.11.001_bib33 article-title: Relating amino acid sequence to phenotype: analysis of peptide-binding data publication-title: Biometrics doi: 10.1111/j.0006-341X.2001.00632.x – year: 2001 ident: 10.1016/j.ajo.2016.11.001_bib20 – volume: 46 start-page: 4147 issue: 11 year: 2005 ident: 10.1016/j.ajo.2016.11.001_bib22 article-title: Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.05-0366 – volume: 9 start-page: e115572 issue: 12 year: 2014 ident: 10.1016/j.ajo.2016.11.001_bib46 article-title: The relationship between central visual field damage and motor vehicle collisions in primary open-angle glaucoma patients publication-title: PLoS One doi: 10.1371/journal.pone.0115572 – volume: 56 start-page: 2334 issue: 4 year: 2015 ident: 10.1016/j.ajo.2016.11.001_bib49 article-title: Applying “lasso” regression to predict future visual field progression in glaucoma patients publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.15-16445 – volume: 114 start-page: 216 issue: 2 year: 2007 ident: 10.1016/j.ajo.2016.11.001_bib59 article-title: High myopia and glaucoma susceptibility the Beijing Eye Study publication-title: Ophthalmology doi: 10.1016/j.ophtha.2006.06.050 – volume: 6 start-page: 65 year: 1979 ident: 10.1016/j.ajo.2016.11.001_bib52 article-title: A simple sequentially rejective multiple test procedure publication-title: Scand J Stat – volume: 52 start-page: 8250 issue: 11 year: 2011 ident: 10.1016/j.ajo.2016.11.001_bib61 article-title: Prevalence of primary open angle glaucoma in a rural adult Chinese population: the Handan eye study publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.11-7472 – volume: 54 start-page: 3417 issue: 5 year: 2013 ident: 10.1016/j.ajo.2016.11.001_bib35 article-title: Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.13-11676 – volume: 4 start-page: 299 year: 2011 ident: 10.1016/j.ajo.2016.11.001_bib30 article-title: Data mining methods in the prediction of dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests publication-title: BMC Res Notes doi: 10.1186/1756-0500-4-299 – volume: 90 start-page: 262 issue: 3 year: 2006 ident: 10.1016/j.ajo.2016.11.001_bib38 article-title: The number of people with glaucoma worldwide in 2010 and 2020 publication-title: Br J Ophthalmol doi: 10.1136/bjo.2005.081224 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.ajo.2016.11.001_bib50 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – volume: 45 start-page: 3152 issue: 9 year: 2004 ident: 10.1016/j.ajo.2016.11.001_bib9 article-title: Neural losses correlated with visual losses in clinical perimetry publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.04-0227 – volume: 33 start-page: 261 year: 2004 ident: 10.1016/j.ajo.2016.11.001_bib43 article-title: Multimodel inference: understanding: AIC and BIC in model selection publication-title: Socio Meth Res doi: 10.1177/0049124104268644 – volume: 95 start-page: 2149 issue: 12 year: 1977 ident: 10.1016/j.ajo.2016.11.001_bib4 article-title: The nerve fiber layer in the diagnosis of glaucoma publication-title: Arch Ophthalmol doi: 10.1001/archopht.1977.04450120055003 – volume: 54 start-page: 8393 issue: 13 year: 2013 ident: 10.1016/j.ajo.2016.11.001_bib21 article-title: Combining spectral domain optical coherence tomography structural parameters for the diagnosis of glaucoma with early visual field loss publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.13-12749 – volume: 116 issue: 12 year: 2009 ident: 10.1016/j.ajo.2016.11.001_bib11 article-title: Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography publication-title: Ophthalmology doi: 10.1016/j.ophtha.2009.05.025 – volume: 53 start-page: 2314 issue: 4 year: 2012 ident: 10.1016/j.ajo.2016.11.001_bib23 article-title: Classification algorithms enhance the discrimination of glaucoma from normal eyes using high-definition optical coherence tomography publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.11-8035 – volume: 51 start-page: 4646 issue: 9 year: 2010 ident: 10.1016/j.ajo.2016.11.001_bib15 article-title: Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.09-5053 – volume: 86 start-page: 726 issue: 5 year: 1996 ident: 10.1016/j.ajo.2016.11.001_bib53 article-title: Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods publication-title: Am J Public Health doi: 10.2105/AJPH.86.5.726 – volume: 53 start-page: 1058 issue: 2 year: 2012 ident: 10.1016/j.ajo.2016.11.001_bib16 article-title: Effect of spectrum bias on the diagnostic accuracy of spectral-domain optical coherence tomography in glaucoma publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.11-8463 – volume: 249 start-page: 1039 issue: 7 year: 2011 ident: 10.1016/j.ajo.2016.11.001_bib18 article-title: Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography publication-title: Graefes Arch Clin Exp Ophthalmol doi: 10.1007/s00417-010-1585-5 – volume: 250 start-page: 1843 issue: 12 year: 2012 ident: 10.1016/j.ajo.2016.11.001_bib64 article-title: Impact of high myopia on the performance of SD-OCT parameters to detect glaucoma publication-title: Graefes Arch Clin Exp Ophthalmol doi: 10.1007/s00417-012-1994-8 – volume: 5 start-page: 32 year: 2004 ident: 10.1016/j.ajo.2016.11.001_bib32 article-title: Screening large-scale association study data: exploiting interactions using random forests publication-title: BMC Genet doi: 10.1186/1471-2156-5-32 – volume: 102 start-page: 1766 issue: 12 year: 1984 ident: 10.1016/j.ajo.2016.11.001_bib6 article-title: Evaluation of nerve fiber layer assessment publication-title: Arch Ophthalmol doi: 10.1001/archopht.1984.01040031430017 – start-page: 1 year: 2008 ident: 10.1016/j.ajo.2016.11.001_bib55 article-title: Semantic texton forests for image categorization and segmentation publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition – volume: 95 start-page: 1115 issue: 8 year: 2011 ident: 10.1016/j.ajo.2016.11.001_bib65 article-title: Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia publication-title: Br J Ophthalmol doi: 10.1136/bjo.2010.182493 – volume: 98 start-page: 490 issue: 3 year: 1980 ident: 10.1016/j.ajo.2016.11.001_bib2 article-title: The mode of progressive disc cupping in ocular hypertension and glaucoma publication-title: Arch Ophthalmol doi: 10.1001/archopht.1980.01020030486010 – start-page: 1457 year: 2010 ident: 10.1016/j.ajo.2016.11.001_bib56 article-title: Building emerging pattern (EP) random forest for recognition publication-title: Proc IEEE Conf on Image Processing – volume: 9 start-page: e86417 issue: 1 year: 2014 ident: 10.1016/j.ajo.2016.11.001_bib62 article-title: Glaucoma-induced optic disc morphometric changes and glaucoma diagnostic ability of Heidelberg Retina Tomograph II in highly myopic eyes publication-title: PLoS One doi: 10.1371/journal.pone.0086417 – volume: 117 start-page: 1692 issue: 9 year: 2010 ident: 10.1016/j.ajo.2016.11.001_bib34 article-title: Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis publication-title: Ophthalmology doi: 10.1016/j.ophtha.2010.01.031 – volume: 41 start-page: 741 issue: 3 year: 2000 ident: 10.1016/j.ajo.2016.11.001_bib7 article-title: Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons publication-title: Invest Ophthalmol Vis Sci – year: 2002 ident: 10.1016/j.ajo.2016.11.001_bib29 article-title: Ensemble learning – volume: 46 start-page: 543 issue: 6 year: 2011 ident: 10.1016/j.ajo.2016.11.001_bib13 article-title: Spectral-domain optical coherence tomography for early glaucoma assessment: analysis of macular ganglion cell complex versus peripapillary retinal nerve fiber layer publication-title: Can J Ophthalmol doi: 10.1016/j.jcjo.2011.09.006 – ident: 10.1016/j.ajo.2016.11.001_bib27 – volume: 107 start-page: 453 issue: 5 year: 1989 ident: 10.1016/j.ajo.2016.11.001_bib10 article-title: Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma publication-title: Am J Ophthalmol doi: 10.1016/0002-9394(89)90488-1 – volume: 33 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.ajo.2016.11.001_bib45 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J Stat Softw doi: 10.18637/jss.v033.i01 – volume: 43 start-page: 392 issue: 5 year: 1999 ident: 10.1016/j.ajo.2016.11.001_bib63 article-title: Influence of myopic disc shape on the diagnostic precision of the Heidelberg Retina Tomograph publication-title: Jpn J Ophthalmol doi: 10.1016/S0021-5155(99)00096-9 – volume: 51 start-page: 6401 issue: 12 year: 2010 ident: 10.1016/j.ajo.2016.11.001_bib17 article-title: Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral-domain optical coherence tomography publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.09-5035 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.ajo.2016.11.001_bib44 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 9 start-page: e106117 issue: 8 year: 2014 ident: 10.1016/j.ajo.2016.11.001_bib37 article-title: Discriminating between glaucoma and normal eyes using optical coherence tomography and the ‘Random Forests’ classifier publication-title: PLoS One doi: 10.1371/journal.pone.0106117 – volume: 99 start-page: 19 issue: 1 year: 1992 ident: 10.1016/j.ajo.2016.11.001_bib3 article-title: An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage publication-title: Ophthalmology doi: 10.1016/S0161-6420(92)32018-4 – volume: 25 start-page: 57 issue: 1 year: 2011 ident: 10.1016/j.ajo.2016.11.001_bib12 article-title: Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma publication-title: Eye (Lond) doi: 10.1038/eye.2010.139 – year: 1999 ident: 10.1016/j.ajo.2016.11.001_bib39 – volume: 3 start-page: e003114 issue: 10 year: 2013 ident: 10.1016/j.ajo.2016.11.001_bib36 article-title: Cross-sectional study: does combining optical coherence tomography measurements using the ‘Random Forest’ decision tree classifier improve the prediction of the presence of perimetric deterioration in glaucoma suspects? publication-title: BMJ Open doi: 10.1136/bmjopen-2013-003114 – volume: 128 start-page: 900 issue: 7 year: 2010 ident: 10.1016/j.ajo.2016.11.001_bib60 article-title: Refractive error, axial dimensions, and primary open-angle glaucoma: the Singapore Malay Eye Study publication-title: Arch Ophthalmol doi: 10.1001/archophthalmol.2010.125 – year: 2011 ident: 10.1016/j.ajo.2016.11.001_bib42 – volume: 97 start-page: 1444 issue: 8 year: 1979 ident: 10.1016/j.ajo.2016.11.001_bib1 article-title: Optic disc parameters and onset of glaucomatous field loss. I. Methods and progressive changes in disc morphology publication-title: Arch Ophthalmol doi: 10.1001/archopht.1979.01020020106002 – volume: 40 start-page: 2242 issue: 10 year: 1999 ident: 10.1016/j.ajo.2016.11.001_bib8 article-title: Ganglion cell losses underlying visual field defects from experimental glaucoma publication-title: Invest Ophthalmol Vis Sci – volume: 26 start-page: 133 issue: 1 year: 2012 ident: 10.1016/j.ajo.2016.11.001_bib14 article-title: Retinal nerve fiber layer and macular inner retina measurements by spectral domain optical coherence tomograph in Indian eyes with early glaucoma publication-title: Eye (Lond) doi: 10.1038/eye.2011.277 – year: 2006 ident: 10.1016/j.ajo.2016.11.001_bib24 – year: 1997 ident: 10.1016/j.ajo.2016.11.001_bib19 – volume: 106 start-page: 2010 issue: 10 year: 1999 ident: 10.1016/j.ajo.2016.11.001_bib57 article-title: The relationship between glaucoma and myopia: the Blue Mountains Eye Study publication-title: Ophthalmology doi: 10.1016/S0161-6420(99)90416-5 – volume: 3 start-page: 32 issue: 1 year: 1950 ident: 10.1016/j.ajo.2016.11.001_bib54 article-title: Index for rating diagnostic tests publication-title: Cancer doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – volume: 109 start-page: 77 issue: 1 year: 1991 ident: 10.1016/j.ajo.2016.11.001_bib5 article-title: Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss publication-title: Arch Ophthalmol doi: 10.1001/archopht.1991.01080010079037 – volume: 56 start-page: 544 issue: 2 year: 2011 ident: 10.1016/j.ajo.2016.11.001_bib31 article-title: Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.11.002 |
SSID | ssj0006747 |
Score | 2.4300847 |
Snippet | To validate the usefulness of the “Random Forests” classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT).
design:... Abstract Purpose To validate the usefulness of the 'Random Forests’ classifier to diagnose early glaucoma with spectral domain optical coherence tomography... To validate the usefulness of the "Random Forests" classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT). design:... Purpose To validate the usefulness of the "Random Forests" classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT).... To validate the usefulness of the "Random Forests" classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT).PURPOSETo... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 95 |
SubjectTerms | Cross-Sectional Studies Datasets Diabetic retinopathy Early Diagnosis Female Follow-Up Studies Glaucoma Glaucoma, Open-Angle - classification Glaucoma, Open-Angle - diagnosis Glaucoma, Open-Angle - physiopathology Gonioscopy Hospitals Humans Intraocular Pressure - physiology Male Middle Aged Nerve Fibers - pathology Ophthalmology Optic Disk - diagnostic imaging Optics ROC Curve Studies Tomography, Optical Coherence - methods Visual Fields |
Title | Validating the Usefulness of the “Random Forests” Classifier to Diagnose Early Glaucoma With Optical Coherence Tomography |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S000293941630544X https://www.clinicalkey.es/playcontent/1-s2.0-S000293941630544X https://dx.doi.org/10.1016/j.ajo.2016.11.001 https://www.ncbi.nlm.nih.gov/pubmed/27836484 https://www.proquest.com/docview/1861140001 https://www.proquest.com/docview/1839111700 |
Volume | 174 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkJcEOW5tFRG4oSU1pt47eRYFcoCokioC3uz7NiGrbbJqskeQf0h7Z_rL2HGcbZClCJx9SuWPY9v4nkQ8rJIZeksMKAH4yThjo2SwroysaBrXZYza3Xw8j0S4wl_Px1N18hBHwuDbpVR9ncyPUjr2LIXT3NvMZthjC8DXVUgogDcwacYwc4l5s_f_Xnt5iEklz0ExtH9y2bw8dInGP83FLuYyDPWhblBN_0NewYddHif3Ivgke53-9ska656QO58jM_jD8mPL4CqMV6h-kYB2NFJ4_xyjsKM1j60XJ1ffNaVrU8p1uRs2ubq_JKGwpgzD5ugbU1fd853jobcx_TtXC_hcDT9Omu_00-L8O-bYlRHiBOkx_VpzHr9iEwO3xwfjJNYXyEpeS7aJBW59NYLXhgDjCx1WphMMM2E9aOMlzIrSo36OzMOVBjIozzAQW0Lo4dg3T4m61VduaeEemY8LJBxYUEq5CWsmHojDBPOunzEB4T1J6vKmHwca2DMVe9ldqLgMhReBhgl6Gk3IK9WUxZd5o3bBqf9dak-pBSEoAK9cNskedMk10Q2btRQNali6g9SGxC-mvkbtf7rg9s9Janrb-QCbFIWul-suoHJ8eVGV65e4pgMlZJkbECedBS4OhMslSJ4zp_93562yN0UkUpwRN8m6-3Z0j0HnNWancBIO2Rj_92H8dEvLGEnCg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJgEviOsoDDAST0hhbuI6yeM0GB3bioRa6JtlxzZ06pKKpI9I-yHw5_ZLOMdxghBjSLzaObZln8vn-FwIeZHHaWENCKCDy0nELRtFubFFZMDW2iRjxijv5TsR4xl_Nx_NN8h-FwuDbpVB97c63Wvr0LIbdnN3tVhgjC8DW5UjogDcwefXyBZmpwJm39o7PBpPeoUsUp52KBgJusdN7-alTjEEcCheYS7PUBrmEvP0N_jpzdDBbXIr4Ee61y7xDtmw5V1y_SS8kN8j3z4CsMaQhfIzBWxHZ7V16yXqM1o533Jx_v2DKk11RrEsZ93UF-c_qK-NuXCwCNpU9HXrf2epT39M3y7VGvZH0U-L5gt9v_K_vykGdvhQQTqtzkLi6_tkdvBmuj-OQomFqOCZaKJYZKkzTvBca5DlVMW5TgRTTBg3SniRJnmh0IQn2oIVA5WUeUSoTK7VEC64D8hmWZX2IaGOaQcDJFwYUAxZASPGTgvNhDU2G_EBYd3OyiLkH8cyGEvZOZqdSjgMiYcB9xJ0thuQlz3Jqk2-cdXHcXdcsosqBT0owTRcRZReRmTrIMm1HMo6lkz-wW0DwnvK3xj2XxPudJwkf82RCbiWMt_9vO8GOcfHG1Xaao3fJGiXUsYGZLvlwH5PsFqK4Bl_9H9rekZujKcnx_L4cHL0mNyMEbh4v_Qdstl8XdsnALsa_TSI1U8zMim7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validating+the+Usefulness+of+the+%E2%80%9CRandom+Forests%E2%80%9D+Classifier+to+Diagnose+Early+Glaucoma+With+Optical+Coherence+Tomography&rft.jtitle=American+journal+of+ophthalmology&rft.au=Asaoka%2C+Ryo&rft.au=Hirasawa%2C+Kazunori&rft.au=Iwase%2C+Aiko&rft.au=Fujino%2C+Yuri&rft.date=2017-02-01&rft.pub=Elsevier+Inc&rft.issn=0002-9394&rft.volume=174&rft.spage=95&rft.epage=103&rft_id=info:doi/10.1016%2Fj.ajo.2016.11.001&rft.externalDocID=S000293941630544X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9394&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9394&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9394&client=summon |