Elevated Myl9 reflects the Myl9-containing microthrombi in SARS-CoV-2–induced lung exudative vasculitis and predicts COVID-19 severity
The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection–triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses u...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 33; pp. 1 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
National Academy of Sciences
16.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection–triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1–expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)–containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19. |
---|---|
AbstractList | The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection–triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1–expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)–containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19. The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1-expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)-containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19.The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1-expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)-containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19. Elucidation of the pathology triggered by SARS-CoV-2 infection is essential to control the pandemic. We found that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) accumulates in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of noncanonical monocytes that specifically produce a platelet activating factor, thrombospondin-1, and the formation of myosin light chain 9 (Myl9)–containing microthrombi in the lungs of coronavirus disease 2019 (COVID-19) patients with fatal disease. More interestingly, we demonstrate that SARS-CoV-2–induced platelet activation causes an increase in the plasma Myl9 level, which is closely correlated with clinical severity. The measurement of plasma Myl9 with other markers allowed us to diagnose the severity of the disease more accurately, which is crucial for providing appropriate medical care for COVID-19 patients. The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection–triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1–expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)–containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19. |
Author | Sakao, Seiichiro Nakajima, Hiroshi Shiko, Yuki Tobiume, Minoru Urushibara, Takashi Aoki, Ami Yoshino, Ichiro Nakayama, Toshinori Suzuki, Takuji Shimada, Tadanaga Tsujiwaki, Mitsuhiro Nakada, Taka-aki Suzuki, Yoshio Iizumi, Yoko Nishida, Osamu Takahashi, Kazuhisa Hishiya, Takahisa Kaneda, Satoru Hirasawa, Rui Tsukamoto, Tetsuya Mito, Haruki Hasegawa, Tadashi Kasahara, Yasunori Kimura, Motoko Y. Nakase, Hiroshi Ohki, Syota Okazaki, Toshiya Igari, Hidetoshi Kojima, Akira Hirahara, Kiyoshi Nagaoka, Tetsutaro Ikehara, Sanae Iwamura, Chiaki Nakamura, Sukeyuki Kokubo, Kota Ikehara, Yuzuru Hanaoka, Hideki Azuma, Kazuhiko Yamamoto, Emiri Kubo, Terufumi Kuriyama, Naohide Tsuji, Kaori Kiuchi, Masahiro Baba, Komei Kuriyama, Sachiko Ishikawa, Satoru Inaba, Yosuke Hase, Ryota Yokote, Koutaro |
Author_xml | – sequence: 1 givenname: Chiaki surname: Iwamura fullname: Iwamura, Chiaki – sequence: 2 givenname: Kiyoshi surname: Hirahara fullname: Hirahara, Kiyoshi – sequence: 3 givenname: Masahiro surname: Kiuchi fullname: Kiuchi, Masahiro – sequence: 4 givenname: Sanae surname: Ikehara fullname: Ikehara, Sanae – sequence: 5 givenname: Kazuhiko surname: Azuma fullname: Azuma, Kazuhiko – sequence: 6 givenname: Tadanaga surname: Shimada fullname: Shimada, Tadanaga – sequence: 7 givenname: Sachiko surname: Kuriyama fullname: Kuriyama, Sachiko – sequence: 8 givenname: Syota surname: Ohki fullname: Ohki, Syota – sequence: 9 givenname: Emiri surname: Yamamoto fullname: Yamamoto, Emiri – sequence: 10 givenname: Yosuke surname: Inaba fullname: Inaba, Yosuke – sequence: 11 givenname: Yuki surname: Shiko fullname: Shiko, Yuki – sequence: 12 givenname: Ami surname: Aoki fullname: Aoki, Ami – sequence: 13 givenname: Kota surname: Kokubo fullname: Kokubo, Kota – sequence: 14 givenname: Rui surname: Hirasawa fullname: Hirasawa, Rui – sequence: 15 givenname: Takahisa surname: Hishiya fullname: Hishiya, Takahisa – sequence: 16 givenname: Kaori surname: Tsuji fullname: Tsuji, Kaori – sequence: 17 givenname: Tetsutaro surname: Nagaoka fullname: Nagaoka, Tetsutaro – sequence: 18 givenname: Satoru surname: Ishikawa fullname: Ishikawa, Satoru – sequence: 19 givenname: Akira surname: Kojima fullname: Kojima, Akira – sequence: 20 givenname: Haruki surname: Mito fullname: Mito, Haruki – sequence: 21 givenname: Ryota surname: Hase fullname: Hase, Ryota – sequence: 22 givenname: Yasunori surname: Kasahara fullname: Kasahara, Yasunori – sequence: 23 givenname: Naohide surname: Kuriyama fullname: Kuriyama, Naohide – sequence: 24 givenname: Tetsuya surname: Tsukamoto fullname: Tsukamoto, Tetsuya – sequence: 25 givenname: Sukeyuki surname: Nakamura fullname: Nakamura, Sukeyuki – sequence: 26 givenname: Takashi surname: Urushibara fullname: Urushibara, Takashi – sequence: 27 givenname: Satoru surname: Kaneda fullname: Kaneda, Satoru – sequence: 28 givenname: Seiichiro surname: Sakao fullname: Sakao, Seiichiro – sequence: 29 givenname: Minoru surname: Tobiume fullname: Tobiume, Minoru – sequence: 30 givenname: Yoshio surname: Suzuki fullname: Suzuki, Yoshio – sequence: 31 givenname: Mitsuhiro surname: Tsujiwaki fullname: Tsujiwaki, Mitsuhiro – sequence: 32 givenname: Terufumi surname: Kubo fullname: Kubo, Terufumi – sequence: 33 givenname: Tadashi surname: Hasegawa fullname: Hasegawa, Tadashi – sequence: 34 givenname: Hiroshi surname: Nakase fullname: Nakase, Hiroshi – sequence: 35 givenname: Osamu surname: Nishida fullname: Nishida, Osamu – sequence: 36 givenname: Kazuhisa surname: Takahashi fullname: Takahashi, Kazuhisa – sequence: 37 givenname: Komei surname: Baba fullname: Baba, Komei – sequence: 38 givenname: Yoko surname: Iizumi fullname: Iizumi, Yoko – sequence: 39 givenname: Toshiya surname: Okazaki fullname: Okazaki, Toshiya – sequence: 40 givenname: Motoko Y. surname: Kimura fullname: Kimura, Motoko Y. – sequence: 41 givenname: Ichiro surname: Yoshino fullname: Yoshino, Ichiro – sequence: 42 givenname: Hidetoshi surname: Igari fullname: Igari, Hidetoshi – sequence: 43 givenname: Hiroshi surname: Nakajima fullname: Nakajima, Hiroshi – sequence: 44 givenname: Takuji surname: Suzuki fullname: Suzuki, Takuji – sequence: 45 givenname: Hideki surname: Hanaoka fullname: Hanaoka, Hideki – sequence: 46 givenname: Taka-aki surname: Nakada fullname: Nakada, Taka-aki – sequence: 47 givenname: Yuzuru surname: Ikehara fullname: Ikehara, Yuzuru – sequence: 48 givenname: Koutaro surname: Yokote fullname: Yokote, Koutaro – sequence: 49 givenname: Toshinori surname: Nakayama fullname: Nakayama, Toshinori |
BookMark | eNp1kU9rVDEUxYNU7LS6diU8cOPmtfn7kmyEMq1aqBSsdhvykkwnw5tkTPIezs6le7-hn8SMUxULrgI3v3Mu95wjcBBicAA8R_AEQU5ON0HnE4whoYQjJB-BGYIStR2V8ADMIMS8FRTTQ3CU8wpCKJmAT8AhYUIyjroZ-HYxuEkXZ5v320E2yS0GZ0puytL9mrQmhqJ98OGuWXuTYlmmuO5940Nzc_bhpp3H2xb_-PrdBzuaajOMlXRfRquLn1wz6WzGwRefGx1ss0nO-p3__Pr28rxFsslucsmX7VPweKGH7J7dv8fg05uLj_N37dX128v52VVrqOhKiyHltJOWUaKN5MxwA51YcId7SyDtqRUMO4GEED1ipkNcWsI1pj0WmjFIjsHrve9m7NfOGhdK0oPaJL_Waaui9urfn-CX6i5OShIhEKbV4NW9QYqfR5eLWvts3DDo4OKYFe4kwxJD1lX05QN0FccU6nkKc0gJZBiTSrE9VdPNuTagjC81vbjb7weFoNp1rXZdq79dV93pA93vI_6veLFXrHKJ6Q-OOYZdDYz8BJryt_c |
CitedBy_id | crossref_primary_10_3390_ijms25063280 crossref_primary_10_1016_j_clinsp_2025_100584 crossref_primary_10_1016_j_cyto_2024_156583 crossref_primary_10_1002_jmv_28847 crossref_primary_10_1016_j_semcdb_2023_05_008 crossref_primary_10_1007_s10875_024_01708_7 crossref_primary_10_1177_17534666231162252 crossref_primary_10_3390_biomedicines11082301 crossref_primary_10_1016_j_jiac_2022_12_004 crossref_primary_10_3390_microorganisms12030459 crossref_primary_10_1007_s00595_024_02967_y crossref_primary_10_1093_neuonc_noae234 crossref_primary_10_1038_s41598_024_68433_4 crossref_primary_10_3389_fimmu_2022_1036672 crossref_primary_10_1007_s11604_023_01466_3 crossref_primary_10_3390_ijms241512177 |
Cites_doi | 10.1038/s41586-020-2700-3 10.1016/j.immuni.2021.03.005 10.3390/ijms222011028 10.1126/sciadv.abe3024 10.1038/s41586-020-2588-y 10.1126/science.abd4585 10.1056/NEJMra2026131 10.1161/CIRCULATIONAHA.120.048488 10.1016/S2665-9913(20)30275-7 10.3389/fimmu.2020.594297 10.1016/S2213-2600(20)30243-5 10.1016/S2352-3018(21)00151-X 10.1126/science.abc6027 10.1126/scitranslmed.abj7790 10.1056/NEJMoa2015432 10.1016/S1473-3099(21)00318-2 10.1126/science.abc8511 10.1016/S0140-6736(21)02867-1 10.1056/NEJMc2114706 10.1182/blood-2008-06-165845 10.1084/jem.20201129 10.1126/science.abd4570 10.1002/rcr2.912 10.1146/annurev-immunol-042617-053119 10.3389/fimmu.2021.665773 10.1016/S2352-3026(20)30145-9 10.1038/s41586-022-04447-0 10.1001/jamacardio.2020.7308 10.1182/blood.2020005382 10.1016/S0140-6736(20)30937-5 10.1371/journal.pntd.0009921 10.1001/jama.2020.16349 10.1016/S0140-6736(20)31748-7 10.1016/j.blre.2020.100761 10.1126/sciimmunol.abl4340 10.1007/s00134-020-06062-x 10.3389/fimmu.2021.589095 10.1126/sciimmunol.aaf9154 10.1182/blood.2020007008 10.1016/S2665-9913(20)30420-3 10.1038/s41591-020-0901-9 10.1182/blood-2010-01-265561 10.1016/S0140-6736(20)30566-3 10.1136/thoraxjnl-2020-216243 10.1182/bloodadvances.2020003568 10.1111/imr.12559 10.1084/jem.20211381 10.1016/j.ajpath.2021.05.007 10.1073/pnas.2010229117 10.1136/bmj.n436 10.1016/S2666-5247(21)00237-8 10.1182/blood-2014-06-581942 10.1111/jth.15409 |
ContentType | Journal Article |
Copyright | Copyright © 2022 the Author(s) Copyright National Academy of Sciences Aug 16, 2022 Copyright © 2022 the Author(s). Published by PNAS. 2022 |
Copyright_xml | – notice: Copyright © 2022 the Author(s) – notice: Copyright National Academy of Sciences Aug 16, 2022 – notice: Copyright © 2022 the Author(s). Published by PNAS. 2022 |
DBID | AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2203437119 |
DatabaseName | CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 11 |
ExternalDocumentID | PMC9388124 10_1073_pnas_2203437119 27206888 |
GrantInformation_xml | – fundername: AMED-PRIME grantid: JP20gm6110005 – fundername: Granrs-in aid for scentific research (S) grantid: JP19H05650 – fundername: Grants-in aid for scientific research (C) grantid: 20K08769 – fundername: Practical Research Project for Allergic Diseases and Immunology from the Japan Agency for Medical Research and Development grantid: JP21ek0410082 – fundername: JST FOREST Project grantid: JPMJFR200R – fundername: Transformative Research Areas (B) grantid: JP21H05121 – fundername: AMED-SENTAN project grantid: JP19hm0102069h001 – fundername: Grants-in aid for scientific research (C) grantid: 22K15484 – fundername: Practical Research Project for Allergic Diseases and Immunology from the Japan Agency for Medical Research and Development grantid: Nos. JP21ek0410060 – fundername: JST-Moonshot R&D grantid: JPMJMS2025 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JENOY JLS JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 2AX 5PM ABBHK AEUPB AEXZC DCCCD IPSME JAAYA JBMMH JHFFW JKQEH JLXEF JPM SA0 |
ID | FETCH-LOGICAL-c486t-2047469d543ac975c7c0e8f7e2bd304b4d852e81888b15c6179d37a24b28a5503 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:42:24 EDT 2025 Fri Jul 11 13:43:05 EDT 2025 Mon Jun 30 07:58:04 EDT 2025 Thu Apr 24 23:12:41 EDT 2025 Tue Jul 01 01:03:21 EDT 2025 Thu May 29 08:51:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
License | This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c486t-2047469d543ac975c7c0e8f7e2bd304b4d852e81888b15c6179d37a24b28a5503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: C.I., K.H., M.K., and T. Nakayama designed research; C.I., M.K., S. Ikehara, K.A., T. Shimada, S. Kuriyama, S.O., E.Y., A.A., K.K., R. Hirasawa, T. Hishiya, K. Tsuji, T. Nagaoka, S. Ishikawa, A.K., H.M., R. Hase, Y.K., N.K., T.T., S.N., T.U., S. Kaneda, S.S., M. Tobiume, Y. Suzuki, M. Tsujiwaki, T.K., T. Hasegawa, H. Nakase, O.N., K. Takahashi, K.B., Y. Iizumi, T.O., I.Y., H.I., H. Nakajima, T. Suzuki, T.-a.N., Y. Ikehara, and K.Y. performed research; C.I., K.H., Y. Inaba, Y. Shiko, M.Y.K., H.H., Y. Ikehara, and T. Nakayama analyzed data; and C.I., K.H., and T. Nakayama wrote the paper. Edited by Max Cooper, Emory University, Atlanta, GA; received February 25, 2022; accepted June 22, 2022 |
ORCID | 0000-0002-8785-5612 0000-0001-5749-4118 0000-0001-8595-9381 0000-0002-8659-2873 0000-0002-9128-9449 0000-0002-3859-9659 0000-0001-6896-1981 0000-0003-3837-2785 0000-0002-1434-2007 0000-0001-9110-2915 0000-0002-0799-3581 0000-0002-5607-5066 0000-0002-5958-0148 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9388124 |
PMID | 35895716 |
PQID | 2704305223 |
PQPubID | 42026 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9388124 proquest_miscellaneous_2695292056 proquest_journals_2704305223 crossref_citationtrail_10_1073_pnas_2203437119 crossref_primary_10_1073_pnas_2203437119 jstor_primary_27206888 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-16 |
PublicationDateYYYYMMDD | 2022-08-16 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_16_2 doi: 10.1038/s41586-020-2700-3 – ident: e_1_3_4_18_2 doi: 10.1016/j.immuni.2021.03.005 – ident: e_1_3_4_47_2 doi: 10.3390/ijms222011028 – ident: e_1_3_4_1_2 doi: 10.1126/sciadv.abe3024 – ident: e_1_3_4_14_2 doi: 10.1038/s41586-020-2588-y – ident: e_1_3_4_8_2 doi: 10.1126/science.abd4585 – ident: e_1_3_4_39_2 doi: 10.1056/NEJMra2026131 – ident: e_1_3_4_44_2 doi: 10.1161/CIRCULATIONAHA.120.048488 – ident: e_1_3_4_13_2 doi: 10.1016/S2665-9913(20)30275-7 – ident: e_1_3_4_34_2 doi: 10.3389/fimmu.2020.594297 – ident: e_1_3_4_36_2 doi: 10.1016/S2213-2600(20)30243-5 – ident: e_1_3_4_6_2 doi: 10.1016/S2352-3018(21)00151-X – ident: e_1_3_4_12_2 doi: 10.1126/science.abc6027 – ident: e_1_3_4_55_2 – ident: e_1_3_4_19_2 doi: 10.1126/scitranslmed.abj7790 – ident: e_1_3_4_38_2 doi: 10.1056/NEJMoa2015432 – ident: e_1_3_4_2_2 doi: 10.1016/S1473-3099(21)00318-2 – ident: e_1_3_4_15_2 doi: 10.1126/science.abc8511 – ident: e_1_3_4_3_2 doi: 10.1016/S0140-6736(21)02867-1 – ident: e_1_3_4_11_2 doi: 10.1056/NEJMc2114706 – ident: e_1_3_4_52_2 doi: 10.1182/blood-2008-06-165845 – ident: e_1_3_4_41_2 doi: 10.1084/jem.20201129 – ident: e_1_3_4_10_2 doi: 10.1126/science.abd4570 – ident: e_1_3_4_29_2 doi: 10.1002/rcr2.912 – ident: e_1_3_4_30_2 doi: 10.1146/annurev-immunol-042617-053119 – ident: e_1_3_4_45_2 doi: 10.3389/fimmu.2021.665773 – ident: e_1_3_4_23_2 doi: 10.1016/S2352-3026(20)30145-9 – ident: e_1_3_4_9_2 doi: 10.1038/s41586-022-04447-0 – ident: e_1_3_4_43_2 doi: 10.1001/jamacardio.2020.7308 – ident: e_1_3_4_48_2 doi: 10.1182/blood.2020005382 – ident: e_1_3_4_37_2 doi: 10.1016/S0140-6736(20)30937-5 – ident: e_1_3_4_27_2 doi: 10.1371/journal.pntd.0009921 – ident: e_1_3_4_24_2 doi: 10.1001/jama.2020.16349 – ident: e_1_3_4_5_2 doi: 10.1016/S0140-6736(20)31748-7 – ident: e_1_3_4_51_2 doi: 10.1016/j.blre.2020.100761 – ident: e_1_3_4_7_2 doi: 10.1126/sciimmunol.abl4340 – ident: e_1_3_4_22_2 doi: 10.1007/s00134-020-06062-x – ident: e_1_3_4_26_2 doi: 10.3389/fimmu.2021.589095 – ident: e_1_3_4_33_2 doi: 10.1126/sciimmunol.aaf9154 – ident: e_1_3_4_42_2 doi: 10.1182/blood.2020007008 – ident: e_1_3_4_20_2 doi: 10.1016/S2665-9913(20)30420-3 – ident: e_1_3_4_17_2 doi: 10.1038/s41591-020-0901-9 – ident: e_1_3_4_31_2 doi: 10.1182/blood-2010-01-265561 – ident: e_1_3_4_4_2 doi: 10.1016/S0140-6736(20)30566-3 – ident: e_1_3_4_35_2 doi: 10.1136/thoraxjnl-2020-216243 – ident: e_1_3_4_46_2 doi: 10.1182/bloodadvances.2020003568 – ident: e_1_3_4_32_2 doi: 10.1111/imr.12559 – ident: e_1_3_4_53_2 doi: 10.1084/jem.20211381 – ident: e_1_3_4_21_2 doi: 10.1016/j.ajpath.2021.05.007 – ident: e_1_3_4_40_2 doi: 10.1073/pnas.2010229117 – ident: e_1_3_4_25_2 doi: 10.1136/bmj.n436 – ident: e_1_3_4_28_2 doi: 10.1016/S2666-5247(21)00237-8 – ident: e_1_3_4_49_2 doi: 10.1182/blood-2014-06-581942 – ident: e_1_3_4_50_2 doi: 10.1111/jth.15409 – ident: e_1_3_4_54_2 |
SSID | ssj0009580 |
Score | 2.4864035 |
Snippet | The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome... Elucidation of the pathology triggered by SARS-CoV-2 infection is essential to control the pandemic. We found that severe acute respiratory syndrome... |
SourceID | pubmedcentral proquest crossref jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Autopsies Autopsy Biological Sciences Blood vessels Coronaviruses COVID-19 Emission analysis Exudation Field emission microscopy Gene sequencing Leukocytes (mononuclear) Lungs Medical treatment Monocytes Myosin Pathogenesis Peripheral blood mononuclear cells Respiratory diseases Scanning electron microscopy Severe acute respiratory syndrome coronavirus 2 Thrombospondin Vasculitis Viral diseases X-ray spectroscopy |
Title | Elevated Myl9 reflects the Myl9-containing microthrombi in SARS-CoV-2–induced lung exudative vasculitis and predicts COVID-19 severity |
URI | https://www.jstor.org/stable/27206888 https://www.proquest.com/docview/2704305223 https://www.proquest.com/docview/2695292056 https://pubmed.ncbi.nlm.nih.gov/PMC9388124 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFCRUtAicSiKHBLvrtc-RqEopWqpSFv1Fq3tjWKROKiJgXLiyJ1_yC9hxuv1I1CpcLEi78N25vPszHrmG0Jech0x4YXK8aQCB8Vl0lGs5ztqOo25FFr08y-mxyfe6Jy_uxSXrVadIThbh93o21_zSv5HqnAO5IpZsv8g2XJSOAG_Qb5wBAnD8VYyPpjrzwpNxuPredCBtW6ex2agLYlnHIxDNxUgOgsMvMOaCIswwT2O8eDD2BkuLxzXhjsw8M4zjAaYw_vf0V-z2HCCm1hVpD6ypAJxglcZvr84fOP0gw6srRpL4NXt3NNyXVzZKIQTu-04qJJYCs2y6jid05OqJPLhF7XI8gJIGCoCNm61QY6J3ablKLlermZl01GCZV1M-tFKzZKrZTnbR23HjFWqdH2jA3xkJJ716srbhQWVm5Trrjb6Gswdx-Om4mip0AslbJBreDb-WClAtWF541Stuq7bY5xJO6zByb2xVpYRjPm3e8kmOMGkmuAOueuCv5JHmI7q7M--yYUqnsByTEn2euMOGuaRiZBt-D7NyN2aKXT2gNwvfBg6MIDcJi2dPiTbVpZ0v6Ayf_WI_LAIpYhHahFKAQ90A6G0jlCapLRC6K_vPwtsUsQmLbFJK2xSwCa12KQWm9Ri8zE5f3twNhw5Re0PJ-K-t4bXnEvuBbHgTEWBFJGMetqfSu2GMevxkMe-cDVYm74f9kUEdngQM6lcHrq-Aq-b7ZCtdJnqJ4RqDf1h_JT1FUzphUJ4OhAhD3QE5jZvk679yydRQYyP9VnmkxuE3Cb75YBPhhPm5q47uQzLfhj24MFNt8meFeqk0CgwTuYMfGCxt8mLshn0PX7EU6leZtDHCwRWmBNem8gGGMprIGN8syVNZjlzfMB8NOh3b_8AT8m96l3cI1vrq0w_AzN8HT7PIf4bX_7e0g |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elevated+Myl9+reflects+the+Myl9-containing+microthrombi+in+SARS-CoV-2%E2%80%93induced+lung+exudative+vasculitis+and+predicts+COVID-19+severity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Iwamura%2C+Chiaki&rft.au=Hirahara%2C+Kiyoshi&rft.au=Kiuchi%2C+Masahiro&rft.au=Ikehara%2C+Sanae&rft.date=2022-08-16&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=33&rft_id=info:doi/10.1073%2Fpnas.2203437119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2203437119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |