Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE‐MRI derived biomarkers in multicenter oncology trials
Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion‐weighted imaging and dynamic contrast‐enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the m...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 49; no. 7; pp. e101 - e121 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion‐weighted imaging and dynamic contrast‐enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America's Quantitative Imaging Biomarkers Alliance (QIBA). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA's development of quantitative diffusion‐weighted imaging and dynamic contrast‐enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability.
Level of Evidence: 5
Technical Efficacy Stage: 1
J. Magn. Reson. Imaging 2019;49:e101–e121. |
---|---|
AbstractList | Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America's Quantitative Imaging Biomarkers Alliance (QIBA). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA's development of quantitative diffusion-weighted imaging and dynamic contrast-enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;49:e101-e121.Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America's Quantitative Imaging Biomarkers Alliance (QIBA). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA's development of quantitative diffusion-weighted imaging and dynamic contrast-enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;49:e101-e121. Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion‐weighted imaging and dynamic contrast‐enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America's Quantitative Imaging Biomarkers Alliance (QIBA). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA's development of quantitative diffusion‐weighted imaging and dynamic contrast‐enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;49:e101–e121. Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America's Quantitative Imaging Biomarkers Alliance (QIBA). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA's development of quantitative diffusion-weighted imaging and dynamic contrast-enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;49:e101-e121. Physiological properties of tumors can be measured both in vivo and non-invasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIB) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America’s Quantitative Imaging Biomarkers Alliance/(QIBA®). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA’s development of quantitative diffusion-weighted imaging and dynamic contrast-enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in magnetic resonance imaging technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability. |
Author | Shiroishi, Mark S. Obuchowski, Nancy A. Malyarenko, Dariya Boss, Michael Young, Robert J. Coolens, Catherine Shukla‐Dave, Amita Chenevert, Thomas L. Huang, Wei Rosen, Mark Jackson, Edward F. Schwartz, Lawrence H. Noworolski, Susan M. Kim, Harrison Laue, Hendrik Chung, Caroline Jambawalikar, Sachin |
AuthorAffiliation | 1 Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA 11 Department of Fraunhofer MEVIS, Bremen, Germany 5 Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA 9 Department of Radiology, University of Alabama at Birmingham, Birmingham AL, USA 6 Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA 13 Department of Radiology, University of Pennsylvania, Philadelphia, USA 8 Division of Neuroradiology, Department of Radiology, University of Southern California, Los Angeles, CA, USA 10 Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Canada 12 Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA 3 Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH, USA 2 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA 4 Department of Radiology, University of Michigan, Ann Arbor, MI, USA 14 Ap |
AuthorAffiliation_xml | – name: 5 Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA – name: 15 Departments of Medical Physics, Radiology, and Human Oncology, University of Wisconsin School of Medicine, Madison, WI, USA – name: 4 Department of Radiology, University of Michigan, Ann Arbor, MI, USA – name: 11 Department of Fraunhofer MEVIS, Bremen, Germany – name: 1 Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA – name: 10 Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Canada – name: 13 Department of Radiology, University of Pennsylvania, Philadelphia, USA – name: 6 Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA – name: 3 Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH, USA – name: 14 Applied Physics Division, National Institute of Standards and Technology, Boulder, CO, USA – name: 12 Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA – name: 2 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA – name: 7 Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA – name: 9 Department of Radiology, University of Alabama at Birmingham, Birmingham AL, USA – name: 8 Division of Neuroradiology, Department of Radiology, University of Southern California, Los Angeles, CA, USA |
Author_xml | – sequence: 1 givenname: Amita surname: Shukla‐Dave fullname: Shukla‐Dave, Amita email: davea@mskcc.org organization: Memorial Sloan Kettering Cancer Center – sequence: 2 givenname: Nancy A. surname: Obuchowski fullname: Obuchowski, Nancy A. organization: Cleveland Clinic Foundation – sequence: 3 givenname: Thomas L. surname: Chenevert fullname: Chenevert, Thomas L. organization: University of Michigan – sequence: 4 givenname: Sachin surname: Jambawalikar fullname: Jambawalikar, Sachin organization: Columbia University Irving Medical Center – sequence: 5 givenname: Lawrence H. surname: Schwartz fullname: Schwartz, Lawrence H. organization: Columbia University Irving Medical Center – sequence: 6 givenname: Dariya surname: Malyarenko fullname: Malyarenko, Dariya organization: University of Michigan – sequence: 7 givenname: Wei surname: Huang fullname: Huang, Wei organization: Oregon Health & Science University – sequence: 8 givenname: Susan M. surname: Noworolski fullname: Noworolski, Susan M. organization: University of California – sequence: 9 givenname: Robert J. surname: Young fullname: Young, Robert J. organization: Memorial Sloan Kettering Cancer Center – sequence: 10 givenname: Mark S. surname: Shiroishi fullname: Shiroishi, Mark S. organization: University of Southern California – sequence: 11 givenname: Harrison surname: Kim fullname: Kim, Harrison organization: University of Alabama at Birmingham – sequence: 12 givenname: Catherine surname: Coolens fullname: Coolens, Catherine organization: Princess Margaret Cancer Centre – sequence: 13 givenname: Hendrik surname: Laue fullname: Laue, Hendrik organization: Department of Fraunhofer MEVIS – sequence: 14 givenname: Caroline surname: Chung fullname: Chung, Caroline organization: MD Anderson Cancer Center – sequence: 15 givenname: Mark surname: Rosen fullname: Rosen, Mark organization: University of Pennsylvania – sequence: 16 givenname: Michael surname: Boss fullname: Boss, Michael organization: Applied Physics Division, National Institute of Standards and Technology – sequence: 17 givenname: Edward F. surname: Jackson fullname: Jackson, Edward F. organization: University of Wisconsin School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30451345$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1uFDEQhS0URH5gwwGQlwGpg3973BukMAkwKAgFgVhabrc9OLjtwe6eaHY5AhfgcpwEdyZBASFWZbm-96pUbx_shBgMAI8xOsIIkecXfXJHpOZY3AN7mBNSES7qnfJGnFZYoNku2M_5AiHUNIw_ALsUMY4p43vgx_mowuAGNbi1ga5XSxeWsHWxV-mrSRkq750K2sDD88XL46cwGR373oSuKGLI0MZUZKsU16aDq9J1ufzDaOHJ5wVUoYMn89OfV9_ffVjAziQ3YXfsXYD96AenTRhMgjHo6ONyA4fklM8PwX1binl0Uw_Ap1enH-dvqrP3rxfz47NKM1GLymo7Q7QlFjcdYbpjipNGCCs4ayxqOcG8bblAVCilW43rWWfrcg0rNDeMNfQAvNj6rsa2N920TFJerlI5SNrIqJz8sxPcF7mMa1lzUqOZKAaHNwYpfhtNHmTvsjbeq2DimCXBlNeUUz6hT-7O-j3kNpMCoC2gU8w5GSv1dT5xGu28xEhOscspdnkde5E8-0ty6_pPGG_hS-fN5j-kfFtC22p-AfGbwmI |
CitedBy_id | crossref_primary_10_1016_j_ejmp_2021_07_025 crossref_primary_10_3389_fonc_2022_844790 crossref_primary_10_1038_s41598_020_77740_5 crossref_primary_10_3389_fonc_2022_867792 crossref_primary_10_1002_jmri_27994 crossref_primary_10_1007_s00256_021_03903_8 crossref_primary_10_1007_s12194_022_00677_z crossref_primary_10_1016_j_diii_2019_06_012 crossref_primary_10_1088_2516_1091_acd28b crossref_primary_10_1259_bjr_20190513 crossref_primary_10_1007_s10334_019_00790_y crossref_primary_10_1016_j_ejrad_2023_110782 crossref_primary_10_1016_j_clineuro_2022_107553 crossref_primary_10_1016_j_mri_2020_01_010 crossref_primary_10_1200_EDBK_320593 crossref_primary_10_2214_AJR_24_31715 crossref_primary_10_1111_1754_9485_13626 crossref_primary_10_1186_s13244_023_01391_z crossref_primary_10_1002_mrm_28628 crossref_primary_10_1007_s40846_020_00582_z crossref_primary_10_3389_fonc_2022_958219 crossref_primary_10_1002_acm2_13424 crossref_primary_10_1016_j_phro_2023_100458 crossref_primary_10_3389_fonc_2020_615643 crossref_primary_10_1007_s10334_022_01053_z crossref_primary_10_1016_j_acra_2024_03_029 crossref_primary_10_2169_internalmedicine_3855_19 crossref_primary_10_1002_mrm_29826 crossref_primary_10_1007_s11547_020_01220_z crossref_primary_10_3389_fonc_2021_705964 crossref_primary_10_1038_s41598_019_54438_x crossref_primary_10_1016_j_ejmp_2021_03_027 crossref_primary_10_1186_s41747_024_00429_1 crossref_primary_10_1186_s40644_023_00603_5 crossref_primary_10_1016_j_semradonc_2023_10_015 crossref_primary_10_1002_jmri_27895 crossref_primary_10_1016_j_semradonc_2023_10_010 crossref_primary_10_1148_rycan_220167 crossref_primary_10_1016_j_mri_2023_02_002 crossref_primary_10_1002_acm2_13432 crossref_primary_10_1177_10732748241298539 crossref_primary_10_1002_jmri_28869 crossref_primary_10_1002_mp_15645 crossref_primary_10_1016_j_ejrad_2023_110764 crossref_primary_10_3389_fmed_2024_1347267 crossref_primary_10_1016_j_radonc_2023_110046 crossref_primary_10_1002_jmri_27646 crossref_primary_10_1016_j_semradonc_2023_10_003 crossref_primary_10_1016_j_radonc_2020_09_013 crossref_primary_10_1002_nbm_5198 crossref_primary_10_1016_j_acra_2022_10_001 crossref_primary_10_1002_jmri_28052 crossref_primary_10_3174_ng_2100041 crossref_primary_10_1007_s10334_024_01160_z crossref_primary_10_3389_fonc_2022_1037896 crossref_primary_10_1002_jmri_27882 crossref_primary_10_1038_s41596_021_00617_y crossref_primary_10_1016_j_ejrad_2023_111066 crossref_primary_10_1016_j_mri_2020_12_018 crossref_primary_10_1002_jmri_28529 crossref_primary_10_1088_1361_6560_ab3a5a crossref_primary_10_1002_jmri_26908 crossref_primary_10_1007_s12553_020_00452_3 crossref_primary_10_1259_bjro_20210083 crossref_primary_10_3389_fonc_2021_616027 crossref_primary_10_1016_j_ejmp_2020_10_007 crossref_primary_10_1038_s42256_021_00377_0 crossref_primary_10_1055_s_0040_1708823 crossref_primary_10_1016_j_ejmp_2022_10_009 crossref_primary_10_1002_mrm_29075 crossref_primary_10_1016_j_clon_2022_05_005 crossref_primary_10_1002_mrm_29511 crossref_primary_10_1093_noajnl_vdab174 crossref_primary_10_1038_s41582_021_00510_y crossref_primary_10_2967_jnumed_122_265149 crossref_primary_10_3389_fonc_2023_1079040 crossref_primary_10_1016_j_diii_2022_06_001 crossref_primary_10_1002_jmri_27545 crossref_primary_10_1002_mp_15130 crossref_primary_10_1186_s13244_021_01123_1 crossref_primary_10_1186_s13244_022_01253_0 crossref_primary_10_3389_fonc_2024_1395502 crossref_primary_10_1016_j_ejmp_2022_08_015 crossref_primary_10_1016_j_fpurol_2022_06_002 crossref_primary_10_1097_CCO_0000000000000896 crossref_primary_10_1186_s13014_024_02424_7 crossref_primary_10_1016_j_radi_2024_11_009 crossref_primary_10_1038_s41598_021_97966_1 crossref_primary_10_1016_j_semradonc_2022_06_007 crossref_primary_10_1016_j_euo_2024_03_003 crossref_primary_10_1177_02841851231216555 crossref_primary_10_1007_s00117_021_00868_6 crossref_primary_10_3389_fradi_2023_1267615 crossref_primary_10_2967_jnumed_120_256602 crossref_primary_10_1016_j_diii_2023_04_006 crossref_primary_10_3390_tomography9020060 crossref_primary_10_1038_s41598_023_29991_1 crossref_primary_10_1002_cam4_5236 crossref_primary_10_1186_s13550_020_00671_9 crossref_primary_10_1259_bjr_20190580 crossref_primary_10_1016_S2589_7500_24_00069_4 crossref_primary_10_1002_jmri_28662 crossref_primary_10_1016_j_acra_2021_06_009 crossref_primary_10_1088_1361_6560_acbcbb crossref_primary_10_1002_mrm_29084 crossref_primary_10_1186_s40644_021_00436_0 crossref_primary_10_1186_s13014_020_01524_4 crossref_primary_10_1038_s41598_024_78246_0 crossref_primary_10_1007_s10334_021_00985_2 crossref_primary_10_1016_j_ejmp_2022_10_013 crossref_primary_10_1016_j_mri_2021_04_005 crossref_primary_10_1016_j_ejrad_2021_109952 crossref_primary_10_3389_fonc_2021_800547 crossref_primary_10_1016_j_mri_2023_03_016 crossref_primary_10_3389_fonc_2021_656918 crossref_primary_10_1148_radiol_2020192013 crossref_primary_10_3390_tomography9010030 crossref_primary_10_1016_j_mri_2022_01_001 crossref_primary_10_1007_s10334_025_01238_2 crossref_primary_10_1055_a_2157_6670 crossref_primary_10_1111_jon_12959 crossref_primary_10_3389_fphy_2022_891600 crossref_primary_10_1016_j_euros_2022_11_009 crossref_primary_10_3348_kjr_2019_0354 crossref_primary_10_1371_journal_pone_0234520 crossref_primary_10_1088_1361_6560_aca069 crossref_primary_10_1016_j_ejrad_2023_110942 crossref_primary_10_1097_MNM_0000000000001083 crossref_primary_10_2463_jjmrm_2020_1727 crossref_primary_10_3389_fonc_2022_897130 crossref_primary_10_1002_jum_16524 crossref_primary_10_1007_s10334_023_01113_y crossref_primary_10_1038_s43018_023_00619_7 crossref_primary_10_1016_j_radonc_2023_109803 crossref_primary_10_1186_s12880_024_01368_4 crossref_primary_10_1016_j_mri_2024_03_020 crossref_primary_10_1002_mrm_29420 crossref_primary_10_1259_bjr_20190105 crossref_primary_10_3390_tomography9020048 crossref_primary_10_1016_j_phro_2025_100720 crossref_primary_10_1186_s12885_024_12934_y crossref_primary_10_1007_s00330_023_10234_w crossref_primary_10_1007_s11307_024_01966_2 crossref_primary_10_1002_jmri_28431 crossref_primary_10_1016_j_nic_2020_04_002 crossref_primary_10_1007_s10334_025_01231_9 crossref_primary_10_1148_radiol_233055 crossref_primary_10_1002_acm2_12982 crossref_primary_10_1088_2057_1976_ad9156 crossref_primary_10_23736_S1824_4785_19_03217_5 crossref_primary_10_1016_j_mri_2024_110316 crossref_primary_10_1186_s13244_024_01884_5 crossref_primary_10_1002_mrm_29450 crossref_primary_10_1186_s13244_019_0703_0 crossref_primary_10_1186_s13244_019_0764_0 crossref_primary_10_1016_j_acra_2022_09_017 crossref_primary_10_1016_j_mri_2019_07_011 crossref_primary_10_1148_radiol_232313 crossref_primary_10_1016_j_mric_2023_09_001 crossref_primary_10_1093_noajnl_vdad092 crossref_primary_10_1016_j_mric_2023_09_003 crossref_primary_10_3389_fonc_2024_1433197 crossref_primary_10_1259_bjr_20220624 crossref_primary_10_1111_1754_9485_13242 crossref_primary_10_3390_cancers15174219 crossref_primary_10_1016_j_phro_2024_100570 crossref_primary_10_1148_radiol_2021203628 crossref_primary_10_1259_bjr_20230378 crossref_primary_10_1038_s41598_024_62470_9 crossref_primary_10_3389_fonc_2024_1380793 crossref_primary_10_1007_s00330_023_10198_x crossref_primary_10_1016_j_hoc_2019_09_010 crossref_primary_10_1016_j_radonc_2023_109717 crossref_primary_10_1117_1_JMI_11_2_024002 crossref_primary_10_1016_j_radonc_2021_09_020 crossref_primary_10_1002_mrm_30344 crossref_primary_10_1177_09622802241227959 crossref_primary_10_1016_j_ejca_2021_04_041 crossref_primary_10_1259_bjr_20191004 crossref_primary_10_1200_EDBK_320951 crossref_primary_10_2214_AJR_23_30612 crossref_primary_10_1016_j_ejmp_2022_06_018 crossref_primary_10_1002_jmri_28486 crossref_primary_10_1186_s40364_023_00476_7 crossref_primary_10_1016_j_ejmp_2021_04_020 crossref_primary_10_1148_rycan_2020190094 crossref_primary_10_3390_cancers15112992 crossref_primary_10_1016_j_ejmp_2021_09_001 crossref_primary_10_1002_jmri_27148 crossref_primary_10_1007_s10334_025_01244_4 crossref_primary_10_1002_mrm_30213 crossref_primary_10_1007_s11547_024_01921_9 crossref_primary_10_3390_cancers15112995 crossref_primary_10_3390_cancers15153757 crossref_primary_10_1007_s11060_021_03933_1 crossref_primary_10_1007_s00330_024_10720_9 crossref_primary_10_1002_mrm_29909 crossref_primary_10_1016_j_media_2021_102186 crossref_primary_10_1016_j_mri_2024_02_008 crossref_primary_10_1093_bjr_tqae005 crossref_primary_10_1016_j_esmorw_2025_100120 crossref_primary_10_1055_a_1718_4128 crossref_primary_10_1186_s40644_022_00508_9 crossref_primary_10_1002_mp_17067 crossref_primary_10_1016_j_phro_2024_100548 crossref_primary_10_1007_s00330_022_09088_5 crossref_primary_10_1016_j_radonc_2020_09_046 crossref_primary_10_1158_0008_5472_CAN_22_1329 crossref_primary_10_1002_mp_17739 crossref_primary_10_1016_j_ejrad_2024_111730 crossref_primary_10_3389_fonc_2019_01264 crossref_primary_10_1055_a_1079_3855 crossref_primary_10_1016_j_radonc_2022_07_020 crossref_primary_10_1002_mp_15556 crossref_primary_10_1016_j_phro_2024_100653 crossref_primary_10_1148_radiol_2019190545 crossref_primary_10_3389_fonc_2022_1020907 crossref_primary_10_17816_DD60393 crossref_primary_10_1136_bmjopen_2021_051274 |
Cites_doi | 10.1016/j.mri.2012.04.009 10.2214/AJR.11.6861 10.1002/jmri.22215 10.1016/j.acra.2014.10.006 10.1016/j.mri.2011.07.024 10.3174/ajnr.A5023 10.1593/tlo.13877 10.1016/j.ijrobp.2010.11.022 10.1148/radiol.11091409 10.1007/s11604-015-0503-5 10.1102/1470-7330.2013.0019 10.1148/radiol.2015150013 10.1002/mrm.22171 10.1007/s00261-016-0646-6 10.1002/jmri.24661 10.4329/wjr.v9.i12.416 10.1259/bjr.20160715 10.1002/mrm.23211 10.1038/nature11971 10.1259/bjr.20160768 10.1148/radiol.2381042117 10.1007/s00330-012-2654-4 10.1002/mrm.24782 10.1016/j.mric.2010.07.002 10.1039/b005319h 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S 10.1097/RMR.0000000000000103 10.1007/s00330-012-2446-x 10.1148/radiol.09090021 10.1593/tlo.13838 10.1002/mrm.25323 10.1002/jmri.22726 10.1038/sj.bjc.6602550 10.1148/radiol.13130420 10.1007/s00261-015-0590-x 10.1155/2011/732848 10.1002/jmri.23636 10.1016/j.mric.2015.08.011 10.1002/mrm.10014 10.1002/(SICI)1522-2586(199912)10:6<903::AID-JMRI1>3.0.CO;2-A 10.1002/mrm.26405 10.1002/mrm.25639 10.1158/1078-0432.CCR-08-1287 10.1148/radiology.171.3.2717764 10.1016/j.mric.2016.07.004 10.1097/RMR.0000000000000027 10.1177/0962280214537333 10.1002/jmri.21393 10.1002/jmri.24883 10.1002/jmri.21732 10.1016/j.ijrobp.2011.02.044 10.1016/S0730-725X(98)00130-1 10.1148/radiol.12112374 10.1088/0031-9155/56/17/018 10.1002/jmri.22363 10.1093/jnci/92.24.2029 10.1002/mrm.21608 10.1118/1.3615058 10.1007/s10585-016-9778-x 10.1088/0031-9155/55/1/008 10.1016/j.acra.2015.12.020 10.1259/bjr.20170577 10.1002/jmri.10377 10.1002/mrm.22333 10.1016/j.neuroimage.2006.09.020 10.1016/j.eururo.2015.08.052 10.1016/j.acra.2016.09.025 10.1148/radiol.2502080849 10.1002/mrm.22423 10.1002/mrm.22596 10.2214/AJR.12.8510 10.1148/radiol.2016152037 10.1002/jmri.24486 10.1016/j.ejrad.2010.03.016 10.1016/j.mri.2006.09.006 10.1007/s11523-010-0135-8 10.1016/j.neuroimage.2013.01.038 10.1002/jmri.20529 10.1016/j.ijrobp.2006.09.020 10.1259/bjr/32269440 10.1002/mrm.21066 10.1259/bjr/70653746 10.1097/RLI.0000000000000329 10.1002/jmri.22167 10.1148/radiol.11102413 10.1158/1078-0432.CCR-14-0044 10.1038/nrclinonc.2016.108 10.2214/AJR.07.3657 10.1177/0962280214537394 10.1148/radiol.13130973 10.1002/jmri.23825 10.1056/NEJMoa065447 10.1002/jmri.24271 10.1148/radiol.2017170550 10.1002/jmri.24359 10.1002/jmri.25479 10.1002/mrm.22357 10.1038/nrclinonc.2016.162 10.1016/j.mri.2014.08.040 10.1002/nbm.2934 10.1177/0962280214537344 10.1593/neo.81328 10.3174/ajnr.A5025 10.1016/j.mri.2007.03.030 10.1593/tlo.13748 10.18383/j.tom.2016.00229 10.1002/jmri.21513 10.1002/0470869526 10.2214/AJR.09.3116 10.1016/j.acra.2014.04.013 10.1016/j.nic.2009.08.009 10.1002/jmri.22179 10.1002/jmri.25196 10.3174/ajnr.A1844 10.1016/j.neuroimage.2009.07.068 10.1016/j.mri.2015.10.025 10.1007/s00330-017-4828-6 10.1002/jmri.26011 10.1038/sdata.2014.37 10.1148/radiol.2015142202 10.1002/mrm.26903 10.1371/journal.pone.0115667 10.4329/wjr.v8.i1.21 10.1002/jmri.1880070113 10.1118/1.4948997 10.1002/jmri.23602 10.1002/jmri.25101 10.1148/radiol.12110748 10.1002/jmri.22838 10.1002/nbm.3458 10.1002/mp.12466 10.1016/j.tranon.2015.11.016 |
ContentType | Journal Article |
Copyright | 2018 International Society for Magnetic Resonance in Medicine 2018 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2018 International Society for Magnetic Resonance in Medicine – notice: 2018 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1002/jmri.26518 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | e121 |
ExternalDocumentID | PMC6526078 30451345 10_1002_jmri_26518 JMRI26518 |
Genre | reviewArticle Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB funderid: HHSN268201000050C; HHSN268201300071C; HHSN268201500021C – fundername: National Institutes of Health (NIH) funderid: U01 CA211205; U01 CA166104; P01 CA085878; R01 CA190299; U01 CA154602 – fundername: SC CTSI (NIH/NCRR/NCATS) funderid: KL2TR000131; NIH 1 L30; CA209248‐01; NIH P30CA013148; R01 CA148708 – fundername: Oregon Health & Science University Circle of Giving Award – fundername: NCI NIH HHS grantid: P30 CA006973 – fundername: NCI NIH HHS grantid: L30 CA209248 – fundername: NCI NIH HHS grantid: U01 CA154602 – fundername: NCI NIH HHS grantid: U01 CA166104 – fundername: NIBIB NIH HHS grantid: HHSN268201000050C – fundername: NCI NIH HHS grantid: U01 CA140204 – fundername: NCI NIH HHS grantid: R01 CA190299 – fundername: NIBIB NIH HHS grantid: HHSN268201300071C – fundername: NCI NIH HHS grantid: R01 CA148708 – fundername: NCATS NIH HHS grantid: KL2 TR000131 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7X8 5PM |
ID | FETCH-LOGICAL-c4868-fcf703b2f19d24cd4a52988f8549f0b5215bb58038aacbc167df6000f8c5e4493 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Thu Aug 21 18:17:46 EDT 2025 Fri Jul 11 16:02:18 EDT 2025 Mon Jul 21 06:03:05 EDT 2025 Tue Jul 01 03:56:41 EDT 2025 Thu Apr 24 23:06:35 EDT 2025 Wed Jan 22 16:42:52 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | MRI DCE DWI quantitative imaging biomarkers |
Language | English |
License | 2018 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4868-fcf703b2f19d24cd4a52988f8549f0b5215bb58038aacbc167df6000f8c5e4493 |
Notes | The first two authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.26518 |
PMID | 30451345 |
PQID | 2135635358 |
PQPubID | 23479 |
PageCount | 28 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6526078 proquest_miscellaneous_2135635358 pubmed_primary_30451345 crossref_citationtrail_10_1002_jmri_26518 crossref_primary_10_1002_jmri_26518 wiley_primary_10_1002_jmri_26518_JMRI26518 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2019 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2019 |
References | 2008; 191 2018; 286 2010; 18 2015; 73 2014; 27 2000; 92 2011; 56 2014; 23 2014; 21 2016; 34 1997; 7 2016; 33 2011; 197 2014; 20 1998; 16 2009; 11 2018; 5 2006; 23 2008; 27 2008; 28 2016; 43 2016; 41 2011; 65 2010; 194 2016; 279 2009; 19 2010; 5 2012; 22 2007; 67 2009; 15 2016; 44 2011; 259 2010; 32 2010; 31 2006; 56 2008; 59 2014; 271 2012; 36 2012; 35 2014; 40 2006; 238 2016; 13 2012; 30 2017; 52 2010; 49 2012; 198 2016; 2 2013; 72 2018; 91 2005; 92 2014; 39 2011; 261 2016; 25 2016; 8 2016; 24 2016; 9 2016; 23 2010; 55 2013; 23 2017; 44 2015; 33 2017; 45 2016; 76 2016; 75 2000; 2 2003; 18 2007; 34 2010; 63 2017; 9 2014; 1 2002; 47 2017; 30 2010; 64 2013; 13 2017; 38 2015; 42 2015; 41 1999; 10 2014; 9 2012; 68 2014; 7 2011; 29 2007; 25 2018; 79 2012; 82 2010; 76 2012; 263 2012; 265 2017; 27 2017; 24 2009 2013; 268 2009; 250 2011; 34 2008; 11 2003 2011; 38 2003; 76 2009; 29 2015; 24 2007; 356 2011; 2011 2013; 37 2017; 90 2017; 14 2015; 277 2015; 22 1989; 171 2010; 254 2018 2017 2015 2013; 495 2013 2014; 71 2016; 69 2012; 85 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 Chen J (e_1_2_7_99_1) 2008; 11 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 D'Orsi CJ SE (e_1_2_7_105_1) 2013 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_135_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_117_1 Obuchowski NA (e_1_2_7_45_1) 2017 e_1_2_7_113_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_132_1 e_1_2_7_136_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 Boss MA (e_1_2_7_62_1) 2015 e_1_2_7_17_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_28_1 e_1_2_7_118_1 e_1_2_7_114_1 Newitt DC (e_1_2_7_51_1) 2018; 5 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_138_1 |
References_xml | – volume: 10 start-page: 903 year: 1999 end-page: 907 article-title: MR imaging of tumor microcirculation: promise for the new millennium publication-title: J Magn Reson Imaging – volume: 76 start-page: 1668 year: 2016 end-page: 1676 article-title: Reduced field‐of‐view DWI with robust fat suppression and unrestricted slice coverage using tilted 2D RF excitation publication-title: Magn Reson Med – volume: 194 start-page: W134 year: 2010 end-page: 140 article-title: Reproducibility of perfusion parameters in dynamic contrast‐enhanced MRI of lung and liver tumors: effect on estimates of patient sample size in clinical trials and on individual patient responses publication-title: AJR Am J Roentgenol – volume: 286 start-page: 486 year: 2018 end-page: 498 article-title: Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: A meta‐analysis publication-title: Radiology – volume: 73 start-page: 1988 year: 2015 end-page: 1998 article-title: Evaluation of different mathematical models for diffusion‐weighted imaging of normal prostate and prostate cancer using high b‐values: a repeatability study publication-title: Magn Reson Med – volume: 65 start-page: 250 year: 2011 end-page: 260 article-title: Dynamic contrast‐enhanced MRI of neuroendocrine hepatic metastases: A feasibility study using a dual‐input two‐compartment model publication-title: Magn Reson Med – volume: 259 start-page: 453 year: 2011 end-page: 461 article-title: Relationship between apparent diffusion coefficients at 3.0‐T MR imaging and Gleason grade in peripheral zone prostate cancer publication-title: Radiology – volume: 47 start-page: 42 year: 2002 end-page: 52 article-title: Multishot diffusion‐weighted FSE using PROPELLER MRI publication-title: Magn Reson Med – volume: 15 start-page: 986 year: 2009 end-page: 994 article-title: Diffusion‐weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck publication-title: Clin Cancer Res – volume: 23 start-page: 243 year: 2014 end-page: 257 article-title: Multiparametric magnetic resonance imaging of the prostate: technical aspects and role in clinical management publication-title: Top Magn Reson Imaging – volume: 7 start-page: 153 year: 2014 end-page: 166 article-title: Variations of dynamic contrast‐enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge publication-title: Transl Oncol – volume: 43 start-page: 2998 year: 2016 end-page: 3007 article-title: Development of a temperature‐controlled phantom for magnetic resonance quality assurance of diffusion, dynamic, and relaxometry measurements publication-title: Med Phys – volume: 25 start-page: 245 year: 2016 end-page: 254 article-title: DCE‐MRI, DW‐MRI, and MRS in cancer: Challenges and advantages of implementing qualitative and quantitative multi‐parametric imaging in the clinic publication-title: Top Magn Reson Imaging – volume: 38 start-page: 485 year: 2017 end-page: 491 article-title: Diagnostic accuracy of T1‐weighted dynamic contrast‐enhanced‐MRI and DWI‐ADC for differentiation of glioblastoma and primary CNS lymphoma publication-title: AJNR Am J Neuroradiol – volume: 37 start-page: 1238 year: 2013 end-page: 1246 article-title: Multi‐system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice‐water phantom publication-title: J Magn Reson Imaging – volume: 268 start-page: 318 year: 2013 end-page: 322 article-title: Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure publication-title: Radiology – volume: 31 start-page: 549 year: 2010 end-page: 553 article-title: Candidate biomarkers of extravascular extracellular space: a direct comparison of apparent diffusion coefficient and dynamic contrast‐enhanced MR imaging—derived measurement of the volume of the extravascular extracellular space in glioblastoma multiforme publication-title: AJNR Am J Neuroradiol – volume: 38 start-page: 537 year: 2017 end-page: 545 article-title: Toward precision and reproducibility of diffusion tensor imaging: a multicenter diffusion phantom and traveling volunteer study publication-title: AJNR Am J Neuroradiol – volume: 56 start-page: 5753 year: 2011 end-page: 5769 article-title: A novel AIF tracking method and comparison of DCE‐MRI parameters using individual and population‐based AIFs in human breast cancer publication-title: Phys Med Biol – volume: 41 start-page: 854 year: 2016 end-page: 861 article-title: The expanding landscape of diffusion‐weighted MRI in prostate cancer publication-title: Abdom Radiol – volume: 41 start-page: 1365 year: 2015 end-page: 1373 article-title: Dynamic contrast‐enhanced MRI of the prostate with high spatiotemporal resolution using compressed sensing, parallel |imaging, and continuous golden‐angle radial sampling: preliminary experience publication-title: J Magn Reson Imaging – volume: 24 start-page: 27 year: 2015 end-page: 67 article-title: Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment publication-title: Stat Methods Med Res – volume: 7 start-page: 94 year: 2014 end-page: 100 article-title: Real‐time measurement of functional tumor volume by MRI to assess treatment response in breast cancer neoadjuvant clinical trials: Validation of the Aegis SER Software Platform publication-title: Transl Oncol – volume: 279 start-page: 278 year: 2016 end-page: 286 article-title: MR fingerprinting for rapid quantitative abdominal imaging publication-title: Radiology – volume: 27 start-page: 4552 year: 2017 end-page: 4562 article-title: Diffusion‐weighted (DW) MRI in lung cancers: ADC test–retest repeatability publication-title: Eur Radiol – volume: 56 start-page: 993 year: 2006 end-page: 1000 article-title: Experimentally‐derived functional form for a population‐averaged high‐temporal‐resolution arterial input function for dynamic contrast‐enhanced MRI publication-title: Magn Reson Med – volume: 39 start-page: 1213 year: 2014 end-page: 1222 article-title: Optimization of b‐value distribution for biexponential diffusion‐weighted MR imaging of normal prostate publication-title: J Magn Reson Imaging – volume: 24 start-page: 232 year: 2017 end-page: 245 article-title: Performance observations of scanner qualification of NCI‐designated cancer centers: results from the Centers of Quantitative Imaging Excellence (CQIE) Program publication-title: Acad Radiol – volume: 38 start-page: 4866 year: 2011 end-page: 4880 article-title: Development of a dynamic flow imaging phantom for dynamic contrast‐enhanced CT publication-title: Med Phys – volume: 35 start-page: 1484 year: 2012 end-page: 1492 article-title: DIfferential Subsampling with Cartesian Ordering (DISCO): a high spatio‐temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging publication-title: J Magn Reson Imaging – volume: 91 start-page: 20170577 year: 2018 article-title: UK quantitative WB‐DWI technical workgroup: consensus meeting recommendations on optimisation, quality |control, processing and analysis of quantitative whole‐body diffusion‐weighted imaging for cancer publication-title: Br J Radiol – volume: 5 start-page: 39 year: 2010 end-page: 52 article-title: Diffusion‐weighted (DW) and dynamic contrast‐enhanced (DCE) magnetic resonance imaging (MRI) for monitoring anticancer therapy publication-title: Target Oncol – volume: 13 start-page: 725 year: 2016 end-page: 739 article-title: Non‐invasive metabolic imaging of brain tumours in the era of precision medicine publication-title: Nat Rev Clin Oncol – volume: 16 start-page: 1057 year: 1998 end-page: 1073 article-title: Temporal sampling requirements for the tracer kinetics modeling of breast disease publication-title: Magn Reson Imaging – volume: 64 start-page: 725 year: 2010 end-page: 733 article-title: T1 corrected B1 mapping using multi‐TR gradient echo sequences publication-title: Magn Reson Med – year: 2017 article-title: Quantitative imaging biomarkers: Effect of sample size and bias on confidence interval coverage publication-title: Stat Methods Med Res – volume: 356 start-page: 1295 year: 2007 end-page: 1303 article-title: MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer publication-title: N Engl J Med – volume: 92 start-page: 1599 year: 2005 end-page: 1610 article-title: The assessment of antiangiogenic and antivascular therapies in early‐stage clinical trials using magnetic resonance imaging: issues and recommendations publication-title: Br J Cancer – volume: 29 start-page: 1199 year: 2009 end-page: 1205 article-title: Repeatability of quantitative parameters derived from diffusion tensor imaging in patients with glioblastoma multiforme publication-title: J Magn Reson Imaging – volume: 8 start-page: 21 year: 2016 end-page: 49 article-title: Diffusion‐weighted magnetic resonance imaging in cancer: Reported apparent diffusion coefficients, in‐vitro and in‐vivo reproducibility publication-title: World J Radiol – volume: 44 start-page: 5198 year: 2017 end-page: 5209 article-title: Portable perfusion phantom for quantitative DCE‐MRI of the abdomen publication-title: Med Phys – volume: 24 start-page: 123 year: 2016 end-page: 133 article-title: Evaluation of head and neck tumors with functional MR imaging publication-title: Magn Reson Imaging Clin N Am – volume: 9 start-page: 416 year: 2017 end-page: 425 article-title: Dynamic contrast‐enhanced magnetic resonance imaging of prostate cancer: A review of current methods and applications publication-title: World J Radiol – volume: 23 start-page: 496 year: 2016 end-page: 506 article-title: Statistical issues in testing conformance with the quantitative imaging biomarker alliance (QIBA) profile claims publication-title: Acad Radiol – volume: 36 start-page: 411 year: 2012 end-page: 421 article-title: Correction of arterial input function in dynamic contrast‐enhanced MRI of the liver publication-title: J Magn Reson Imaging – volume: 14 start-page: 169 year: 2017 end-page: 186 article-title: Imaging biomarker roadmap for cancer studies publication-title: Nat Rev Clin Oncol – volume: 27 start-page: 1461 year: 2008 end-page: 1467 article-title: Contrast‐enhanced timing robust acquisition order with a preparation of the longitudinal signal component (CENTRA plus) for 3D contrast‐enhanced abdominal imaging publication-title: J Magn Reson Imaging – volume: 22 start-page: 1451 year: 2012 end-page: 1464 article-title: Imaging vascular function for early stage clinical trials using dynamic contrast‐enhanced magnetic resonance imaging publication-title: Eur Radiol – volume: 29 start-page: 1215 year: 2011 end-page: 1221 article-title: Diffusion‐weighted MRI: influence of intravoxel fat signal and breast density on breast tumor conspicuity and apparent diffusion coefficient measurements publication-title: Magn Reson Imaging – volume: 2 start-page: 411 year: 2016 end-page: 420 article-title: Comparison between 3‐scan trace and diagonal body diffusion‐weighted imaging acquisitions: a phantom and volunteer study publication-title: Tomography – volume: 7 start-page: 91 year: 1997 end-page: 101 article-title: Modeling tracer kinetics in dynamic Gd‐DTPA MR imaging publication-title: J Magn Reson Imaging – volume: 24 start-page: 141 year: 2015 end-page: 174 article-title: Meta‐analysis of the technical performance of an imaging procedure: guidelines and statistical methodology publication-title: Stat Methods Med Res – volume: 18 start-page: 565 year: 2010 end-page: 585 article-title: Functional magnetic resonance imaging of the liver: parametric assessments beyond morphology publication-title: Magn Reson Imaging Clin N Am – volume: 67 start-page: 960 year: 2007 end-page: 971 article-title: Detection of head and neck squamous cell carcinoma with diffusion weighted MRI after (chemo)radiotherapy: Correlation between radiologic and histopathologic findings publication-title: Int J Radiat Oncol Biol Phys – volume: 44 start-page: 521 year: 2016 end-page: 540 article-title: Diffusion‐weighted imaging outside the brain: Consensus statement from an ISMRM‐sponsored workshop publication-title: J Magn Reson Imaging – volume: 31 start-page: 1371 year: 2010 end-page: 1378 article-title: Pharmacokinetic mapping for lesion classification in dynamic breast MRI publication-title: J Magn Reson Imaging – volume: 68 start-page: 241 year: 2012 end-page: 251 article-title: Model selection for DCE‐T1 studies in glioblastoma publication-title: Magn Reson Med – volume: 33 start-page: 56 year: 2015 end-page: 62 article-title: Reduced‐FOV excitation decreases susceptibility artifact in diffusion‐weighted MRI with endorectal coil for prostate cancer detection publication-title: Magn Reson Imaging – volume: 43 start-page: 1288 year: 2016 end-page: 1300 article-title: Dynamic contrast‐enhanced MRI: Study of inter‐software accuracy and reproducibility using simulated and clinical data publication-title: J Magn Reson Imaging – volume: 271 start-page: 143 year: 2014 end-page: 152 article-title: Prostate cancer aggressiveness: assessment with whole‐lesion histogram analysis of the apparent diffusion coefficient publication-title: Radiology – volume: 52 start-page: 198 year: 2017 end-page: 205 article-title: Novel high spatiotemporal resolution versus standard‐of‐care dynamic contrast‐enhanced breast MRI: Comparison of image quality publication-title: Invest Radiol – volume: 34 start-page: 733 year: 2007 end-page: 742 article-title: Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age‐related differences publication-title: NeuroImage – year: 2013 – year: 2009 – volume: 250 start-page: 459 year: 2009 end-page: 465 article-title: Short‐ and midterm reproducibility of apparent diffusion coefficient measurements at 3.0‐T diffusion‐weighted imaging of the abdomen publication-title: Radiology – volume: 263 start-page: 663 year: 2012 end-page: 672 article-title: Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy—results from ACRIN 6657/I‐SPY TRIAL publication-title: Radiology – volume: 69 start-page: 16 year: 2016 end-page: 40 article-title: PI‐RADS Prostate Imaging Reporting and Data System: 2015, Version 2 publication-title: Eur Urol – volume: 90 start-page: 20160715 year: 2017 article-title: The potential of multiparametric MRI of the breast publication-title: Br J Radiol – volume: 75 start-page: 1677 year: 2016 end-page: 1684 article-title: Improved T1, contrast concentration, and pharmacokinetic parameter quantification in the presence of fat with two‐point Dixon for dynamic contrast‐enhanced magnetic resonance imaging publication-title: Magn Reson Med – volume: 41 start-page: 817 year: 2016 end-page: 830 article-title: Practical aspects of prostate MRI: hardware and software considerations, protocols, and patient preparation publication-title: Abdom Radiol – volume: 76 start-page: 348 year: 2010 end-page: 358 article-title: Diffusion and perfusion imaging of the liver publication-title: Eur J Radiol – volume: 33 start-page: 277 year: 2016 end-page: 284 article-title: The predictive capacity of apparent diffusion coefficient (ADC) in response assessment of brain metastases following radiation publication-title: Clin Exp Metastasis – volume: 92 start-page: 2029 year: 2000 end-page: 2036 article-title: Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors publication-title: J Natl Cancer Inst – volume: 32 start-page: 155 year: 2010 end-page: 164 article-title: Reproducibility and correlation between quantitative and semiquantitative dynamic and intrinsic susceptibility‐weighted MRI parameters in the benign and malignant human prostate publication-title: J Magn Reson Imaging – volume: 79 start-page: 2564 year: 2018 end-page: 2575 article-title: Accuracy, repeatability, and interplatform reproducibility of T1 quantification methods used for DCE‐MRI: Results from a multicenter phantom study publication-title: Magn Reson Med – volume: 23 start-page: 748 year: 2013 end-page: 756 article-title: Diffusion‐weighted MR imaging in liver metastases of colorectal cancer: reproducibility and biological validation publication-title: Eur Radiol – volume: 90 start-page: 20160768 year: 2017 article-title: The emerging potential of magnetic resonance imaging in personalizing radiotherapy for head and neck cancer: an oncologist's perspective publication-title: Br J Radiol – volume: 25 start-page: 1 year: 2007 end-page: 13 article-title: Integration of quantitative DCE‐MRI and ADC mapping to monitor treatment response in human breast cancer: initial results publication-title: Magn Reson Imaging – volume: 34 start-page: 983 year: 2011 end-page: 987 article-title: Diffusion coefficient measurement using a temperature‐controlled fluid for quality control in multicenter studies publication-title: J Magn Reson Imaging – volume: 63 start-page: 1315 year: 2010 end-page: 1322 article-title: B1 mapping by Bloch‐Siegert shift publication-title: Magn Reson Med – volume: 35 start-page: 745 year: 2012 end-page: 763 article-title: Tumor response assessments with diffusion and perfusion MRI publication-title: J Magn Reson Imaging – volume: 5 start-page: 011003 year: 2018 article-title: Multisite concordance of apparent diffusion coefficient measurements across the NCI Quantitative Imaging Network publication-title: J Med Imaging – volume: 2 start-page: 4740 year: 2000 end-page: 4742 article-title: Temperature‐dependent self‐diffusion coefficients of water and six selected molecular liquids for calibration in accurate H‐1 NMR PFG measurements publication-title: Phys Chem Chem Phys – volume: 197 start-page: 1382 year: 2011 end-page: 1390 article-title: Diffusion‐weighted and dynamic contrast‐enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis publication-title: AJR Am J Roentgenol – volume: 40 start-page: 448 year: 2014 end-page: 456 article-title: Apparent diffusion coefficient measurements as very early predictive markers of response to chemotherapy in hepatic metastasis: a preliminary investigation of reproducibility and diagnostic value publication-title: J Magn Reson Imaging – volume: 82 start-page: 299 year: 2012 end-page: 307 article-title: Tumor metabolism and perfusion in head and neck squamous cell carcinoma: pretreatment multimodality imaging with 1H magnetic resonance spectroscopy, dynamic contrast‐enhanced MRI, and [18F]FDG‐PET publication-title: Int J Radiat Oncol Biol Phys – volume: 30 start-page: 1257 year: 2012 end-page: 1267 article-title: A feasible high spatiotemporal resolution breast DCE‐MRI protocol for clinical settings publication-title: Magn Reson Imaging – volume: 191 start-page: 1154 year: 2008 end-page: 1158 article-title: MRI artifact reduction and quality improvement in the upper abdomen with PROPELLER and prospective acquisition correction (PACE) technique publication-title: AJR Am J Roentgenol – volume: 64 start-page: 439 year: 2010 end-page: 446 article-title: Rapid B1 + mapping using a preconditioning RF pulse with TurboFLASH readout publication-title: Magn Reson Med – volume: 495 start-page: 187 year: 2013 end-page: 192 article-title: Magnetic resonance fingerprinting publication-title: Nature – volume: 279 start-page: 44 year: 2016 end-page: 55 article-title: Neoadjuvant chemotherapy for breast cancer: functional tumor volume by MR imaging predicts recurrence‐free survival‐results from the ACRIN 6657/CALGB 150007 I‐SPY 1 TRIAL publication-title: Radiology – volume: 24 start-page: 9 year: 2015 end-page: 26 article-title: The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions publication-title: Stat Methods Med Res – volume: 20 start-page: 3705 year: 2014 end-page: 3711 article-title: Prostate MRI: evaluating tumor volume and apparent diffusion coefficient as surrogate biomarkers for predicting tumor Gleason score publication-title: Clin Cancer Res – volume: 238 start-page: 42 year: 2006 end-page: 53 article-title: Diagnostic architectural and dynamic features at breast MR imaging: Multicenter study publication-title: Radiology – volume: 11 start-page: 594 issue: Pt 1 year: 2008 end-page: 601 article-title: Automatic determination of arterial input function for dynamic contrast enhanced MRI in tumor assessment publication-title: Med Image Comput Comput Assist Interv – volume: 9 start-page: e115667 year: 2014 article-title: DCE‐MRI of the liver: reconstruction of the arterial input function using a low dose pre‐bolus contrast injection publication-title: PLoS One – volume: 28 start-page: 1173 year: 2008 end-page: 1179 article-title: Apparent diffusion coefficient: prostate cancer versus noncancerous tissue according to anatomical region publication-title: J Magn Reson Imaging – volume: 21 start-page: 1195 year: 2014 end-page: 1203 article-title: Breast DCE‐MRI: influence of postcontrast timing on automated lesion kinetics assessments and discrimination of benign and malignant lesions publication-title: Acad Radiol – volume: 19 start-page: 559 year: 2009 end-page: 571 article-title: Diffusion imaging for therapy response assessment of brain tumor publication-title: Neuroimaging Clin N Am – volume: 59 start-page: 1448 year: 2008 end-page: 1456 article-title: Improving the pharmacokinetic parameter measurement in dynamic contrast‐enhanced MRI by use of the arterial input function: theory and clinical application publication-title: Magn Reson Med – volume: 49 start-page: 104 year: 2010 end-page: 113 article-title: The QUASAR reproducibility study, Part II: Results from a multi‐center Arterial Spin Labeling test‐retest study publication-title: NeuroImage – volume: 18 start-page: 427 year: 2003 end-page: 433 article-title: Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain publication-title: J Magn Reson Imaging – volume: 22 start-page: 363 year: 2015 end-page: 369 article-title: Pediatric brain tumor consortium multisite assessment of apparent diffusion coefficient z‐axis variation assessed with an ice‐water phantom publication-title: Acad Radiol – volume: 23 start-page: 554 year: 2006 end-page: 563 article-title: Comparative study into the robustness of compartmental modeling and model‐free analysis in DCE‐MRI studies publication-title: J Magn Reson Imaging – volume: 40 start-page: 1487 year: 2014 end-page: 1495 article-title: Practical estimate of gradient nonlinearity for implementation of apparent diffusion coefficient bias correction publication-title: J Magn Reson Imaging – year: 2015 – volume: 9 start-page: 8 year: 2016 end-page: 17 article-title: Early prediction and evaluation of breast cancer response to neoadjuvant chemotherapy using quantitative DCE‐MRI publication-title: Transl Oncol – volume: 32 start-page: 2 year: 2010 end-page: 16 article-title: Predicting and monitoring cancer treatment response with diffusion‐weighted MRI publication-title: J Magn Reson Imaging – volume: 63 start-page: 811 year: 2010 end-page: 816 article-title: The influence of temporal resolution in determining pharmacokinetic parameters from DCE‐MRI data publication-title: Magn Reson Med – volume: 34 start-page: 197 year: 2016 end-page: 203 article-title: Arterial input functions (AIFs) measured directly from arteries with low and standard doses of contrast agent, and AIFs derived from reference tissues publication-title: Magn Reson Imaging – volume: 85 start-page: 1507 year: 2012 end-page: 1512 article-title: In vitro and in vivo repeatability of abdominal diffusion‐weighted MRI publication-title: Br J Radiol – volume: 30 issue: 3 year: 2017 article-title: Diffusion MRI in early cancer therapeutic response assessment publication-title: NMR Biomed – volume: 171 start-page: 853 year: 1989 end-page: 857 article-title: Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia publication-title: Radiology – volume: 82 start-page: 1098 year: 2012 end-page: 1107 article-title: Diffusion‐weighted magnetic resonance imaging early after chemoradiotherapy to monitor treatment response in head‐and‐neck squamous cell carcinoma publication-title: Int J Radiat Oncol Biol Phys – year: 2003 – volume: 42 start-page: 908 year: 2015 end-page: 919 article-title: Gradient nonlinearity correction to improve apparent diffusion coefficient accuracy and standardization in the american college of radiology imaging network 6698 breast cancer trial publication-title: J Magn Reson Imaging – year: 2018 article-title: Repeatability, reproducibility, and accuracy of quantitative MRI of the breast in the community radiology setting publication-title: J Magn Reson Imaging – volume: 265 start-page: 260 year: 2012 end-page: 266 article-title: Interpatient variation in normal peripheral zone apparent diffusion coefficient: effect on the prediction of prostate cancer aggressiveness publication-title: Radiology – volume: 72 start-page: 41 year: 2013 end-page: 47 article-title: A robust multi‐shot scan strategy for high‐resolution diffusion weighted MRI enabled by multiplexed sensitivity‐encoding (MUSE) publication-title: NeuroImage – volume: 7 start-page: 14 year: 2014 end-page: 22 article-title: Analyzing spatial heterogeneity in DCE‐ and DW‐MRI parametric maps to optimize prediction of pathologic response to neoadjuvant chemotherapy in breast cancer publication-title: Transl Oncol – volume: 34 start-page: 1099 year: 2011 end-page: 1109 article-title: Diffusion‐weighted and dynamic contrast‐enhanced MRI in evaluation of early treatment effects during neoadjuvant chemotherapy in breast cancer patients publication-title: J Magn Reson Imaging – volume: 10 start-page: 223 year: 1999 end-page: 232 article-title: Estimating kinetic parameters from dynamic contrast‐enhanced T(1)‐weighted MRI of a diffusable tracer: Standardized quantities and symbols publication-title: J Magn Reson Imaging – volume: 55 start-page: 121 year: 2010 end-page: 132 article-title: The accuracy of pharmacokinetic parameter measurement in DCE‐MRI of the breast at 3 T publication-title: Phys Med Biol – volume: 34 start-page: 3 year: 2016 end-page: 9 article-title: Brain gadolinium deposition after administration of gadolinium‐based contrast agents publication-title: Jpn J Radiol – volume: 2011 start-page: 732848 year: 2011 article-title: Quantifying tumor vascular heterogeneity with dynamic contrast‐enhanced magnetic resonance imaging: a review publication-title: J Biomed Biotechnol – volume: 261 start-page: 394 year: 2011 end-page: 403 article-title: Discrimination of benign and malignant breast lesions by using shutter‐speed dynamic contrast‐enhanced MR imaging publication-title: Radiology – volume: 71 start-page: 1592 year: 2014 end-page: 1602 article-title: DCE‐MRI analysis methods for predicting the response of breast cancer to neoadjuvant chemotherapy: pilot study findings publication-title: Magn Reson Med – volume: 24 start-page: 765 year: 2016 end-page: 779 article-title: Perfusion imaging in neuro‐oncology: basic techniques and clinical applications publication-title: Magn Reson Imaging Clin N Am – volume: 45 start-page: 337 year: 2017 end-page: 355 article-title: Diffusion‐weighted breast MRI: Clinical applications and emerging techniques publication-title: J Magn Reson Imaging – volume: 198 start-page: 1277 year: 2012 end-page: 1288 article-title: Overview of dynamic contrast‐enhanced MRI in prostate cancer diagnosis and management publication-title: AJR Am J Roentgenol – volume: 1 start-page: 140037 year: 2014 article-title: Reliability of brain volume measurements: a test–retest dataset publication-title: Sci Data – volume: 25 start-page: 1423 year: 2007 end-page: 1429 article-title: Repeatability of echo‐planar‐based diffusion measurements of the human prostate at 3 T publication-title: Magn Reson Imaging – volume: 277 start-page: 813 year: 2015 end-page: 825 article-title: Metrology standards for quantitative imaging biomarkers publication-title: Radiology – volume: 11 start-page: 102 year: 2009 end-page: 125 article-title: Diffusion‐weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations publication-title: Neoplasia – volume: 76 start-page: 153 year: 2003 end-page: 162 article-title: Reproducibility of quantitative dynamic contrast‐enhanced MRI in newly presenting glioma publication-title: Br J Radiol – volume: 13 start-page: 171 year: 2013 end-page: 185 article-title: Diffusion‐weighted imaging of the liver: an update publication-title: Cancer Imaging – volume: 254 start-page: 47 year: 2010 end-page: 66 article-title: Diffusion‐weighted MR imaging of the liver publication-title: Radiology – volume: 27 start-page: 16 year: 2014 end-page: 24 article-title: Role of MRI in prostate cancer detection publication-title: NMR Biomed – ident: e_1_2_7_113_1 doi: 10.1016/j.mri.2012.04.009 – ident: e_1_2_7_79_1 doi: 10.2214/AJR.11.6861 – ident: e_1_2_7_42_1 doi: 10.1002/jmri.22215 – ident: e_1_2_7_58_1 doi: 10.1016/j.acra.2014.10.006 – ident: e_1_2_7_57_1 doi: 10.1016/j.mri.2011.07.024 – ident: e_1_2_7_82_1 doi: 10.3174/ajnr.A5023 – ident: e_1_2_7_108_1 doi: 10.1593/tlo.13877 – ident: e_1_2_7_56_1 doi: 10.1016/j.ijrobp.2010.11.022 – ident: e_1_2_7_77_1 doi: 10.1148/radiol.11091409 – ident: e_1_2_7_97_1 doi: 10.1007/s11604-015-0503-5 – ident: e_1_2_7_53_1 doi: 10.1102/1470-7330.2013.0019 – ident: e_1_2_7_107_1 doi: 10.1148/radiol.2015150013 – ident: e_1_2_7_109_1 doi: 10.1002/mrm.22171 – ident: e_1_2_7_137_1 doi: 10.1007/s00261-016-0646-6 – ident: e_1_2_7_126_1 doi: 10.1002/jmri.24661 – ident: e_1_2_7_135_1 doi: 10.4329/wjr.v9.i12.416 – ident: e_1_2_7_136_1 doi: 10.1259/bjr.20160715 – ident: e_1_2_7_76_1 doi: 10.1002/mrm.23211 – ident: e_1_2_7_141_1 doi: 10.1038/nature11971 – ident: e_1_2_7_21_1 doi: 10.1259/bjr.20160768 – ident: e_1_2_7_104_1 doi: 10.1148/radiol.2381042117 – ident: e_1_2_7_36_1 doi: 10.1007/s00330-012-2654-4 – ident: e_1_2_7_120_1 doi: 10.1002/mrm.24782 – ident: e_1_2_7_18_1 doi: 10.1016/j.mric.2010.07.002 – ident: e_1_2_7_49_1 doi: 10.1039/b005319h – year: 2017 ident: e_1_2_7_45_1 article-title: Quantitative imaging biomarkers: Effect of sample size and bias on confidence interval coverage publication-title: Stat Methods Med Res – ident: e_1_2_7_15_1 doi: 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S – ident: e_1_2_7_10_1 doi: 10.1097/RMR.0000000000000103 – ident: e_1_2_7_68_1 doi: 10.1007/s00330-012-2446-x – ident: e_1_2_7_81_1 doi: 10.1148/radiol.09090021 – ident: e_1_2_7_114_1 doi: 10.1593/tlo.13838 – ident: e_1_2_7_40_1 doi: 10.1002/mrm.25323 – ident: e_1_2_7_69_1 doi: 10.1002/jmri.22726 – ident: e_1_2_7_67_1 doi: 10.1038/sj.bjc.6602550 – ident: e_1_2_7_47_1 doi: 10.1148/radiol.13130420 – ident: e_1_2_7_125_1 doi: 10.1007/s00261-015-0590-x – ident: e_1_2_7_138_1 doi: 10.1155/2011/732848 – ident: e_1_2_7_133_1 doi: 10.1002/jmri.23636 – ident: e_1_2_7_11_1 doi: 10.1016/j.mric.2015.08.011 – ident: e_1_2_7_91_1 doi: 10.1002/mrm.10014 – ident: e_1_2_7_66_1 doi: 10.1002/(SICI)1522-2586(199912)10:6<903::AID-JMRI1>3.0.CO;2-A – ident: e_1_2_7_88_1 doi: 10.1002/mrm.26405 – ident: e_1_2_7_130_1 doi: 10.1002/mrm.25639 – ident: e_1_2_7_75_1 doi: 10.1158/1078-0432.CCR-08-1287 – ident: e_1_2_7_48_1 doi: 10.1148/radiology.171.3.2717764 – ident: e_1_2_7_134_1 doi: 10.1016/j.mric.2016.07.004 – ident: e_1_2_7_8_1 doi: 10.1097/RMR.0000000000000027 – ident: e_1_2_7_22_1 doi: 10.1177/0962280214537333 – ident: e_1_2_7_118_1 doi: 10.1002/jmri.21393 – ident: e_1_2_7_59_1 doi: 10.1002/jmri.24883 – ident: e_1_2_7_32_1 doi: 10.1002/jmri.21732 – volume: 11 start-page: 594 issue: 1 year: 2008 ident: e_1_2_7_99_1 article-title: Automatic determination of arterial input function for dynamic contrast enhanced MRI in tumor assessment publication-title: Med Image Comput Comput Assist Interv – ident: e_1_2_7_84_1 doi: 10.1016/j.ijrobp.2011.02.044 – ident: e_1_2_7_112_1 doi: 10.1016/S0730-725X(98)00130-1 – ident: e_1_2_7_41_1 doi: 10.1148/radiol.12112374 – ident: e_1_2_7_100_1 doi: 10.1088/0031-9155/56/17/018 – ident: e_1_2_7_52_1 doi: 10.1002/jmri.22363 – ident: e_1_2_7_54_1 doi: 10.1093/jnci/92.24.2029 – ident: e_1_2_7_139_1 doi: 10.1002/mrm.21608 – ident: e_1_2_7_73_1 doi: 10.1118/1.3615058 – ident: e_1_2_7_55_1 doi: 10.1007/s10585-016-9778-x – ident: e_1_2_7_110_1 doi: 10.1088/0031-9155/55/1/008 – ident: e_1_2_7_140_1 doi: 10.1016/j.acra.2015.12.020 – ident: e_1_2_7_6_1 doi: 10.1259/bjr.20170577 – ident: e_1_2_7_33_1 doi: 10.1002/jmri.10377 – ident: e_1_2_7_132_1 doi: 10.1002/mrm.22333 – ident: e_1_2_7_64_1 – ident: e_1_2_7_31_1 doi: 10.1016/j.neuroimage.2006.09.020 – ident: e_1_2_7_124_1 doi: 10.1016/j.eururo.2015.08.052 – volume-title: Multicenter study of reproducibility of wide range of ADC at 0°C year: 2015 ident: e_1_2_7_62_1 – ident: e_1_2_7_70_1 doi: 10.1016/j.acra.2016.09.025 – ident: e_1_2_7_34_1 doi: 10.1148/radiol.2502080849 – ident: e_1_2_7_127_1 doi: 10.1002/mrm.22423 – ident: e_1_2_7_129_1 doi: 10.1002/mrm.22596 – ident: e_1_2_7_123_1 doi: 10.2214/AJR.12.8510 – ident: e_1_2_7_142_1 doi: 10.1148/radiol.2016152037 – ident: e_1_2_7_92_1 doi: 10.1002/jmri.24486 – ident: e_1_2_7_96_1 doi: 10.1016/j.ejrad.2010.03.016 – ident: e_1_2_7_94_1 doi: 10.1016/j.mri.2006.09.006 – ident: e_1_2_7_5_1 doi: 10.1007/s11523-010-0135-8 – ident: e_1_2_7_89_1 doi: 10.1016/j.neuroimage.2013.01.038 – ident: e_1_2_7_111_1 doi: 10.1002/jmri.20529 – ident: e_1_2_7_95_1 doi: 10.1016/j.ijrobp.2006.09.020 – ident: e_1_2_7_37_1 doi: 10.1259/bjr/32269440 – ident: e_1_2_7_101_1 doi: 10.1002/mrm.21066 – ident: e_1_2_7_17_1 doi: 10.1038/sj.bjc.6602550 – ident: e_1_2_7_43_1 doi: 10.1259/bjr/70653746 – ident: e_1_2_7_117_1 doi: 10.1097/RLI.0000000000000329 – ident: e_1_2_7_16_1 doi: 10.1002/jmri.22167 – ident: e_1_2_7_119_1 doi: 10.1148/radiol.11102413 – ident: e_1_2_7_85_1 doi: 10.1158/1078-0432.CCR-14-0044 – ident: e_1_2_7_20_1 doi: 10.1038/nrclinonc.2016.108 – volume: 5 start-page: 011003 year: 2018 ident: e_1_2_7_51_1 article-title: Multisite concordance of apparent diffusion coefficient measurements across the NCI Quantitative Imaging Network publication-title: J Med Imaging – ident: e_1_2_7_90_1 doi: 10.2214/AJR.07.3657 – ident: e_1_2_7_46_1 doi: 10.1177/0962280214537394 – ident: e_1_2_7_86_1 doi: 10.1148/radiol.13130973 – volume-title: ACR BI‐RADS® Atlas, Breast Imaging Reporting and Data System year: 2013 ident: e_1_2_7_105_1 – ident: e_1_2_7_29_1 doi: 10.1002/jmri.23825 – ident: e_1_2_7_103_1 doi: 10.1056/NEJMoa065447 – ident: e_1_2_7_39_1 doi: 10.1002/jmri.24271 – ident: e_1_2_7_26_1 doi: 10.1148/radiol.2017170550 – ident: e_1_2_7_65_1 – ident: e_1_2_7_35_1 doi: 10.1002/jmri.24359 – ident: e_1_2_7_9_1 doi: 10.1002/jmri.25479 – ident: e_1_2_7_131_1 doi: 10.1002/mrm.22357 – ident: e_1_2_7_19_1 doi: 10.1038/nrclinonc.2016.162 – ident: e_1_2_7_87_1 doi: 10.1016/j.mri.2014.08.040 – ident: e_1_2_7_13_1 doi: 10.1002/nbm.2934 – ident: e_1_2_7_30_1 doi: 10.1177/0962280214537344 – ident: e_1_2_7_2_1 doi: 10.1593/neo.81328 – ident: e_1_2_7_63_1 doi: 10.3174/ajnr.A5025 – ident: e_1_2_7_38_1 doi: 10.1016/j.mri.2007.03.030 – ident: e_1_2_7_121_1 doi: 10.1593/tlo.13748 – ident: e_1_2_7_28_1 doi: 10.18383/j.tom.2016.00229 – ident: e_1_2_7_78_1 doi: 10.1002/jmri.21513 – ident: e_1_2_7_3_1 doi: 10.1002/0470869526 – ident: e_1_2_7_23_1 doi: 10.2214/AJR.09.3116 – ident: e_1_2_7_80_1 doi: 10.1016/j.acra.2014.04.013 – ident: e_1_2_7_4_1 doi: 10.1016/j.nic.2009.08.009 – ident: e_1_2_7_122_1 doi: 10.1002/jmri.22179 – ident: e_1_2_7_61_1 doi: 10.1002/jmri.25196 – ident: e_1_2_7_93_1 doi: 10.3174/ajnr.A1844 – ident: e_1_2_7_27_1 doi: 10.1016/j.neuroimage.2009.07.068 – ident: e_1_2_7_102_1 doi: 10.1016/j.mri.2015.10.025 – ident: e_1_2_7_24_1 doi: 10.1007/s00330-017-4828-6 – ident: e_1_2_7_74_1 doi: 10.1002/jmri.26011 – ident: e_1_2_7_25_1 doi: 10.1038/sdata.2014.37 – ident: e_1_2_7_44_1 doi: 10.1148/radiol.2015142202 – ident: e_1_2_7_71_1 doi: 10.1002/mrm.26903 – ident: e_1_2_7_128_1 doi: 10.1371/journal.pone.0115667 – ident: e_1_2_7_60_1 doi: 10.4329/wjr.v8.i1.21 – ident: e_1_2_7_98_1 doi: 10.1002/jmri.1880070113 – ident: e_1_2_7_50_1 doi: 10.1118/1.4948997 – ident: e_1_2_7_116_1 doi: 10.1002/jmri.23602 – ident: e_1_2_7_7_1 doi: 10.1002/jmri.25101 – ident: e_1_2_7_106_1 doi: 10.1148/radiol.12110748 – ident: e_1_2_7_83_1 doi: 10.1016/j.ijrobp.2011.02.044 – ident: e_1_2_7_12_1 doi: 10.1002/jmri.22838 – ident: e_1_2_7_14_1 doi: 10.1002/nbm.3458 – ident: e_1_2_7_72_1 doi: 10.1002/mp.12466 – ident: e_1_2_7_115_1 doi: 10.1016/j.tranon.2015.11.016 |
SSID | ssj0009945 |
Score | 2.6598644 |
SecondaryResourceType | review_article |
Snippet | Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion‐weighted imaging and dynamic contrast‐enhanced magnetic... Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic... Physiological properties of tumors can be measured both in vivo and non-invasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e101 |
SubjectTerms | DCE DWI MRI quantitative imaging biomarkers |
Title | Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE‐MRI derived biomarkers in multicenter oncology trials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26518 https://www.ncbi.nlm.nih.gov/pubmed/30451345 https://www.proquest.com/docview/2135635358 https://pubmed.ncbi.nlm.nih.gov/PMC6526078 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAX3o_lJSM4UKRsEzuObYlL6UPdSovUiopeUOSnWGCzVbJ7gBM_gT_An-OXMHay2S5FSHCzlLHl2DP2Z3vmG4See6JyR41JuOEqyZVkiSIMSoQbk1KrSYziH78pDk_zozN2toFeLWNhWn6I_sItWEZcr4OBK91sr0hDP07ryZAULAuRvsFZKyCikxV3lJQxQzHgB5pkIuU9NynZXlVd340uQczLnpIXEWzcgg6uo_fLzreeJ5-Gi7kemq-_8Tr-79_dQNc6bIp3WmW6iTZcdQtdGXev77fRj-OFqmJQGiyReDKNCY5wCOAPPj51g1W4uwEtwi-OR693tnA4bU-nrsvb1GAAyFAt3GI4i8_rLr0Pnnm8926EVWXx3u7-z2_fxycjbME0gtiF5icVjv6PYZhcjWdVZNz-gmPmkeYOOj3Yf7t7mHTpHRKTi0Ik3nhYbjTxmbQkNzZXjEghvIAjq0814AqmNRMpFUoZbbKCWw_wLPXCMJfnkt5Fm9WscvcRVjyQ0Ag4LGkKqie1LyyVVhXCFjzV6QBtLae5NB33eUjB8blsWZtJGca7jOM9QM962fOW8eOPUk-X2lKCQYZXFlW52aIpSUYZoDjKQOZeqz19O-FZOqM5GyC-ple9QCD7Xv9STT5E0u-CwcmTQ5svo9r8pWvlEcxSLD34F-GH6CqAQdm6wT1Cm_N64R4D4JrrJ9GwfgH3_ywz |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgSMCG92N4GsGCImWa2HHiLEun1UzpVGrViu4iP2IxwGSqZGYBKz6BH-Dn-BLuddJMhyIk2EXKtZXY99rH9vU5hLxyTMUFNyZITaqCWGUiUEzAE0uNCbnVzN_iH-8nw-N490SctLk5eBem4YfoNtwwMvx4jQGOG9IbS9bQj9Nq0meJiORlcgUlvZE6f3C4ZI_KMq9RDAiCB5EM046dlG0sy67ORxdA5sVcyfMY1k9COzcbpdXacxdi7smn_mKu--brb8yO__1_t8iNFp7SzcafbpNLRXmHXB23B_B3yY-DhSr9vTQYJelk6jWOKN7hxzSfqqYKt2_Akejrg9HbzXWKC-7ptGilm2oKGBmK4UZGYelp1Sr80Jmjg_cjqkpLB1vbP799Hx-OqIXoQLNz1U9K6lMgsZ2Kis5KT7r9hXrxkfoeOd7ZPtoaBq3CQ2BimcjAGQcjjmYuyiyLjY2VYJmUTsKq1YUaoIXQWsiQS6WMNlGSWgcILXTSiCKOM36frJWzsnhIqEqRh0bCeklz8L5Mu8TyzKpE2iQNddgj62f9nJuW_hxVOD7nDXEzy7G9c9_ePfKysz1tSD_-aPXizF1yiEk8aFFlMVvUOYu4ACDHBdg8aNynqwdPpiMeix5JVxyrM0C-79U35eSD5_1OBCw-U6jzjfebv3xavgu95J8e_Yvxc3JteDTey_dG--8ek-uADbMmK-4JWZtXi-Ip4K-5fuaj7BeK0jBP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKkSou5Q3haQQHirTprh-7tsSlNI2aQipaUdELWvmxVgNkE22SA5z4CfwB_hy_hLF3kzQUIcHN0o4trz1jf7ZnvkHomSOKFdSYKDOZipiSPFKEQ4lkxsTUahKi-PuH6f4JOzjlp2vo5TwWpuaHWFy4ecsI67U38LF120vS0I_DatAmKU_EJXSZpbH0iRs6x0vyKClDimIAEDRKRJwtyEnJ9rLu6nZ0AWNedJU8D2HDHtS9ij7Me1-7nnxqz6a6bb7-Ruz4v793DW024BTv1Np0Ha0V5Q200W-e32-iH0czVYaoNFgj8WAYMhxhH8HvnXyqCVb-8gbUCD8_6r3a2cL-uD0cFk3ipgkGhAzV_DVGYfG4avL74JHDnfc9rEqLO7t7P7997x_3sAXb8GLnmh-UODhA-mEqKjwqA-X2FxxSj0xuoZPu3rvd_ajJ7xAZJlIROeNgvdHEJdISZixTnEghnIAzq4s1AAuuNRcxFUoZbZI0sw7wWeyE4QVjkt5G6-WoLO4irDLPQiPgtKQp6J7ULrVUWpUKm2axjltoaz7NuWnIz30Ojs95TdtMcj_eeRjvFnq6kB3XlB9_lHoy15YcLNI_s6iyGM0mOUkoBxhHOcjcqbVn0Y5_l04o4y2UrejVQsCzfa9-KQdngfU75XD0zKDNF0Ft_tK1_ABmKZTu_YvwY7TxttPN3_QOX99HVwAYytol7gFan1az4iGAr6l-FGzsF-d7Lv4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+imaging+biomarkers+alliance+%28QIBA%29+recommendations+for+improved+precision+of+DWI+and+DCE%E2%80%90MRI+derived+biomarkers+in+multicenter+oncology+trials&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Shukla%E2%80%90Dave%2C+Amita&rft.au=Obuchowski%2C+Nancy+A.&rft.au=Chenevert%2C+Thomas+L.&rft.au=Jambawalikar%2C+Sachin&rft.date=2019-06-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=49&rft.issue=7&rft.spage=e101&rft.epage=e121&rft_id=info:doi/10.1002%2Fjmri.26518&rft.externalDBID=10.1002%252Fjmri.26518&rft.externalDocID=JMRI26518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |