Gene expression drives local adaptation in humans

The molecular basis of adaptation—and, in particular, the relative roles of protein-coding versus gene expression changes—has long been the subject of speculation and debate. Recently, the genotyping of diverse human populations has led to the identification of many putative “local adaptations” that...

Full description

Saved in:
Bibliographic Details
Published inGenome research Vol. 23; no. 7; pp. 1089 - 1096
Main Author Fraser, Hunter B.
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.07.2013
Subjects
Online AccessGet full text
ISSN1088-9051
1549-5469
1549-5469
DOI10.1101/gr.152710.112

Cover

Loading…
Abstract The molecular basis of adaptation—and, in particular, the relative roles of protein-coding versus gene expression changes—has long been the subject of speculation and debate. Recently, the genotyping of diverse human populations has led to the identification of many putative “local adaptations” that differ between populations. Here I show that these local adaptations are over 10-fold more likely to affect gene expression than amino acid sequence. In addition, a novel framework for identifying polygenic local adaptations detects recent positive selection on the expression levels of genes involved in UV radiation response, immune cell proliferation, and diabetes-related pathways. These results provide the first examples of polygenic gene expression adaptation in humans, as well as the first genome-scale support for the hypothesis that changes in gene expression have driven human adaptation.
AbstractList The molecular basis of adaptation—and, in particular, the relative roles of protein-coding versus gene expression changes—has long been the subject of speculation and debate. Recently, the genotyping of diverse human populations has led to the identification of many putative “local adaptations” that differ between populations. Here I show that these local adaptations are over 10-fold more likely to affect gene expression than amino acid sequence. In addition, a novel framework for identifying polygenic local adaptations detects recent positive selection on the expression levels of genes involved in UV radiation response, immune cell proliferation, and diabetes-related pathways. These results provide the first examples of polygenic gene expression adaptation in humans, as well as the first genome-scale support for the hypothesis that changes in gene expression have driven human adaptation.
The molecular basis of adaptation--and, in particular, the relative roles of protein-coding versus gene expression changes--has long been the subject of speculation and debate. Recently, the genotyping of diverse human populations has led to the identification of many putative "local adaptations" that differ between populations. Here I show that these local adaptations are over 10-fold more likely to affect gene expression than amino acid sequence. In addition, a novel framework for identifying polygenic local adaptations detects recent positive selection on the expression levels of genes involved in UV radiation response, immune cell proliferation, and diabetes-related pathways. These results provide the first examples of polygenic gene expression adaptation in humans, as well as the first genome-scale support for the hypothesis that changes in gene expression have driven human adaptation.The molecular basis of adaptation--and, in particular, the relative roles of protein-coding versus gene expression changes--has long been the subject of speculation and debate. Recently, the genotyping of diverse human populations has led to the identification of many putative "local adaptations" that differ between populations. Here I show that these local adaptations are over 10-fold more likely to affect gene expression than amino acid sequence. In addition, a novel framework for identifying polygenic local adaptations detects recent positive selection on the expression levels of genes involved in UV radiation response, immune cell proliferation, and diabetes-related pathways. These results provide the first examples of polygenic gene expression adaptation in humans, as well as the first genome-scale support for the hypothesis that changes in gene expression have driven human adaptation.
Author Fraser, Hunter B.
Author_xml – sequence: 1
  givenname: Hunter B.
  surname: Fraser
  fullname: Fraser, Hunter B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23539138$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LwzAUx4NM3A89epUevXTmNU2bXAQZOoWBFz2HLEm3SJvOpBv639vaOVQQ4ZGXl3zy5Zv3xmjgamcQOgc8BcBwtfJToEn-WSZHaAQ05TFNMz5o95ixmGMKQzQO4QVjTFLGTtAwIZRwIGyEYG6ciczbxpsQbO0i7e3OhKislSwjqeWmkU13bl203lbShVN0XMgymLN9nqDnu9un2X28eJw_zG4WsUpZ1sTADCcq5zkQ0FgWTBdFinWBl1mW5wnLtASqgbchs1wVKlG44JosTcY1pZhM0HWvu9kuK6OVcY2Xpdh4W0n_Lmppxc8bZ9diVe8EyTijOGkFLvcCvn7dmtCIygZlylI6U2-DgBR4y-bt-i9KGGDOcd7Zuvhu6-Dnq6UtEPeA8nUI3hQHBLDoRiZWXvQja8vOJvnFK9v3vP2VLf949QEf0JlQ
CitedBy_id crossref_primary_10_1093_bib_bbu018
crossref_primary_10_1186_s12915_023_01745_5
crossref_primary_10_1111_mec_13573
crossref_primary_10_1111_mec_14704
crossref_primary_10_1111_mec_14705
crossref_primary_10_1093_hmg_ddad177
crossref_primary_10_1002_wrna_1329
crossref_primary_10_1002_ajpa_24051
crossref_primary_10_1093_gbe_evy244
crossref_primary_10_1038_s41598_017_04278_4
crossref_primary_10_1016_j_molp_2015_01_016
crossref_primary_10_1186_s40104_024_01053_0
crossref_primary_10_1111_1755_0998_12714
crossref_primary_10_1038_s41437_023_00663_0
crossref_primary_10_1186_s12983_019_0336_7
crossref_primary_10_3390_sym13122408
crossref_primary_10_1371_journal_pgen_1008768
crossref_primary_10_1098_rstb_2013_0374
crossref_primary_10_1186_1479_7364_8_1
crossref_primary_10_1016_j_envres_2023_116614
crossref_primary_10_1073_pnas_2214614120
crossref_primary_10_1111_jipb_12287
crossref_primary_10_1038_s41467_018_07436_y
crossref_primary_10_1084_jem_20161942
crossref_primary_10_3389_fevo_2021_626442
crossref_primary_10_15302_J_QB_021_0258
crossref_primary_10_1093_gbe_evv083
crossref_primary_10_1101_gr_164822_113
crossref_primary_10_1111_mec_15743
crossref_primary_10_1534_genetics_114_172437
crossref_primary_10_1038_s41588_021_00804_3
crossref_primary_10_1038_nrg3604
crossref_primary_10_2217_pme_2016_0107
crossref_primary_10_1080_07420528_2017_1417314
crossref_primary_10_3389_fevo_2020_562065
crossref_primary_10_1038_s41559_022_01754_7
crossref_primary_10_1093_jhered_esaa044
crossref_primary_10_1007_s10750_016_2782_y
crossref_primary_10_1016_j_cels_2016_04_003
crossref_primary_10_1016_j_celrep_2017_07_033
crossref_primary_10_1093_molbev_msad034
crossref_primary_10_1038_hdy_2017_24
crossref_primary_10_1534_genetics_115_178988
crossref_primary_10_1534_genetics_118_301028
crossref_primary_10_1186_s12915_018_0547_y
crossref_primary_10_3389_fgene_2015_00336
crossref_primary_10_1101_gr_190983_115
crossref_primary_10_1186_s13059_024_03165_2
crossref_primary_10_1016_j_cell_2016_09_024
crossref_primary_10_1016_j_ajhg_2014_11_003
crossref_primary_10_1016_j_cell_2016_09_025
crossref_primary_10_1186_s12863_016_0396_z
crossref_primary_10_1186_s12915_021_01170_6
crossref_primary_10_1371_journal_pgen_1005751
crossref_primary_10_1101_gr_238998_118
crossref_primary_10_3389_fgene_2021_714491
crossref_primary_10_1371_journal_pgen_1005875
crossref_primary_10_1186_s12864_023_09111_z
crossref_primary_10_1002_ajpa_24713
crossref_primary_10_1093_molbev_msx083
crossref_primary_10_1371_journal_pgen_1006328
crossref_primary_10_1098_rspb_2019_0810
crossref_primary_10_1038_s41467_017_01658_2
crossref_primary_10_1016_j_ygeno_2020_01_013
crossref_primary_10_1016_j_gde_2018_06_009
crossref_primary_10_1146_annurev_genom_083115_022316
crossref_primary_10_1371_journal_pgen_1004412
crossref_primary_10_1073_pnas_1717421114
crossref_primary_10_1093_eep_dvae009
crossref_primary_10_1093_molbev_msy106
crossref_primary_10_1093_molbev_msy107
crossref_primary_10_1073_pnas_1503027112
crossref_primary_10_1007_s00439_016_1734_y
crossref_primary_10_1016_j_cell_2016_03_041
crossref_primary_10_1111_mec_13140
crossref_primary_10_1093_gbe_evae198
crossref_primary_10_1073_pnas_1418652112
crossref_primary_10_1073_pnas_2212406119
crossref_primary_10_1093_molbev_msu146
crossref_primary_10_1186_1471_2156_14_87
crossref_primary_10_1016_j_coi_2014_07_001
crossref_primary_10_1111_eva_13239
crossref_primary_10_1093_molbev_msaa102
crossref_primary_10_1111_eva_12149
crossref_primary_10_1111_mec_16409
crossref_primary_10_1038_srep32975
crossref_primary_10_1002_ece3_3583
crossref_primary_10_1080_15476286_2015_1017215
crossref_primary_10_1111_mec_17698
crossref_primary_10_1093_gbe_evv055
crossref_primary_10_1186_s12864_016_3333_7
crossref_primary_10_1371_journal_pbio_3000244
crossref_primary_10_1111_eff_12713
crossref_primary_10_1186_s13059_023_02874_4
crossref_primary_10_1371_journal_pgen_1009652
crossref_primary_10_1007_s00227_016_2961_4
crossref_primary_10_1371_journal_pcbi_1003255
crossref_primary_10_3389_fevo_2019_00514
crossref_primary_10_1038_nature13992
crossref_primary_10_1186_s13059_016_1093_y
crossref_primary_10_1016_j_yfrne_2017_07_003
crossref_primary_10_1038_nplants_2016_84
crossref_primary_10_3389_fbirs_2024_1382657
crossref_primary_10_1038_s41396_019_0359_2
crossref_primary_10_1101_pdb_top084988
crossref_primary_10_1534_genetics_117_202655
crossref_primary_10_1038_ncomms5071
crossref_primary_10_1111_mec_13520
crossref_primary_10_1111_evo_14617
crossref_primary_10_1111_eva_12776
crossref_primary_10_1111_acel_12283
crossref_primary_10_1007_s40471_015_0049_1
crossref_primary_10_1038_srep25536
crossref_primary_10_1093_nar_gkt1052
crossref_primary_10_1126_sciadv_aaz1138
crossref_primary_10_1002_ece3_6588
crossref_primary_10_1038_s41467_017_02809_1
crossref_primary_10_1086_726013
crossref_primary_10_1093_gbe_evu192
crossref_primary_10_1016_j_gde_2013_10_006
crossref_primary_10_1016_j_xhgg_2021_100083
crossref_primary_10_1093_nar_gky338
crossref_primary_10_1371_journal_pgen_1006382
crossref_primary_10_1038_srep12163
crossref_primary_10_1111_mec_14973
crossref_primary_10_1038_nrg3522
crossref_primary_10_7554_eLife_89594_3
crossref_primary_10_1186_s13059_019_1679_2
crossref_primary_10_1111_evo_13126
crossref_primary_10_1093_icesjms_fsx160
crossref_primary_10_1093_molbev_msx231
crossref_primary_10_1155_2014_203435
crossref_primary_10_1371_journal_pgen_1003813
crossref_primary_10_1016_j_gde_2016_08_006
crossref_primary_10_3390_genes9070358
crossref_primary_10_7554_eLife_63713
crossref_primary_10_1371_journal_pone_0239558
crossref_primary_10_1016_j_cell_2018_08_057
crossref_primary_10_1002_ece3_7966
crossref_primary_10_1007_s00251_017_1017_3
crossref_primary_10_1186_1472_6785_14_23
crossref_primary_10_1002_ece3_9590
crossref_primary_10_1016_j_envint_2015_09_012
crossref_primary_10_1111_eva_12514
crossref_primary_10_1186_1471_2164_15_1047
crossref_primary_10_1073_pnas_1318948111
crossref_primary_10_1111_mec_14712
crossref_primary_10_1186_s12863_015_0239_3
crossref_primary_10_1093_molbev_msae034
crossref_primary_10_1534_g3_115_026773
crossref_primary_10_3390_genes14010014
crossref_primary_10_1038_s41598_022_27137_3
crossref_primary_10_1073_pnas_2213896120
crossref_primary_10_1007_s12064_023_00387_z
crossref_primary_10_1093_molbev_msab208
crossref_primary_10_1101_gr_198135_115
crossref_primary_10_1093_g3journal_jkab062
crossref_primary_10_1093_molbev_msv038
crossref_primary_10_1093_gbe_evt124
crossref_primary_10_1111_evo_13385
crossref_primary_10_1093_genetics_iyad034
crossref_primary_10_1186_s13059_023_02846_8
crossref_primary_10_1534_g3_117_1133
crossref_primary_10_1073_pnas_2313440121
crossref_primary_10_1093_molbev_mst134
crossref_primary_10_1093_molbev_msz234
crossref_primary_10_7554_eLife_89594
Cites_doi 10.1101/gr.087577.108
10.1016/j.cub.2009.11.055
10.1038/ng.2205
10.1098/rstb.2010.0032
10.1038/ng.2007.16
10.1093/bioinformatics/btr678
10.1073/pnas.0914628107
10.1086/432519
10.1093/nar/gkg675
10.1073/pnas.1103922108
10.1371/journal.pgen.1002197
10.1371/journal.pgen.1002639
10.1101/gr.086652.108
10.1371/journal.pgen.0020142
10.1101/gr.083477.108
10.1371/journal.pgen.1002023
10.1371/journal.pgen.1000952
10.1111/j.1558-5646.2007.00105.x
10.1073/pnas.0912245107
10.1038/nature09906
10.1038/ng.473
10.1007/s00251-011-0576-y
10.1038/nature08903
10.1073/pnas.0700488104
10.1098/rstb.2011.0312
10.1111/j.1558-5646.2008.00450.x
10.1371/journal.pgen.1001078
10.1016/j.ajhg.2010.10.024
10.1371/journal.pgen.1002078
10.1038/nrg2630
10.1038/ng.2007.57
10.1002/bies.201000094
10.1126/science.1090005
10.1371/journal.pbio.0060107
10.1371/journal.pgen.1000592
10.1371/journal.pbio.0020141
10.1371/journal.pgen.1001375
10.1038/nature08872
10.1016/j.mehy.2006.04.057
10.1371/journal.pone.0010693
10.1371/journal.pgen.1002621
10.1101/gr.134080.111
ContentType Journal Article
Copyright 2013
Copyright_xml – notice: 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
DOI 10.1101/gr.152710.112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList CrossRef

Genetics Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Fraser
EISSN 1549-5469
EndPage 1096
ExternalDocumentID PMC3698502
23539138
10_1101_gr_152710_112
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM097171
– fundername: NIGMS NIH HHS
  grantid: 1R01GM097171-01A1
GroupedDBID ---
.GJ
18M
29H
2WC
39C
4.4
53G
5GY
5RE
5VS
AAFWJ
AAYOK
AAYXX
AAZTW
ABDIX
ABDNZ
ACGFO
ACLKE
ACYGS
ADBBV
ADNWM
AEILP
AENEX
AHPUY
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
IH2
K-O
KQ8
MV1
R.V
RCX
RHI
RNS
RPM
RXW
SJN
TAE
TR2
VH1
W8F
WOQ
YKV
ZCG
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c486t-18e93c797131d0af8dff40df0b6677286da15d19d19a67cfc2c0f9d3be69d5503
ISSN 1088-9051
1549-5469
IngestDate Thu Aug 21 14:00:00 EDT 2025
Fri Jul 11 03:18:41 EDT 2025
Fri Jul 11 05:59:49 EDT 2025
Thu Apr 03 06:57:10 EDT 2025
Thu Apr 24 22:53:22 EDT 2025
Tue Jul 01 02:20:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported), as described at http://creativecommons.org/licenses/by-nc/3.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c486t-18e93c797131d0af8dff40df0b6677286da15d19d19a67cfc2c0f9d3be69d5503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3698502
PMID 23539138
PQID 1381099070
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3698502
proquest_miscellaneous_1419369719
proquest_miscellaneous_1381099070
pubmed_primary_23539138
crossref_primary_10_1101_gr_152710_112
crossref_citationtrail_10_1101_gr_152710_112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genome research
PublicationTitleAlternate Genome Res
PublicationYear 2013
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021111811105505000_23.7.1089.31
2021111811105505000_23.7.1089.30
(2021111811105505000_23.7.1089.23) 2006; 49
2021111811105505000_23.7.1089.9
2021111811105505000_23.7.1089.29
2021111811105505000_23.7.1089.8
2021111811105505000_23.7.1089.28
2021111811105505000_23.7.1089.27
2021111811105505000_23.7.1089.6
2021111811105505000_23.7.1089.26
2021111811105505000_23.7.1089.5
2021111811105505000_23.7.1089.25
2021111811105505000_23.7.1089.4
(2021111811105505000_23.7.1089.7) 2007; 3
2021111811105505000_23.7.1089.24
(2021111811105505000_23.7.1089.33) 1962; 14
2021111811105505000_23.7.1089.46
2021111811105505000_23.7.1089.3
2021111811105505000_23.7.1089.45
2021111811105505000_23.7.1089.22
2021111811105505000_23.7.1089.44
2021111811105505000_23.7.1089.1
2021111811105505000_23.7.1089.21
2021111811105505000_23.7.1089.43
2021111811105505000_23.7.1089.20
2021111811105505000_23.7.1089.42
2021111811105505000_23.7.1089.41
2021111811105505000_23.7.1089.40
(2021111811105505000_23.7.1089.2) 1995; 55
2021111811105505000_23.7.1089.19
2021111811105505000_23.7.1089.18
2021111811105505000_23.7.1089.17
2021111811105505000_23.7.1089.39
2021111811105505000_23.7.1089.16
2021111811105505000_23.7.1089.38
2021111811105505000_23.7.1089.15
2021111811105505000_23.7.1089.37
2021111811105505000_23.7.1089.14
2021111811105505000_23.7.1089.36
2021111811105505000_23.7.1089.13
2021111811105505000_23.7.1089.35
2021111811105505000_23.7.1089.12
2021111811105505000_23.7.1089.34
2021111811105505000_23.7.1089.11
2021111811105505000_23.7.1089.10
2021111811105505000_23.7.1089.32
21533023 - PLoS Genet. 2011 Apr;7(4):e1001375
21441907 - Nature. 2011 May 5;473(7345):43-9
17982457 - Nat Genet. 2007 Dec;39(12):1494-9
19411596 - Genome Res. 2009 May;19(5):711-22
20220758 - Nature. 2010 Apr 1;464(7289):768-72
20502693 - PLoS One. 2010;5(5):e10693
17922574 - PLoS Genet. 2007 Oct;3(10):1827-37
21538412 - Bioessays. 2011 Jun;33(6):469-77
21829388 - PLoS Genet. 2011 Aug;7(8):e1002197
22106287 - Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19635-40
7664277 - Cancer Res. 1995 Sep 15;55(18):4041-6
1090005 - Science. 1975 Apr 11;188(4184):107-16
19189928 - Genome Res. 2009 Apr;19(4):567-75
20445093 - Proc Natl Acad Sci U S A. 2010 May 11;107 Suppl 2:8962-8
21483757 - PLoS Genet. 2011 Mar;7(3):e1002023
22312050 - Philos Trans R Soc Lond B Biol Sci. 2012 Mar 19;367(1590):830-9
16965180 - PLoS Genet. 2006 Sep 8;2(9):e142
18462017 - PLoS Biol. 2008 May 6;6(5):e107
22171328 - Bioinformatics. 2012 Feb 1;28(3):451-2
18193047 - Nat Genet. 2008 Feb;40(2):225-31
20220756 - Nature. 2010 Apr 1;464(7289):773-7
19307593 - Genome Res. 2009 May;19(5):826-37
21129726 - Am J Hum Genet. 2010 Dec 10;87(6):779-89
21947542 - Immunogenetics. 2012 Mar;64(3):165-75
20133628 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2977-82
12907719 - Nucleic Acids Res. 2003 Aug 15;31(16):4779-90
18616572 - Evolution. 2008 Sep;62(9):2155-77
20485568 - PLoS Genet. 2010 May;6(5):e1000952
22446964 - Nat Genet. 2012 May;44(5):502-10
20178769 - Curr Biol. 2010 Feb 23;20(4):R208-15
19636342 - Nat Rev Genet. 2009 Sep;10(9):595-604
22645260 - Genome Res. 2012 Oct;22(10):1930-9
15208708 - PLoS Biol. 2004 Jun;2(6):e141
16001361 - Am J Hum Genet. 2005 Aug;77(2):171-92
17494759 - Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8605-12
20643735 - Philos Trans R Soc Lond B Biol Sci. 2010 Aug 27;365(1552):2459-68
22511877 - PLoS Genet. 2012;8(4):e1002621
19662163 - PLoS Genet. 2009 Aug;5(8):e1000592
22532805 - PLoS Genet. 2012;8(4):e1002639
17492956 - Evolution. 2007 May;61(5):995-1016
17103426 - Am J Phys Anthropol. 2006;Suppl 43:89-130
19838192 - Nat Genet. 2009 Nov;41(11):1216-22
13937884 - Am J Hum Genet. 1962 Dec;14:353-62
16797871 - Med Hypotheses. 2006;67(5):1034-41
21637794 - PLoS Genet. 2011 May;7(5):e1002078
20865176 - PLoS Genet. 2010 Aug;6(8). pii: e1001078. doi: 10.1371/journal.pgen.1001078
References_xml – ident: 2021111811105505000_23.7.1089.34
  doi: 10.1101/gr.087577.108
– ident: 2021111811105505000_23.7.1089.36
  doi: 10.1016/j.cub.2009.11.055
– ident: 2021111811105505000_23.7.1089.9
  doi: 10.1038/ng.2205
– ident: 2021111811105505000_23.7.1089.21
  doi: 10.1098/rstb.2010.0032
– ident: 2021111811105505000_23.7.1089.32
  doi: 10.1038/ng.2007.16
– ident: 2021111811105505000_23.7.1089.45
  doi: 10.1093/bioinformatics/btr678
– volume: 55
  start-page: 4041
  year: 1995
  ident: 2021111811105505000_23.7.1089.2
  article-title: Comparison of the responses of human melanocytes with different melanin contents to ultraviolet B irradiation
  publication-title: Cancer Res
– ident: 2021111811105505000_23.7.1089.26
  doi: 10.1073/pnas.0914628107
– ident: 2021111811105505000_23.7.1089.29
  doi: 10.1086/432519
– ident: 2021111811105505000_23.7.1089.18
  doi: 10.1093/nar/gkg675
– ident: 2021111811105505000_23.7.1089.30
  doi: 10.1073/pnas.1103922108
– ident: 2021111811105505000_23.7.1089.10
  doi: 10.1371/journal.pgen.1002197
– ident: 2021111811105505000_23.7.1089.42
  doi: 10.1371/journal.pgen.1002639
– ident: 2021111811105505000_23.7.1089.1
  doi: 10.1101/gr.086652.108
– ident: 2021111811105505000_23.7.1089.6
  doi: 10.1371/journal.pgen.0020142
– ident: 2021111811105505000_23.7.1089.12
  doi: 10.1101/gr.083477.108
– volume: 49
  start-page: 89
  year: 2006
  ident: 2021111811105505000_23.7.1089.23
  article-title: The molecular signature of selection underlying human adaptations
  publication-title: Am J Phys Anthropol
– ident: 2021111811105505000_23.7.1089.14
  doi: 10.1371/journal.pgen.1002023
– ident: 2021111811105505000_23.7.1089.19
  doi: 10.1371/journal.pgen.1000952
– ident: 2021111811105505000_23.7.1089.24
  doi: 10.1111/j.1558-5646.2007.00105.x
– ident: 2021111811105505000_23.7.1089.13
  doi: 10.1073/pnas.0912245107
– ident: 2021111811105505000_23.7.1089.8
  doi: 10.1038/nature09906
– ident: 2021111811105505000_23.7.1089.17
  doi: 10.1038/ng.473
– ident: 2021111811105505000_23.7.1089.38
  doi: 10.1007/s00251-011-0576-y
– ident: 2021111811105505000_23.7.1089.31
  doi: 10.1038/nature08903
– volume: 14
  start-page: 353
  year: 1962
  ident: 2021111811105505000_23.7.1089.33
  article-title: Diabetes mellitus: A thrifty genotype rendered detrimental by progress
  publication-title: Am J Hum Genet
– ident: 2021111811105505000_23.7.1089.37
  doi: 10.1073/pnas.0700488104
– ident: 2021111811105505000_23.7.1089.39
  doi: 10.1098/rstb.2011.0312
– ident: 2021111811105505000_23.7.1089.41
  doi: 10.1111/j.1558-5646.2008.00450.x
– ident: 2021111811105505000_23.7.1089.44
  doi: 10.1371/journal.pgen.1001078
– ident: 2021111811105505000_23.7.1089.5
  doi: 10.1016/j.ajhg.2010.10.024
– ident: 2021111811105505000_23.7.1089.25
  doi: 10.1371/journal.pgen.1002078
– volume: 3
  start-page: e1827
  year: 2007
  ident: 2021111811105505000_23.7.1089.7
  article-title: Power to detect risk alleles using genome-wide tag SNP panels
  publication-title: PLoS Genet
– ident: 2021111811105505000_23.7.1089.4
  doi: 10.1038/nrg2630
– ident: 2021111811105505000_23.7.1089.28
  doi: 10.1038/ng.2007.57
– ident: 2021111811105505000_23.7.1089.11
  doi: 10.1002/bies.201000094
– ident: 2021111811105505000_23.7.1089.27
  doi: 10.1126/science.1090005
– ident: 2021111811105505000_23.7.1089.40
  doi: 10.1371/journal.pbio.0060107
– ident: 2021111811105505000_23.7.1089.43
  doi: 10.1371/journal.pgen.1000592
– ident: 2021111811105505000_23.7.1089.20
  doi: 10.1371/journal.pbio.0020141
– ident: 2021111811105505000_23.7.1089.22
  doi: 10.1371/journal.pgen.1001375
– ident: 2021111811105505000_23.7.1089.35
  doi: 10.1038/nature08872
– ident: 2021111811105505000_23.7.1089.16
  doi: 10.1016/j.mehy.2006.04.057
– ident: 2021111811105505000_23.7.1089.46
  doi: 10.1371/journal.pone.0010693
– ident: 2021111811105505000_23.7.1089.3
  doi: 10.1371/journal.pgen.1002621
– ident: 2021111811105505000_23.7.1089.15
  doi: 10.1101/gr.134080.111
– reference: 21829388 - PLoS Genet. 2011 Aug;7(8):e1002197
– reference: 1090005 - Science. 1975 Apr 11;188(4184):107-16
– reference: 19307593 - Genome Res. 2009 May;19(5):826-37
– reference: 19411596 - Genome Res. 2009 May;19(5):711-22
– reference: 21483757 - PLoS Genet. 2011 Mar;7(3):e1002023
– reference: 22312050 - Philos Trans R Soc Lond B Biol Sci. 2012 Mar 19;367(1590):830-9
– reference: 12907719 - Nucleic Acids Res. 2003 Aug 15;31(16):4779-90
– reference: 16797871 - Med Hypotheses. 2006;67(5):1034-41
– reference: 20865176 - PLoS Genet. 2010 Aug;6(8). pii: e1001078. doi: 10.1371/journal.pgen.1001078
– reference: 19838192 - Nat Genet. 2009 Nov;41(11):1216-22
– reference: 21637794 - PLoS Genet. 2011 May;7(5):e1002078
– reference: 19189928 - Genome Res. 2009 Apr;19(4):567-75
– reference: 22645260 - Genome Res. 2012 Oct;22(10):1930-9
– reference: 7664277 - Cancer Res. 1995 Sep 15;55(18):4041-6
– reference: 20445093 - Proc Natl Acad Sci U S A. 2010 May 11;107 Suppl 2:8962-8
– reference: 22511877 - PLoS Genet. 2012;8(4):e1002621
– reference: 21441907 - Nature. 2011 May 5;473(7345):43-9
– reference: 20178769 - Curr Biol. 2010 Feb 23;20(4):R208-15
– reference: 20133628 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2977-82
– reference: 17494759 - Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8605-12
– reference: 21129726 - Am J Hum Genet. 2010 Dec 10;87(6):779-89
– reference: 22532805 - PLoS Genet. 2012;8(4):e1002639
– reference: 17492956 - Evolution. 2007 May;61(5):995-1016
– reference: 15208708 - PLoS Biol. 2004 Jun;2(6):e141
– reference: 18616572 - Evolution. 2008 Sep;62(9):2155-77
– reference: 20220756 - Nature. 2010 Apr 1;464(7289):773-7
– reference: 17982457 - Nat Genet. 2007 Dec;39(12):1494-9
– reference: 13937884 - Am J Hum Genet. 1962 Dec;14:353-62
– reference: 22171328 - Bioinformatics. 2012 Feb 1;28(3):451-2
– reference: 17103426 - Am J Phys Anthropol. 2006;Suppl 43:89-130
– reference: 18193047 - Nat Genet. 2008 Feb;40(2):225-31
– reference: 20643735 - Philos Trans R Soc Lond B Biol Sci. 2010 Aug 27;365(1552):2459-68
– reference: 19662163 - PLoS Genet. 2009 Aug;5(8):e1000592
– reference: 22106287 - Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19635-40
– reference: 22446964 - Nat Genet. 2012 May;44(5):502-10
– reference: 21947542 - Immunogenetics. 2012 Mar;64(3):165-75
– reference: 17922574 - PLoS Genet. 2007 Oct;3(10):1827-37
– reference: 18462017 - PLoS Biol. 2008 May 6;6(5):e107
– reference: 21538412 - Bioessays. 2011 Jun;33(6):469-77
– reference: 21533023 - PLoS Genet. 2011 Apr;7(4):e1001375
– reference: 20485568 - PLoS Genet. 2010 May;6(5):e1000952
– reference: 16001361 - Am J Hum Genet. 2005 Aug;77(2):171-92
– reference: 16965180 - PLoS Genet. 2006 Sep 8;2(9):e142
– reference: 19636342 - Nat Rev Genet. 2009 Sep;10(9):595-604
– reference: 20220758 - Nature. 2010 Apr 1;464(7289):768-72
– reference: 20502693 - PLoS One. 2010;5(5):e10693
SSID ssj0003488
Score 2.4994028
Snippet The molecular basis of adaptation—and, in particular, the relative roles of protein-coding versus gene expression changes—has long been the subject of...
The molecular basis of adaptation--and, in particular, the relative roles of protein-coding versus gene expression changes--has long been the subject of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1089
SubjectTerms Adaptation, Biological - genetics
Cell Line
DNA Damage
Gene Expression
Gene Expression Regulation
Humans
Polymorphism, Single Nucleotide
Regulatory Sequences, Nucleic Acid
Selection, Genetic
Title Gene expression drives local adaptation in humans
URI https://www.ncbi.nlm.nih.gov/pubmed/23539138
https://www.proquest.com/docview/1381099070
https://www.proquest.com/docview/1419369719
https://pubmed.ncbi.nlm.nih.gov/PMC3698502
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3va9QwGA46Ef0iuvnjnEoE2ZfZmbRp03zcxsahcyLcwX0raZLOA5cbt94H_ev3Jumv26ZMoZQ2TdOSp03eN8n7PAh9yEkZV4nUUR5rBg4KM1GuFI_AYzalYDpPjQtw_nqajafs8yyd9WINPrqkLvfU71vjSv4HVUgDXF2U7D8g2xUKCXAM-MIeEIb9nTB2nNGOoz-sZbW7eulJZH3_tCu1vGiWEs5t0OK7HJqicPPi3ImmDMazfBgI9GsexvHKegbF4cCAE2ng7cBA05YxEaUsKKHsmVvSmgYwBPw2QPNBa0ZJkPe52cx6ev-zpVNP4iEOqe9P2jn002_F8fTkpJgczSb30YMY7HgnMfHle0_nnjAvDNq9VUeCSj-tFb5uNNzwBK4vaB1YCJOn6Elj2uP9gNMzdM_YTbS1b2W9OP-Fd7BfbOtnMTbRw4P26NFhK7m3hagDFPeA4gAo9oDiHlA8tzgA-hxNj48mh-Oo0bSIFMuzOqK5EYnigtOEaiKrXFcVI7oiZZZBBeWZljTVVMAmM64qFStSCZ2UJhMavMnkBdqwC2teIZyVXBqTabAAK1aqWDr2RLDWiNaawp85Qh_bSitUQ_judEd-Ft7xI7Q4WxahjuE0HqGdLvtFYDr5U8b3LQIF1I-bYJLWLFaXBXV0cWDecPKXPIw6DUlOxQi9DKh1j4uTNBFQyAjxNTy7DI4Lff2Knf_wnOhQZJ6S-PUd3m0bPe5_lzdoo16uzFuwLOvynf86rwBOhHm2
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+expression+drives+local+adaptation+in+humans&rft.jtitle=Genome+research&rft.au=Fraser%2C+Hunter+B&rft.date=2013-07-01&rft.issn=1549-5469&rft.eissn=1549-5469&rft.volume=23&rft.issue=7&rft.spage=1089&rft_id=info:doi/10.1101%2Fgr.152710.112&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon