Activation of caspase-3 in the skeletal muscle during haemodialysis

Eur J Clin Invest 2010; 40 (10): 903–910 Background and Objective  Muscle atrophy in end‐stage renal disease (ESRD) may be due to the activation of apoptotic and proteolytic pathways. We hypothesized that activation of caspase‐3 in the skeletal muscle mediates apoptosis and proteolysis during haemod...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of clinical investigation Vol. 40; no. 10; pp. 903 - 910
Main Authors Boivin, Michel A., Battah, Shadi I., Dominic, Elizabeth A., Kalantar-Zadeh, Kamyar, Ferrando, Arny, Tzamaloukas, Antonios H., Dwivedi, Rama, Ma, Thomas A., Moseley, Pope, Raj, Dominic S. C.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.10.2010
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Eur J Clin Invest 2010; 40 (10): 903–910 Background and Objective  Muscle atrophy in end‐stage renal disease (ESRD) may be due to the activation of apoptotic and proteolytic pathways. We hypothesized that activation of caspase‐3 in the skeletal muscle mediates apoptosis and proteolysis during haemodialysis (HD). Materials and Methods  Eight ESRD patients were studied before (pre‐HD) and during HD and the findings were compared with those from six healthy volunteers. Protein kinetics was determined by primed constant infusion of L‐(ring 13C6) Phenylalanine. Results  Caspase‐3 activity in the skeletal muscle was higher in ESRD patients pre‐HD than in controls (24966·0 ± 4023·9 vs. 15293·3 ± 2120·0 units, P < 0·01) and increased further during HD (end‐HD) (37666·6 ± 4208·3 units) (P < 0·001). Actin fragments (14 kDa) generated by caspase‐3 mediated cleavage of actomyosin was higher in the skeletal muscle pre‐HD (68%) and during HD (164%) compared with controls. The abundance of ubiquitinized carboxy‐terminal actin fragment was also significantly increased during HD. Skeletal muscle biopsies obtained at the end of HD exhibited augmented apoptosis, which was higher than that observed in pre‐HD and control samples (P < 0·001). IL‐6 content in the soluble fraction of the muscle skeletal muscle was increased significantly during HD. Protein kinetic studies showed that catabolism was higher in ESRD patients during HD compared with pre‐HD and control subjects. Muscle protein catabolism was positively associated with caspase‐3 activity and skeletal muscle IL‐6 content. Conclusion  Muscle atrophy in ESRD may be due to IL‐6 induced activation of caspase‐3 resulting in apoptosis as well as muscle proteolysis during HD.
AbstractList Muscle atrophy in end-stage renal disease (ESRD) may be due to the activation of apoptotic and proteolytic pathways. We hypothesized that activation of caspase-3 in the skeletal muscle mediates apoptosis and proteolysis during haemodialysis (HD). Eight ESRD patients were studied before (pre-HD) and during HD and the findings were compared with those from six healthy volunteers. Protein kinetics was determined by primed constant infusion of L-(ring (13)C(6) ) Phenylalanine. Caspase-3 activity in the skeletal muscle was higher in ESRD patients pre-HD than in controls (24966·0 ± 4023·9 vs. 15293·3 ± 2120·0 units, P<0·01) and increased further during HD (end-HD) (37666·6 ± 4208·3 units) (P<0·001). Actin fragments (14 kDa) generated by caspase-3 mediated cleavage of actomyosin was higher in the skeletal muscle pre-HD (68%) and during HD (164%) compared with controls. The abundance of ubiquitinized carboxy-terminal actin fragment was also significantly increased during HD. Skeletal muscle biopsies obtained at the end of HD exhibited augmented apoptosis, which was higher than that observed in pre-HD and control samples (P<0·001). IL-6 content in the soluble fraction of the muscle skeletal muscle was increased significantly during HD. Protein kinetic studies showed that catabolism was higher in ESRD patients during HD compared with pre-HD and control subjects. Muscle protein catabolism was positively associated with caspase-3 activity and skeletal muscle IL-6 content. Muscle atrophy in ESRD may be due to IL-6 induced activation of caspase-3 resulting in apoptosis as well as muscle proteolysis during HD.
Eur J Clin Invest 2010; 40 (10): 903–910 Background and Objective  Muscle atrophy in end‐stage renal disease (ESRD) may be due to the activation of apoptotic and proteolytic pathways. We hypothesized that activation of caspase‐3 in the skeletal muscle mediates apoptosis and proteolysis during haemodialysis (HD). Materials and Methods  Eight ESRD patients were studied before (pre‐HD) and during HD and the findings were compared with those from six healthy volunteers. Protein kinetics was determined by primed constant infusion of L‐(ring 13C6) Phenylalanine. Results  Caspase‐3 activity in the skeletal muscle was higher in ESRD patients pre‐HD than in controls (24966·0 ± 4023·9 vs. 15293·3 ± 2120·0 units, P < 0·01) and increased further during HD (end‐HD) (37666·6 ± 4208·3 units) (P < 0·001). Actin fragments (14 kDa) generated by caspase‐3 mediated cleavage of actomyosin was higher in the skeletal muscle pre‐HD (68%) and during HD (164%) compared with controls. The abundance of ubiquitinized carboxy‐terminal actin fragment was also significantly increased during HD. Skeletal muscle biopsies obtained at the end of HD exhibited augmented apoptosis, which was higher than that observed in pre‐HD and control samples (P < 0·001). IL‐6 content in the soluble fraction of the muscle skeletal muscle was increased significantly during HD. Protein kinetic studies showed that catabolism was higher in ESRD patients during HD compared with pre‐HD and control subjects. Muscle protein catabolism was positively associated with caspase‐3 activity and skeletal muscle IL‐6 content. Conclusion  Muscle atrophy in ESRD may be due to IL‐6 induced activation of caspase‐3 resulting in apoptosis as well as muscle proteolysis during HD.
Muscle atrophy in end-stage renal disease (ESRD) may be due to the activation of apoptotic and proteolytic pathways. We hypothesized that activation of caspase-3 in the skeletal muscle mediates apoptosis and proteolysis during haemodialysis (HD).BACKGROUND AND OBJECTIVEMuscle atrophy in end-stage renal disease (ESRD) may be due to the activation of apoptotic and proteolytic pathways. We hypothesized that activation of caspase-3 in the skeletal muscle mediates apoptosis and proteolysis during haemodialysis (HD).Eight ESRD patients were studied before (pre-HD) and during HD and the findings were compared with those from six healthy volunteers. Protein kinetics was determined by primed constant infusion of L-(ring (13)C(6) ) Phenylalanine.MATERIALS AND METHODSEight ESRD patients were studied before (pre-HD) and during HD and the findings were compared with those from six healthy volunteers. Protein kinetics was determined by primed constant infusion of L-(ring (13)C(6) ) Phenylalanine.Caspase-3 activity in the skeletal muscle was higher in ESRD patients pre-HD than in controls (24966·0 ± 4023·9 vs. 15293·3 ± 2120·0 units, P<0·01) and increased further during HD (end-HD) (37666·6 ± 4208·3 units) (P<0·001). Actin fragments (14 kDa) generated by caspase-3 mediated cleavage of actomyosin was higher in the skeletal muscle pre-HD (68%) and during HD (164%) compared with controls. The abundance of ubiquitinized carboxy-terminal actin fragment was also significantly increased during HD. Skeletal muscle biopsies obtained at the end of HD exhibited augmented apoptosis, which was higher than that observed in pre-HD and control samples (P<0·001). IL-6 content in the soluble fraction of the muscle skeletal muscle was increased significantly during HD. Protein kinetic studies showed that catabolism was higher in ESRD patients during HD compared with pre-HD and control subjects. Muscle protein catabolism was positively associated with caspase-3 activity and skeletal muscle IL-6 content.RESULTSCaspase-3 activity in the skeletal muscle was higher in ESRD patients pre-HD than in controls (24966·0 ± 4023·9 vs. 15293·3 ± 2120·0 units, P<0·01) and increased further during HD (end-HD) (37666·6 ± 4208·3 units) (P<0·001). Actin fragments (14 kDa) generated by caspase-3 mediated cleavage of actomyosin was higher in the skeletal muscle pre-HD (68%) and during HD (164%) compared with controls. The abundance of ubiquitinized carboxy-terminal actin fragment was also significantly increased during HD. Skeletal muscle biopsies obtained at the end of HD exhibited augmented apoptosis, which was higher than that observed in pre-HD and control samples (P<0·001). IL-6 content in the soluble fraction of the muscle skeletal muscle was increased significantly during HD. Protein kinetic studies showed that catabolism was higher in ESRD patients during HD compared with pre-HD and control subjects. Muscle protein catabolism was positively associated with caspase-3 activity and skeletal muscle IL-6 content.Muscle atrophy in ESRD may be due to IL-6 induced activation of caspase-3 resulting in apoptosis as well as muscle proteolysis during HD.CONCLUSIONMuscle atrophy in ESRD may be due to IL-6 induced activation of caspase-3 resulting in apoptosis as well as muscle proteolysis during HD.
Author Dominic, Elizabeth A.
Ferrando, Arny
Ma, Thomas A.
Boivin, Michel A.
Kalantar-Zadeh, Kamyar
Dwivedi, Rama
Raj, Dominic S. C.
Battah, Shadi I.
Tzamaloukas, Antonios H.
Moseley, Pope
Author_xml – sequence: 1
  givenname: Michel A.
  surname: Boivin
  fullname: Boivin, Michel A.
  organization: Division of Pulmonary and Critical Care, University of New Mexico School of Medicine, Albuquerque, NM
– sequence: 2
  givenname: Shadi I.
  surname: Battah
  fullname: Battah, Shadi I.
  organization: Division of Pulmonary and Critical Care, University of New Mexico School of Medicine, Albuquerque, NM
– sequence: 3
  givenname: Elizabeth A.
  surname: Dominic
  fullname: Dominic, Elizabeth A.
  organization: University of Rochester, Rochester, NY
– sequence: 4
  givenname: Kamyar
  surname: Kalantar-Zadeh
  fullname: Kalantar-Zadeh, Kamyar
  organization: Division of Nephrology and Hypertension, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
– sequence: 5
  givenname: Arny
  surname: Ferrando
  fullname: Ferrando, Arny
  organization: Department of Geriatrics, Center for Translational Research in Aging and Longevity, University of Arkansas, Little Rock, AR
– sequence: 6
  givenname: Antonios H.
  surname: Tzamaloukas
  fullname: Tzamaloukas, Antonios H.
  organization: Division of Nephrology, VA Medical Center, University of New Mexico School of Medicine, Albuquerque, NM
– sequence: 7
  givenname: Rama
  surname: Dwivedi
  fullname: Dwivedi, Rama
  organization: Division of Renal Diseases and Hypertension, The George Washington University School of Medicine, Washington, DC
– sequence: 8
  givenname: Thomas A.
  surname: Ma
  fullname: Ma, Thomas A.
  organization: Division of Gastroenterology, University of New Mexico, Albuquerque, NM
– sequence: 9
  givenname: Pope
  surname: Moseley
  fullname: Moseley, Pope
  organization: Department of Medicine, University of New Mexico, Albuquerque, NM
– sequence: 10
  givenname: Dominic S. C.
  surname: Raj
  fullname: Raj, Dominic S. C.
  organization: Division of Renal Diseases and Hypertension, The George Washington University School of Medicine, Washington, DC
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23207828$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20636378$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKeFV0DZIFYZ_BPbmQVI7ai0FQNsQF1e3Tg29dRJBjuBmbdv0pkWiVW9sWV_51z5nBNy1HatJSRjdM7G9WE9Z0LJnAvF55yOt5SLQs-3L8js6eGIzChlRc4Xmh-Tk5TWlNKSCf6KHHOqhBK6nJHlmen9H-x912adywymDSabi8y3WX9rs3Rng-0xZM2QTLBZPUTf_spu0TZd7THskk-vyUuHIdk3h_2U_Px88WN5la--X14vz1a5KUqlc6G5Kyh3WtRGMubMAimtnJG1pFhxYVCLRVUzqSqrhVNMM2cFosKioI5rcUre7303sfs92NRD45OxIWBruyGBlrKgijI5km8P5FA1toZN9A3GHTz-ewTeHQBMBoOL2Bqf_nGCU13yifu050zsUorWgfH9Q1p9RB-AUZgKgTVMucOUO0yFwEMhsB0Nyv8MHmc8Q_pxL_3rg909WwcXy-vpNOrzvd6n3m6f9BjvQGmhJdx8u4Tzc_lldVNq-CruATUPr6w
CitedBy_id crossref_primary_10_1053_j_jrn_2013_01_001
crossref_primary_10_1177_0884533613520619
crossref_primary_10_1186_s41100_016_0015_5
crossref_primary_10_1111_j_1542_4758_2011_00551_x
crossref_primary_10_1152_japplphysiol_00556_2011
crossref_primary_10_1159_000517493
crossref_primary_10_1002_oby_20692
crossref_primary_10_3390_nu9030208
crossref_primary_10_1053_j_jrn_2020_03_002
crossref_primary_10_1152_ajprenal_00505_2012
crossref_primary_10_2215_CJN_01770211
crossref_primary_10_1017_S0007114513004091
crossref_primary_10_1097_MCO_0b013e32834d9df6
crossref_primary_10_1042_BSR20150069
crossref_primary_10_1053_j_jrn_2013_02_010
crossref_primary_10_1093_ndt_gft070
crossref_primary_10_3390_ani12182368
crossref_primary_10_1016_j_ekir_2019_12_012
crossref_primary_10_1002_rco2_82
crossref_primary_10_1152_japplphysiol_01084_2014
crossref_primary_10_3390_biom13050854
crossref_primary_10_1152_ajprenal_00341_2012
crossref_primary_10_1016_j_nephro_2015_08_002
crossref_primary_10_1007_s13539_011_0019_5
crossref_primary_10_1007_s10974_015_9410_8
crossref_primary_10_3389_fnut_2021_701386
crossref_primary_10_1152_ajpcell_00425_2021
crossref_primary_10_3390_nu14204297
Cites_doi 10.1038/sj.onc.1208524
10.1152/ajpendo.1995.268.1.E75
10.1152/ajpcell.1987.253.6.C766
10.1042/cs0410459
10.1007/s00421-007-0612-7
10.1152/ajpendo.2002.282.1.E107
10.1136/heart.84.4.431
10.1002/(SICI)1097-0215(19961127)68:5<637::AID-IJC14>3.0.CO;2-Z
10.1093/jnci/89.23.1763
10.1074/jbc.M907258199
10.1172/JCI114979
10.1152/ajpendo.00074.2003
10.7326/0003-4819-121-2-199407150-00016
10.1038/sj.ki.5001984
10.1038/ki.2008.21
10.1053/j.ajkd.2003.08.022
10.1046/j.1523-1755.2003.00823.x
10.1172/JCI25102
10.3181/00379727-205-43695
10.1007/s001340050416
10.1111/j.1748-1716.1992.tb09316.x
10.1172/JCI18330
10.1097/01.ASN.0000127211.86206.E1
10.1152/ajpendo.00599.2006
10.1016/0092-8674(93)90243-J
10.1681/ASN.2006010083
10.1152/ajpendo.90532.2008
10.1152/ajpcell.1997.273.2.C579
10.1681/ASN.2006020131
10.1016/j.clnu.2008.04.007
10.1016/j.clnu.2007.06.005
10.1164/rccm.2108013
10.1038/sj.bjc.6600167
10.1152/japplphysiol.90636.2008
10.2165/00007256-200535060-00002
10.1111/j.1365-2362.2007.01886.x
ContentType Journal Article
Copyright 2010 The Authors. European Journal of Clinical Investigation © 2010 Stichting European Society for Clinical Investigation Journal Foundation
2015 INIST-CNRS
2010 The Authors. European Journal of Clinical Investigation © 2010 Stichting European Society for Clinical Investigation Journal Foundation.
Copyright_xml – notice: 2010 The Authors. European Journal of Clinical Investigation © 2010 Stichting European Society for Clinical Investigation Journal Foundation
– notice: 2015 INIST-CNRS
– notice: 2010 The Authors. European Journal of Clinical Investigation © 2010 Stichting European Society for Clinical Investigation Journal Foundation.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.1365-2362.2010.02347.x
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1365-2362
EndPage 910
ExternalDocumentID 20636378
23207828
10_1111_j_1365_2362_2010_02347_x
ECI2347
ark_67375_WNG_BB5KLW87_M
Genre article
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01DK073665-01A1
– fundername: NIA NIH HHS
  grantid: R21 AG021560
– fundername: NIDDK NIH HHS
  grantid: R01 DK073665
– fundername: NIA NIH HHS
  grantid: AG21560
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EAD
EAP
EAS
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPT
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK0
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YFH
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4867-372f402f73dc511fc9a00bfc5d50ab23ca739bd156be73f6171fe3aa6a440f273
IEDL.DBID DR2
ISSN 0014-2972
1365-2362
IngestDate Fri Jul 11 09:37:05 EDT 2025
Sat May 31 02:13:37 EDT 2025
Mon Jul 21 09:14:14 EDT 2025
Tue Jul 01 00:53:22 EDT 2025
Thu Apr 24 23:03:50 EDT 2025
Wed Jan 22 16:58:29 EST 2025
Wed Oct 30 09:51:38 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Kidney disease
Human
Ubiquitin
Urinary system disease
Chronic renal failure
Enzyme
Hemodialysis
Cysteine endopeptidases
Cytokine
Terminal stage
Activation
Inflammation
Striated muscle
end-stage renal disease
interleukin-6
Interleukin 6
Medicine
Extrarenal dialysis
Peptidases
Cell death
Proteolysis
Renal failure
Hydrolases
Apoptosis
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2010 The Authors. European Journal of Clinical Investigation © 2010 Stichting European Society for Clinical Investigation Journal Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4867-372f402f73dc511fc9a00bfc5d50ab23ca739bd156be73f6171fe3aa6a440f273
Notes ArticleID:ECI2347
istex:31D49744CBE360F594D8712D9457D213DBC89C70
ark:/67375/WNG-BB5KLW87-M
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://escholarship.org/uc/item/8v26g9cs
PMID 20636378
PQID 755406015
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_755406015
pubmed_primary_20636378
pascalfrancis_primary_23207828
crossref_citationtrail_10_1111_j_1365_2362_2010_02347_x
crossref_primary_10_1111_j_1365_2362_2010_02347_x
wiley_primary_10_1111_j_1365_2362_2010_02347_x_ECI2347
istex_primary_ark_67375_WNG_BB5KLW87_M
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2010
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: October 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle European journal of clinical investigation
PublicationTitleAlternate Eur J Clin Invest
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Raj DS, Moseley P, Dominic EA, Onime A, Tzamaloukas AH, Boyd A et al. Interleukin-6 modulates hepatic and muscle protein synthesis during hemodialysis. Kidney Int 2008;73:1061.
Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005;115:1111-9.
Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 2004;113:115-23.
Steensberg A, Fischer CP, Keller C, Moller K, Pedersen BK. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol 2003;285:E433-7.
Hacham M, White RM, Argov S, Segal S, Apte RN. Interleukin-6 and interleukin-10 are expressed in organs of normal young and old mice. Eur Cytokine Netw 2004;15:37-46.
Fadda GZ, Hajjar SM, Perna AF, Zhou XJ, Lipson LG, Massry SG. On the mechanism of impaired insulin secretion in chronic renal failure. J Clin Invest 1991;87:255-61.
Vescovo G, Volterrani M, Zennaro R, Sandri M, Ceconi C, Lorusso R et al. Apoptosis in the skeletal muscle of patients with heart failure: investigation of clinical and biochemical changes. Heart 2000;84:431-7.
Allen DL, Linderman JK, Roy RR, Bigbee AJ, Grindeland RE, Mukku V et al. Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am J Physiol 1997;273:C579-87.
Brockhaus M. Soluble TNF receptor: what is the significance? Intensive Care Med 1997;23:808-9.
Gao Y, Ordas R, Klein JD, Price SR. Regulation of caspase-3 activity by insulin in skeletal muscle cells involves both PI3-kinase and MEK-1/2. J Appl Physiol 2008;105:1772-8.
Carrero JJ, Chmielewski M, Axelsson J, Snaedal S, Heimburger O, Barany P et al. Muscle atrophy, inflammation and clinical outcome in incident and prevalent dialysis patients. Clin Nutr 2008;27:557-64.
Tisdale MJ. Biology of cachexia. J Natl Cancer Inst 1997;89:1763-73.
Siew ED, Pupim LB, Majchrzak KM, Shintani A, Flakoll PJ, Ikizler TA. Insulin resistance is associated with skeletal muscle protein breakdown in non-diabetic chronic hemodialysis patients. Kidney Int 2007;71:146-52.
Carbo N, Busquets S, Van Royen M, Alvarez B, Lopez-Soriano FJ, Argiles JM. TNF-alpha is involved in activating DNA fragmentation in skeletal muscle. Br J Cancer 2002;86:1012-6.
Goodman MN. Interleukin-6 induces skeletal muscle protein breakdown in rats. Proc Soc Exp Biol Med 1994;205:182-5.
Vazeille E, Codran-Raison A, Claustre A, Averous J, Listrat A, Bechet D et al. The ubiquitin-proteasome and the mitochondria-associated apoptotic pathways are sequentially down-regulated during recovery after immobilization-induced atrophy. Am J Physiol 2008;295:E1181-90.
Moldawer LL, Svaninger G, Gelin J, Lundholm KG. Interleukin 1 and tumor necrosis factor do not regulate protein balance in skeletal muscle. Am J Physiol 1987;253:C766-73.
Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 2006;17:1807-19.
Kapadia S, Torre-Amione G, Mann DL. Pitfalls in measuring cytokines. Ann Intern Med 1994;121:149-50.
Guarnieri G, Toigo G, Situlin R, Faccini L, Coli U, Landini S et al. Muscle biopsy studies in chronically uremic patients: evidence for malnutrition. Kidney Int Suppl 1983;16:S187-93.
Raj DS, Boivin MA, Dominic EA, Boyd A, Roy PK, Rihani T et al. Haemodialysis induces mitochondrial dysfunction and apoptosis. Eur J Clin Invest 2007;37:971-7.
Workeneh BT, Rondon-Berrios H, Zhang L, Hu Z, Ayehu G, Ferrando A et al. Development of a diagnostic method for detecting increased muscle protein degradation in patients with catabolic conditions. J Am Soc Nephrol 2006;17:3233-339.
Ikizler TA, Pupim LB, Brouillette JR, Levenhagen DK, Farmer K, Hakim RM et al. Hemodialysis stimulates muscle and whole body protein loss and alters substrate oxidation. Am J Physiol 2002;282:E107-16.
Fujita J, Tsujinaka T, Yano M, Ebisui C, Saito H, Katsume A et al. Anti-interleukin-6 receptor antibody prevents muscle atrophy in colon-26 adenocarcinoma-bearing mice with modulation of lysosomal and ATP-ubiquitin-dependent proteolytic pathways. Int J Cancer 1996;68:637-43.
Agusti AG, Sauleda J, Miralles C, Gomez C, Togores B, Sala E et al. Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002;166:485-9.
Du J, Mitch WE, Wang X, Price SR. Glucocorticoids induce proteasome C3 subunit expression in L6 muscle cells by opposing the suppression of its transcription by NF-kappa B. J Biol Chem 2000;275:19661-6.
Harwood SM, Allen DA, Chesser AM, New DI, Raftery MJ, Yaqoob MM. Calpain is activated in experimental uremia: is calpain a mediator of uremia-induced myocardial injury? Kidney Int 2003;63:866-77.
Holmang A, Bjorntorp P. The effects of cortisol on insulin sensitivity in muscle. Acta Physiol Scand 1992;144:425-31.
Kocturk S, Kayatekin BM, Resmi H, Acikgoz O, Kaynak C, Ozer E. The apoptotic response to strenuous exercise of the gastrocnemius and solues muscle fibers in rats. Eur J Appl Physiol 2008;102:515-24.
Raj DSC, Shah H, Shah V, Ferrando A, Bankhurst A, Wolfe R et al. Markers of inflammation, proteolysis and apoptosis in ESRD. Am J Kidney Dis 2003;42:1212-20.
Lee SW, Dai G, Hu Z, Wang X, Du J, Mitch WE. Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase. J Am Soc Nephrol 2004;15:1537-45.
Biolo G, Fleming RY, Maggi SP, Wolfe RR. Transmembrane transport and intracellular kinetics of amino acids in human skeletal muscle. Am J Physiol 1995;268:E75-84.
Busquets S, Deans C, Figueras M, Moore-Carrasco R, Lopez-Soriano FJ, Fearon KC et al. Apoptosis is present in skeletal muscle of cachectic gastro-intestinal cancer patients. Clin Nutr 2007;26:614-8.
Spiegelman BM, Hotamisligil GS. Through thick and thin: wasting, obesity, and TNF alpha. Cell 1993;73:625-7.
Dirks AJ, Leeuwenburgh C. The role of apoptosis in age-related skeletal muscle atrophy. Sports Med 2005;35:473-83.
Raj DS, Adeniyi O, Dominic EA, Boivin MA, McClelland S, Tzamaloukas AH et al. Amino acid repletion does not decrease muscle protein catabolism during hemodialysis. Am J Physiol 2007;292:E1534-42.
Floyd M, Ayyar DR, Barwick DD, Hudgson P, Weightman D. Myopathy in chronic renal failure. Q J Med 1974;43:509-24.
Febbraio MA. Signaling pathways for IL-6 within skeletal muscle. Exerc Immunol Rev 2003;9:34-9.
Launay S, Hermine O, Fontenay M, Kroemer G, Solary E, Garrido C. Vital functions for lethal caspases. Oncogene 2005;24:5137-48.
Jorfeld L, Waren J. Leg blood flow during excercise in man. Clin Sci Lond 1971;41:459-73.
1971; 41
1997; 273
1992; 144
2006; 17
2005; 115
1997; 23
1997; 89
2007; 71
2008; 105
2000; 275
2008; 102
2008; 73
1983; 16
2007; 37
2005; 24
1994; 121
2002; 282
1994; 205
1974; 43
1987; 253
2004; 113
1993; 73
2002; 86
1991; 87
2007; 292
2004; 15
2008; 27
2002; 166
2003; 9
2000; 84
1995; 268
1996; 68
2003; 63
2008; 295
2003; 42
2007; 26
2005; 35
2003; 285
e_1_2_8_27_2
Hacham M (e_1_2_8_14_2) 2004; 15
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_21_2
Jorfeld L (e_1_2_8_12_2) 1971; 41
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_35_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_37_2
e_1_2_8_15_2
e_1_2_8_36_2
Guarnieri G (e_1_2_8_3_2) 1983; 16
Floyd M (e_1_2_8_2_2) 1974; 43
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
Febbraio MA (e_1_2_8_22_2) 2003; 9
References_xml – reference: Floyd M, Ayyar DR, Barwick DD, Hudgson P, Weightman D. Myopathy in chronic renal failure. Q J Med 1974;43:509-24.
– reference: Holmang A, Bjorntorp P. The effects of cortisol on insulin sensitivity in muscle. Acta Physiol Scand 1992;144:425-31.
– reference: Dirks AJ, Leeuwenburgh C. The role of apoptosis in age-related skeletal muscle atrophy. Sports Med 2005;35:473-83.
– reference: Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 2004;113:115-23.
– reference: Biolo G, Fleming RY, Maggi SP, Wolfe RR. Transmembrane transport and intracellular kinetics of amino acids in human skeletal muscle. Am J Physiol 1995;268:E75-84.
– reference: Kocturk S, Kayatekin BM, Resmi H, Acikgoz O, Kaynak C, Ozer E. The apoptotic response to strenuous exercise of the gastrocnemius and solues muscle fibers in rats. Eur J Appl Physiol 2008;102:515-24.
– reference: Hacham M, White RM, Argov S, Segal S, Apte RN. Interleukin-6 and interleukin-10 are expressed in organs of normal young and old mice. Eur Cytokine Netw 2004;15:37-46.
– reference: Carrero JJ, Chmielewski M, Axelsson J, Snaedal S, Heimburger O, Barany P et al. Muscle atrophy, inflammation and clinical outcome in incident and prevalent dialysis patients. Clin Nutr 2008;27:557-64.
– reference: Raj DSC, Shah H, Shah V, Ferrando A, Bankhurst A, Wolfe R et al. Markers of inflammation, proteolysis and apoptosis in ESRD. Am J Kidney Dis 2003;42:1212-20.
– reference: Carbo N, Busquets S, Van Royen M, Alvarez B, Lopez-Soriano FJ, Argiles JM. TNF-alpha is involved in activating DNA fragmentation in skeletal muscle. Br J Cancer 2002;86:1012-6.
– reference: Raj DS, Moseley P, Dominic EA, Onime A, Tzamaloukas AH, Boyd A et al. Interleukin-6 modulates hepatic and muscle protein synthesis during hemodialysis. Kidney Int 2008;73:1061.
– reference: Spiegelman BM, Hotamisligil GS. Through thick and thin: wasting, obesity, and TNF alpha. Cell 1993;73:625-7.
– reference: Vescovo G, Volterrani M, Zennaro R, Sandri M, Ceconi C, Lorusso R et al. Apoptosis in the skeletal muscle of patients with heart failure: investigation of clinical and biochemical changes. Heart 2000;84:431-7.
– reference: Launay S, Hermine O, Fontenay M, Kroemer G, Solary E, Garrido C. Vital functions for lethal caspases. Oncogene 2005;24:5137-48.
– reference: Siew ED, Pupim LB, Majchrzak KM, Shintani A, Flakoll PJ, Ikizler TA. Insulin resistance is associated with skeletal muscle protein breakdown in non-diabetic chronic hemodialysis patients. Kidney Int 2007;71:146-52.
– reference: Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005;115:1111-9.
– reference: Fadda GZ, Hajjar SM, Perna AF, Zhou XJ, Lipson LG, Massry SG. On the mechanism of impaired insulin secretion in chronic renal failure. J Clin Invest 1991;87:255-61.
– reference: Ikizler TA, Pupim LB, Brouillette JR, Levenhagen DK, Farmer K, Hakim RM et al. Hemodialysis stimulates muscle and whole body protein loss and alters substrate oxidation. Am J Physiol 2002;282:E107-16.
– reference: Workeneh BT, Rondon-Berrios H, Zhang L, Hu Z, Ayehu G, Ferrando A et al. Development of a diagnostic method for detecting increased muscle protein degradation in patients with catabolic conditions. J Am Soc Nephrol 2006;17:3233-339.
– reference: Busquets S, Deans C, Figueras M, Moore-Carrasco R, Lopez-Soriano FJ, Fearon KC et al. Apoptosis is present in skeletal muscle of cachectic gastro-intestinal cancer patients. Clin Nutr 2007;26:614-8.
– reference: Vazeille E, Codran-Raison A, Claustre A, Averous J, Listrat A, Bechet D et al. The ubiquitin-proteasome and the mitochondria-associated apoptotic pathways are sequentially down-regulated during recovery after immobilization-induced atrophy. Am J Physiol 2008;295:E1181-90.
– reference: Agusti AG, Sauleda J, Miralles C, Gomez C, Togores B, Sala E et al. Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002;166:485-9.
– reference: Harwood SM, Allen DA, Chesser AM, New DI, Raftery MJ, Yaqoob MM. Calpain is activated in experimental uremia: is calpain a mediator of uremia-induced myocardial injury? Kidney Int 2003;63:866-77.
– reference: Steensberg A, Fischer CP, Keller C, Moller K, Pedersen BK. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol 2003;285:E433-7.
– reference: Guarnieri G, Toigo G, Situlin R, Faccini L, Coli U, Landini S et al. Muscle biopsy studies in chronically uremic patients: evidence for malnutrition. Kidney Int Suppl 1983;16:S187-93.
– reference: Allen DL, Linderman JK, Roy RR, Bigbee AJ, Grindeland RE, Mukku V et al. Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am J Physiol 1997;273:C579-87.
– reference: Moldawer LL, Svaninger G, Gelin J, Lundholm KG. Interleukin 1 and tumor necrosis factor do not regulate protein balance in skeletal muscle. Am J Physiol 1987;253:C766-73.
– reference: Jorfeld L, Waren J. Leg blood flow during excercise in man. Clin Sci Lond 1971;41:459-73.
– reference: Febbraio MA. Signaling pathways for IL-6 within skeletal muscle. Exerc Immunol Rev 2003;9:34-9.
– reference: Du J, Mitch WE, Wang X, Price SR. Glucocorticoids induce proteasome C3 subunit expression in L6 muscle cells by opposing the suppression of its transcription by NF-kappa B. J Biol Chem 2000;275:19661-6.
– reference: Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 2006;17:1807-19.
– reference: Goodman MN. Interleukin-6 induces skeletal muscle protein breakdown in rats. Proc Soc Exp Biol Med 1994;205:182-5.
– reference: Raj DS, Boivin MA, Dominic EA, Boyd A, Roy PK, Rihani T et al. Haemodialysis induces mitochondrial dysfunction and apoptosis. Eur J Clin Invest 2007;37:971-7.
– reference: Raj DS, Adeniyi O, Dominic EA, Boivin MA, McClelland S, Tzamaloukas AH et al. Amino acid repletion does not decrease muscle protein catabolism during hemodialysis. Am J Physiol 2007;292:E1534-42.
– reference: Gao Y, Ordas R, Klein JD, Price SR. Regulation of caspase-3 activity by insulin in skeletal muscle cells involves both PI3-kinase and MEK-1/2. J Appl Physiol 2008;105:1772-8.
– reference: Fujita J, Tsujinaka T, Yano M, Ebisui C, Saito H, Katsume A et al. Anti-interleukin-6 receptor antibody prevents muscle atrophy in colon-26 adenocarcinoma-bearing mice with modulation of lysosomal and ATP-ubiquitin-dependent proteolytic pathways. Int J Cancer 1996;68:637-43.
– reference: Kapadia S, Torre-Amione G, Mann DL. Pitfalls in measuring cytokines. Ann Intern Med 1994;121:149-50.
– reference: Lee SW, Dai G, Hu Z, Wang X, Du J, Mitch WE. Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase. J Am Soc Nephrol 2004;15:1537-45.
– reference: Tisdale MJ. Biology of cachexia. J Natl Cancer Inst 1997;89:1763-73.
– reference: Brockhaus M. Soluble TNF receptor: what is the significance? Intensive Care Med 1997;23:808-9.
– volume: 87
  start-page: 255
  year: 1991
  end-page: 61
  article-title: On the mechanism of impaired insulin secretion in chronic renal failure
  publication-title: J Clin Invest
– volume: 115
  start-page: 1111
  year: 2005
  end-page: 9
  article-title: Inflammation, stress, and diabetes
  publication-title: J Clin Invest
– volume: 275
  start-page: 19661
  year: 2000
  end-page: 6
  article-title: Glucocorticoids induce proteasome C3 subunit expression in L6 muscle cells by opposing the suppression of its transcription by NF‐kappa B
  publication-title: J Biol Chem
– volume: 17
  start-page: 1807
  year: 2006
  end-page: 19
  article-title: Protein degradation by the ubiquitin‐proteasome pathway in normal and disease states
  publication-title: J Am Soc Nephrol
– volume: 282
  start-page: E107
  year: 2002
  end-page: 16
  article-title: Hemodialysis stimulates muscle and whole body protein loss and alters substrate oxidation
  publication-title: Am J Physiol
– volume: 37
  start-page: 971
  year: 2007
  end-page: 7
  article-title: Haemodialysis induces mitochondrial dysfunction and apoptosis
  publication-title: Eur J Clin Invest
– volume: 285
  start-page: E433
  year: 2003
  end-page: 7
  article-title: IL‐6 enhances plasma IL‐1ra, IL‐10, and cortisol in humans
  publication-title: Am J Physiol
– volume: 42
  start-page: 1212
  year: 2003
  end-page: 20
  article-title: Markers of inflammation, proteolysis and apoptosis in ESRD
  publication-title: Am J Kidney Dis
– volume: 105
  start-page: 1772
  year: 2008
  end-page: 8
  article-title: Regulation of caspase‐3 activity by insulin in skeletal muscle cells involves both PI3‐kinase and MEK‐1/2
  publication-title: J Appl Physiol
– volume: 27
  start-page: 557
  year: 2008
  end-page: 64
  article-title: Muscle atrophy, inflammation and clinical outcome in incident and prevalent dialysis patients
  publication-title: Clin Nutr
– volume: 15
  start-page: 1537
  year: 2004
  end-page: 45
  article-title: Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin‐proteasome systems by phosphatidylinositol 3 kinase
  publication-title: J Am Soc Nephrol
– volume: 205
  start-page: 182
  year: 1994
  end-page: 5
  article-title: Interleukin‐6 induces skeletal muscle protein breakdown in rats
  publication-title: Proc Soc Exp Biol Med
– volume: 102
  start-page: 515
  year: 2008
  end-page: 24
  article-title: The apoptotic response to strenuous exercise of the gastrocnemius and solues muscle fibers in rats
  publication-title: Eur J Appl Physiol
– volume: 68
  start-page: 637
  year: 1996
  end-page: 43
  article-title: Anti‐interleukin‐6 receptor antibody prevents muscle atrophy in colon‐26 adenocarcinoma‐bearing mice with modulation of lysosomal and ATP‐ubiquitin‐dependent proteolytic pathways
  publication-title: Int J Cancer
– volume: 63
  start-page: 866
  year: 2003
  end-page: 77
  article-title: Calpain is activated in experimental uremia: is calpain a mediator of uremia‐induced myocardial injury?
  publication-title: Kidney Int
– volume: 273
  start-page: C579
  year: 1997
  end-page: 87
  article-title: Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting
  publication-title: Am J Physiol
– volume: 24
  start-page: 5137
  year: 2005
  end-page: 48
  article-title: Vital functions for lethal caspases
  publication-title: Oncogene
– volume: 15
  start-page: 37
  year: 2004
  end-page: 46
  article-title: Interleukin‐6 and interleukin‐10 are expressed in organs of normal young and old mice
  publication-title: Eur Cytokine Netw
– volume: 17
  start-page: 3233
  year: 2006
  end-page: 339
  article-title: Development of a diagnostic method for detecting increased muscle protein degradation in patients with catabolic conditions
  publication-title: J Am Soc Nephrol
– volume: 73
  start-page: 625
  year: 1993
  end-page: 7
  article-title: Through thick and thin: wasting, obesity, and TNF alpha
  publication-title: Cell
– volume: 16
  start-page: S187
  year: 1983
  end-page: 93
  article-title: Muscle biopsy studies in chronically uremic patients: evidence for malnutrition
  publication-title: Kidney Int Suppl
– volume: 268
  start-page: E75
  year: 1995
  end-page: 84
  article-title: Transmembrane transport and intracellular kinetics of amino acids in human skeletal muscle
  publication-title: Am J Physiol
– volume: 41
  start-page: 459
  year: 1971
  end-page: 73
  article-title: Leg blood flow during excercise in man
  publication-title: Clin Sci Lond
– volume: 35
  start-page: 473
  year: 2005
  end-page: 83
  article-title: The role of apoptosis in age‐related skeletal muscle atrophy
  publication-title: Sports Med
– volume: 89
  start-page: 1763
  year: 1997
  end-page: 73
  article-title: Biology of cachexia
  publication-title: J Natl Cancer Inst
– volume: 144
  start-page: 425
  year: 1992
  end-page: 31
  article-title: The effects of cortisol on insulin sensitivity in muscle
  publication-title: Acta Physiol Scand
– volume: 295
  start-page: E1181
  year: 2008
  end-page: 90
  article-title: The ubiquitin‐proteasome and the mitochondria‐associated apoptotic pathways are sequentially down‐regulated during recovery after immobilization‐induced atrophy
  publication-title: Am J Physiol
– volume: 86
  start-page: 1012
  year: 2002
  end-page: 6
  article-title: TNF‐alpha is involved in activating DNA fragmentation in skeletal muscle
  publication-title: Br J Cancer
– volume: 253
  start-page: C766
  year: 1987
  end-page: 73
  article-title: Interleukin 1 and tumor necrosis factor do not regulate protein balance in skeletal muscle
  publication-title: Am J Physiol
– volume: 166
  start-page: 485
  year: 2002
  end-page: 9
  article-title: Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease
  publication-title: Am J Respir Crit Care Med
– volume: 9
  start-page: 34
  year: 2003
  end-page: 9
  article-title: Signaling pathways for IL‐6 within skeletal muscle
  publication-title: Exerc Immunol Rev
– volume: 292
  start-page: E1534
  year: 2007
  end-page: 42
  article-title: Amino acid repletion does not decrease muscle protein catabolism during hemodialysis
  publication-title: Am J Physiol
– volume: 26
  start-page: 614
  year: 2007
  end-page: 8
  article-title: Apoptosis is present in skeletal muscle of cachectic gastro‐intestinal cancer patients
  publication-title: Clin Nutr
– volume: 84
  start-page: 431
  year: 2000
  end-page: 7
  article-title: Apoptosis in the skeletal muscle of patients with heart failure: investigation of clinical and biochemical changes
  publication-title: Heart
– volume: 43
  start-page: 509
  year: 1974
  end-page: 24
  article-title: Myopathy in chronic renal failure
  publication-title: Q J Med
– volume: 121
  start-page: 149
  year: 1994
  end-page: 50
  article-title: Pitfalls in measuring cytokines
  publication-title: Ann Intern Med
– volume: 23
  start-page: 808
  year: 1997
  end-page: 9
  article-title: Soluble TNF receptor: what is the significance?
  publication-title: Intensive Care Med
– volume: 73
  start-page: 1061
  year: 2008
  article-title: Interleukin‐6 modulates hepatic and muscle protein synthesis during hemodialysis
  publication-title: Kidney Int
– volume: 71
  start-page: 146
  year: 2007
  end-page: 52
  article-title: Insulin resistance is associated with skeletal muscle protein breakdown in non‐diabetic chronic hemodialysis patients
  publication-title: Kidney Int
– volume: 113
  start-page: 115
  year: 2004
  end-page: 23
  article-title: Activation of caspase‐3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions
  publication-title: J Clin Invest
– ident: e_1_2_8_21_2
  doi: 10.1038/sj.onc.1208524
– ident: e_1_2_8_11_2
  doi: 10.1152/ajpendo.1995.268.1.E75
– ident: e_1_2_8_31_2
  doi: 10.1152/ajpcell.1987.253.6.C766
– volume: 41
  start-page: 459
  year: 1971
  ident: e_1_2_8_12_2
  article-title: Leg blood flow during excercise in man
  publication-title: Clin Sci Lond
  doi: 10.1042/cs0410459
– ident: e_1_2_8_29_2
  doi: 10.1007/s00421-007-0612-7
– volume: 15
  start-page: 37
  year: 2004
  ident: e_1_2_8_14_2
  article-title: Interleukin‐6 and interleukin‐10 are expressed in organs of normal young and old mice
  publication-title: Eur Cytokine Netw
– ident: e_1_2_8_10_2
  doi: 10.1152/ajpendo.2002.282.1.E107
– ident: e_1_2_8_13_2
  doi: 10.1136/heart.84.4.431
– ident: e_1_2_8_28_2
  doi: 10.1002/(SICI)1097-0215(19961127)68:5<637::AID-IJC14>3.0.CO;2-Z
– ident: e_1_2_8_33_2
  doi: 10.1093/jnci/89.23.1763
– ident: e_1_2_8_41_2
  doi: 10.1074/jbc.M907258199
– ident: e_1_2_8_34_2
  doi: 10.1172/JCI114979
– ident: e_1_2_8_35_2
  doi: 10.1152/ajpendo.00074.2003
– ident: e_1_2_8_24_2
  doi: 10.7326/0003-4819-121-2-199407150-00016
– ident: e_1_2_8_37_2
  doi: 10.1038/sj.ki.5001984
– ident: e_1_2_8_25_2
  doi: 10.1038/ki.2008.21
– ident: e_1_2_8_26_2
  doi: 10.1053/j.ajkd.2003.08.022
– ident: e_1_2_8_20_2
  doi: 10.1046/j.1523-1755.2003.00823.x
– ident: e_1_2_8_39_2
  doi: 10.1172/JCI25102
– ident: e_1_2_8_40_2
  doi: 10.3181/00379727-205-43695
– ident: e_1_2_8_23_2
  doi: 10.1007/s001340050416
– ident: e_1_2_8_36_2
  doi: 10.1111/j.1748-1716.1992.tb09316.x
– volume: 16
  start-page: S187
  year: 1983
  ident: e_1_2_8_3_2
  article-title: Muscle biopsy studies in chronically uremic patients: evidence for malnutrition
  publication-title: Kidney Int Suppl
– volume: 9
  start-page: 34
  year: 2003
  ident: e_1_2_8_22_2
  article-title: Signaling pathways for IL‐6 within skeletal muscle
  publication-title: Exerc Immunol Rev
– ident: e_1_2_8_8_2
  doi: 10.1172/JCI18330
– ident: e_1_2_8_7_2
  doi: 10.1097/01.ASN.0000127211.86206.E1
– ident: e_1_2_8_27_2
  doi: 10.1152/ajpendo.00599.2006
– ident: e_1_2_8_32_2
  doi: 10.1016/0092-8674(93)90243-J
– ident: e_1_2_8_6_2
  doi: 10.1681/ASN.2006010083
– ident: e_1_2_8_15_2
  doi: 10.1152/ajpendo.90532.2008
– ident: e_1_2_8_5_2
  doi: 10.1152/ajpcell.1997.273.2.C579
– ident: e_1_2_8_9_2
  doi: 10.1681/ASN.2006020131
– ident: e_1_2_8_4_2
  doi: 10.1016/j.clnu.2008.04.007
– ident: e_1_2_8_16_2
  doi: 10.1016/j.clnu.2007.06.005
– ident: e_1_2_8_18_2
  doi: 10.1164/rccm.2108013
– ident: e_1_2_8_30_2
  doi: 10.1038/sj.bjc.6600167
– ident: e_1_2_8_38_2
  doi: 10.1152/japplphysiol.90636.2008
– ident: e_1_2_8_17_2
  doi: 10.2165/00007256-200535060-00002
– ident: e_1_2_8_19_2
  doi: 10.1111/j.1365-2362.2007.01886.x
– volume: 43
  start-page: 509
  year: 1974
  ident: e_1_2_8_2_2
  article-title: Myopathy in chronic renal failure
  publication-title: Q J Med
SSID ssj0008132
Score 2.115591
Snippet Eur J Clin Invest 2010; 40 (10): 903–910 Background and Objective  Muscle atrophy in end‐stage renal disease (ESRD) may be due to the activation of apoptotic...
Muscle atrophy in end-stage renal disease (ESRD) may be due to the activation of apoptotic and proteolytic pathways. We hypothesized that activation of...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 903
SubjectTerms Adult
Aged
Aged, 80 and over
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Apoptosis
Apoptosis - drug effects
Biological and medical sciences
Blotting, Western
Case-Control Studies
Caspase 3 - metabolism
Emergency and intensive care: renal failure. Dialysis management
end-stage renal disease
General aspects
Humans
inflammation
Intensive care medicine
interleukin-6
Interleukin-6 - metabolism
Kidney Failure, Chronic - blood
Medical sciences
Middle Aged
Muscle Proteins - metabolism
Muscle, Skeletal - pathology
Muscle, Skeletal - physiopathology
Muscular Atrophy - pathology
Muscular Atrophy - physiopathology
Nephrology. Urinary tract diseases
Nephropathies. Renovascular diseases. Renal failure
Phenylalanine - metabolism
proteolysis
Renal Dialysis
Renal failure
ubiquitin
Title Activation of caspase-3 in the skeletal muscle during haemodialysis
URI https://api.istex.fr/ark:/67375/WNG-BB5KLW87-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2362.2010.02347.x
https://www.ncbi.nlm.nih.gov/pubmed/20636378
https://www.proquest.com/docview/755406015
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VIFW9tNAvUtqVD1VvWSVxEifHXdgF2sKhKoKbZTu2qLZkEdmVUE_9CfxGfgkzTnZhEQdU9RYpmigZz4yf4-c3AJ-tUDgxOBuaKHMhFrwqLJPKhbnNE-sKXjnlWb5H-f5x-vU0O-34T3QWptWHWP5wo8zw9ZoSXOlmNck9QwsrcMfQSngq-oQn6Qbhox93SlJFzFvh8DgNk1I8IPU8-qCVmWqdnH5FzEnVoPNc2_XiMVi6inL9NDV-BZPFB7bslEl_PtN98-eB9uP_8cAGvOzQLBu04bcJz2z9Gp4fdvv1b2A0MIv2aWzqmFFYvxp78_eas181Q-zJmgnOe7gAYOfzBh_B2mOT7EzZ8ymdaSHBlLdwPB793NkPu8YNoSEBPyxaicN1qRO8MgjonClVFGlnsiqLlE64UYKXusKlo7aCOwRRsbNcqVylaeQQUL2DtXpa2y0cJG7KUjhhCmfTWKvSxsqKIrdKaIHVKACxGCRpOlVzaq7xW95b3aCXJHlJkpek95K8CiBeWl60yh5PsPni42BpoC4nxIwTmTw52pPDYfbt-0kh5GEAvZVAWRoggCVQVgTAFpEjMaFpl0bVdjpvpECARyI5WQDv24i6M0Y8mXOBxrmPiye_txztHNDVh3813IYXnjbhWYwfYW12ObefEI3NdA_WB8Pd4bjn8-0WIfwlEg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB0hkGgv0E8wbekeqt4c2V7bax8BhYaS5FCB4LZar3cFCjgIJxLixE_gN_JLmFk7oUEcUNWbL2PZ45nZN-u3bwB-GKFwYbDG10FifSx4pZ9HpfVTk0bGZry0yrF8h2nvOP59mpy244DoLEyjDzHfcKPMcPWaEpw2pBez3FG0sAS3FK2Ix6KDgHKFBny7_urPk5ZUFvJGOjyM_SgXz2g9L95pYa1aIbffEHdS1eg-28y9eAmYLuJct1Dtr8PF7BUbfsqoM50UHX37TP3xP_ngHay1gJbtNBH4HpZM9QFWB-0v-4_Q3dGzCWpsbJlWWMJq83B3z9l5xRB-snqESx_2AOxyWuMtWHNykp0pczmmYy2kmfIJjve7R3s9v53d4GvS8MO6FVlsTa3gpUZMZ3WugqCwOimTQBUR10rwvCixeyyM4BZxVGgNVypVcRxYxFSfYbkaV2YTvxLXeS6s0Jk1cVio3ITKiCw1ShQCC5IHYvaVpG6FzWm-xoX8q8FBL0nykiQvSecleeNBOLe8asQ9XmHz0wXC3EBdj4gcJxJ5Mvwld3eTw_5JJuTAg-2FSJkbIIYlXJZ5wGahIzGn6UeNqsx4WkuBGI90chIPNpqQejJGSJlygcapC4xXP7fs7h3Q1da_Gn6HN72jQV_2D4aHX-CtY1E4UuNXWJ5cT803BGeTYtsl3SM_tie7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VIKFe-n6kD-pD1VtWSZzEyZHHbqHAqqqK4GY5jkdUW7KI7Eqop_6E_sb-ks442aWLOKCqt1zGSsYz48_x528A3jtlaGFAF9oow5AKXh2WSY1h7vLEYSFrNJ7lO873jtNPp9lpz3_iuzCdPsTyhxtnhq_XnOAXNa4muWdoUQXuGVqJTNWA8OR6mkcFR_jul2spqSKWnXJ4nIZJqW6wem4daWWpWmevXzF10rTkPezaXtyGS1dhrl-nRg9hsvjCjp4yGcxn1cD-uCH--H9c8Age9HBWbHXx9xjuueYJbBz1B_ZPYbhlF_3TxBSFNVTAWvf75y8pvjWCwKdoJ7Tw0Q5AnM9bGkJ09ybFmXHnU77Uwoopz-B4NPy6sxf2nRtCywp-VLUSpI0pKllbQnRoSxNFFdqsziJTJdIaJcuqpr1j5ZREQlExOmlMbtI0QkJUz2GtmTbuJU2StGWpUNkCXRpXpnSxcarInVGVonIUgFpMkra9rDl31_iu_9rekJc0e0mzl7T3kr4KIF5aXnTSHnew-eDjYGlgLidMjVOZPhl_1Nvb2cHhSaH0UQCbK4GyNCAEy6isCEAsIkdTRvMxjWncdN5qRQiPVXKyAF50EXVtTIAyl4qMcx8Xd35vPdzZ56dX_2r4DjY-74704f744DXc9xQKz2h8A2uzy7l7S8hsVm36lPsDsiwmcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation+of+caspase-3+in+the+skeletal+muscle+during+haemodialysis&rft.jtitle=European+journal+of+clinical+investigation&rft.au=Boivin%2C+Michel+A.&rft.au=Battah%2C+Shadi+I.&rft.au=Dominic%2C+Elizabeth+A.&rft.au=Kalantar-Zadeh%2C+Kamyar&rft.date=2010-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0014-2972&rft.eissn=1365-2362&rft.volume=40&rft.issue=10&rft.spage=903&rft.epage=910&rft_id=info:doi/10.1111%2Fj.1365-2362.2010.02347.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_BB5KLW87_M
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2972&client=summon