Validating the Usefulness of the “Random Forests” Classifier to Diagnose Early Glaucoma With Optical Coherence Tomography

To validate the usefulness of the “Random Forests” classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT). design: Comparison of diagnostic algorithms. setting: Multiple institutional practices. study participants: Training dataset included 94 eyes of 94 open...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of ophthalmology Vol. 174; pp. 95 - 103
Main Authors Asaoka, Ryo, Hirasawa, Kazunori, Iwase, Aiko, Fujino, Yuri, Murata, Hiroshi, Shoji, Nobuyuki, Araie, Makoto
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2017
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0002-9394
1879-1891
1879-1891
DOI10.1016/j.ajo.2016.11.001

Cover

Loading…
Abstract To validate the usefulness of the “Random Forests” classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT). design: Comparison of diagnostic algorithms. setting: Multiple institutional practices. study participants: Training dataset included 94 eyes of 94 open-angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects and testing dataset included 114 eyes of 114 OAG patients and 82 eyes of 82 normal subjects. In both groups, OAG eyes with mean deviation (MD) values better than −5.0 dB were included. observation procedure: Using the training dataset, classifiers were built to discriminate between glaucoma and normal eyes using 84 OCT measurements using the Random Forests method, multiple logistic regression models based on backward or bidirectional stepwise model selection, a least absolute shrinkage and selection operator regression (LASSO) model, and a Ridge regression model. main outcome measures: Diagnostic accuracy. With the testing data, the area under the receiver operating characteristic curve (AROC) with the Random Forests method (93.0%) was significantly (P < .05) larger than those with other models of the stepwise model selections (71.9%), LASSO model (89.6%), and Ridge model (89.2%). It is useful to analyze multiple SDOCT parameters concurrently using the Random Forests method to diagnose glaucoma in early stages.
AbstractList To validate the usefulness of the “Random Forests” classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT). design: Comparison of diagnostic algorithms. setting: Multiple institutional practices. study participants: Training dataset included 94 eyes of 94 open-angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects and testing dataset included 114 eyes of 114 OAG patients and 82 eyes of 82 normal subjects. In both groups, OAG eyes with mean deviation (MD) values better than −5.0 dB were included. observation procedure: Using the training dataset, classifiers were built to discriminate between glaucoma and normal eyes using 84 OCT measurements using the Random Forests method, multiple logistic regression models based on backward or bidirectional stepwise model selection, a least absolute shrinkage and selection operator regression (LASSO) model, and a Ridge regression model. main outcome measures: Diagnostic accuracy. With the testing data, the area under the receiver operating characteristic curve (AROC) with the Random Forests method (93.0%) was significantly (P < .05) larger than those with other models of the stepwise model selections (71.9%), LASSO model (89.6%), and Ridge model (89.2%). It is useful to analyze multiple SDOCT parameters concurrently using the Random Forests method to diagnose glaucoma in early stages.
Purpose To validate the usefulness of the "Random Forests" classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT). Methods design: Comparison of diagnostic algorithms.setting: Multiple institutional practices.study participants: Training dataset included 94 eyes of 94 open-angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects and testing dataset included 114 eyes of 114 OAG patients and 82 eyes of 82 normal subjects. In both groups, OAG eyes with mean deviation (MD) values better than -5.0 dB were included.observation procedure: Using the training dataset, classifiers were built to discriminate between glaucoma and normal eyes using 84 OCT measurements using the Random Forests method, multiple logistic regression models based on backward or bidirectional stepwise model selection, a least absolute shrinkage and selection operator regression (LASSO) model, and a Ridge regression model.main outcome measures: Diagnostic accuracy. Results With the testing data, the area under the receiver operating characteristic curve (AROC) with the Random Forests method (93.0%) was significantly (P< .05) larger than those with other models of the stepwise model selections (71.9%), LASSO model (89.6%), and Ridge model (89.2%). Conclusion It is useful to analyze multiple SDOCT parameters concurrently using the Random Forests method to diagnose glaucoma in early stages.
Abstract Purpose To validate the usefulness of the 'Random Forests’ classifier to diagnose early glaucoma with spectral domain optical coherence tomography (SD-OCT). Method Design: Comparison of diagnostic algorithms Setting: multiple institutional practice Study participants Training dataset included 94 eyes of 94 open angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects and testing dataset included 114 eyes of 114 OAG patients and 82 eyes of 82 normal subjects. In both groups, OAG eyes with mean deviation (MD) values better than -5.0 dB were included. Observation Procedure Using the training dataset, classifiers were built to discriminate between glaucoma and normal eyes using 84 OCT measurements using Random Forests method, multiple logistic regression models based on backward or bidirectional stepwise model selection, a least absolute shrinkage and selection operator regression (LASSO) model, and a Ridge regression model. Main Outcome Measures diagnostic accuracy Result With the testing data, the area under the receiver operating characteristic curve (AROC) with the Random Forests method (93.0 %) was significantly (p < 0.05) larger than those with other models of the stepwise model selections (71.9 %), LASSO model (89.6 %) and Ridge model (89.2 %). Conclusion It is useful to analyze multiple SD-OCT parameters concurrently using the Random Forests method to diagnose glaucoma in early stage.
To validate the usefulness of the "Random Forests" classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT). design: Comparison of diagnostic algorithms. Multiple institutional practices. Training dataset included 94 eyes of 94 open-angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects and testing dataset included 114 eyes of 114 OAG patients and 82 eyes of 82 normal subjects. In both groups, OAG eyes with mean deviation (MD) values better than -5.0 dB were included. Using the training dataset, classifiers were built to discriminate between glaucoma and normal eyes using 84 OCT measurements using the Random Forests method, multiple logistic regression models based on backward or bidirectional stepwise model selection, a least absolute shrinkage and selection operator regression (LASSO) model, and a Ridge regression model. Diagnostic accuracy. With the testing data, the area under the receiver operating characteristic curve (AROC) with the Random Forests method (93.0%) was significantly (P < .05) larger than those with other models of the stepwise model selections (71.9%), LASSO model (89.6%), and Ridge model (89.2%). It is useful to analyze multiple SDOCT parameters concurrently using the Random Forests method to diagnose glaucoma in early stages.
To validate the usefulness of the "Random Forests" classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT).PURPOSETo validate the usefulness of the "Random Forests" classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT).design: Comparison of diagnostic algorithms.METHODSdesign: Comparison of diagnostic algorithms.Multiple institutional practices.SETTINGMultiple institutional practices.Training dataset included 94 eyes of 94 open-angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects and testing dataset included 114 eyes of 114 OAG patients and 82 eyes of 82 normal subjects. In both groups, OAG eyes with mean deviation (MD) values better than -5.0 dB were included.STUDY PARTICIPANTSTraining dataset included 94 eyes of 94 open-angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects and testing dataset included 114 eyes of 114 OAG patients and 82 eyes of 82 normal subjects. In both groups, OAG eyes with mean deviation (MD) values better than -5.0 dB were included.Using the training dataset, classifiers were built to discriminate between glaucoma and normal eyes using 84 OCT measurements using the Random Forests method, multiple logistic regression models based on backward or bidirectional stepwise model selection, a least absolute shrinkage and selection operator regression (LASSO) model, and a Ridge regression model.OBSERVATION PROCEDUREUsing the training dataset, classifiers were built to discriminate between glaucoma and normal eyes using 84 OCT measurements using the Random Forests method, multiple logistic regression models based on backward or bidirectional stepwise model selection, a least absolute shrinkage and selection operator regression (LASSO) model, and a Ridge regression model.Diagnostic accuracy.MAIN OUTCOME MEASURESDiagnostic accuracy.With the testing data, the area under the receiver operating characteristic curve (AROC) with the Random Forests method (93.0%) was significantly (P < .05) larger than those with other models of the stepwise model selections (71.9%), LASSO model (89.6%), and Ridge model (89.2%).RESULTSWith the testing data, the area under the receiver operating characteristic curve (AROC) with the Random Forests method (93.0%) was significantly (P < .05) larger than those with other models of the stepwise model selections (71.9%), LASSO model (89.6%), and Ridge model (89.2%).It is useful to analyze multiple SDOCT parameters concurrently using the Random Forests method to diagnose glaucoma in early stages.CONCLUSIONIt is useful to analyze multiple SDOCT parameters concurrently using the Random Forests method to diagnose glaucoma in early stages.
Author Shoji, Nobuyuki
Asaoka, Ryo
Araie, Makoto
Murata, Hiroshi
Hirasawa, Kazunori
Iwase, Aiko
Fujino, Yuri
Author_xml – sequence: 1
  givenname: Ryo
  surname: Asaoka
  fullname: Asaoka, Ryo
  email: rasaoka-tky@umin.ac.jp
  organization: Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
– sequence: 2
  givenname: Kazunori
  surname: Hirasawa
  fullname: Hirasawa, Kazunori
  organization: Orthoptics and Visual Science, Department of Rehabilitation, School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
– sequence: 3
  givenname: Aiko
  orcidid: 0000-0001-5950-4260
  surname: Iwase
  fullname: Iwase, Aiko
  organization: Tajimi Iwase Eye Clinic, Tajimi, Japan
– sequence: 4
  givenname: Yuri
  orcidid: 0000-0001-6082-0738
  surname: Fujino
  fullname: Fujino, Yuri
  organization: Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
– sequence: 5
  givenname: Hiroshi
  surname: Murata
  fullname: Murata, Hiroshi
  organization: Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
– sequence: 6
  givenname: Nobuyuki
  surname: Shoji
  fullname: Shoji, Nobuyuki
  organization: Orthoptics and Visual Science, Department of Rehabilitation, School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
– sequence: 7
  givenname: Makoto
  surname: Araie
  fullname: Araie, Makoto
  organization: Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27836484$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1rFDEUDVKx2-oP8EUCvviya-5Mmg8EQda2CoWCtupbyGQyu1kzkzWZEfZB6A9p_1x_iRm3RViwPt3ccM5J7jn3AO11obMIPQcyAwLs9WqmV2FW5OMMYEYIPEITEFxOQUjYQxNCSDGVpaT76CClVW4Zp_wJ2i-4KBkVdIJ-fdHe1bp33QL3S4svk20G39mUcGj-3NxeXX_SXR1afBKiTX26vbrBc69Tco2zEfcBv3d60YVk8bGOfoNPvR5MaDX-6volPl_3zmiP52Fpo-2MxRehDYuo18vNU_S40T7ZZ3f1EF2eHF_MP0zPzk8_zt-dTQ0VrJ8WTPCmbhiVVUWo4LqQVcmIJqxujkpqeCmNZgxoWVkOggghZFEC0bWsNHAoD9Grre46hh9DHkK1Lhnrve5sGJICUUoA4IRk6Msd6CoMscu_yygGQLOLo-CLO9RQtbZW6-haHTfq3tgM4FuAiSGlaBtlXJ9tDl0ftfMKiBojVCuVI1RjhApAbaVhh3kv_hDnzZZjs4k_cyoqGTd6XbtoTa_q4B5kv91hG--6MbTvdmPT3_lVKhRRn8e1GrcKWEmOKP2WBeS_Bf7z-G9IWtxL
CODEN AJOPAA
CitedBy_id crossref_primary_10_1001_jamaophthalmol_2019_5983
crossref_primary_10_1167_iovs_61_11_16
crossref_primary_10_1136_bjophthalmol_2019_315600
crossref_primary_10_1007_s10528_024_11010_1
crossref_primary_10_1186_s12967_019_1860_0
crossref_primary_10_1038_s41598_018_33013_w
crossref_primary_10_1038_s41433_019_0577_x
crossref_primary_10_1136_bjo_2022_322374
crossref_primary_10_3390_ani13142293
crossref_primary_10_1016_j_ajo_2020_04_037
crossref_primary_10_1080_02713683_2022_2124275
crossref_primary_10_1038_s41598_020_80839_4
crossref_primary_10_1016_j_ajo_2017_11_027
crossref_primary_10_1038_s41598_020_76834_4
crossref_primary_10_1038_s41598_020_79494_6
crossref_primary_10_4015_S1016237222500429
crossref_primary_10_1177_1120672120977346
crossref_primary_10_1117_1_JMI_4_4_041306
crossref_primary_10_1007_s11042_017_5487_y
crossref_primary_10_1016_j_jclinepi_2019_02_004
crossref_primary_10_1515_mammalia_2016_0121
crossref_primary_10_1016_j_ajo_2018_10_007
crossref_primary_10_1016_j_compmedimag_2019_101657
crossref_primary_10_1016_j_ogla_2020_08_002
crossref_primary_10_1080_08820538_2018_1551496
crossref_primary_10_1016_j_bspc_2021_103192
crossref_primary_10_1016_j_ogla_2018_08_006
crossref_primary_10_1371_journal_pone_0190621
crossref_primary_10_1007_s13167_022_00283_4
crossref_primary_10_1155_2019_4061313
crossref_primary_10_1007_s11042_022_13540_5
crossref_primary_10_1051_matecconf_202439201108
crossref_primary_10_1038_s41598_021_83503_7
crossref_primary_10_1016_j_eswa_2022_117202
crossref_primary_10_3390_jpm14101062
crossref_primary_10_3389_fmed_2022_935408
crossref_primary_10_1167_tvst_10_13_28
crossref_primary_10_1109_JSEN_2024_3439748
Cites_doi 10.1016/0039-6257(82)90111-4
10.1016/j.ophtha.2006.03.059
10.1371/journal.pone.0072199
10.1186/1471-2105-9-307
10.1023/A:1010933404324
10.2307/2531595
10.1155/2014/340765
10.1111/j.0006-341X.2001.00632.x
10.1167/iovs.05-0366
10.1371/journal.pone.0115572
10.1167/iovs.15-16445
10.1016/j.ophtha.2006.06.050
10.1167/iovs.11-7472
10.1167/iovs.13-11676
10.1186/1756-0500-4-299
10.1136/bjo.2005.081224
10.1167/iovs.04-0227
10.1177/0049124104268644
10.1001/archopht.1977.04450120055003
10.1167/iovs.13-12749
10.1016/j.ophtha.2009.05.025
10.1167/iovs.11-8035
10.1167/iovs.09-5053
10.2105/AJPH.86.5.726
10.1167/iovs.11-8463
10.1007/s00417-010-1585-5
10.1007/s00417-012-1994-8
10.1186/1471-2156-5-32
10.1001/archopht.1984.01040031430017
10.1136/bjo.2010.182493
10.1001/archopht.1980.01020030486010
10.1371/journal.pone.0086417
10.1016/j.ophtha.2010.01.031
10.1016/j.jcjo.2011.09.006
10.1016/0002-9394(89)90488-1
10.18637/jss.v033.i01
10.1016/S0021-5155(99)00096-9
10.1167/iovs.09-5035
10.1111/j.2517-6161.1996.tb02080.x
10.1371/journal.pone.0106117
10.1016/S0161-6420(92)32018-4
10.1038/eye.2010.139
10.1136/bmjopen-2013-003114
10.1001/archophthalmol.2010.125
10.1001/archopht.1979.01020020106002
10.1038/eye.2011.277
10.1016/S0161-6420(99)90416-5
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.1001/archopht.1991.01080010079037
10.1016/j.neuroimage.2010.11.002
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Feb 01, 2017
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Feb 01, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
DOI 10.1016/j.ajo.2016.11.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-1891
EndPage 103
ExternalDocumentID 4307161491
27836484
10_1016_j_ajo_2016_11_001
S000293941630544X
1_s2_0_S000293941630544X
Genre Validation Studies
Multicenter Study
Comparative Study
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1CY
1P~
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAHTB
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABCQX
ABDPE
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABPEJ
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CS3
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OF-
OPF
OQ~
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSZ
SV3
T5K
UNMZH
UV1
VH1
WH7
WOW
X7M
XPP
Z5R
ZGI
ZXP
~G-
3V.
7RV
7X7
8FI
AACTN
AFCTW
AFKRA
AFKWA
AJOXV
AMFUW
AZQEC
BENPR
FYUFA
GUQSH
M1P
M2O
PKN
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
G8K
LCYCR
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c486t-2687fdf649bb0487a29b360a06df534c739ca66143be718088892310ad9ba1713
IEDL.DBID .~1
ISSN 0002-9394
1879-1891
IngestDate Fri Jul 11 15:28:46 EDT 2025
Sat Jul 26 00:08:05 EDT 2025
Wed Feb 19 02:42:49 EST 2025
Thu Jul 03 08:39:21 EDT 2025
Thu Apr 24 23:00:04 EDT 2025
Fri Feb 23 02:32:58 EST 2024
Tue Feb 25 19:57:50 EST 2025
Tue Aug 26 17:24:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Glaucoma
Random Forests method
Optical Coherence Tomography
Area Under the Receiver Operating Characteristic Curve
Language English
License Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-2687fdf649bb0487a29b360a06df534c739ca66143be718088892310ad9ba1713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ORCID 0000-0001-6082-0738
0000-0001-5950-4260
PMID 27836484
PQID 1861140001
PQPubID 41749
PageCount 9
ParticipantIDs proquest_miscellaneous_1839111700
proquest_journals_1861140001
pubmed_primary_27836484
crossref_citationtrail_10_1016_j_ajo_2016_11_001
crossref_primary_10_1016_j_ajo_2016_11_001
elsevier_sciencedirect_doi_10_1016_j_ajo_2016_11_001
elsevier_clinicalkeyesjournals_1_s2_0_S000293941630544X
elsevier_clinicalkey_doi_10_1016_j_ajo_2016_11_001
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Chicago
PublicationTitle American journal of ophthalmology
PublicationTitleAlternate Am J Ophthalmol
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Breiman L, Cutler A. Random Forests. Available at
Yamazaki, Yoshikawa, Kunimatsu (bib63) 1999; 43
Pederson, Anderson (bib2) 1980; 98
Sommer, Quigley, Robin (bib6) 1984; 102
Demšar (bib50) 2006; 7
Burgansky-Eliash, Wollstein, Chu (bib22) 2005; 46
Jamie, Matthew, Roberto (bib55) 2008
Burnham, Anderson (bib43) 2004; 33
Moreno, Konno, Lima (bib13) 2011; 46
Liang, Yizhou, Debin (bib56) 2010
Asaoka (bib48) 2013; 8
Accessed November 30, 2016.
Quigley, Broman (bib38) 2006; 90
Shoji, Nagaoka, Sato (bib64) 2012; 250
Apple, Rabb, Walsh (bib40) 1982; 27
Baskaran, Ong, Li (bib23) 2012; 53
Perera, Wong, Tay (bib60) 2010; 128
Sommer, Katz, Quigley (bib5) 1991; 109
Douglas, Harris, Yuille (bib31) 2011; 56
Fujino, Murata, Mayama (bib49) 2015; 56
Sommer, Pollack, Maumenee (bib1) 1979; 97
Harwerth, Carter-Dawson, Smith (bib9) 2004; 45
Anderson, Patella (bib39) 1999
Strobl, Boulesteix, Kneib (bib28) 2008; 9
Shields (bib19) 1997
Suzuki, Iwase, Araie (bib58) 2006; 113
DeLong, DeLong, Clarke-Pearson (bib51) 1988; 44
Quigley, Dunkelberger, Green (bib10) 1989; 107
Rao, Babu, Addepalli (bib14) 2012; 26
Lunetta, Hayward, Segal (bib32) 2004; 5
Aickin, Gensler (bib53) 1996; 86
Kim, Lee, Seong (bib15) 2010; 51
Zimmerman, Kooner (bib20) 2001
Mitchell (bib25) 1997
Rao, Zangwill, Weinreb (bib34) 2010; 117
Lisboa, Paranhos, Weinreb (bib35) 2013; 54
Bengtsson, Heijl (bib41) 2000; 41
Maroco, Silva, Rodrigues (bib30) 2011; 4
Liang, Friedman, Zhou (bib61) 2011; 52
Youden (bib54) 1950; 3
Kerrigan-Baumrind, Quigley, Pease (bib7) 2000; 41
Mitchell, Hourihan, Sandbach (bib57) 1999; 106
Cho, Sung, Lee (bib17) 2010; 51
Sugimoto, Murata, Hirasawa (bib36) 2013; 3
Yoshida, Iwase, Hirasawa (bib37) 2014; 9
Friedman, Hastie, Tibshirani (bib45) 2010; 33
Holm (bib52) 1979; 6
Garas, Vargha, Hollo (bib12) 2011; 25
Tibshirani (bib44) 1996; 58
Kim, Lee, Seong (bib65) 2011; 95
Sommer, Miller, Pollack (bib4) 1977; 95
Harwerth, Carter-Dawson, Shen (bib8) 1999; 40
Mwanza, Warren, Budenz (bib21) 2013; 54
Rao, Kumbar, Addepalli (bib16) 2012; 53
Dietterich (bib29) 2002
Schulze, Lamparter, Pfeiffer (bib18) 2011; 249
Quigley, Katz, Derick (bib3) 1992; 99
Breiman (bib26) 2001; 45
Yuki, Asaoka, Tsubota (bib46) 2014; 9
Han, Kamber, Pei (bib24) 2006
Asaoka, Nagahara, Hojo (bib47) 2014; 2014
Mayama, Tsutsumi, Saito (bib62) 2014; 9
Xu, Wang, Wang (bib59) 2007; 114
Segal, Cummings, Hubbard (bib33) 2001; 57
Tan, Chopra, Lu (bib11) 2009; 116
Japkowicz (bib42) 2011
Japkowicz (10.1016/j.ajo.2016.11.001_bib42) 2011
Friedman (10.1016/j.ajo.2016.11.001_bib45) 2010; 33
Mitchell (10.1016/j.ajo.2016.11.001_bib25) 1997
Baskaran (10.1016/j.ajo.2016.11.001_bib23) 2012; 53
Segal (10.1016/j.ajo.2016.11.001_bib33) 2001; 57
Rao (10.1016/j.ajo.2016.11.001_bib14) 2012; 26
Liang (10.1016/j.ajo.2016.11.001_bib61) 2011; 52
Breiman (10.1016/j.ajo.2016.11.001_bib26) 2001; 45
Kerrigan-Baumrind (10.1016/j.ajo.2016.11.001_bib7) 2000; 41
Quigley (10.1016/j.ajo.2016.11.001_bib3) 1992; 99
Anderson (10.1016/j.ajo.2016.11.001_bib39) 1999
Aickin (10.1016/j.ajo.2016.11.001_bib53) 1996; 86
Mayama (10.1016/j.ajo.2016.11.001_bib62) 2014; 9
Strobl (10.1016/j.ajo.2016.11.001_bib28) 2008; 9
Quigley (10.1016/j.ajo.2016.11.001_bib38) 2006; 90
Yuki (10.1016/j.ajo.2016.11.001_bib46) 2014; 9
Harwerth (10.1016/j.ajo.2016.11.001_bib8) 1999; 40
Kim (10.1016/j.ajo.2016.11.001_bib15) 2010; 51
Dietterich (10.1016/j.ajo.2016.11.001_bib29) 2002
Zimmerman (10.1016/j.ajo.2016.11.001_bib20) 2001
Maroco (10.1016/j.ajo.2016.11.001_bib30) 2011; 4
Burnham (10.1016/j.ajo.2016.11.001_bib43) 2004; 33
Cho (10.1016/j.ajo.2016.11.001_bib17) 2010; 51
Sommer (10.1016/j.ajo.2016.11.001_bib1) 1979; 97
Liang (10.1016/j.ajo.2016.11.001_bib56) 2010
Bengtsson (10.1016/j.ajo.2016.11.001_bib41) 2000; 41
Asaoka (10.1016/j.ajo.2016.11.001_bib48) 2013; 8
Schulze (10.1016/j.ajo.2016.11.001_bib18) 2011; 249
Quigley (10.1016/j.ajo.2016.11.001_bib10) 1989; 107
Burgansky-Eliash (10.1016/j.ajo.2016.11.001_bib22) 2005; 46
Tan (10.1016/j.ajo.2016.11.001_bib11) 2009; 116
Sommer (10.1016/j.ajo.2016.11.001_bib5) 1991; 109
Shields (10.1016/j.ajo.2016.11.001_bib19) 1997
Fujino (10.1016/j.ajo.2016.11.001_bib49) 2015; 56
Youden (10.1016/j.ajo.2016.11.001_bib54) 1950; 3
Asaoka (10.1016/j.ajo.2016.11.001_bib47) 2014; 2014
Kim (10.1016/j.ajo.2016.11.001_bib65) 2011; 95
Mitchell (10.1016/j.ajo.2016.11.001_bib57) 1999; 106
Demšar (10.1016/j.ajo.2016.11.001_bib50) 2006; 7
Rao (10.1016/j.ajo.2016.11.001_bib34) 2010; 117
Suzuki (10.1016/j.ajo.2016.11.001_bib58) 2006; 113
Han (10.1016/j.ajo.2016.11.001_bib24) 2006
Harwerth (10.1016/j.ajo.2016.11.001_bib9) 2004; 45
Tibshirani (10.1016/j.ajo.2016.11.001_bib44) 1996; 58
Yamazaki (10.1016/j.ajo.2016.11.001_bib63) 1999; 43
Douglas (10.1016/j.ajo.2016.11.001_bib31) 2011; 56
Pederson (10.1016/j.ajo.2016.11.001_bib2) 1980; 98
Sugimoto (10.1016/j.ajo.2016.11.001_bib36) 2013; 3
Xu (10.1016/j.ajo.2016.11.001_bib59) 2007; 114
Holm (10.1016/j.ajo.2016.11.001_bib52) 1979; 6
Rao (10.1016/j.ajo.2016.11.001_bib16) 2012; 53
Shoji (10.1016/j.ajo.2016.11.001_bib64) 2012; 250
Mwanza (10.1016/j.ajo.2016.11.001_bib21) 2013; 54
Apple (10.1016/j.ajo.2016.11.001_bib40) 1982; 27
Lunetta (10.1016/j.ajo.2016.11.001_bib32) 2004; 5
Lisboa (10.1016/j.ajo.2016.11.001_bib35) 2013; 54
Yoshida (10.1016/j.ajo.2016.11.001_bib37) 2014; 9
Sommer (10.1016/j.ajo.2016.11.001_bib6) 1984; 102
10.1016/j.ajo.2016.11.001_bib27
Garas (10.1016/j.ajo.2016.11.001_bib12) 2011; 25
Moreno (10.1016/j.ajo.2016.11.001_bib13) 2011; 46
Perera (10.1016/j.ajo.2016.11.001_bib60) 2010; 128
Jamie (10.1016/j.ajo.2016.11.001_bib55) 2008
Sommer (10.1016/j.ajo.2016.11.001_bib4) 1977; 95
DeLong (10.1016/j.ajo.2016.11.001_bib51) 1988; 44
References_xml – year: 2006
  ident: bib24
  article-title: Data Mining: Concepts and Techniques. Burlington
– volume: 43
  start-page: 392
  year: 1999
  end-page: 397
  ident: bib63
  article-title: Influence of myopic disc shape on the diagnostic precision of the Heidelberg Retina Tomograph
  publication-title: Jpn J Ophthalmol
– volume: 98
  start-page: 490
  year: 1980
  end-page: 495
  ident: bib2
  article-title: The mode of progressive disc cupping in ocular hypertension and glaucoma
  publication-title: Arch Ophthalmol
– volume: 33
  start-page: 261
  year: 2004
  end-page: 304
  ident: bib43
  article-title: Multimodel inference: understanding: AIC and BIC in model selection
  publication-title: Socio Meth Res
– volume: 250
  start-page: 1843
  year: 2012
  end-page: 1849
  ident: bib64
  article-title: Impact of high myopia on the performance of SD-OCT parameters to detect glaucoma
  publication-title: Graefes Arch Clin Exp Ophthalmol
– volume: 3
  start-page: e003114
  year: 2013
  ident: bib36
  article-title: Cross-sectional study: does combining optical coherence tomography measurements using the ‘Random Forest’ decision tree classifier improve the prediction of the presence of perimetric deterioration in glaucoma suspects?
  publication-title: BMJ Open
– volume: 3
  start-page: 32
  year: 1950
  end-page: 35
  ident: bib54
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
– volume: 109
  start-page: 77
  year: 1991
  end-page: 83
  ident: bib5
  article-title: Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss
  publication-title: Arch Ophthalmol
– volume: 2014
  start-page: 340765
  year: 2014
  ident: bib47
  article-title: The relationship between H. pylori infection and osteoporosis in Japan
  publication-title: Gastroenterol Res Pract
– volume: 53
  start-page: 1058
  year: 2012
  end-page: 1065
  ident: bib16
  article-title: Effect of spectrum bias on the diagnostic accuracy of spectral-domain optical coherence tomography in glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– year: 2011
  ident: bib42
  article-title: Evaluating Learning Algorithms: A Classification Perspective
– volume: 113
  start-page: 1613
  year: 2006
  end-page: 1617
  ident: bib58
  article-title: Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study
  publication-title: Ophthalmology
– reference: . Accessed November 30, 2016.
– volume: 26
  start-page: 133
  year: 2012
  end-page: 139
  ident: bib14
  article-title: Retinal nerve fiber layer and macular inner retina measurements by spectral domain optical coherence tomograph in Indian eyes with early glaucoma
  publication-title: Eye (Lond)
– volume: 99
  start-page: 19
  year: 1992
  end-page: 28
  ident: bib3
  article-title: An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage
  publication-title: Ophthalmology
– volume: 51
  start-page: 6401
  year: 2010
  end-page: 6407
  ident: bib17
  article-title: Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral-domain optical coherence tomography
  publication-title: Invest Ophthalmol Vis Sci
– volume: 9
  start-page: 307
  year: 2008
  ident: bib28
  article-title: Conditional variable importance for random forests
  publication-title: BMC Bioinformatics
– volume: 9
  start-page: e106117
  year: 2014
  ident: bib37
  article-title: Discriminating between glaucoma and normal eyes using optical coherence tomography and the ‘Random Forests’ classifier
  publication-title: PLoS One
– volume: 128
  start-page: 900
  year: 2010
  end-page: 905
  ident: bib60
  article-title: Refractive error, axial dimensions, and primary open-angle glaucoma: the Singapore Malay Eye Study
  publication-title: Arch Ophthalmol
– volume: 249
  start-page: 1039
  year: 2011
  end-page: 1045
  ident: bib18
  article-title: Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography
  publication-title: Graefes Arch Clin Exp Ophthalmol
– volume: 106
  start-page: 2010
  year: 1999
  end-page: 2015
  ident: bib57
  article-title: The relationship between glaucoma and myopia: the Blue Mountains Eye Study
  publication-title: Ophthalmology
– volume: 41
  start-page: 741
  year: 2000
  end-page: 748
  ident: bib7
  article-title: Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons
  publication-title: Invest Ophthalmol Vis Sci
– volume: 40
  start-page: 2242
  year: 1999
  end-page: 2250
  ident: bib8
  article-title: Ganglion cell losses underlying visual field defects from experimental glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– volume: 46
  start-page: 4147
  year: 2005
  end-page: 4152
  ident: bib22
  article-title: Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study
  publication-title: Invest Ophthalmol Vis Sci
– volume: 56
  start-page: 2334
  year: 2015
  end-page: 2339
  ident: bib49
  article-title: Applying “lasso” regression to predict future visual field progression in glaucoma patients
  publication-title: Invest Ophthalmol Vis Sci
– volume: 90
  start-page: 262
  year: 2006
  end-page: 267
  ident: bib38
  article-title: The number of people with glaucoma worldwide in 2010 and 2020
  publication-title: Br J Ophthalmol
– year: 1999
  ident: bib39
  article-title: Automated Static Perimetry
– start-page: 1
  year: 2008
  end-page: 8
  ident: bib55
  article-title: Semantic texton forests for image categorization and segmentation
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition
– volume: 114
  start-page: 216
  year: 2007
  end-page: 220
  ident: bib59
  article-title: High myopia and glaucoma susceptibility the Beijing Eye Study
  publication-title: Ophthalmology
– volume: 53
  start-page: 2314
  year: 2012
  end-page: 2320
  ident: bib23
  article-title: Classification algorithms enhance the discrimination of glaucoma from normal eyes using high-definition optical coherence tomography
  publication-title: Invest Ophthalmol Vis Sci
– year: 1997
  ident: bib19
  article-title: Textbook of Glaucoma
– volume: 117
  start-page: 1692
  year: 2010
  end-page: 1699
  ident: bib34
  article-title: Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis
  publication-title: Ophthalmology
– volume: 46
  start-page: 543
  year: 2011
  end-page: 547
  ident: bib13
  article-title: Spectral-domain optical coherence tomography for early glaucoma assessment: analysis of macular ganglion cell complex versus peripapillary retinal nerve fiber layer
  publication-title: Can J Ophthalmol
– volume: 27
  start-page: 3
  year: 1982
  end-page: 41
  ident: bib40
  article-title: Congenital anomalies of the optic disc
  publication-title: Surv Ophthalmol
– volume: 97
  start-page: 1444
  year: 1979
  end-page: 1448
  ident: bib1
  article-title: Optic disc parameters and onset of glaucomatous field loss. I. Methods and progressive changes in disc morphology
  publication-title: Arch Ophthalmol
– volume: 45
  start-page: 3152
  year: 2004
  end-page: 3160
  ident: bib9
  article-title: Neural losses correlated with visual losses in clinical perimetry
  publication-title: Invest Ophthalmol Vis Sci
– volume: 102
  start-page: 1766
  year: 1984
  end-page: 1771
  ident: bib6
  article-title: Evaluation of nerve fiber layer assessment
  publication-title: Arch Ophthalmol
– volume: 8
  start-page: e72199
  year: 2013
  ident: bib48
  article-title: Measuring visual field progression in the central 10 degrees using additional information from central 24 degrees visual fields and ‘lasso regression’
  publication-title: PLoS One
– volume: 95
  start-page: 2149
  year: 1977
  end-page: 2156
  ident: bib4
  article-title: The nerve fiber layer in the diagnosis of glaucoma
  publication-title: Arch Ophthalmol
– volume: 107
  start-page: 453
  year: 1989
  end-page: 464
  ident: bib10
  article-title: Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma
  publication-title: Am J Ophthalmol
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: bib51
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
– volume: 86
  start-page: 726
  year: 1996
  end-page: 728
  ident: bib53
  article-title: Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods
  publication-title: Am J Public Health
– volume: 25
  start-page: 57
  year: 2011
  end-page: 65
  ident: bib12
  article-title: Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma
  publication-title: Eye (Lond)
– volume: 116
  year: 2009
  ident: bib11
  article-title: Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography
  publication-title: Ophthalmology
– year: 2002
  ident: bib29
  article-title: Ensemble learning
  publication-title: The Handbook of Brain Theory and Neural Networks
– volume: 56
  start-page: 544
  year: 2011
  end-page: 553
  ident: bib31
  article-title: Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief
  publication-title: Neuroimage
– reference: Breiman L, Cutler A. Random Forests. Available at:
– start-page: 1457
  year: 2010
  end-page: 1460
  ident: bib56
  article-title: Building emerging pattern (EP) random forest for recognition
  publication-title: Proc IEEE Conf on Image Processing
– year: 1997
  ident: bib25
  article-title: Machine Learning
– volume: 52
  start-page: 8250
  year: 2011
  end-page: 8257
  ident: bib61
  article-title: Prevalence of primary open angle glaucoma in a rural adult Chinese population: the Handan eye study
  publication-title: Invest Ophthalmol Vis Sci
– volume: 4
  start-page: 299
  year: 2011
  ident: bib30
  article-title: Data mining methods in the prediction of dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests
  publication-title: BMC Res Notes
– volume: 9
  start-page: e115572
  year: 2014
  ident: bib46
  article-title: The relationship between central visual field damage and motor vehicle collisions in primary open-angle glaucoma patients
  publication-title: PLoS One
– volume: 9
  start-page: e86417
  year: 2014
  ident: bib62
  article-title: Glaucoma-induced optic disc morphometric changes and glaucoma diagnostic ability of Heidelberg Retina Tomograph II in highly myopic eyes
  publication-title: PLoS One
– volume: 51
  start-page: 4646
  year: 2010
  end-page: 4651
  ident: bib15
  article-title: Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib26
  article-title: Random Forests
  publication-title: Machine Learning
– volume: 6
  start-page: 65
  year: 1979
  end-page: 70
  ident: bib52
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand J Stat
– volume: 41
  start-page: 2201
  year: 2000
  end-page: 2204
  ident: bib41
  article-title: False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability?
  publication-title: Invest Ophthalmol Vis Sci
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: bib45
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J Stat Softw
– volume: 54
  start-page: 8393
  year: 2013
  end-page: 8400
  ident: bib21
  article-title: Combining spectral domain optical coherence tomography structural parameters for the diagnosis of glaucoma with early visual field loss
  publication-title: Invest Ophthalmol Vis Sci
– volume: 95
  start-page: 1115
  year: 2011
  end-page: 1121
  ident: bib65
  article-title: Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia
  publication-title: Br J Ophthalmol
– volume: 57
  start-page: 632
  year: 2001
  end-page: 642
  ident: bib33
  article-title: Relating amino acid sequence to phenotype: analysis of peptide-binding data
  publication-title: Biometrics
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib50
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– year: 2001
  ident: bib20
  article-title: Clinical Pathways in Glaucoma
– volume: 54
  start-page: 3417
  year: 2013
  end-page: 3425
  ident: bib35
  article-title: Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib44
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc Series B
– volume: 5
  start-page: 32
  year: 2004
  ident: bib32
  article-title: Screening large-scale association study data: exploiting interactions using random forests
  publication-title: BMC Genet
– year: 1997
  ident: 10.1016/j.ajo.2016.11.001_bib25
– volume: 27
  start-page: 3
  issue: 1
  year: 1982
  ident: 10.1016/j.ajo.2016.11.001_bib40
  article-title: Congenital anomalies of the optic disc
  publication-title: Surv Ophthalmol
  doi: 10.1016/0039-6257(82)90111-4
– volume: 113
  start-page: 1613
  issue: 9
  year: 2006
  ident: 10.1016/j.ajo.2016.11.001_bib58
  article-title: Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2006.03.059
– volume: 41
  start-page: 2201
  issue: 8
  year: 2000
  ident: 10.1016/j.ajo.2016.11.001_bib41
  article-title: False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability?
  publication-title: Invest Ophthalmol Vis Sci
– volume: 8
  start-page: e72199
  issue: 8
  year: 2013
  ident: 10.1016/j.ajo.2016.11.001_bib48
  article-title: Measuring visual field progression in the central 10 degrees using additional information from central 24 degrees visual fields and ‘lasso regression’
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0072199
– volume: 9
  start-page: 307
  year: 2008
  ident: 10.1016/j.ajo.2016.11.001_bib28
  article-title: Conditional variable importance for random forests
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-307
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.ajo.2016.11.001_bib26
  article-title: Random Forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 44
  start-page: 837
  issue: 3
  year: 1988
  ident: 10.1016/j.ajo.2016.11.001_bib51
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 2014
  start-page: 340765
  year: 2014
  ident: 10.1016/j.ajo.2016.11.001_bib47
  article-title: The relationship between H. pylori infection and osteoporosis in Japan
  publication-title: Gastroenterol Res Pract
  doi: 10.1155/2014/340765
– volume: 57
  start-page: 632
  issue: 2
  year: 2001
  ident: 10.1016/j.ajo.2016.11.001_bib33
  article-title: Relating amino acid sequence to phenotype: analysis of peptide-binding data
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.00632.x
– year: 2001
  ident: 10.1016/j.ajo.2016.11.001_bib20
– volume: 46
  start-page: 4147
  issue: 11
  year: 2005
  ident: 10.1016/j.ajo.2016.11.001_bib22
  article-title: Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.05-0366
– volume: 9
  start-page: e115572
  issue: 12
  year: 2014
  ident: 10.1016/j.ajo.2016.11.001_bib46
  article-title: The relationship between central visual field damage and motor vehicle collisions in primary open-angle glaucoma patients
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0115572
– volume: 56
  start-page: 2334
  issue: 4
  year: 2015
  ident: 10.1016/j.ajo.2016.11.001_bib49
  article-title: Applying “lasso” regression to predict future visual field progression in glaucoma patients
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.15-16445
– volume: 114
  start-page: 216
  issue: 2
  year: 2007
  ident: 10.1016/j.ajo.2016.11.001_bib59
  article-title: High myopia and glaucoma susceptibility the Beijing Eye Study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2006.06.050
– volume: 6
  start-page: 65
  year: 1979
  ident: 10.1016/j.ajo.2016.11.001_bib52
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand J Stat
– volume: 52
  start-page: 8250
  issue: 11
  year: 2011
  ident: 10.1016/j.ajo.2016.11.001_bib61
  article-title: Prevalence of primary open angle glaucoma in a rural adult Chinese population: the Handan eye study
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.11-7472
– volume: 54
  start-page: 3417
  issue: 5
  year: 2013
  ident: 10.1016/j.ajo.2016.11.001_bib35
  article-title: Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.13-11676
– volume: 4
  start-page: 299
  year: 2011
  ident: 10.1016/j.ajo.2016.11.001_bib30
  article-title: Data mining methods in the prediction of dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-4-299
– volume: 90
  start-page: 262
  issue: 3
  year: 2006
  ident: 10.1016/j.ajo.2016.11.001_bib38
  article-title: The number of people with glaucoma worldwide in 2010 and 2020
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.2005.081224
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.ajo.2016.11.001_bib50
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– volume: 45
  start-page: 3152
  issue: 9
  year: 2004
  ident: 10.1016/j.ajo.2016.11.001_bib9
  article-title: Neural losses correlated with visual losses in clinical perimetry
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.04-0227
– volume: 33
  start-page: 261
  year: 2004
  ident: 10.1016/j.ajo.2016.11.001_bib43
  article-title: Multimodel inference: understanding: AIC and BIC in model selection
  publication-title: Socio Meth Res
  doi: 10.1177/0049124104268644
– volume: 95
  start-page: 2149
  issue: 12
  year: 1977
  ident: 10.1016/j.ajo.2016.11.001_bib4
  article-title: The nerve fiber layer in the diagnosis of glaucoma
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.1977.04450120055003
– volume: 54
  start-page: 8393
  issue: 13
  year: 2013
  ident: 10.1016/j.ajo.2016.11.001_bib21
  article-title: Combining spectral domain optical coherence tomography structural parameters for the diagnosis of glaucoma with early visual field loss
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.13-12749
– volume: 116
  issue: 12
  year: 2009
  ident: 10.1016/j.ajo.2016.11.001_bib11
  article-title: Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2009.05.025
– volume: 53
  start-page: 2314
  issue: 4
  year: 2012
  ident: 10.1016/j.ajo.2016.11.001_bib23
  article-title: Classification algorithms enhance the discrimination of glaucoma from normal eyes using high-definition optical coherence tomography
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.11-8035
– volume: 51
  start-page: 4646
  issue: 9
  year: 2010
  ident: 10.1016/j.ajo.2016.11.001_bib15
  article-title: Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.09-5053
– volume: 86
  start-page: 726
  issue: 5
  year: 1996
  ident: 10.1016/j.ajo.2016.11.001_bib53
  article-title: Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.86.5.726
– volume: 53
  start-page: 1058
  issue: 2
  year: 2012
  ident: 10.1016/j.ajo.2016.11.001_bib16
  article-title: Effect of spectrum bias on the diagnostic accuracy of spectral-domain optical coherence tomography in glaucoma
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.11-8463
– volume: 249
  start-page: 1039
  issue: 7
  year: 2011
  ident: 10.1016/j.ajo.2016.11.001_bib18
  article-title: Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography
  publication-title: Graefes Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-010-1585-5
– volume: 250
  start-page: 1843
  issue: 12
  year: 2012
  ident: 10.1016/j.ajo.2016.11.001_bib64
  article-title: Impact of high myopia on the performance of SD-OCT parameters to detect glaucoma
  publication-title: Graefes Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-012-1994-8
– volume: 5
  start-page: 32
  year: 2004
  ident: 10.1016/j.ajo.2016.11.001_bib32
  article-title: Screening large-scale association study data: exploiting interactions using random forests
  publication-title: BMC Genet
  doi: 10.1186/1471-2156-5-32
– volume: 102
  start-page: 1766
  issue: 12
  year: 1984
  ident: 10.1016/j.ajo.2016.11.001_bib6
  article-title: Evaluation of nerve fiber layer assessment
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.1984.01040031430017
– start-page: 1
  year: 2008
  ident: 10.1016/j.ajo.2016.11.001_bib55
  article-title: Semantic texton forests for image categorization and segmentation
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition
– volume: 95
  start-page: 1115
  issue: 8
  year: 2011
  ident: 10.1016/j.ajo.2016.11.001_bib65
  article-title: Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.2010.182493
– volume: 98
  start-page: 490
  issue: 3
  year: 1980
  ident: 10.1016/j.ajo.2016.11.001_bib2
  article-title: The mode of progressive disc cupping in ocular hypertension and glaucoma
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.1980.01020030486010
– start-page: 1457
  year: 2010
  ident: 10.1016/j.ajo.2016.11.001_bib56
  article-title: Building emerging pattern (EP) random forest for recognition
  publication-title: Proc IEEE Conf on Image Processing
– volume: 9
  start-page: e86417
  issue: 1
  year: 2014
  ident: 10.1016/j.ajo.2016.11.001_bib62
  article-title: Glaucoma-induced optic disc morphometric changes and glaucoma diagnostic ability of Heidelberg Retina Tomograph II in highly myopic eyes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0086417
– volume: 117
  start-page: 1692
  issue: 9
  year: 2010
  ident: 10.1016/j.ajo.2016.11.001_bib34
  article-title: Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2010.01.031
– volume: 41
  start-page: 741
  issue: 3
  year: 2000
  ident: 10.1016/j.ajo.2016.11.001_bib7
  article-title: Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons
  publication-title: Invest Ophthalmol Vis Sci
– year: 2002
  ident: 10.1016/j.ajo.2016.11.001_bib29
  article-title: Ensemble learning
– volume: 46
  start-page: 543
  issue: 6
  year: 2011
  ident: 10.1016/j.ajo.2016.11.001_bib13
  article-title: Spectral-domain optical coherence tomography for early glaucoma assessment: analysis of macular ganglion cell complex versus peripapillary retinal nerve fiber layer
  publication-title: Can J Ophthalmol
  doi: 10.1016/j.jcjo.2011.09.006
– ident: 10.1016/j.ajo.2016.11.001_bib27
– volume: 107
  start-page: 453
  issue: 5
  year: 1989
  ident: 10.1016/j.ajo.2016.11.001_bib10
  article-title: Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma
  publication-title: Am J Ophthalmol
  doi: 10.1016/0002-9394(89)90488-1
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.ajo.2016.11.001_bib45
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J Stat Softw
  doi: 10.18637/jss.v033.i01
– volume: 43
  start-page: 392
  issue: 5
  year: 1999
  ident: 10.1016/j.ajo.2016.11.001_bib63
  article-title: Influence of myopic disc shape on the diagnostic precision of the Heidelberg Retina Tomograph
  publication-title: Jpn J Ophthalmol
  doi: 10.1016/S0021-5155(99)00096-9
– volume: 51
  start-page: 6401
  issue: 12
  year: 2010
  ident: 10.1016/j.ajo.2016.11.001_bib17
  article-title: Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral-domain optical coherence tomography
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.09-5035
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.ajo.2016.11.001_bib44
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 9
  start-page: e106117
  issue: 8
  year: 2014
  ident: 10.1016/j.ajo.2016.11.001_bib37
  article-title: Discriminating between glaucoma and normal eyes using optical coherence tomography and the ‘Random Forests’ classifier
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0106117
– volume: 99
  start-page: 19
  issue: 1
  year: 1992
  ident: 10.1016/j.ajo.2016.11.001_bib3
  article-title: An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(92)32018-4
– volume: 25
  start-page: 57
  issue: 1
  year: 2011
  ident: 10.1016/j.ajo.2016.11.001_bib12
  article-title: Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma
  publication-title: Eye (Lond)
  doi: 10.1038/eye.2010.139
– year: 1999
  ident: 10.1016/j.ajo.2016.11.001_bib39
– volume: 3
  start-page: e003114
  issue: 10
  year: 2013
  ident: 10.1016/j.ajo.2016.11.001_bib36
  article-title: Cross-sectional study: does combining optical coherence tomography measurements using the ‘Random Forest’ decision tree classifier improve the prediction of the presence of perimetric deterioration in glaucoma suspects?
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2013-003114
– volume: 128
  start-page: 900
  issue: 7
  year: 2010
  ident: 10.1016/j.ajo.2016.11.001_bib60
  article-title: Refractive error, axial dimensions, and primary open-angle glaucoma: the Singapore Malay Eye Study
  publication-title: Arch Ophthalmol
  doi: 10.1001/archophthalmol.2010.125
– year: 2011
  ident: 10.1016/j.ajo.2016.11.001_bib42
– volume: 97
  start-page: 1444
  issue: 8
  year: 1979
  ident: 10.1016/j.ajo.2016.11.001_bib1
  article-title: Optic disc parameters and onset of glaucomatous field loss. I. Methods and progressive changes in disc morphology
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.1979.01020020106002
– volume: 40
  start-page: 2242
  issue: 10
  year: 1999
  ident: 10.1016/j.ajo.2016.11.001_bib8
  article-title: Ganglion cell losses underlying visual field defects from experimental glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– volume: 26
  start-page: 133
  issue: 1
  year: 2012
  ident: 10.1016/j.ajo.2016.11.001_bib14
  article-title: Retinal nerve fiber layer and macular inner retina measurements by spectral domain optical coherence tomograph in Indian eyes with early glaucoma
  publication-title: Eye (Lond)
  doi: 10.1038/eye.2011.277
– year: 2006
  ident: 10.1016/j.ajo.2016.11.001_bib24
– year: 1997
  ident: 10.1016/j.ajo.2016.11.001_bib19
– volume: 106
  start-page: 2010
  issue: 10
  year: 1999
  ident: 10.1016/j.ajo.2016.11.001_bib57
  article-title: The relationship between glaucoma and myopia: the Blue Mountains Eye Study
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(99)90416-5
– volume: 3
  start-page: 32
  issue: 1
  year: 1950
  ident: 10.1016/j.ajo.2016.11.001_bib54
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– volume: 109
  start-page: 77
  issue: 1
  year: 1991
  ident: 10.1016/j.ajo.2016.11.001_bib5
  article-title: Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.1991.01080010079037
– volume: 56
  start-page: 544
  issue: 2
  year: 2011
  ident: 10.1016/j.ajo.2016.11.001_bib31
  article-title: Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.002
SSID ssj0006747
Score 2.4300847
Snippet To validate the usefulness of the “Random Forests” classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT). design:...
Abstract Purpose To validate the usefulness of the 'Random Forests’ classifier to diagnose early glaucoma with spectral domain optical coherence tomography...
To validate the usefulness of the "Random Forests" classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT). design:...
Purpose To validate the usefulness of the "Random Forests" classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT)....
To validate the usefulness of the "Random Forests" classifier to diagnose early glaucoma with spectral-domain optical coherence tomography (SDOCT).PURPOSETo...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 95
SubjectTerms Cross-Sectional Studies
Datasets
Diabetic retinopathy
Early Diagnosis
Female
Follow-Up Studies
Glaucoma
Glaucoma, Open-Angle - classification
Glaucoma, Open-Angle - diagnosis
Glaucoma, Open-Angle - physiopathology
Gonioscopy
Hospitals
Humans
Intraocular Pressure - physiology
Male
Middle Aged
Nerve Fibers - pathology
Ophthalmology
Optic Disk - diagnostic imaging
Optics
ROC Curve
Studies
Tomography, Optical Coherence - methods
Visual Fields
Title Validating the Usefulness of the “Random Forests” Classifier to Diagnose Early Glaucoma With Optical Coherence Tomography
URI https://www.clinicalkey.com/#!/content/1-s2.0-S000293941630544X
https://www.clinicalkey.es/playcontent/1-s2.0-S000293941630544X
https://dx.doi.org/10.1016/j.ajo.2016.11.001
https://www.ncbi.nlm.nih.gov/pubmed/27836484
https://www.proquest.com/docview/1861140001
https://www.proquest.com/docview/1839111700
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkJcEOW5tFRG4oSU1pt47eRYFcoCokioC3uz7NiGrbbJqskeQf0h7Z_rL2HGcbZClCJx9SuWPY9v4nkQ8rJIZeksMKAH4yThjo2SwroysaBrXZYza3Xw8j0S4wl_Px1N18hBHwuDbpVR9ncyPUjr2LIXT3NvMZthjC8DXVUgogDcwacYwc4l5s_f_Xnt5iEklz0ExtH9y2bw8dInGP83FLuYyDPWhblBN_0NewYddHif3Ivgke53-9ska656QO58jM_jD8mPL4CqMV6h-kYB2NFJ4_xyjsKM1j60XJ1ffNaVrU8p1uRs2ubq_JKGwpgzD5ugbU1fd853jobcx_TtXC_hcDT9Omu_00-L8O-bYlRHiBOkx_VpzHr9iEwO3xwfjJNYXyEpeS7aJBW59NYLXhgDjCx1WphMMM2E9aOMlzIrSo36OzMOVBjIozzAQW0Lo4dg3T4m61VduaeEemY8LJBxYUEq5CWsmHojDBPOunzEB4T1J6vKmHwca2DMVe9ldqLgMhReBhgl6Gk3IK9WUxZd5o3bBqf9dak-pBSEoAK9cNskedMk10Q2btRQNali6g9SGxC-mvkbtf7rg9s9Janrb-QCbFIWul-suoHJ8eVGV65e4pgMlZJkbECedBS4OhMslSJ4zp_93562yN0UkUpwRN8m6-3Z0j0HnNWancBIO2Rj_92H8dEvLGEnCg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJgEviOsoDDAST0hhbuI6yeM0GB3bioRa6JtlxzZ06pKKpI9I-yHw5_ZLOMdxghBjSLzaObZln8vn-FwIeZHHaWENCKCDy0nELRtFubFFZMDW2iRjxijv5TsR4xl_Nx_NN8h-FwuDbpVB97c63Wvr0LIbdnN3tVhgjC8DW5UjogDcwefXyBZmpwJm39o7PBpPeoUsUp52KBgJusdN7-alTjEEcCheYS7PUBrmEvP0N_jpzdDBbXIr4Ee61y7xDtmw5V1y_SS8kN8j3z4CsMaQhfIzBWxHZ7V16yXqM1o533Jx_v2DKk11RrEsZ93UF-c_qK-NuXCwCNpU9HXrf2epT39M3y7VGvZH0U-L5gt9v_K_vykGdvhQQTqtzkLi6_tkdvBmuj-OQomFqOCZaKJYZKkzTvBca5DlVMW5TgRTTBg3SniRJnmh0IQn2oIVA5WUeUSoTK7VEC64D8hmWZX2IaGOaQcDJFwYUAxZASPGTgvNhDU2G_EBYd3OyiLkH8cyGEvZOZqdSjgMiYcB9xJ0thuQlz3Jqk2-cdXHcXdcsosqBT0owTRcRZReRmTrIMm1HMo6lkz-wW0DwnvK3xj2XxPudJwkf82RCbiWMt_9vO8GOcfHG1Xaao3fJGiXUsYGZLvlwH5PsFqK4Bl_9H9rekZujKcnx_L4cHL0mNyMEbh4v_Qdstl8XdsnALsa_TSI1U8zMim7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validating+the+Usefulness+of+the+%E2%80%9CRandom+Forests%E2%80%9D+Classifier+to+Diagnose+Early+Glaucoma+With+Optical+Coherence+Tomography&rft.jtitle=American+journal+of+ophthalmology&rft.au=Asaoka%2C+Ryo&rft.au=Hirasawa%2C+Kazunori&rft.au=Iwase%2C+Aiko&rft.au=Fujino%2C+Yuri&rft.date=2017-02-01&rft.pub=Elsevier+Inc&rft.issn=0002-9394&rft.volume=174&rft.spage=95&rft.epage=103&rft_id=info:doi/10.1016%2Fj.ajo.2016.11.001&rft.externalDocID=S000293941630544X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9394&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9394&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9394&client=summon