Gene expression drives local adaptation in humans
The molecular basis of adaptation—and, in particular, the relative roles of protein-coding versus gene expression changes—has long been the subject of speculation and debate. Recently, the genotyping of diverse human populations has led to the identification of many putative “local adaptations” that...
Saved in:
Published in | Genome research Vol. 23; no. 7; pp. 1089 - 1096 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.07.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1088-9051 1549-5469 1549-5469 |
DOI | 10.1101/gr.152710.112 |
Cover
Loading…
Abstract | The molecular basis of adaptation—and, in particular, the relative roles of protein-coding versus gene expression changes—has long been the subject of speculation and debate. Recently, the genotyping of diverse human populations has led to the identification of many putative “local adaptations” that differ between populations. Here I show that these local adaptations are over 10-fold more likely to affect gene expression than amino acid sequence. In addition, a novel framework for identifying polygenic local adaptations detects recent positive selection on the expression levels of genes involved in UV radiation response, immune cell proliferation, and diabetes-related pathways. These results provide the first examples of polygenic gene expression adaptation in humans, as well as the first genome-scale support for the hypothesis that changes in gene expression have driven human adaptation. |
---|---|
AbstractList | The molecular basis of adaptation—and, in particular, the relative roles of protein-coding versus gene expression changes—has long been the subject of speculation and debate. Recently, the genotyping of diverse human populations has led to the identification of many putative “local adaptations” that differ between populations. Here I show that these local adaptations are over 10-fold more likely to affect gene expression than amino acid sequence. In addition, a novel framework for identifying polygenic local adaptations detects recent positive selection on the expression levels of genes involved in UV radiation response, immune cell proliferation, and diabetes-related pathways. These results provide the first examples of polygenic gene expression adaptation in humans, as well as the first genome-scale support for the hypothesis that changes in gene expression have driven human adaptation. The molecular basis of adaptation--and, in particular, the relative roles of protein-coding versus gene expression changes--has long been the subject of speculation and debate. Recently, the genotyping of diverse human populations has led to the identification of many putative "local adaptations" that differ between populations. Here I show that these local adaptations are over 10-fold more likely to affect gene expression than amino acid sequence. In addition, a novel framework for identifying polygenic local adaptations detects recent positive selection on the expression levels of genes involved in UV radiation response, immune cell proliferation, and diabetes-related pathways. These results provide the first examples of polygenic gene expression adaptation in humans, as well as the first genome-scale support for the hypothesis that changes in gene expression have driven human adaptation.The molecular basis of adaptation--and, in particular, the relative roles of protein-coding versus gene expression changes--has long been the subject of speculation and debate. Recently, the genotyping of diverse human populations has led to the identification of many putative "local adaptations" that differ between populations. Here I show that these local adaptations are over 10-fold more likely to affect gene expression than amino acid sequence. In addition, a novel framework for identifying polygenic local adaptations detects recent positive selection on the expression levels of genes involved in UV radiation response, immune cell proliferation, and diabetes-related pathways. These results provide the first examples of polygenic gene expression adaptation in humans, as well as the first genome-scale support for the hypothesis that changes in gene expression have driven human adaptation. |
Author | Fraser, Hunter B. |
Author_xml | – sequence: 1 givenname: Hunter B. surname: Fraser fullname: Fraser, Hunter B. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23539138$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9LwzAUx4NM3A89epUevXTmNU2bXAQZOoWBFz2HLEm3SJvOpBv639vaOVQQ4ZGXl3zy5Zv3xmjgamcQOgc8BcBwtfJToEn-WSZHaAQ05TFNMz5o95ixmGMKQzQO4QVjTFLGTtAwIZRwIGyEYG6ciczbxpsQbO0i7e3OhKislSwjqeWmkU13bl203lbShVN0XMgymLN9nqDnu9un2X28eJw_zG4WsUpZ1sTADCcq5zkQ0FgWTBdFinWBl1mW5wnLtASqgbchs1wVKlG44JosTcY1pZhM0HWvu9kuK6OVcY2Xpdh4W0n_Lmppxc8bZ9diVe8EyTijOGkFLvcCvn7dmtCIygZlylI6U2-DgBR4y-bt-i9KGGDOcd7Zuvhu6-Dnq6UtEPeA8nUI3hQHBLDoRiZWXvQja8vOJvnFK9v3vP2VLf949QEf0JlQ |
CitedBy_id | crossref_primary_10_1093_bib_bbu018 crossref_primary_10_1186_s12915_023_01745_5 crossref_primary_10_1111_mec_13573 crossref_primary_10_1111_mec_14704 crossref_primary_10_1111_mec_14705 crossref_primary_10_1093_hmg_ddad177 crossref_primary_10_1002_wrna_1329 crossref_primary_10_1002_ajpa_24051 crossref_primary_10_1093_gbe_evy244 crossref_primary_10_1038_s41598_017_04278_4 crossref_primary_10_1016_j_molp_2015_01_016 crossref_primary_10_1186_s40104_024_01053_0 crossref_primary_10_1111_1755_0998_12714 crossref_primary_10_1038_s41437_023_00663_0 crossref_primary_10_1186_s12983_019_0336_7 crossref_primary_10_3390_sym13122408 crossref_primary_10_1371_journal_pgen_1008768 crossref_primary_10_1098_rstb_2013_0374 crossref_primary_10_1186_1479_7364_8_1 crossref_primary_10_1016_j_envres_2023_116614 crossref_primary_10_1073_pnas_2214614120 crossref_primary_10_1111_jipb_12287 crossref_primary_10_1038_s41467_018_07436_y crossref_primary_10_1084_jem_20161942 crossref_primary_10_3389_fevo_2021_626442 crossref_primary_10_15302_J_QB_021_0258 crossref_primary_10_1093_gbe_evv083 crossref_primary_10_1101_gr_164822_113 crossref_primary_10_1111_mec_15743 crossref_primary_10_1534_genetics_114_172437 crossref_primary_10_1038_s41588_021_00804_3 crossref_primary_10_1038_nrg3604 crossref_primary_10_2217_pme_2016_0107 crossref_primary_10_1080_07420528_2017_1417314 crossref_primary_10_3389_fevo_2020_562065 crossref_primary_10_1038_s41559_022_01754_7 crossref_primary_10_1093_jhered_esaa044 crossref_primary_10_1007_s10750_016_2782_y crossref_primary_10_1016_j_cels_2016_04_003 crossref_primary_10_1016_j_celrep_2017_07_033 crossref_primary_10_1093_molbev_msad034 crossref_primary_10_1038_hdy_2017_24 crossref_primary_10_1534_genetics_115_178988 crossref_primary_10_1534_genetics_118_301028 crossref_primary_10_1186_s12915_018_0547_y crossref_primary_10_3389_fgene_2015_00336 crossref_primary_10_1101_gr_190983_115 crossref_primary_10_1186_s13059_024_03165_2 crossref_primary_10_1016_j_cell_2016_09_024 crossref_primary_10_1016_j_ajhg_2014_11_003 crossref_primary_10_1016_j_cell_2016_09_025 crossref_primary_10_1186_s12863_016_0396_z crossref_primary_10_1186_s12915_021_01170_6 crossref_primary_10_1371_journal_pgen_1005751 crossref_primary_10_1101_gr_238998_118 crossref_primary_10_3389_fgene_2021_714491 crossref_primary_10_1371_journal_pgen_1005875 crossref_primary_10_1186_s12864_023_09111_z crossref_primary_10_1002_ajpa_24713 crossref_primary_10_1093_molbev_msx083 crossref_primary_10_1371_journal_pgen_1006328 crossref_primary_10_1098_rspb_2019_0810 crossref_primary_10_1038_s41467_017_01658_2 crossref_primary_10_1016_j_ygeno_2020_01_013 crossref_primary_10_1016_j_gde_2018_06_009 crossref_primary_10_1146_annurev_genom_083115_022316 crossref_primary_10_1371_journal_pgen_1004412 crossref_primary_10_1073_pnas_1717421114 crossref_primary_10_1093_eep_dvae009 crossref_primary_10_1093_molbev_msy106 crossref_primary_10_1093_molbev_msy107 crossref_primary_10_1073_pnas_1503027112 crossref_primary_10_1007_s00439_016_1734_y crossref_primary_10_1016_j_cell_2016_03_041 crossref_primary_10_1111_mec_13140 crossref_primary_10_1093_gbe_evae198 crossref_primary_10_1073_pnas_1418652112 crossref_primary_10_1073_pnas_2212406119 crossref_primary_10_1093_molbev_msu146 crossref_primary_10_1186_1471_2156_14_87 crossref_primary_10_1016_j_coi_2014_07_001 crossref_primary_10_1111_eva_13239 crossref_primary_10_1093_molbev_msaa102 crossref_primary_10_1111_eva_12149 crossref_primary_10_1111_mec_16409 crossref_primary_10_1038_srep32975 crossref_primary_10_1002_ece3_3583 crossref_primary_10_1080_15476286_2015_1017215 crossref_primary_10_1111_mec_17698 crossref_primary_10_1093_gbe_evv055 crossref_primary_10_1186_s12864_016_3333_7 crossref_primary_10_1371_journal_pbio_3000244 crossref_primary_10_1111_eff_12713 crossref_primary_10_1186_s13059_023_02874_4 crossref_primary_10_1371_journal_pgen_1009652 crossref_primary_10_1007_s00227_016_2961_4 crossref_primary_10_1371_journal_pcbi_1003255 crossref_primary_10_3389_fevo_2019_00514 crossref_primary_10_1038_nature13992 crossref_primary_10_1186_s13059_016_1093_y crossref_primary_10_1016_j_yfrne_2017_07_003 crossref_primary_10_1038_nplants_2016_84 crossref_primary_10_3389_fbirs_2024_1382657 crossref_primary_10_1038_s41396_019_0359_2 crossref_primary_10_1101_pdb_top084988 crossref_primary_10_1534_genetics_117_202655 crossref_primary_10_1038_ncomms5071 crossref_primary_10_1111_mec_13520 crossref_primary_10_1111_evo_14617 crossref_primary_10_1111_eva_12776 crossref_primary_10_1111_acel_12283 crossref_primary_10_1007_s40471_015_0049_1 crossref_primary_10_1038_srep25536 crossref_primary_10_1093_nar_gkt1052 crossref_primary_10_1126_sciadv_aaz1138 crossref_primary_10_1002_ece3_6588 crossref_primary_10_1038_s41467_017_02809_1 crossref_primary_10_1086_726013 crossref_primary_10_1093_gbe_evu192 crossref_primary_10_1016_j_gde_2013_10_006 crossref_primary_10_1016_j_xhgg_2021_100083 crossref_primary_10_1093_nar_gky338 crossref_primary_10_1371_journal_pgen_1006382 crossref_primary_10_1038_srep12163 crossref_primary_10_1111_mec_14973 crossref_primary_10_1038_nrg3522 crossref_primary_10_7554_eLife_89594_3 crossref_primary_10_1186_s13059_019_1679_2 crossref_primary_10_1111_evo_13126 crossref_primary_10_1093_icesjms_fsx160 crossref_primary_10_1093_molbev_msx231 crossref_primary_10_1155_2014_203435 crossref_primary_10_1371_journal_pgen_1003813 crossref_primary_10_1016_j_gde_2016_08_006 crossref_primary_10_3390_genes9070358 crossref_primary_10_7554_eLife_63713 crossref_primary_10_1371_journal_pone_0239558 crossref_primary_10_1016_j_cell_2018_08_057 crossref_primary_10_1002_ece3_7966 crossref_primary_10_1007_s00251_017_1017_3 crossref_primary_10_1186_1472_6785_14_23 crossref_primary_10_1002_ece3_9590 crossref_primary_10_1016_j_envint_2015_09_012 crossref_primary_10_1111_eva_12514 crossref_primary_10_1186_1471_2164_15_1047 crossref_primary_10_1073_pnas_1318948111 crossref_primary_10_1111_mec_14712 crossref_primary_10_1186_s12863_015_0239_3 crossref_primary_10_1093_molbev_msae034 crossref_primary_10_1534_g3_115_026773 crossref_primary_10_3390_genes14010014 crossref_primary_10_1038_s41598_022_27137_3 crossref_primary_10_1073_pnas_2213896120 crossref_primary_10_1007_s12064_023_00387_z crossref_primary_10_1093_molbev_msab208 crossref_primary_10_1101_gr_198135_115 crossref_primary_10_1093_g3journal_jkab062 crossref_primary_10_1093_molbev_msv038 crossref_primary_10_1093_gbe_evt124 crossref_primary_10_1111_evo_13385 crossref_primary_10_1093_genetics_iyad034 crossref_primary_10_1186_s13059_023_02846_8 crossref_primary_10_1534_g3_117_1133 crossref_primary_10_1073_pnas_2313440121 crossref_primary_10_1093_molbev_mst134 crossref_primary_10_1093_molbev_msz234 crossref_primary_10_7554_eLife_89594 |
Cites_doi | 10.1101/gr.087577.108 10.1016/j.cub.2009.11.055 10.1038/ng.2205 10.1098/rstb.2010.0032 10.1038/ng.2007.16 10.1093/bioinformatics/btr678 10.1073/pnas.0914628107 10.1086/432519 10.1093/nar/gkg675 10.1073/pnas.1103922108 10.1371/journal.pgen.1002197 10.1371/journal.pgen.1002639 10.1101/gr.086652.108 10.1371/journal.pgen.0020142 10.1101/gr.083477.108 10.1371/journal.pgen.1002023 10.1371/journal.pgen.1000952 10.1111/j.1558-5646.2007.00105.x 10.1073/pnas.0912245107 10.1038/nature09906 10.1038/ng.473 10.1007/s00251-011-0576-y 10.1038/nature08903 10.1073/pnas.0700488104 10.1098/rstb.2011.0312 10.1111/j.1558-5646.2008.00450.x 10.1371/journal.pgen.1001078 10.1016/j.ajhg.2010.10.024 10.1371/journal.pgen.1002078 10.1038/nrg2630 10.1038/ng.2007.57 10.1002/bies.201000094 10.1126/science.1090005 10.1371/journal.pbio.0060107 10.1371/journal.pgen.1000592 10.1371/journal.pbio.0020141 10.1371/journal.pgen.1001375 10.1038/nature08872 10.1016/j.mehy.2006.04.057 10.1371/journal.pone.0010693 10.1371/journal.pgen.1002621 10.1101/gr.134080.111 |
ContentType | Journal Article |
Copyright | 2013 |
Copyright_xml | – notice: 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
DOI | 10.1101/gr.152710.112 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | Fraser |
EISSN | 1549-5469 |
EndPage | 1096 |
ExternalDocumentID | PMC3698502 23539138 10_1101_gr_152710_112 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM097171 – fundername: NIGMS NIH HHS grantid: 1R01GM097171-01A1 |
GroupedDBID | --- .GJ 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAFWJ AAYOK AAYXX AAZTW ABDIX ABDNZ ACGFO ACLKE ACYGS ADBBV ADNWM AEILP AENEX AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 R.V RCX RHI RNS RPM RXW SJN TAE TR2 VH1 W8F WOQ YKV ZCG ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c486t-18e93c797131d0af8dff40df0b6677286da15d19d19a67cfc2c0f9d3be69d5503 |
ISSN | 1088-9051 1549-5469 |
IngestDate | Thu Aug 21 14:00:00 EDT 2025 Fri Jul 11 03:18:41 EDT 2025 Fri Jul 11 05:59:49 EDT 2025 Thu Apr 03 06:57:10 EDT 2025 Thu Apr 24 22:53:22 EDT 2025 Tue Jul 01 02:20:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported), as described at http://creativecommons.org/licenses/by-nc/3.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c486t-18e93c797131d0af8dff40df0b6677286da15d19d19a67cfc2c0f9d3be69d5503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3698502 |
PMID | 23539138 |
PQID | 1381099070 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3698502 proquest_miscellaneous_1419369719 proquest_miscellaneous_1381099070 pubmed_primary_23539138 crossref_primary_10_1101_gr_152710_112 crossref_citationtrail_10_1101_gr_152710_112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-01 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genome research |
PublicationTitleAlternate | Genome Res |
PublicationYear | 2013 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021111811105505000_23.7.1089.31 2021111811105505000_23.7.1089.30 (2021111811105505000_23.7.1089.23) 2006; 49 2021111811105505000_23.7.1089.9 2021111811105505000_23.7.1089.29 2021111811105505000_23.7.1089.8 2021111811105505000_23.7.1089.28 2021111811105505000_23.7.1089.27 2021111811105505000_23.7.1089.6 2021111811105505000_23.7.1089.26 2021111811105505000_23.7.1089.5 2021111811105505000_23.7.1089.25 2021111811105505000_23.7.1089.4 (2021111811105505000_23.7.1089.7) 2007; 3 2021111811105505000_23.7.1089.24 (2021111811105505000_23.7.1089.33) 1962; 14 2021111811105505000_23.7.1089.46 2021111811105505000_23.7.1089.3 2021111811105505000_23.7.1089.45 2021111811105505000_23.7.1089.22 2021111811105505000_23.7.1089.44 2021111811105505000_23.7.1089.1 2021111811105505000_23.7.1089.21 2021111811105505000_23.7.1089.43 2021111811105505000_23.7.1089.20 2021111811105505000_23.7.1089.42 2021111811105505000_23.7.1089.41 2021111811105505000_23.7.1089.40 (2021111811105505000_23.7.1089.2) 1995; 55 2021111811105505000_23.7.1089.19 2021111811105505000_23.7.1089.18 2021111811105505000_23.7.1089.17 2021111811105505000_23.7.1089.39 2021111811105505000_23.7.1089.16 2021111811105505000_23.7.1089.38 2021111811105505000_23.7.1089.15 2021111811105505000_23.7.1089.37 2021111811105505000_23.7.1089.14 2021111811105505000_23.7.1089.36 2021111811105505000_23.7.1089.13 2021111811105505000_23.7.1089.35 2021111811105505000_23.7.1089.12 2021111811105505000_23.7.1089.34 2021111811105505000_23.7.1089.11 2021111811105505000_23.7.1089.10 2021111811105505000_23.7.1089.32 21533023 - PLoS Genet. 2011 Apr;7(4):e1001375 21441907 - Nature. 2011 May 5;473(7345):43-9 17982457 - Nat Genet. 2007 Dec;39(12):1494-9 19411596 - Genome Res. 2009 May;19(5):711-22 20220758 - Nature. 2010 Apr 1;464(7289):768-72 20502693 - PLoS One. 2010;5(5):e10693 17922574 - PLoS Genet. 2007 Oct;3(10):1827-37 21538412 - Bioessays. 2011 Jun;33(6):469-77 21829388 - PLoS Genet. 2011 Aug;7(8):e1002197 22106287 - Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19635-40 7664277 - Cancer Res. 1995 Sep 15;55(18):4041-6 1090005 - Science. 1975 Apr 11;188(4184):107-16 19189928 - Genome Res. 2009 Apr;19(4):567-75 20445093 - Proc Natl Acad Sci U S A. 2010 May 11;107 Suppl 2:8962-8 21483757 - PLoS Genet. 2011 Mar;7(3):e1002023 22312050 - Philos Trans R Soc Lond B Biol Sci. 2012 Mar 19;367(1590):830-9 16965180 - PLoS Genet. 2006 Sep 8;2(9):e142 18462017 - PLoS Biol. 2008 May 6;6(5):e107 22171328 - Bioinformatics. 2012 Feb 1;28(3):451-2 18193047 - Nat Genet. 2008 Feb;40(2):225-31 20220756 - Nature. 2010 Apr 1;464(7289):773-7 19307593 - Genome Res. 2009 May;19(5):826-37 21129726 - Am J Hum Genet. 2010 Dec 10;87(6):779-89 21947542 - Immunogenetics. 2012 Mar;64(3):165-75 20133628 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2977-82 12907719 - Nucleic Acids Res. 2003 Aug 15;31(16):4779-90 18616572 - Evolution. 2008 Sep;62(9):2155-77 20485568 - PLoS Genet. 2010 May;6(5):e1000952 22446964 - Nat Genet. 2012 May;44(5):502-10 20178769 - Curr Biol. 2010 Feb 23;20(4):R208-15 19636342 - Nat Rev Genet. 2009 Sep;10(9):595-604 22645260 - Genome Res. 2012 Oct;22(10):1930-9 15208708 - PLoS Biol. 2004 Jun;2(6):e141 16001361 - Am J Hum Genet. 2005 Aug;77(2):171-92 17494759 - Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8605-12 20643735 - Philos Trans R Soc Lond B Biol Sci. 2010 Aug 27;365(1552):2459-68 22511877 - PLoS Genet. 2012;8(4):e1002621 19662163 - PLoS Genet. 2009 Aug;5(8):e1000592 22532805 - PLoS Genet. 2012;8(4):e1002639 17492956 - Evolution. 2007 May;61(5):995-1016 17103426 - Am J Phys Anthropol. 2006;Suppl 43:89-130 19838192 - Nat Genet. 2009 Nov;41(11):1216-22 13937884 - Am J Hum Genet. 1962 Dec;14:353-62 16797871 - Med Hypotheses. 2006;67(5):1034-41 21637794 - PLoS Genet. 2011 May;7(5):e1002078 20865176 - PLoS Genet. 2010 Aug;6(8). pii: e1001078. doi: 10.1371/journal.pgen.1001078 |
References_xml | – ident: 2021111811105505000_23.7.1089.34 doi: 10.1101/gr.087577.108 – ident: 2021111811105505000_23.7.1089.36 doi: 10.1016/j.cub.2009.11.055 – ident: 2021111811105505000_23.7.1089.9 doi: 10.1038/ng.2205 – ident: 2021111811105505000_23.7.1089.21 doi: 10.1098/rstb.2010.0032 – ident: 2021111811105505000_23.7.1089.32 doi: 10.1038/ng.2007.16 – ident: 2021111811105505000_23.7.1089.45 doi: 10.1093/bioinformatics/btr678 – volume: 55 start-page: 4041 year: 1995 ident: 2021111811105505000_23.7.1089.2 article-title: Comparison of the responses of human melanocytes with different melanin contents to ultraviolet B irradiation publication-title: Cancer Res – ident: 2021111811105505000_23.7.1089.26 doi: 10.1073/pnas.0914628107 – ident: 2021111811105505000_23.7.1089.29 doi: 10.1086/432519 – ident: 2021111811105505000_23.7.1089.18 doi: 10.1093/nar/gkg675 – ident: 2021111811105505000_23.7.1089.30 doi: 10.1073/pnas.1103922108 – ident: 2021111811105505000_23.7.1089.10 doi: 10.1371/journal.pgen.1002197 – ident: 2021111811105505000_23.7.1089.42 doi: 10.1371/journal.pgen.1002639 – ident: 2021111811105505000_23.7.1089.1 doi: 10.1101/gr.086652.108 – ident: 2021111811105505000_23.7.1089.6 doi: 10.1371/journal.pgen.0020142 – ident: 2021111811105505000_23.7.1089.12 doi: 10.1101/gr.083477.108 – volume: 49 start-page: 89 year: 2006 ident: 2021111811105505000_23.7.1089.23 article-title: The molecular signature of selection underlying human adaptations publication-title: Am J Phys Anthropol – ident: 2021111811105505000_23.7.1089.14 doi: 10.1371/journal.pgen.1002023 – ident: 2021111811105505000_23.7.1089.19 doi: 10.1371/journal.pgen.1000952 – ident: 2021111811105505000_23.7.1089.24 doi: 10.1111/j.1558-5646.2007.00105.x – ident: 2021111811105505000_23.7.1089.13 doi: 10.1073/pnas.0912245107 – ident: 2021111811105505000_23.7.1089.8 doi: 10.1038/nature09906 – ident: 2021111811105505000_23.7.1089.17 doi: 10.1038/ng.473 – ident: 2021111811105505000_23.7.1089.38 doi: 10.1007/s00251-011-0576-y – ident: 2021111811105505000_23.7.1089.31 doi: 10.1038/nature08903 – volume: 14 start-page: 353 year: 1962 ident: 2021111811105505000_23.7.1089.33 article-title: Diabetes mellitus: A thrifty genotype rendered detrimental by progress publication-title: Am J Hum Genet – ident: 2021111811105505000_23.7.1089.37 doi: 10.1073/pnas.0700488104 – ident: 2021111811105505000_23.7.1089.39 doi: 10.1098/rstb.2011.0312 – ident: 2021111811105505000_23.7.1089.41 doi: 10.1111/j.1558-5646.2008.00450.x – ident: 2021111811105505000_23.7.1089.44 doi: 10.1371/journal.pgen.1001078 – ident: 2021111811105505000_23.7.1089.5 doi: 10.1016/j.ajhg.2010.10.024 – ident: 2021111811105505000_23.7.1089.25 doi: 10.1371/journal.pgen.1002078 – volume: 3 start-page: e1827 year: 2007 ident: 2021111811105505000_23.7.1089.7 article-title: Power to detect risk alleles using genome-wide tag SNP panels publication-title: PLoS Genet – ident: 2021111811105505000_23.7.1089.4 doi: 10.1038/nrg2630 – ident: 2021111811105505000_23.7.1089.28 doi: 10.1038/ng.2007.57 – ident: 2021111811105505000_23.7.1089.11 doi: 10.1002/bies.201000094 – ident: 2021111811105505000_23.7.1089.27 doi: 10.1126/science.1090005 – ident: 2021111811105505000_23.7.1089.40 doi: 10.1371/journal.pbio.0060107 – ident: 2021111811105505000_23.7.1089.43 doi: 10.1371/journal.pgen.1000592 – ident: 2021111811105505000_23.7.1089.20 doi: 10.1371/journal.pbio.0020141 – ident: 2021111811105505000_23.7.1089.22 doi: 10.1371/journal.pgen.1001375 – ident: 2021111811105505000_23.7.1089.35 doi: 10.1038/nature08872 – ident: 2021111811105505000_23.7.1089.16 doi: 10.1016/j.mehy.2006.04.057 – ident: 2021111811105505000_23.7.1089.46 doi: 10.1371/journal.pone.0010693 – ident: 2021111811105505000_23.7.1089.3 doi: 10.1371/journal.pgen.1002621 – ident: 2021111811105505000_23.7.1089.15 doi: 10.1101/gr.134080.111 – reference: 21829388 - PLoS Genet. 2011 Aug;7(8):e1002197 – reference: 1090005 - Science. 1975 Apr 11;188(4184):107-16 – reference: 19307593 - Genome Res. 2009 May;19(5):826-37 – reference: 19411596 - Genome Res. 2009 May;19(5):711-22 – reference: 21483757 - PLoS Genet. 2011 Mar;7(3):e1002023 – reference: 22312050 - Philos Trans R Soc Lond B Biol Sci. 2012 Mar 19;367(1590):830-9 – reference: 12907719 - Nucleic Acids Res. 2003 Aug 15;31(16):4779-90 – reference: 16797871 - Med Hypotheses. 2006;67(5):1034-41 – reference: 20865176 - PLoS Genet. 2010 Aug;6(8). pii: e1001078. doi: 10.1371/journal.pgen.1001078 – reference: 19838192 - Nat Genet. 2009 Nov;41(11):1216-22 – reference: 21637794 - PLoS Genet. 2011 May;7(5):e1002078 – reference: 19189928 - Genome Res. 2009 Apr;19(4):567-75 – reference: 22645260 - Genome Res. 2012 Oct;22(10):1930-9 – reference: 7664277 - Cancer Res. 1995 Sep 15;55(18):4041-6 – reference: 20445093 - Proc Natl Acad Sci U S A. 2010 May 11;107 Suppl 2:8962-8 – reference: 22511877 - PLoS Genet. 2012;8(4):e1002621 – reference: 21441907 - Nature. 2011 May 5;473(7345):43-9 – reference: 20178769 - Curr Biol. 2010 Feb 23;20(4):R208-15 – reference: 20133628 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2977-82 – reference: 17494759 - Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8605-12 – reference: 21129726 - Am J Hum Genet. 2010 Dec 10;87(6):779-89 – reference: 22532805 - PLoS Genet. 2012;8(4):e1002639 – reference: 17492956 - Evolution. 2007 May;61(5):995-1016 – reference: 15208708 - PLoS Biol. 2004 Jun;2(6):e141 – reference: 18616572 - Evolution. 2008 Sep;62(9):2155-77 – reference: 20220756 - Nature. 2010 Apr 1;464(7289):773-7 – reference: 17982457 - Nat Genet. 2007 Dec;39(12):1494-9 – reference: 13937884 - Am J Hum Genet. 1962 Dec;14:353-62 – reference: 22171328 - Bioinformatics. 2012 Feb 1;28(3):451-2 – reference: 17103426 - Am J Phys Anthropol. 2006;Suppl 43:89-130 – reference: 18193047 - Nat Genet. 2008 Feb;40(2):225-31 – reference: 20643735 - Philos Trans R Soc Lond B Biol Sci. 2010 Aug 27;365(1552):2459-68 – reference: 19662163 - PLoS Genet. 2009 Aug;5(8):e1000592 – reference: 22106287 - Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19635-40 – reference: 22446964 - Nat Genet. 2012 May;44(5):502-10 – reference: 21947542 - Immunogenetics. 2012 Mar;64(3):165-75 – reference: 17922574 - PLoS Genet. 2007 Oct;3(10):1827-37 – reference: 18462017 - PLoS Biol. 2008 May 6;6(5):e107 – reference: 21538412 - Bioessays. 2011 Jun;33(6):469-77 – reference: 21533023 - PLoS Genet. 2011 Apr;7(4):e1001375 – reference: 20485568 - PLoS Genet. 2010 May;6(5):e1000952 – reference: 16001361 - Am J Hum Genet. 2005 Aug;77(2):171-92 – reference: 16965180 - PLoS Genet. 2006 Sep 8;2(9):e142 – reference: 19636342 - Nat Rev Genet. 2009 Sep;10(9):595-604 – reference: 20220758 - Nature. 2010 Apr 1;464(7289):768-72 – reference: 20502693 - PLoS One. 2010;5(5):e10693 |
SSID | ssj0003488 |
Score | 2.4994028 |
Snippet | The molecular basis of adaptation—and, in particular, the relative roles of protein-coding versus gene expression changes—has long been the subject of... The molecular basis of adaptation--and, in particular, the relative roles of protein-coding versus gene expression changes--has long been the subject of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1089 |
SubjectTerms | Adaptation, Biological - genetics Cell Line DNA Damage Gene Expression Gene Expression Regulation Humans Polymorphism, Single Nucleotide Regulatory Sequences, Nucleic Acid Selection, Genetic |
Title | Gene expression drives local adaptation in humans |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23539138 https://www.proquest.com/docview/1381099070 https://www.proquest.com/docview/1419369719 https://pubmed.ncbi.nlm.nih.gov/PMC3698502 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3va9QwGA46Ef0iuvnjnEoE2ZfZmbRp03zcxsahcyLcwX0raZLOA5cbt94H_ev3Jumv26ZMoZQ2TdOSp03eN8n7PAh9yEkZV4nUUR5rBg4KM1GuFI_AYzalYDpPjQtw_nqajafs8yyd9WINPrqkLvfU71vjSv4HVUgDXF2U7D8g2xUKCXAM-MIeEIb9nTB2nNGOoz-sZbW7eulJZH3_tCu1vGiWEs5t0OK7HJqicPPi3ImmDMazfBgI9GsexvHKegbF4cCAE2ng7cBA05YxEaUsKKHsmVvSmgYwBPw2QPNBa0ZJkPe52cx6ev-zpVNP4iEOqe9P2jn002_F8fTkpJgczSb30YMY7HgnMfHle0_nnjAvDNq9VUeCSj-tFb5uNNzwBK4vaB1YCJOn6Elj2uP9gNMzdM_YTbS1b2W9OP-Fd7BfbOtnMTbRw4P26NFhK7m3hagDFPeA4gAo9oDiHlA8tzgA-hxNj48mh-Oo0bSIFMuzOqK5EYnigtOEaiKrXFcVI7oiZZZBBeWZljTVVMAmM64qFStSCZ2UJhMavMnkBdqwC2teIZyVXBqTabAAK1aqWDr2RLDWiNaawp85Qh_bSitUQ_judEd-Ft7xI7Q4WxahjuE0HqGdLvtFYDr5U8b3LQIF1I-bYJLWLFaXBXV0cWDecPKXPIw6DUlOxQi9DKh1j4uTNBFQyAjxNTy7DI4Lff2Knf_wnOhQZJ6S-PUd3m0bPe5_lzdoo16uzFuwLOvynf86rwBOhHm2 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+expression+drives+local+adaptation+in+humans&rft.jtitle=Genome+research&rft.au=Fraser%2C+Hunter+B&rft.date=2013-07-01&rft.issn=1549-5469&rft.eissn=1549-5469&rft.volume=23&rft.issue=7&rft.spage=1089&rft_id=info:doi/10.1101%2Fgr.152710.112&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon |