Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE‐MRI derived biomarkers in multicenter oncology trials

Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion‐weighted imaging and dynamic contrast‐enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the m...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 49; no. 7; pp. e101 - e121
Main Authors Shukla‐Dave, Amita, Obuchowski, Nancy A., Chenevert, Thomas L., Jambawalikar, Sachin, Schwartz, Lawrence H., Malyarenko, Dariya, Huang, Wei, Noworolski, Susan M., Young, Robert J., Shiroishi, Mark S., Kim, Harrison, Coolens, Catherine, Laue, Hendrik, Chung, Caroline, Rosen, Mark, Boss, Michael, Jackson, Edward F.
Format Journal Article
LanguageEnglish
Published United States 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion‐weighted imaging and dynamic contrast‐enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America's Quantitative Imaging Biomarkers Alliance (QIBA). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA's development of quantitative diffusion‐weighted imaging and dynamic contrast‐enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;49:e101–e121.
AbstractList Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America's Quantitative Imaging Biomarkers Alliance (QIBA). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA's development of quantitative diffusion-weighted imaging and dynamic contrast-enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;49:e101-e121.Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America's Quantitative Imaging Biomarkers Alliance (QIBA). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA's development of quantitative diffusion-weighted imaging and dynamic contrast-enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;49:e101-e121.
Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion‐weighted imaging and dynamic contrast‐enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America's Quantitative Imaging Biomarkers Alliance (QIBA). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA's development of quantitative diffusion‐weighted imaging and dynamic contrast‐enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;49:e101–e121.
Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America's Quantitative Imaging Biomarkers Alliance (QIBA). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA's development of quantitative diffusion-weighted imaging and dynamic contrast-enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;49:e101-e121.
Physiological properties of tumors can be measured both in vivo and non-invasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIB) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America’s Quantitative Imaging Biomarkers Alliance/(QIBA®). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA’s development of quantitative diffusion-weighted imaging and dynamic contrast-enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in magnetic resonance imaging technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability.
Author Shiroishi, Mark S.
Obuchowski, Nancy A.
Malyarenko, Dariya
Boss, Michael
Young, Robert J.
Coolens, Catherine
Shukla‐Dave, Amita
Chenevert, Thomas L.
Huang, Wei
Rosen, Mark
Jackson, Edward F.
Schwartz, Lawrence H.
Noworolski, Susan M.
Kim, Harrison
Laue, Hendrik
Chung, Caroline
Jambawalikar, Sachin
AuthorAffiliation 1 Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
11 Department of Fraunhofer MEVIS, Bremen, Germany
5 Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
9 Department of Radiology, University of Alabama at Birmingham, Birmingham AL, USA
6 Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
13 Department of Radiology, University of Pennsylvania, Philadelphia, USA
8 Division of Neuroradiology, Department of Radiology, University of Southern California, Los Angeles, CA, USA
10 Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Canada
12 Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
3 Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH, USA
2 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
4 Department of Radiology, University of Michigan, Ann Arbor, MI, USA
14 Ap
AuthorAffiliation_xml – name: 5 Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
– name: 15 Departments of Medical Physics, Radiology, and Human Oncology, University of Wisconsin School of Medicine, Madison, WI, USA
– name: 4 Department of Radiology, University of Michigan, Ann Arbor, MI, USA
– name: 11 Department of Fraunhofer MEVIS, Bremen, Germany
– name: 1 Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– name: 10 Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Canada
– name: 13 Department of Radiology, University of Pennsylvania, Philadelphia, USA
– name: 6 Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
– name: 3 Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH, USA
– name: 14 Applied Physics Division, National Institute of Standards and Technology, Boulder, CO, USA
– name: 12 Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
– name: 2 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– name: 7 Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
– name: 9 Department of Radiology, University of Alabama at Birmingham, Birmingham AL, USA
– name: 8 Division of Neuroradiology, Department of Radiology, University of Southern California, Los Angeles, CA, USA
Author_xml – sequence: 1
  givenname: Amita
  surname: Shukla‐Dave
  fullname: Shukla‐Dave, Amita
  email: davea@mskcc.org
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 2
  givenname: Nancy A.
  surname: Obuchowski
  fullname: Obuchowski, Nancy A.
  organization: Cleveland Clinic Foundation
– sequence: 3
  givenname: Thomas L.
  surname: Chenevert
  fullname: Chenevert, Thomas L.
  organization: University of Michigan
– sequence: 4
  givenname: Sachin
  surname: Jambawalikar
  fullname: Jambawalikar, Sachin
  organization: Columbia University Irving Medical Center
– sequence: 5
  givenname: Lawrence H.
  surname: Schwartz
  fullname: Schwartz, Lawrence H.
  organization: Columbia University Irving Medical Center
– sequence: 6
  givenname: Dariya
  surname: Malyarenko
  fullname: Malyarenko, Dariya
  organization: University of Michigan
– sequence: 7
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
  organization: Oregon Health & Science University
– sequence: 8
  givenname: Susan M.
  surname: Noworolski
  fullname: Noworolski, Susan M.
  organization: University of California
– sequence: 9
  givenname: Robert J.
  surname: Young
  fullname: Young, Robert J.
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 10
  givenname: Mark S.
  surname: Shiroishi
  fullname: Shiroishi, Mark S.
  organization: University of Southern California
– sequence: 11
  givenname: Harrison
  surname: Kim
  fullname: Kim, Harrison
  organization: University of Alabama at Birmingham
– sequence: 12
  givenname: Catherine
  surname: Coolens
  fullname: Coolens, Catherine
  organization: Princess Margaret Cancer Centre
– sequence: 13
  givenname: Hendrik
  surname: Laue
  fullname: Laue, Hendrik
  organization: Department of Fraunhofer MEVIS
– sequence: 14
  givenname: Caroline
  surname: Chung
  fullname: Chung, Caroline
  organization: MD Anderson Cancer Center
– sequence: 15
  givenname: Mark
  surname: Rosen
  fullname: Rosen, Mark
  organization: University of Pennsylvania
– sequence: 16
  givenname: Michael
  surname: Boss
  fullname: Boss, Michael
  organization: Applied Physics Division, National Institute of Standards and Technology
– sequence: 17
  givenname: Edward F.
  surname: Jackson
  fullname: Jackson, Edward F.
  organization: University of Wisconsin School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30451345$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1uFDEQhS0URH5gwwGQlwGpg3973BukMAkwKAgFgVhabrc9OLjtwe6eaHY5AhfgcpwEdyZBASFWZbm-96pUbx_shBgMAI8xOsIIkecXfXJHpOZY3AN7mBNSES7qnfJGnFZYoNku2M_5AiHUNIw_ALsUMY4p43vgx_mowuAGNbi1ga5XSxeWsHWxV-mrSRkq750K2sDD88XL46cwGR373oSuKGLI0MZUZKsU16aDq9J1ufzDaOHJ5wVUoYMn89OfV9_ffVjAziQ3YXfsXYD96AenTRhMgjHo6ONyA4fklM8PwX1binl0Uw_Ap1enH-dvqrP3rxfz47NKM1GLymo7Q7QlFjcdYbpjipNGCCs4ayxqOcG8bblAVCilW43rWWfrcg0rNDeMNfQAvNj6rsa2N920TFJerlI5SNrIqJz8sxPcF7mMa1lzUqOZKAaHNwYpfhtNHmTvsjbeq2DimCXBlNeUUz6hT-7O-j3kNpMCoC2gU8w5GSv1dT5xGu28xEhOscspdnkde5E8-0ty6_pPGG_hS-fN5j-kfFtC22p-AfGbwmI
CitedBy_id crossref_primary_10_1016_j_ejmp_2021_07_025
crossref_primary_10_3389_fonc_2022_844790
crossref_primary_10_1038_s41598_020_77740_5
crossref_primary_10_3389_fonc_2022_867792
crossref_primary_10_1002_jmri_27994
crossref_primary_10_1007_s00256_021_03903_8
crossref_primary_10_1007_s12194_022_00677_z
crossref_primary_10_1016_j_diii_2019_06_012
crossref_primary_10_1088_2516_1091_acd28b
crossref_primary_10_1259_bjr_20190513
crossref_primary_10_1007_s10334_019_00790_y
crossref_primary_10_1016_j_ejrad_2023_110782
crossref_primary_10_1016_j_clineuro_2022_107553
crossref_primary_10_1016_j_mri_2020_01_010
crossref_primary_10_1200_EDBK_320593
crossref_primary_10_2214_AJR_24_31715
crossref_primary_10_1111_1754_9485_13626
crossref_primary_10_1186_s13244_023_01391_z
crossref_primary_10_1002_mrm_28628
crossref_primary_10_1007_s40846_020_00582_z
crossref_primary_10_3389_fonc_2022_958219
crossref_primary_10_1002_acm2_13424
crossref_primary_10_1016_j_phro_2023_100458
crossref_primary_10_3389_fonc_2020_615643
crossref_primary_10_1007_s10334_022_01053_z
crossref_primary_10_1016_j_acra_2024_03_029
crossref_primary_10_2169_internalmedicine_3855_19
crossref_primary_10_1002_mrm_29826
crossref_primary_10_1007_s11547_020_01220_z
crossref_primary_10_3389_fonc_2021_705964
crossref_primary_10_1038_s41598_019_54438_x
crossref_primary_10_1016_j_ejmp_2021_03_027
crossref_primary_10_1186_s41747_024_00429_1
crossref_primary_10_1186_s40644_023_00603_5
crossref_primary_10_1016_j_semradonc_2023_10_015
crossref_primary_10_1002_jmri_27895
crossref_primary_10_1016_j_semradonc_2023_10_010
crossref_primary_10_1148_rycan_220167
crossref_primary_10_1016_j_mri_2023_02_002
crossref_primary_10_1002_acm2_13432
crossref_primary_10_1177_10732748241298539
crossref_primary_10_1002_jmri_28869
crossref_primary_10_1002_mp_15645
crossref_primary_10_1016_j_ejrad_2023_110764
crossref_primary_10_3389_fmed_2024_1347267
crossref_primary_10_1016_j_radonc_2023_110046
crossref_primary_10_1002_jmri_27646
crossref_primary_10_1016_j_semradonc_2023_10_003
crossref_primary_10_1016_j_radonc_2020_09_013
crossref_primary_10_1002_nbm_5198
crossref_primary_10_1016_j_acra_2022_10_001
crossref_primary_10_1002_jmri_28052
crossref_primary_10_3174_ng_2100041
crossref_primary_10_1007_s10334_024_01160_z
crossref_primary_10_3389_fonc_2022_1037896
crossref_primary_10_1002_jmri_27882
crossref_primary_10_1038_s41596_021_00617_y
crossref_primary_10_1016_j_ejrad_2023_111066
crossref_primary_10_1016_j_mri_2020_12_018
crossref_primary_10_1002_jmri_28529
crossref_primary_10_1088_1361_6560_ab3a5a
crossref_primary_10_1002_jmri_26908
crossref_primary_10_1007_s12553_020_00452_3
crossref_primary_10_1259_bjro_20210083
crossref_primary_10_3389_fonc_2021_616027
crossref_primary_10_1016_j_ejmp_2020_10_007
crossref_primary_10_1038_s42256_021_00377_0
crossref_primary_10_1055_s_0040_1708823
crossref_primary_10_1016_j_ejmp_2022_10_009
crossref_primary_10_1002_mrm_29075
crossref_primary_10_1016_j_clon_2022_05_005
crossref_primary_10_1002_mrm_29511
crossref_primary_10_1093_noajnl_vdab174
crossref_primary_10_1038_s41582_021_00510_y
crossref_primary_10_2967_jnumed_122_265149
crossref_primary_10_3389_fonc_2023_1079040
crossref_primary_10_1016_j_diii_2022_06_001
crossref_primary_10_1002_jmri_27545
crossref_primary_10_1002_mp_15130
crossref_primary_10_1186_s13244_021_01123_1
crossref_primary_10_1186_s13244_022_01253_0
crossref_primary_10_3389_fonc_2024_1395502
crossref_primary_10_1016_j_ejmp_2022_08_015
crossref_primary_10_1016_j_fpurol_2022_06_002
crossref_primary_10_1097_CCO_0000000000000896
crossref_primary_10_1186_s13014_024_02424_7
crossref_primary_10_1016_j_radi_2024_11_009
crossref_primary_10_1038_s41598_021_97966_1
crossref_primary_10_1016_j_semradonc_2022_06_007
crossref_primary_10_1016_j_euo_2024_03_003
crossref_primary_10_1177_02841851231216555
crossref_primary_10_1007_s00117_021_00868_6
crossref_primary_10_3389_fradi_2023_1267615
crossref_primary_10_2967_jnumed_120_256602
crossref_primary_10_1016_j_diii_2023_04_006
crossref_primary_10_3390_tomography9020060
crossref_primary_10_1038_s41598_023_29991_1
crossref_primary_10_1002_cam4_5236
crossref_primary_10_1186_s13550_020_00671_9
crossref_primary_10_1259_bjr_20190580
crossref_primary_10_1016_S2589_7500_24_00069_4
crossref_primary_10_1002_jmri_28662
crossref_primary_10_1016_j_acra_2021_06_009
crossref_primary_10_1088_1361_6560_acbcbb
crossref_primary_10_1002_mrm_29084
crossref_primary_10_1186_s40644_021_00436_0
crossref_primary_10_1186_s13014_020_01524_4
crossref_primary_10_1038_s41598_024_78246_0
crossref_primary_10_1007_s10334_021_00985_2
crossref_primary_10_1016_j_ejmp_2022_10_013
crossref_primary_10_1016_j_mri_2021_04_005
crossref_primary_10_1016_j_ejrad_2021_109952
crossref_primary_10_3389_fonc_2021_800547
crossref_primary_10_1016_j_mri_2023_03_016
crossref_primary_10_3389_fonc_2021_656918
crossref_primary_10_1148_radiol_2020192013
crossref_primary_10_3390_tomography9010030
crossref_primary_10_1016_j_mri_2022_01_001
crossref_primary_10_1007_s10334_025_01238_2
crossref_primary_10_1055_a_2157_6670
crossref_primary_10_1111_jon_12959
crossref_primary_10_3389_fphy_2022_891600
crossref_primary_10_1016_j_euros_2022_11_009
crossref_primary_10_3348_kjr_2019_0354
crossref_primary_10_1371_journal_pone_0234520
crossref_primary_10_1088_1361_6560_aca069
crossref_primary_10_1016_j_ejrad_2023_110942
crossref_primary_10_1097_MNM_0000000000001083
crossref_primary_10_2463_jjmrm_2020_1727
crossref_primary_10_3389_fonc_2022_897130
crossref_primary_10_1002_jum_16524
crossref_primary_10_1007_s10334_023_01113_y
crossref_primary_10_1038_s43018_023_00619_7
crossref_primary_10_1016_j_radonc_2023_109803
crossref_primary_10_1186_s12880_024_01368_4
crossref_primary_10_1016_j_mri_2024_03_020
crossref_primary_10_1002_mrm_29420
crossref_primary_10_1259_bjr_20190105
crossref_primary_10_3390_tomography9020048
crossref_primary_10_1016_j_phro_2025_100720
crossref_primary_10_1186_s12885_024_12934_y
crossref_primary_10_1007_s00330_023_10234_w
crossref_primary_10_1007_s11307_024_01966_2
crossref_primary_10_1002_jmri_28431
crossref_primary_10_1016_j_nic_2020_04_002
crossref_primary_10_1007_s10334_025_01231_9
crossref_primary_10_1148_radiol_233055
crossref_primary_10_1002_acm2_12982
crossref_primary_10_1088_2057_1976_ad9156
crossref_primary_10_23736_S1824_4785_19_03217_5
crossref_primary_10_1016_j_mri_2024_110316
crossref_primary_10_1186_s13244_024_01884_5
crossref_primary_10_1002_mrm_29450
crossref_primary_10_1186_s13244_019_0703_0
crossref_primary_10_1186_s13244_019_0764_0
crossref_primary_10_1016_j_acra_2022_09_017
crossref_primary_10_1016_j_mri_2019_07_011
crossref_primary_10_1148_radiol_232313
crossref_primary_10_1016_j_mric_2023_09_001
crossref_primary_10_1093_noajnl_vdad092
crossref_primary_10_1016_j_mric_2023_09_003
crossref_primary_10_3389_fonc_2024_1433197
crossref_primary_10_1259_bjr_20220624
crossref_primary_10_1111_1754_9485_13242
crossref_primary_10_3390_cancers15174219
crossref_primary_10_1016_j_phro_2024_100570
crossref_primary_10_1148_radiol_2021203628
crossref_primary_10_1259_bjr_20230378
crossref_primary_10_1038_s41598_024_62470_9
crossref_primary_10_3389_fonc_2024_1380793
crossref_primary_10_1007_s00330_023_10198_x
crossref_primary_10_1016_j_hoc_2019_09_010
crossref_primary_10_1016_j_radonc_2023_109717
crossref_primary_10_1117_1_JMI_11_2_024002
crossref_primary_10_1016_j_radonc_2021_09_020
crossref_primary_10_1002_mrm_30344
crossref_primary_10_1177_09622802241227959
crossref_primary_10_1016_j_ejca_2021_04_041
crossref_primary_10_1259_bjr_20191004
crossref_primary_10_1200_EDBK_320951
crossref_primary_10_2214_AJR_23_30612
crossref_primary_10_1016_j_ejmp_2022_06_018
crossref_primary_10_1002_jmri_28486
crossref_primary_10_1186_s40364_023_00476_7
crossref_primary_10_1016_j_ejmp_2021_04_020
crossref_primary_10_1148_rycan_2020190094
crossref_primary_10_3390_cancers15112992
crossref_primary_10_1016_j_ejmp_2021_09_001
crossref_primary_10_1002_jmri_27148
crossref_primary_10_1007_s10334_025_01244_4
crossref_primary_10_1002_mrm_30213
crossref_primary_10_1007_s11547_024_01921_9
crossref_primary_10_3390_cancers15112995
crossref_primary_10_3390_cancers15153757
crossref_primary_10_1007_s11060_021_03933_1
crossref_primary_10_1007_s00330_024_10720_9
crossref_primary_10_1002_mrm_29909
crossref_primary_10_1016_j_media_2021_102186
crossref_primary_10_1016_j_mri_2024_02_008
crossref_primary_10_1093_bjr_tqae005
crossref_primary_10_1016_j_esmorw_2025_100120
crossref_primary_10_1055_a_1718_4128
crossref_primary_10_1186_s40644_022_00508_9
crossref_primary_10_1002_mp_17067
crossref_primary_10_1016_j_phro_2024_100548
crossref_primary_10_1007_s00330_022_09088_5
crossref_primary_10_1016_j_radonc_2020_09_046
crossref_primary_10_1158_0008_5472_CAN_22_1329
crossref_primary_10_1002_mp_17739
crossref_primary_10_1016_j_ejrad_2024_111730
crossref_primary_10_3389_fonc_2019_01264
crossref_primary_10_1055_a_1079_3855
crossref_primary_10_1016_j_radonc_2022_07_020
crossref_primary_10_1002_mp_15556
crossref_primary_10_1016_j_phro_2024_100653
crossref_primary_10_1148_radiol_2019190545
crossref_primary_10_3389_fonc_2022_1020907
crossref_primary_10_17816_DD60393
crossref_primary_10_1136_bmjopen_2021_051274
Cites_doi 10.1016/j.mri.2012.04.009
10.2214/AJR.11.6861
10.1002/jmri.22215
10.1016/j.acra.2014.10.006
10.1016/j.mri.2011.07.024
10.3174/ajnr.A5023
10.1593/tlo.13877
10.1016/j.ijrobp.2010.11.022
10.1148/radiol.11091409
10.1007/s11604-015-0503-5
10.1102/1470-7330.2013.0019
10.1148/radiol.2015150013
10.1002/mrm.22171
10.1007/s00261-016-0646-6
10.1002/jmri.24661
10.4329/wjr.v9.i12.416
10.1259/bjr.20160715
10.1002/mrm.23211
10.1038/nature11971
10.1259/bjr.20160768
10.1148/radiol.2381042117
10.1007/s00330-012-2654-4
10.1002/mrm.24782
10.1016/j.mric.2010.07.002
10.1039/b005319h
10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
10.1097/RMR.0000000000000103
10.1007/s00330-012-2446-x
10.1148/radiol.09090021
10.1593/tlo.13838
10.1002/mrm.25323
10.1002/jmri.22726
10.1038/sj.bjc.6602550
10.1148/radiol.13130420
10.1007/s00261-015-0590-x
10.1155/2011/732848
10.1002/jmri.23636
10.1016/j.mric.2015.08.011
10.1002/mrm.10014
10.1002/(SICI)1522-2586(199912)10:6<903::AID-JMRI1>3.0.CO;2-A
10.1002/mrm.26405
10.1002/mrm.25639
10.1158/1078-0432.CCR-08-1287
10.1148/radiology.171.3.2717764
10.1016/j.mric.2016.07.004
10.1097/RMR.0000000000000027
10.1177/0962280214537333
10.1002/jmri.21393
10.1002/jmri.24883
10.1002/jmri.21732
10.1016/j.ijrobp.2011.02.044
10.1016/S0730-725X(98)00130-1
10.1148/radiol.12112374
10.1088/0031-9155/56/17/018
10.1002/jmri.22363
10.1093/jnci/92.24.2029
10.1002/mrm.21608
10.1118/1.3615058
10.1007/s10585-016-9778-x
10.1088/0031-9155/55/1/008
10.1016/j.acra.2015.12.020
10.1259/bjr.20170577
10.1002/jmri.10377
10.1002/mrm.22333
10.1016/j.neuroimage.2006.09.020
10.1016/j.eururo.2015.08.052
10.1016/j.acra.2016.09.025
10.1148/radiol.2502080849
10.1002/mrm.22423
10.1002/mrm.22596
10.2214/AJR.12.8510
10.1148/radiol.2016152037
10.1002/jmri.24486
10.1016/j.ejrad.2010.03.016
10.1016/j.mri.2006.09.006
10.1007/s11523-010-0135-8
10.1016/j.neuroimage.2013.01.038
10.1002/jmri.20529
10.1016/j.ijrobp.2006.09.020
10.1259/bjr/32269440
10.1002/mrm.21066
10.1259/bjr/70653746
10.1097/RLI.0000000000000329
10.1002/jmri.22167
10.1148/radiol.11102413
10.1158/1078-0432.CCR-14-0044
10.1038/nrclinonc.2016.108
10.2214/AJR.07.3657
10.1177/0962280214537394
10.1148/radiol.13130973
10.1002/jmri.23825
10.1056/NEJMoa065447
10.1002/jmri.24271
10.1148/radiol.2017170550
10.1002/jmri.24359
10.1002/jmri.25479
10.1002/mrm.22357
10.1038/nrclinonc.2016.162
10.1016/j.mri.2014.08.040
10.1002/nbm.2934
10.1177/0962280214537344
10.1593/neo.81328
10.3174/ajnr.A5025
10.1016/j.mri.2007.03.030
10.1593/tlo.13748
10.18383/j.tom.2016.00229
10.1002/jmri.21513
10.1002/0470869526
10.2214/AJR.09.3116
10.1016/j.acra.2014.04.013
10.1016/j.nic.2009.08.009
10.1002/jmri.22179
10.1002/jmri.25196
10.3174/ajnr.A1844
10.1016/j.neuroimage.2009.07.068
10.1016/j.mri.2015.10.025
10.1007/s00330-017-4828-6
10.1002/jmri.26011
10.1038/sdata.2014.37
10.1148/radiol.2015142202
10.1002/mrm.26903
10.1371/journal.pone.0115667
10.4329/wjr.v8.i1.21
10.1002/jmri.1880070113
10.1118/1.4948997
10.1002/jmri.23602
10.1002/jmri.25101
10.1148/radiol.12110748
10.1002/jmri.22838
10.1002/nbm.3458
10.1002/mp.12466
10.1016/j.tranon.2015.11.016
ContentType Journal Article
Copyright 2018 International Society for Magnetic Resonance in Medicine
2018 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2018 International Society for Magnetic Resonance in Medicine
– notice: 2018 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1002/jmri.26518
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage e121
ExternalDocumentID PMC6526078
30451345
10_1002_jmri_26518
JMRI26518
Genre reviewArticle
Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB
  funderid: HHSN268201000050C; HHSN268201300071C; HHSN268201500021C
– fundername: National Institutes of Health (NIH)
  funderid: U01 CA211205; U01 CA166104; P01 CA085878; R01 CA190299; U01 CA154602
– fundername: SC CTSI (NIH/NCRR/NCATS)
  funderid: KL2TR000131; NIH 1 L30; CA209248‐01; NIH P30CA013148; R01 CA148708
– fundername: Oregon Health & Science University Circle of Giving Award
– fundername: NCI NIH HHS
  grantid: P30 CA006973
– fundername: NCI NIH HHS
  grantid: L30 CA209248
– fundername: NCI NIH HHS
  grantid: U01 CA154602
– fundername: NCI NIH HHS
  grantid: U01 CA166104
– fundername: NIBIB NIH HHS
  grantid: HHSN268201000050C
– fundername: NCI NIH HHS
  grantid: U01 CA140204
– fundername: NCI NIH HHS
  grantid: R01 CA190299
– fundername: NIBIB NIH HHS
  grantid: HHSN268201300071C
– fundername: NCI NIH HHS
  grantid: R01 CA148708
– fundername: NCATS NIH HHS
  grantid: KL2 TR000131
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7X8
5PM
ID FETCH-LOGICAL-c4868-fcf703b2f19d24cd4a52988f8549f0b5215bb58038aacbc167df6000f8c5e4493
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Thu Aug 21 18:17:46 EDT 2025
Fri Jul 11 16:02:18 EDT 2025
Mon Jul 21 06:03:05 EDT 2025
Tue Jul 01 03:56:41 EDT 2025
Thu Apr 24 23:06:35 EDT 2025
Wed Jan 22 16:42:52 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords MRI
DCE
DWI
quantitative imaging biomarkers
Language English
License 2018 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4868-fcf703b2f19d24cd4a52988f8549f0b5215bb58038aacbc167df6000f8c5e4493
Notes The first two authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.26518
PMID 30451345
PQID 2135635358
PQPubID 23479
PageCount 28
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6526078
proquest_miscellaneous_2135635358
pubmed_primary_30451345
crossref_citationtrail_10_1002_jmri_26518
crossref_primary_10_1002_jmri_26518
wiley_primary_10_1002_jmri_26518_JMRI26518
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2019
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2019
References 2008; 191
2018; 286
2010; 18
2015; 73
2014; 27
2000; 92
2011; 56
2014; 23
2014; 21
2016; 34
1997; 7
2016; 33
2011; 197
2014; 20
1998; 16
2009; 11
2018; 5
2006; 23
2008; 27
2008; 28
2016; 43
2016; 41
2011; 65
2010; 194
2016; 279
2009; 19
2010; 5
2012; 22
2007; 67
2009; 15
2016; 44
2011; 259
2010; 32
2010; 31
2006; 56
2008; 59
2014; 271
2012; 36
2012; 35
2014; 40
2006; 238
2016; 13
2012; 30
2017; 52
2010; 49
2012; 198
2016; 2
2013; 72
2018; 91
2005; 92
2014; 39
2011; 261
2016; 25
2016; 8
2016; 24
2016; 9
2016; 23
2010; 55
2013; 23
2017; 44
2015; 33
2017; 45
2016; 76
2016; 75
2000; 2
2003; 18
2007; 34
2010; 63
2017; 9
2014; 1
2002; 47
2017; 30
2010; 64
2013; 13
2017; 38
2015; 42
2015; 41
1999; 10
2014; 9
2012; 68
2014; 7
2011; 29
2007; 25
2018; 79
2012; 82
2010; 76
2012; 263
2012; 265
2017; 27
2017; 24
2009
2013; 268
2009; 250
2011; 34
2008; 11
2003
2011; 38
2003; 76
2009; 29
2015; 24
2007; 356
2011; 2011
2013; 37
2017; 90
2017; 14
2015; 277
2015; 22
1989; 171
2010; 254
2018
2017
2015
2013; 495
2013
2014; 71
2016; 69
2012; 85
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
Chen J (e_1_2_7_99_1) 2008; 11
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_142_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
D'Orsi CJ SE (e_1_2_7_105_1) 2013
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_135_1
e_1_2_7_139_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_117_1
Obuchowski NA (e_1_2_7_45_1) 2017
e_1_2_7_113_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_132_1
e_1_2_7_136_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
Boss MA (e_1_2_7_62_1) 2015
e_1_2_7_17_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
e_1_2_7_28_1
e_1_2_7_118_1
e_1_2_7_114_1
Newitt DC (e_1_2_7_51_1) 2018; 5
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_27_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_138_1
References_xml – volume: 10
  start-page: 903
  year: 1999
  end-page: 907
  article-title: MR imaging of tumor microcirculation: promise for the new millennium
  publication-title: J Magn Reson Imaging
– volume: 76
  start-page: 1668
  year: 2016
  end-page: 1676
  article-title: Reduced field‐of‐view DWI with robust fat suppression and unrestricted slice coverage using tilted 2D RF excitation
  publication-title: Magn Reson Med
– volume: 194
  start-page: W134
  year: 2010
  end-page: 140
  article-title: Reproducibility of perfusion parameters in dynamic contrast‐enhanced MRI of lung and liver tumors: effect on estimates of patient sample size in clinical trials and on individual patient responses
  publication-title: AJR Am J Roentgenol
– volume: 286
  start-page: 486
  year: 2018
  end-page: 498
  article-title: Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: A meta‐analysis
  publication-title: Radiology
– volume: 73
  start-page: 1988
  year: 2015
  end-page: 1998
  article-title: Evaluation of different mathematical models for diffusion‐weighted imaging of normal prostate and prostate cancer using high b‐values: a repeatability study
  publication-title: Magn Reson Med
– volume: 65
  start-page: 250
  year: 2011
  end-page: 260
  article-title: Dynamic contrast‐enhanced MRI of neuroendocrine hepatic metastases: A feasibility study using a dual‐input two‐compartment model
  publication-title: Magn Reson Med
– volume: 259
  start-page: 453
  year: 2011
  end-page: 461
  article-title: Relationship between apparent diffusion coefficients at 3.0‐T MR imaging and Gleason grade in peripheral zone prostate cancer
  publication-title: Radiology
– volume: 47
  start-page: 42
  year: 2002
  end-page: 52
  article-title: Multishot diffusion‐weighted FSE using PROPELLER MRI
  publication-title: Magn Reson Med
– volume: 15
  start-page: 986
  year: 2009
  end-page: 994
  article-title: Diffusion‐weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck
  publication-title: Clin Cancer Res
– volume: 23
  start-page: 243
  year: 2014
  end-page: 257
  article-title: Multiparametric magnetic resonance imaging of the prostate: technical aspects and role in clinical management
  publication-title: Top Magn Reson Imaging
– volume: 7
  start-page: 153
  year: 2014
  end-page: 166
  article-title: Variations of dynamic contrast‐enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge
  publication-title: Transl Oncol
– volume: 43
  start-page: 2998
  year: 2016
  end-page: 3007
  article-title: Development of a temperature‐controlled phantom for magnetic resonance quality assurance of diffusion, dynamic, and relaxometry measurements
  publication-title: Med Phys
– volume: 25
  start-page: 245
  year: 2016
  end-page: 254
  article-title: DCE‐MRI, DW‐MRI, and MRS in cancer: Challenges and advantages of implementing qualitative and quantitative multi‐parametric imaging in the clinic
  publication-title: Top Magn Reson Imaging
– volume: 38
  start-page: 485
  year: 2017
  end-page: 491
  article-title: Diagnostic accuracy of T1‐weighted dynamic contrast‐enhanced‐MRI and DWI‐ADC for differentiation of glioblastoma and primary CNS lymphoma
  publication-title: AJNR Am J Neuroradiol
– volume: 37
  start-page: 1238
  year: 2013
  end-page: 1246
  article-title: Multi‐system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice‐water phantom
  publication-title: J Magn Reson Imaging
– volume: 268
  start-page: 318
  year: 2013
  end-page: 322
  article-title: Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure
  publication-title: Radiology
– volume: 31
  start-page: 549
  year: 2010
  end-page: 553
  article-title: Candidate biomarkers of extravascular extracellular space: a direct comparison of apparent diffusion coefficient and dynamic contrast‐enhanced MR imaging—derived measurement of the volume of the extravascular extracellular space in glioblastoma multiforme
  publication-title: AJNR Am J Neuroradiol
– volume: 38
  start-page: 537
  year: 2017
  end-page: 545
  article-title: Toward precision and reproducibility of diffusion tensor imaging: a multicenter diffusion phantom and traveling volunteer study
  publication-title: AJNR Am J Neuroradiol
– volume: 56
  start-page: 5753
  year: 2011
  end-page: 5769
  article-title: A novel AIF tracking method and comparison of DCE‐MRI parameters using individual and population‐based AIFs in human breast cancer
  publication-title: Phys Med Biol
– volume: 41
  start-page: 854
  year: 2016
  end-page: 861
  article-title: The expanding landscape of diffusion‐weighted MRI in prostate cancer
  publication-title: Abdom Radiol
– volume: 41
  start-page: 1365
  year: 2015
  end-page: 1373
  article-title: Dynamic contrast‐enhanced MRI of the prostate with high spatiotemporal resolution using compressed sensing, parallel |imaging, and continuous golden‐angle radial sampling: preliminary experience
  publication-title: J Magn Reson Imaging
– volume: 24
  start-page: 27
  year: 2015
  end-page: 67
  article-title: Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment
  publication-title: Stat Methods Med Res
– volume: 7
  start-page: 94
  year: 2014
  end-page: 100
  article-title: Real‐time measurement of functional tumor volume by MRI to assess treatment response in breast cancer neoadjuvant clinical trials: Validation of the Aegis SER Software Platform
  publication-title: Transl Oncol
– volume: 279
  start-page: 278
  year: 2016
  end-page: 286
  article-title: MR fingerprinting for rapid quantitative abdominal imaging
  publication-title: Radiology
– volume: 27
  start-page: 4552
  year: 2017
  end-page: 4562
  article-title: Diffusion‐weighted (DW) MRI in lung cancers: ADC test–retest repeatability
  publication-title: Eur Radiol
– volume: 56
  start-page: 993
  year: 2006
  end-page: 1000
  article-title: Experimentally‐derived functional form for a population‐averaged high‐temporal‐resolution arterial input function for dynamic contrast‐enhanced MRI
  publication-title: Magn Reson Med
– volume: 39
  start-page: 1213
  year: 2014
  end-page: 1222
  article-title: Optimization of b‐value distribution for biexponential diffusion‐weighted MR imaging of normal prostate
  publication-title: J Magn Reson Imaging
– volume: 24
  start-page: 232
  year: 2017
  end-page: 245
  article-title: Performance observations of scanner qualification of NCI‐designated cancer centers: results from the Centers of Quantitative Imaging Excellence (CQIE) Program
  publication-title: Acad Radiol
– volume: 38
  start-page: 4866
  year: 2011
  end-page: 4880
  article-title: Development of a dynamic flow imaging phantom for dynamic contrast‐enhanced CT
  publication-title: Med Phys
– volume: 35
  start-page: 1484
  year: 2012
  end-page: 1492
  article-title: DIfferential Subsampling with Cartesian Ordering (DISCO): a high spatio‐temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging
  publication-title: J Magn Reson Imaging
– volume: 91
  start-page: 20170577
  year: 2018
  article-title: UK quantitative WB‐DWI technical workgroup: consensus meeting recommendations on optimisation, quality |control, processing and analysis of quantitative whole‐body diffusion‐weighted imaging for cancer
  publication-title: Br J Radiol
– volume: 5
  start-page: 39
  year: 2010
  end-page: 52
  article-title: Diffusion‐weighted (DW) and dynamic contrast‐enhanced (DCE) magnetic resonance imaging (MRI) for monitoring anticancer therapy
  publication-title: Target Oncol
– volume: 13
  start-page: 725
  year: 2016
  end-page: 739
  article-title: Non‐invasive metabolic imaging of brain tumours in the era of precision medicine
  publication-title: Nat Rev Clin Oncol
– volume: 16
  start-page: 1057
  year: 1998
  end-page: 1073
  article-title: Temporal sampling requirements for the tracer kinetics modeling of breast disease
  publication-title: Magn Reson Imaging
– volume: 64
  start-page: 725
  year: 2010
  end-page: 733
  article-title: T1 corrected B1 mapping using multi‐TR gradient echo sequences
  publication-title: Magn Reson Med
– year: 2017
  article-title: Quantitative imaging biomarkers: Effect of sample size and bias on confidence interval coverage
  publication-title: Stat Methods Med Res
– volume: 356
  start-page: 1295
  year: 2007
  end-page: 1303
  article-title: MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer
  publication-title: N Engl J Med
– volume: 92
  start-page: 1599
  year: 2005
  end-page: 1610
  article-title: The assessment of antiangiogenic and antivascular therapies in early‐stage clinical trials using magnetic resonance imaging: issues and recommendations
  publication-title: Br J Cancer
– volume: 29
  start-page: 1199
  year: 2009
  end-page: 1205
  article-title: Repeatability of quantitative parameters derived from diffusion tensor imaging in patients with glioblastoma multiforme
  publication-title: J Magn Reson Imaging
– volume: 8
  start-page: 21
  year: 2016
  end-page: 49
  article-title: Diffusion‐weighted magnetic resonance imaging in cancer: Reported apparent diffusion coefficients, in‐vitro and in‐vivo reproducibility
  publication-title: World J Radiol
– volume: 44
  start-page: 5198
  year: 2017
  end-page: 5209
  article-title: Portable perfusion phantom for quantitative DCE‐MRI of the abdomen
  publication-title: Med Phys
– volume: 24
  start-page: 123
  year: 2016
  end-page: 133
  article-title: Evaluation of head and neck tumors with functional MR imaging
  publication-title: Magn Reson Imaging Clin N Am
– volume: 9
  start-page: 416
  year: 2017
  end-page: 425
  article-title: Dynamic contrast‐enhanced magnetic resonance imaging of prostate cancer: A review of current methods and applications
  publication-title: World J Radiol
– volume: 23
  start-page: 496
  year: 2016
  end-page: 506
  article-title: Statistical issues in testing conformance with the quantitative imaging biomarker alliance (QIBA) profile claims
  publication-title: Acad Radiol
– volume: 36
  start-page: 411
  year: 2012
  end-page: 421
  article-title: Correction of arterial input function in dynamic contrast‐enhanced MRI of the liver
  publication-title: J Magn Reson Imaging
– volume: 14
  start-page: 169
  year: 2017
  end-page: 186
  article-title: Imaging biomarker roadmap for cancer studies
  publication-title: Nat Rev Clin Oncol
– volume: 27
  start-page: 1461
  year: 2008
  end-page: 1467
  article-title: Contrast‐enhanced timing robust acquisition order with a preparation of the longitudinal signal component (CENTRA plus) for 3D contrast‐enhanced abdominal imaging
  publication-title: J Magn Reson Imaging
– volume: 22
  start-page: 1451
  year: 2012
  end-page: 1464
  article-title: Imaging vascular function for early stage clinical trials using dynamic contrast‐enhanced magnetic resonance imaging
  publication-title: Eur Radiol
– volume: 29
  start-page: 1215
  year: 2011
  end-page: 1221
  article-title: Diffusion‐weighted MRI: influence of intravoxel fat signal and breast density on breast tumor conspicuity and apparent diffusion coefficient measurements
  publication-title: Magn Reson Imaging
– volume: 2
  start-page: 411
  year: 2016
  end-page: 420
  article-title: Comparison between 3‐scan trace and diagonal body diffusion‐weighted imaging acquisitions: a phantom and volunteer study
  publication-title: Tomography
– volume: 7
  start-page: 91
  year: 1997
  end-page: 101
  article-title: Modeling tracer kinetics in dynamic Gd‐DTPA MR imaging
  publication-title: J Magn Reson Imaging
– volume: 24
  start-page: 141
  year: 2015
  end-page: 174
  article-title: Meta‐analysis of the technical performance of an imaging procedure: guidelines and statistical methodology
  publication-title: Stat Methods Med Res
– volume: 18
  start-page: 565
  year: 2010
  end-page: 585
  article-title: Functional magnetic resonance imaging of the liver: parametric assessments beyond morphology
  publication-title: Magn Reson Imaging Clin N Am
– volume: 67
  start-page: 960
  year: 2007
  end-page: 971
  article-title: Detection of head and neck squamous cell carcinoma with diffusion weighted MRI after (chemo)radiotherapy: Correlation between radiologic and histopathologic findings
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 44
  start-page: 521
  year: 2016
  end-page: 540
  article-title: Diffusion‐weighted imaging outside the brain: Consensus statement from an ISMRM‐sponsored workshop
  publication-title: J Magn Reson Imaging
– volume: 31
  start-page: 1371
  year: 2010
  end-page: 1378
  article-title: Pharmacokinetic mapping for lesion classification in dynamic breast MRI
  publication-title: J Magn Reson Imaging
– volume: 68
  start-page: 241
  year: 2012
  end-page: 251
  article-title: Model selection for DCE‐T1 studies in glioblastoma
  publication-title: Magn Reson Med
– volume: 33
  start-page: 56
  year: 2015
  end-page: 62
  article-title: Reduced‐FOV excitation decreases susceptibility artifact in diffusion‐weighted MRI with endorectal coil for prostate cancer detection
  publication-title: Magn Reson Imaging
– volume: 43
  start-page: 1288
  year: 2016
  end-page: 1300
  article-title: Dynamic contrast‐enhanced MRI: Study of inter‐software accuracy and reproducibility using simulated and clinical data
  publication-title: J Magn Reson Imaging
– volume: 271
  start-page: 143
  year: 2014
  end-page: 152
  article-title: Prostate cancer aggressiveness: assessment with whole‐lesion histogram analysis of the apparent diffusion coefficient
  publication-title: Radiology
– volume: 52
  start-page: 198
  year: 2017
  end-page: 205
  article-title: Novel high spatiotemporal resolution versus standard‐of‐care dynamic contrast‐enhanced breast MRI: Comparison of image quality
  publication-title: Invest Radiol
– volume: 34
  start-page: 733
  year: 2007
  end-page: 742
  article-title: Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age‐related differences
  publication-title: NeuroImage
– year: 2013
– year: 2009
– volume: 250
  start-page: 459
  year: 2009
  end-page: 465
  article-title: Short‐ and midterm reproducibility of apparent diffusion coefficient measurements at 3.0‐T diffusion‐weighted imaging of the abdomen
  publication-title: Radiology
– volume: 263
  start-page: 663
  year: 2012
  end-page: 672
  article-title: Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy—results from ACRIN 6657/I‐SPY TRIAL
  publication-title: Radiology
– volume: 69
  start-page: 16
  year: 2016
  end-page: 40
  article-title: PI‐RADS Prostate Imaging Reporting and Data System: 2015, Version 2
  publication-title: Eur Urol
– volume: 90
  start-page: 20160715
  year: 2017
  article-title: The potential of multiparametric MRI of the breast
  publication-title: Br J Radiol
– volume: 75
  start-page: 1677
  year: 2016
  end-page: 1684
  article-title: Improved T1, contrast concentration, and pharmacokinetic parameter quantification in the presence of fat with two‐point Dixon for dynamic contrast‐enhanced magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 41
  start-page: 817
  year: 2016
  end-page: 830
  article-title: Practical aspects of prostate MRI: hardware and software considerations, protocols, and patient preparation
  publication-title: Abdom Radiol
– volume: 76
  start-page: 348
  year: 2010
  end-page: 358
  article-title: Diffusion and perfusion imaging of the liver
  publication-title: Eur J Radiol
– volume: 33
  start-page: 277
  year: 2016
  end-page: 284
  article-title: The predictive capacity of apparent diffusion coefficient (ADC) in response assessment of brain metastases following radiation
  publication-title: Clin Exp Metastasis
– volume: 92
  start-page: 2029
  year: 2000
  end-page: 2036
  article-title: Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors
  publication-title: J Natl Cancer Inst
– volume: 32
  start-page: 155
  year: 2010
  end-page: 164
  article-title: Reproducibility and correlation between quantitative and semiquantitative dynamic and intrinsic susceptibility‐weighted MRI parameters in the benign and malignant human prostate
  publication-title: J Magn Reson Imaging
– volume: 79
  start-page: 2564
  year: 2018
  end-page: 2575
  article-title: Accuracy, repeatability, and interplatform reproducibility of T1 quantification methods used for DCE‐MRI: Results from a multicenter phantom study
  publication-title: Magn Reson Med
– volume: 23
  start-page: 748
  year: 2013
  end-page: 756
  article-title: Diffusion‐weighted MR imaging in liver metastases of colorectal cancer: reproducibility and biological validation
  publication-title: Eur Radiol
– volume: 90
  start-page: 20160768
  year: 2017
  article-title: The emerging potential of magnetic resonance imaging in personalizing radiotherapy for head and neck cancer: an oncologist's perspective
  publication-title: Br J Radiol
– volume: 25
  start-page: 1
  year: 2007
  end-page: 13
  article-title: Integration of quantitative DCE‐MRI and ADC mapping to monitor treatment response in human breast cancer: initial results
  publication-title: Magn Reson Imaging
– volume: 34
  start-page: 983
  year: 2011
  end-page: 987
  article-title: Diffusion coefficient measurement using a temperature‐controlled fluid for quality control in multicenter studies
  publication-title: J Magn Reson Imaging
– volume: 63
  start-page: 1315
  year: 2010
  end-page: 1322
  article-title: B1 mapping by Bloch‐Siegert shift
  publication-title: Magn Reson Med
– volume: 35
  start-page: 745
  year: 2012
  end-page: 763
  article-title: Tumor response assessments with diffusion and perfusion MRI
  publication-title: J Magn Reson Imaging
– volume: 5
  start-page: 011003
  year: 2018
  article-title: Multisite concordance of apparent diffusion coefficient measurements across the NCI Quantitative Imaging Network
  publication-title: J Med Imaging
– volume: 2
  start-page: 4740
  year: 2000
  end-page: 4742
  article-title: Temperature‐dependent self‐diffusion coefficients of water and six selected molecular liquids for calibration in accurate H‐1 NMR PFG measurements
  publication-title: Phys Chem Chem Phys
– volume: 197
  start-page: 1382
  year: 2011
  end-page: 1390
  article-title: Diffusion‐weighted and dynamic contrast‐enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis
  publication-title: AJR Am J Roentgenol
– volume: 40
  start-page: 448
  year: 2014
  end-page: 456
  article-title: Apparent diffusion coefficient measurements as very early predictive markers of response to chemotherapy in hepatic metastasis: a preliminary investigation of reproducibility and diagnostic value
  publication-title: J Magn Reson Imaging
– volume: 82
  start-page: 299
  year: 2012
  end-page: 307
  article-title: Tumor metabolism and perfusion in head and neck squamous cell carcinoma: pretreatment multimodality imaging with 1H magnetic resonance spectroscopy, dynamic contrast‐enhanced MRI, and [18F]FDG‐PET
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 30
  start-page: 1257
  year: 2012
  end-page: 1267
  article-title: A feasible high spatiotemporal resolution breast DCE‐MRI protocol for clinical settings
  publication-title: Magn Reson Imaging
– volume: 191
  start-page: 1154
  year: 2008
  end-page: 1158
  article-title: MRI artifact reduction and quality improvement in the upper abdomen with PROPELLER and prospective acquisition correction (PACE) technique
  publication-title: AJR Am J Roentgenol
– volume: 64
  start-page: 439
  year: 2010
  end-page: 446
  article-title: Rapid B1 + mapping using a preconditioning RF pulse with TurboFLASH readout
  publication-title: Magn Reson Med
– volume: 495
  start-page: 187
  year: 2013
  end-page: 192
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
– volume: 279
  start-page: 44
  year: 2016
  end-page: 55
  article-title: Neoadjuvant chemotherapy for breast cancer: functional tumor volume by MR imaging predicts recurrence‐free survival‐results from the ACRIN 6657/CALGB 150007 I‐SPY 1 TRIAL
  publication-title: Radiology
– volume: 24
  start-page: 9
  year: 2015
  end-page: 26
  article-title: The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions
  publication-title: Stat Methods Med Res
– volume: 20
  start-page: 3705
  year: 2014
  end-page: 3711
  article-title: Prostate MRI: evaluating tumor volume and apparent diffusion coefficient as surrogate biomarkers for predicting tumor Gleason score
  publication-title: Clin Cancer Res
– volume: 238
  start-page: 42
  year: 2006
  end-page: 53
  article-title: Diagnostic architectural and dynamic features at breast MR imaging: Multicenter study
  publication-title: Radiology
– volume: 11
  start-page: 594
  issue: Pt 1
  year: 2008
  end-page: 601
  article-title: Automatic determination of arterial input function for dynamic contrast enhanced MRI in tumor assessment
  publication-title: Med Image Comput Comput Assist Interv
– volume: 9
  start-page: e115667
  year: 2014
  article-title: DCE‐MRI of the liver: reconstruction of the arterial input function using a low dose pre‐bolus contrast injection
  publication-title: PLoS One
– volume: 28
  start-page: 1173
  year: 2008
  end-page: 1179
  article-title: Apparent diffusion coefficient: prostate cancer versus noncancerous tissue according to anatomical region
  publication-title: J Magn Reson Imaging
– volume: 21
  start-page: 1195
  year: 2014
  end-page: 1203
  article-title: Breast DCE‐MRI: influence of postcontrast timing on automated lesion kinetics assessments and discrimination of benign and malignant lesions
  publication-title: Acad Radiol
– volume: 19
  start-page: 559
  year: 2009
  end-page: 571
  article-title: Diffusion imaging for therapy response assessment of brain tumor
  publication-title: Neuroimaging Clin N Am
– volume: 59
  start-page: 1448
  year: 2008
  end-page: 1456
  article-title: Improving the pharmacokinetic parameter measurement in dynamic contrast‐enhanced MRI by use of the arterial input function: theory and clinical application
  publication-title: Magn Reson Med
– volume: 49
  start-page: 104
  year: 2010
  end-page: 113
  article-title: The QUASAR reproducibility study, Part II: Results from a multi‐center Arterial Spin Labeling test‐retest study
  publication-title: NeuroImage
– volume: 18
  start-page: 427
  year: 2003
  end-page: 433
  article-title: Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain
  publication-title: J Magn Reson Imaging
– volume: 22
  start-page: 363
  year: 2015
  end-page: 369
  article-title: Pediatric brain tumor consortium multisite assessment of apparent diffusion coefficient z‐axis variation assessed with an ice‐water phantom
  publication-title: Acad Radiol
– volume: 23
  start-page: 554
  year: 2006
  end-page: 563
  article-title: Comparative study into the robustness of compartmental modeling and model‐free analysis in DCE‐MRI studies
  publication-title: J Magn Reson Imaging
– volume: 40
  start-page: 1487
  year: 2014
  end-page: 1495
  article-title: Practical estimate of gradient nonlinearity for implementation of apparent diffusion coefficient bias correction
  publication-title: J Magn Reson Imaging
– year: 2015
– volume: 9
  start-page: 8
  year: 2016
  end-page: 17
  article-title: Early prediction and evaluation of breast cancer response to neoadjuvant chemotherapy using quantitative DCE‐MRI
  publication-title: Transl Oncol
– volume: 32
  start-page: 2
  year: 2010
  end-page: 16
  article-title: Predicting and monitoring cancer treatment response with diffusion‐weighted MRI
  publication-title: J Magn Reson Imaging
– volume: 63
  start-page: 811
  year: 2010
  end-page: 816
  article-title: The influence of temporal resolution in determining pharmacokinetic parameters from DCE‐MRI data
  publication-title: Magn Reson Med
– volume: 34
  start-page: 197
  year: 2016
  end-page: 203
  article-title: Arterial input functions (AIFs) measured directly from arteries with low and standard doses of contrast agent, and AIFs derived from reference tissues
  publication-title: Magn Reson Imaging
– volume: 85
  start-page: 1507
  year: 2012
  end-page: 1512
  article-title: In vitro and in vivo repeatability of abdominal diffusion‐weighted MRI
  publication-title: Br J Radiol
– volume: 30
  issue: 3
  year: 2017
  article-title: Diffusion MRI in early cancer therapeutic response assessment
  publication-title: NMR Biomed
– volume: 171
  start-page: 853
  year: 1989
  end-page: 857
  article-title: Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia
  publication-title: Radiology
– volume: 82
  start-page: 1098
  year: 2012
  end-page: 1107
  article-title: Diffusion‐weighted magnetic resonance imaging early after chemoradiotherapy to monitor treatment response in head‐and‐neck squamous cell carcinoma
  publication-title: Int J Radiat Oncol Biol Phys
– year: 2003
– volume: 42
  start-page: 908
  year: 2015
  end-page: 919
  article-title: Gradient nonlinearity correction to improve apparent diffusion coefficient accuracy and standardization in the american college of radiology imaging network 6698 breast cancer trial
  publication-title: J Magn Reson Imaging
– year: 2018
  article-title: Repeatability, reproducibility, and accuracy of quantitative MRI of the breast in the community radiology setting
  publication-title: J Magn Reson Imaging
– volume: 265
  start-page: 260
  year: 2012
  end-page: 266
  article-title: Interpatient variation in normal peripheral zone apparent diffusion coefficient: effect on the prediction of prostate cancer aggressiveness
  publication-title: Radiology
– volume: 72
  start-page: 41
  year: 2013
  end-page: 47
  article-title: A robust multi‐shot scan strategy for high‐resolution diffusion weighted MRI enabled by multiplexed sensitivity‐encoding (MUSE)
  publication-title: NeuroImage
– volume: 7
  start-page: 14
  year: 2014
  end-page: 22
  article-title: Analyzing spatial heterogeneity in DCE‐ and DW‐MRI parametric maps to optimize prediction of pathologic response to neoadjuvant chemotherapy in breast cancer
  publication-title: Transl Oncol
– volume: 34
  start-page: 1099
  year: 2011
  end-page: 1109
  article-title: Diffusion‐weighted and dynamic contrast‐enhanced MRI in evaluation of early treatment effects during neoadjuvant chemotherapy in breast cancer patients
  publication-title: J Magn Reson Imaging
– volume: 10
  start-page: 223
  year: 1999
  end-page: 232
  article-title: Estimating kinetic parameters from dynamic contrast‐enhanced T(1)‐weighted MRI of a diffusable tracer: Standardized quantities and symbols
  publication-title: J Magn Reson Imaging
– volume: 55
  start-page: 121
  year: 2010
  end-page: 132
  article-title: The accuracy of pharmacokinetic parameter measurement in DCE‐MRI of the breast at 3 T
  publication-title: Phys Med Biol
– volume: 34
  start-page: 3
  year: 2016
  end-page: 9
  article-title: Brain gadolinium deposition after administration of gadolinium‐based contrast agents
  publication-title: Jpn J Radiol
– volume: 2011
  start-page: 732848
  year: 2011
  article-title: Quantifying tumor vascular heterogeneity with dynamic contrast‐enhanced magnetic resonance imaging: a review
  publication-title: J Biomed Biotechnol
– volume: 261
  start-page: 394
  year: 2011
  end-page: 403
  article-title: Discrimination of benign and malignant breast lesions by using shutter‐speed dynamic contrast‐enhanced MR imaging
  publication-title: Radiology
– volume: 71
  start-page: 1592
  year: 2014
  end-page: 1602
  article-title: DCE‐MRI analysis methods for predicting the response of breast cancer to neoadjuvant chemotherapy: pilot study findings
  publication-title: Magn Reson Med
– volume: 24
  start-page: 765
  year: 2016
  end-page: 779
  article-title: Perfusion imaging in neuro‐oncology: basic techniques and clinical applications
  publication-title: Magn Reson Imaging Clin N Am
– volume: 45
  start-page: 337
  year: 2017
  end-page: 355
  article-title: Diffusion‐weighted breast MRI: Clinical applications and emerging techniques
  publication-title: J Magn Reson Imaging
– volume: 198
  start-page: 1277
  year: 2012
  end-page: 1288
  article-title: Overview of dynamic contrast‐enhanced MRI in prostate cancer diagnosis and management
  publication-title: AJR Am J Roentgenol
– volume: 1
  start-page: 140037
  year: 2014
  article-title: Reliability of brain volume measurements: a test–retest dataset
  publication-title: Sci Data
– volume: 25
  start-page: 1423
  year: 2007
  end-page: 1429
  article-title: Repeatability of echo‐planar‐based diffusion measurements of the human prostate at 3 T
  publication-title: Magn Reson Imaging
– volume: 277
  start-page: 813
  year: 2015
  end-page: 825
  article-title: Metrology standards for quantitative imaging biomarkers
  publication-title: Radiology
– volume: 11
  start-page: 102
  year: 2009
  end-page: 125
  article-title: Diffusion‐weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations
  publication-title: Neoplasia
– volume: 76
  start-page: 153
  year: 2003
  end-page: 162
  article-title: Reproducibility of quantitative dynamic contrast‐enhanced MRI in newly presenting glioma
  publication-title: Br J Radiol
– volume: 13
  start-page: 171
  year: 2013
  end-page: 185
  article-title: Diffusion‐weighted imaging of the liver: an update
  publication-title: Cancer Imaging
– volume: 254
  start-page: 47
  year: 2010
  end-page: 66
  article-title: Diffusion‐weighted MR imaging of the liver
  publication-title: Radiology
– volume: 27
  start-page: 16
  year: 2014
  end-page: 24
  article-title: Role of MRI in prostate cancer detection
  publication-title: NMR Biomed
– ident: e_1_2_7_113_1
  doi: 10.1016/j.mri.2012.04.009
– ident: e_1_2_7_79_1
  doi: 10.2214/AJR.11.6861
– ident: e_1_2_7_42_1
  doi: 10.1002/jmri.22215
– ident: e_1_2_7_58_1
  doi: 10.1016/j.acra.2014.10.006
– ident: e_1_2_7_57_1
  doi: 10.1016/j.mri.2011.07.024
– ident: e_1_2_7_82_1
  doi: 10.3174/ajnr.A5023
– ident: e_1_2_7_108_1
  doi: 10.1593/tlo.13877
– ident: e_1_2_7_56_1
  doi: 10.1016/j.ijrobp.2010.11.022
– ident: e_1_2_7_77_1
  doi: 10.1148/radiol.11091409
– ident: e_1_2_7_97_1
  doi: 10.1007/s11604-015-0503-5
– ident: e_1_2_7_53_1
  doi: 10.1102/1470-7330.2013.0019
– ident: e_1_2_7_107_1
  doi: 10.1148/radiol.2015150013
– ident: e_1_2_7_109_1
  doi: 10.1002/mrm.22171
– ident: e_1_2_7_137_1
  doi: 10.1007/s00261-016-0646-6
– ident: e_1_2_7_126_1
  doi: 10.1002/jmri.24661
– ident: e_1_2_7_135_1
  doi: 10.4329/wjr.v9.i12.416
– ident: e_1_2_7_136_1
  doi: 10.1259/bjr.20160715
– ident: e_1_2_7_76_1
  doi: 10.1002/mrm.23211
– ident: e_1_2_7_141_1
  doi: 10.1038/nature11971
– ident: e_1_2_7_21_1
  doi: 10.1259/bjr.20160768
– ident: e_1_2_7_104_1
  doi: 10.1148/radiol.2381042117
– ident: e_1_2_7_36_1
  doi: 10.1007/s00330-012-2654-4
– ident: e_1_2_7_120_1
  doi: 10.1002/mrm.24782
– ident: e_1_2_7_18_1
  doi: 10.1016/j.mric.2010.07.002
– ident: e_1_2_7_49_1
  doi: 10.1039/b005319h
– year: 2017
  ident: e_1_2_7_45_1
  article-title: Quantitative imaging biomarkers: Effect of sample size and bias on confidence interval coverage
  publication-title: Stat Methods Med Res
– ident: e_1_2_7_15_1
  doi: 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
– ident: e_1_2_7_10_1
  doi: 10.1097/RMR.0000000000000103
– ident: e_1_2_7_68_1
  doi: 10.1007/s00330-012-2446-x
– ident: e_1_2_7_81_1
  doi: 10.1148/radiol.09090021
– ident: e_1_2_7_114_1
  doi: 10.1593/tlo.13838
– ident: e_1_2_7_40_1
  doi: 10.1002/mrm.25323
– ident: e_1_2_7_69_1
  doi: 10.1002/jmri.22726
– ident: e_1_2_7_67_1
  doi: 10.1038/sj.bjc.6602550
– ident: e_1_2_7_47_1
  doi: 10.1148/radiol.13130420
– ident: e_1_2_7_125_1
  doi: 10.1007/s00261-015-0590-x
– ident: e_1_2_7_138_1
  doi: 10.1155/2011/732848
– ident: e_1_2_7_133_1
  doi: 10.1002/jmri.23636
– ident: e_1_2_7_11_1
  doi: 10.1016/j.mric.2015.08.011
– ident: e_1_2_7_91_1
  doi: 10.1002/mrm.10014
– ident: e_1_2_7_66_1
  doi: 10.1002/(SICI)1522-2586(199912)10:6<903::AID-JMRI1>3.0.CO;2-A
– ident: e_1_2_7_88_1
  doi: 10.1002/mrm.26405
– ident: e_1_2_7_130_1
  doi: 10.1002/mrm.25639
– ident: e_1_2_7_75_1
  doi: 10.1158/1078-0432.CCR-08-1287
– ident: e_1_2_7_48_1
  doi: 10.1148/radiology.171.3.2717764
– ident: e_1_2_7_134_1
  doi: 10.1016/j.mric.2016.07.004
– ident: e_1_2_7_8_1
  doi: 10.1097/RMR.0000000000000027
– ident: e_1_2_7_22_1
  doi: 10.1177/0962280214537333
– ident: e_1_2_7_118_1
  doi: 10.1002/jmri.21393
– ident: e_1_2_7_59_1
  doi: 10.1002/jmri.24883
– ident: e_1_2_7_32_1
  doi: 10.1002/jmri.21732
– volume: 11
  start-page: 594
  issue: 1
  year: 2008
  ident: e_1_2_7_99_1
  article-title: Automatic determination of arterial input function for dynamic contrast enhanced MRI in tumor assessment
  publication-title: Med Image Comput Comput Assist Interv
– ident: e_1_2_7_84_1
  doi: 10.1016/j.ijrobp.2011.02.044
– ident: e_1_2_7_112_1
  doi: 10.1016/S0730-725X(98)00130-1
– ident: e_1_2_7_41_1
  doi: 10.1148/radiol.12112374
– ident: e_1_2_7_100_1
  doi: 10.1088/0031-9155/56/17/018
– ident: e_1_2_7_52_1
  doi: 10.1002/jmri.22363
– ident: e_1_2_7_54_1
  doi: 10.1093/jnci/92.24.2029
– ident: e_1_2_7_139_1
  doi: 10.1002/mrm.21608
– ident: e_1_2_7_73_1
  doi: 10.1118/1.3615058
– ident: e_1_2_7_55_1
  doi: 10.1007/s10585-016-9778-x
– ident: e_1_2_7_110_1
  doi: 10.1088/0031-9155/55/1/008
– ident: e_1_2_7_140_1
  doi: 10.1016/j.acra.2015.12.020
– ident: e_1_2_7_6_1
  doi: 10.1259/bjr.20170577
– ident: e_1_2_7_33_1
  doi: 10.1002/jmri.10377
– ident: e_1_2_7_132_1
  doi: 10.1002/mrm.22333
– ident: e_1_2_7_64_1
– ident: e_1_2_7_31_1
  doi: 10.1016/j.neuroimage.2006.09.020
– ident: e_1_2_7_124_1
  doi: 10.1016/j.eururo.2015.08.052
– volume-title: Multicenter study of reproducibility of wide range of ADC at 0°C
  year: 2015
  ident: e_1_2_7_62_1
– ident: e_1_2_7_70_1
  doi: 10.1016/j.acra.2016.09.025
– ident: e_1_2_7_34_1
  doi: 10.1148/radiol.2502080849
– ident: e_1_2_7_127_1
  doi: 10.1002/mrm.22423
– ident: e_1_2_7_129_1
  doi: 10.1002/mrm.22596
– ident: e_1_2_7_123_1
  doi: 10.2214/AJR.12.8510
– ident: e_1_2_7_142_1
  doi: 10.1148/radiol.2016152037
– ident: e_1_2_7_92_1
  doi: 10.1002/jmri.24486
– ident: e_1_2_7_96_1
  doi: 10.1016/j.ejrad.2010.03.016
– ident: e_1_2_7_94_1
  doi: 10.1016/j.mri.2006.09.006
– ident: e_1_2_7_5_1
  doi: 10.1007/s11523-010-0135-8
– ident: e_1_2_7_89_1
  doi: 10.1016/j.neuroimage.2013.01.038
– ident: e_1_2_7_111_1
  doi: 10.1002/jmri.20529
– ident: e_1_2_7_95_1
  doi: 10.1016/j.ijrobp.2006.09.020
– ident: e_1_2_7_37_1
  doi: 10.1259/bjr/32269440
– ident: e_1_2_7_101_1
  doi: 10.1002/mrm.21066
– ident: e_1_2_7_17_1
  doi: 10.1038/sj.bjc.6602550
– ident: e_1_2_7_43_1
  doi: 10.1259/bjr/70653746
– ident: e_1_2_7_117_1
  doi: 10.1097/RLI.0000000000000329
– ident: e_1_2_7_16_1
  doi: 10.1002/jmri.22167
– ident: e_1_2_7_119_1
  doi: 10.1148/radiol.11102413
– ident: e_1_2_7_85_1
  doi: 10.1158/1078-0432.CCR-14-0044
– ident: e_1_2_7_20_1
  doi: 10.1038/nrclinonc.2016.108
– volume: 5
  start-page: 011003
  year: 2018
  ident: e_1_2_7_51_1
  article-title: Multisite concordance of apparent diffusion coefficient measurements across the NCI Quantitative Imaging Network
  publication-title: J Med Imaging
– ident: e_1_2_7_90_1
  doi: 10.2214/AJR.07.3657
– ident: e_1_2_7_46_1
  doi: 10.1177/0962280214537394
– ident: e_1_2_7_86_1
  doi: 10.1148/radiol.13130973
– volume-title: ACR BI‐RADS® Atlas, Breast Imaging Reporting and Data System
  year: 2013
  ident: e_1_2_7_105_1
– ident: e_1_2_7_29_1
  doi: 10.1002/jmri.23825
– ident: e_1_2_7_103_1
  doi: 10.1056/NEJMoa065447
– ident: e_1_2_7_39_1
  doi: 10.1002/jmri.24271
– ident: e_1_2_7_26_1
  doi: 10.1148/radiol.2017170550
– ident: e_1_2_7_65_1
– ident: e_1_2_7_35_1
  doi: 10.1002/jmri.24359
– ident: e_1_2_7_9_1
  doi: 10.1002/jmri.25479
– ident: e_1_2_7_131_1
  doi: 10.1002/mrm.22357
– ident: e_1_2_7_19_1
  doi: 10.1038/nrclinonc.2016.162
– ident: e_1_2_7_87_1
  doi: 10.1016/j.mri.2014.08.040
– ident: e_1_2_7_13_1
  doi: 10.1002/nbm.2934
– ident: e_1_2_7_30_1
  doi: 10.1177/0962280214537344
– ident: e_1_2_7_2_1
  doi: 10.1593/neo.81328
– ident: e_1_2_7_63_1
  doi: 10.3174/ajnr.A5025
– ident: e_1_2_7_38_1
  doi: 10.1016/j.mri.2007.03.030
– ident: e_1_2_7_121_1
  doi: 10.1593/tlo.13748
– ident: e_1_2_7_28_1
  doi: 10.18383/j.tom.2016.00229
– ident: e_1_2_7_78_1
  doi: 10.1002/jmri.21513
– ident: e_1_2_7_3_1
  doi: 10.1002/0470869526
– ident: e_1_2_7_23_1
  doi: 10.2214/AJR.09.3116
– ident: e_1_2_7_80_1
  doi: 10.1016/j.acra.2014.04.013
– ident: e_1_2_7_4_1
  doi: 10.1016/j.nic.2009.08.009
– ident: e_1_2_7_122_1
  doi: 10.1002/jmri.22179
– ident: e_1_2_7_61_1
  doi: 10.1002/jmri.25196
– ident: e_1_2_7_93_1
  doi: 10.3174/ajnr.A1844
– ident: e_1_2_7_27_1
  doi: 10.1016/j.neuroimage.2009.07.068
– ident: e_1_2_7_102_1
  doi: 10.1016/j.mri.2015.10.025
– ident: e_1_2_7_24_1
  doi: 10.1007/s00330-017-4828-6
– ident: e_1_2_7_74_1
  doi: 10.1002/jmri.26011
– ident: e_1_2_7_25_1
  doi: 10.1038/sdata.2014.37
– ident: e_1_2_7_44_1
  doi: 10.1148/radiol.2015142202
– ident: e_1_2_7_71_1
  doi: 10.1002/mrm.26903
– ident: e_1_2_7_128_1
  doi: 10.1371/journal.pone.0115667
– ident: e_1_2_7_60_1
  doi: 10.4329/wjr.v8.i1.21
– ident: e_1_2_7_98_1
  doi: 10.1002/jmri.1880070113
– ident: e_1_2_7_50_1
  doi: 10.1118/1.4948997
– ident: e_1_2_7_116_1
  doi: 10.1002/jmri.23602
– ident: e_1_2_7_7_1
  doi: 10.1002/jmri.25101
– ident: e_1_2_7_106_1
  doi: 10.1148/radiol.12110748
– ident: e_1_2_7_83_1
  doi: 10.1016/j.ijrobp.2011.02.044
– ident: e_1_2_7_12_1
  doi: 10.1002/jmri.22838
– ident: e_1_2_7_14_1
  doi: 10.1002/nbm.3458
– ident: e_1_2_7_72_1
  doi: 10.1002/mp.12466
– ident: e_1_2_7_115_1
  doi: 10.1016/j.tranon.2015.11.016
SSID ssj0009945
Score 2.6598644
SecondaryResourceType review_article
Snippet Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion‐weighted imaging and dynamic contrast‐enhanced magnetic...
Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic...
Physiological properties of tumors can be measured both in vivo and non-invasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e101
SubjectTerms DCE
DWI
MRI
quantitative imaging biomarkers
Title Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE‐MRI derived biomarkers in multicenter oncology trials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26518
https://www.ncbi.nlm.nih.gov/pubmed/30451345
https://www.proquest.com/docview/2135635358
https://pubmed.ncbi.nlm.nih.gov/PMC6526078
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAX3o_lJSM4UKRsEzuObYlL6UPdSovUiopeUOSnWGCzVbJ7gBM_gT_An-OXMHay2S5FSHCzlLHl2DP2Z3vmG4See6JyR41JuOEqyZVkiSIMSoQbk1KrSYziH78pDk_zozN2toFeLWNhWn6I_sItWEZcr4OBK91sr0hDP07ryZAULAuRvsFZKyCikxV3lJQxQzHgB5pkIuU9NynZXlVd340uQczLnpIXEWzcgg6uo_fLzreeJ5-Gi7kemq-_8Tr-79_dQNc6bIp3WmW6iTZcdQtdGXev77fRj-OFqmJQGiyReDKNCY5wCOAPPj51g1W4uwEtwi-OR693tnA4bU-nrsvb1GAAyFAt3GI4i8_rLr0Pnnm8926EVWXx3u7-z2_fxycjbME0gtiF5icVjv6PYZhcjWdVZNz-gmPmkeYOOj3Yf7t7mHTpHRKTi0Ik3nhYbjTxmbQkNzZXjEghvIAjq0814AqmNRMpFUoZbbKCWw_wLPXCMJfnkt5Fm9WscvcRVjyQ0Ag4LGkKqie1LyyVVhXCFjzV6QBtLae5NB33eUjB8blsWZtJGca7jOM9QM962fOW8eOPUk-X2lKCQYZXFlW52aIpSUYZoDjKQOZeqz19O-FZOqM5GyC-ple9QCD7Xv9STT5E0u-CwcmTQ5svo9r8pWvlEcxSLD34F-GH6CqAQdm6wT1Cm_N64R4D4JrrJ9GwfgH3_ywz
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgSMCG92N4GsGCImWa2HHiLEun1UzpVGrViu4iP2IxwGSqZGYBKz6BH-Dn-BLuddJMhyIk2EXKtZXY99rH9vU5hLxyTMUFNyZITaqCWGUiUEzAE0uNCbnVzN_iH-8nw-N490SctLk5eBem4YfoNtwwMvx4jQGOG9IbS9bQj9Nq0meJiORlcgUlvZE6f3C4ZI_KMq9RDAiCB5EM046dlG0sy67ORxdA5sVcyfMY1k9COzcbpdXacxdi7smn_mKu--brb8yO__1_t8iNFp7SzcafbpNLRXmHXB23B_B3yY-DhSr9vTQYJelk6jWOKN7hxzSfqqYKt2_Akejrg9HbzXWKC-7ptGilm2oKGBmK4UZGYelp1Sr80Jmjg_cjqkpLB1vbP799Hx-OqIXoQLNz1U9K6lMgsZ2Kis5KT7r9hXrxkfoeOd7ZPtoaBq3CQ2BimcjAGQcjjmYuyiyLjY2VYJmUTsKq1YUaoIXQWsiQS6WMNlGSWgcILXTSiCKOM36frJWzsnhIqEqRh0bCeklz8L5Mu8TyzKpE2iQNddgj62f9nJuW_hxVOD7nDXEzy7G9c9_ePfKysz1tSD_-aPXizF1yiEk8aFFlMVvUOYu4ACDHBdg8aNynqwdPpiMeix5JVxyrM0C-79U35eSD5_1OBCw-U6jzjfebv3xavgu95J8e_Yvxc3JteDTey_dG--8ek-uADbMmK-4JWZtXi-Ip4K-5fuaj7BeK0jBP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKkSou5Q3haQQHirTprh-7tsSlNI2aQipaUdELWvmxVgNkE22SA5z4CfwB_hy_hLF3kzQUIcHN0o4trz1jf7ZnvkHomSOKFdSYKDOZipiSPFKEQ4lkxsTUahKi-PuH6f4JOzjlp2vo5TwWpuaHWFy4ecsI67U38LF120vS0I_DatAmKU_EJXSZpbH0iRs6x0vyKClDimIAEDRKRJwtyEnJ9rLu6nZ0AWNedJU8D2HDHtS9ij7Me1-7nnxqz6a6bb7-Ruz4v793DW024BTv1Np0Ha0V5Q200W-e32-iH0czVYaoNFgj8WAYMhxhH8HvnXyqCVb-8gbUCD8_6r3a2cL-uD0cFk3ipgkGhAzV_DVGYfG4avL74JHDnfc9rEqLO7t7P7997x_3sAXb8GLnmh-UODhA-mEqKjwqA-X2FxxSj0xuoZPu3rvd_ajJ7xAZJlIROeNgvdHEJdISZixTnEghnIAzq4s1AAuuNRcxFUoZbZI0sw7wWeyE4QVjkt5G6-WoLO4irDLPQiPgtKQp6J7ULrVUWpUKm2axjltoaz7NuWnIz30Ojs95TdtMcj_eeRjvFnq6kB3XlB9_lHoy15YcLNI_s6iyGM0mOUkoBxhHOcjcqbVn0Y5_l04o4y2UrejVQsCzfa9-KQdngfU75XD0zKDNF0Ft_tK1_ABmKZTu_YvwY7TxttPN3_QOX99HVwAYytol7gFan1az4iGAr6l-FGzsF-d7Lv4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+imaging+biomarkers+alliance+%28QIBA%29+recommendations+for+improved+precision+of+DWI+and+DCE%E2%80%90MRI+derived+biomarkers+in+multicenter+oncology+trials&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Shukla%E2%80%90Dave%2C+Amita&rft.au=Obuchowski%2C+Nancy+A.&rft.au=Chenevert%2C+Thomas+L.&rft.au=Jambawalikar%2C+Sachin&rft.date=2019-06-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=49&rft.issue=7&rft.spage=e101&rft.epage=e121&rft_id=info:doi/10.1002%2Fjmri.26518&rft.externalDBID=10.1002%252Fjmri.26518&rft.externalDocID=JMRI26518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon