Airborne transmission of COVID‐19 virus in enclosed spaces: An overview of research methods

Since the outbreak of COVID‐19 in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS CoV‐2) has spread worldwide. This study summarized the transmission mechanisms of COVID‐19 and their main influencing factors, such as airflow patterns, air temperature, relative humidity, and...

Full description

Saved in:
Bibliographic Details
Published inIndoor air Vol. 32; no. 6
Main Authors Zhao, Xingwang, Liu, Sumei, Yin, Yonggao, Zhang, Tengfei (Tim), Chen, Qingyan
Format Journal Article
LanguageEnglish
Published Malden Hindawi Limited 01.06.2022
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since the outbreak of COVID‐19 in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS CoV‐2) has spread worldwide. This study summarized the transmission mechanisms of COVID‐19 and their main influencing factors, such as airflow patterns, air temperature, relative humidity, and social distancing. The transmission characteristics in existing cases are providing more and more evidence that SARS CoV‐2 can be transmitted through the air. This investigation reviewed probabilistic and deterministic research methods, such as the Wells–Riley equation, the dose‐response model, the Monte‐Carlo model, computational fluid dynamics (CFD) with the Eulerian method, CFD with the Lagrangian method, and the experimental approach, that have been used for studying the airborne transmission mechanism. The Wells–Riley equation and dose‐response model are typically used for the assessment of the average infection risk. Only in combination with the Eulerian method or the Lagrangian method can these two methods obtain the spatial distribution of airborne particles' concentration and infection risk. In contrast with the Eulerian and Lagrangian methods, the Monte‐Carlo model is suitable for studying the infection risk when the behavior of individuals is highly random. Although researchers tend to use numerical methods to study the airborne transmission mechanism of COVID‐19, an experimental approach could often provide stronger evidence to prove the possibility of airborne transmission than a simple numerical model. All in all, the reviewed methods are helpful in the study of the airborne transmission mechanism of COVID‐19 and epidemic prevention and control.
AbstractList Since the outbreak of COVID‐19 in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS CoV‐2) has spread worldwide. This study summarized the transmission mechanisms of COVID‐19 and their main influencing factors, such as airflow patterns, air temperature, relative humidity, and social distancing. The transmission characteristics in existing cases are providing more and more evidence that SARS CoV‐2 can be transmitted through the air. This investigation reviewed probabilistic and deterministic research methods, such as the Wells–Riley equation, the dose‐response model, the Monte‐Carlo model, computational fluid dynamics (CFD) with the Eulerian method, CFD with the Lagrangian method, and the experimental approach, that have been used for studying the airborne transmission mechanism. The Wells–Riley equation and dose‐response model are typically used for the assessment of the average infection risk. Only in combination with the Eulerian method or the Lagrangian method can these two methods obtain the spatial distribution of airborne particles' concentration and infection risk. In contrast with the Eulerian and Lagrangian methods, the Monte‐Carlo model is suitable for studying the infection risk when the behavior of individuals is highly random. Although researchers tend to use numerical methods to study the airborne transmission mechanism of COVID‐19, an experimental approach could often provide stronger evidence to prove the possibility of airborne transmission than a simple numerical model. All in all, the reviewed methods are helpful in the study of the airborne transmission mechanism of COVID‐19 and epidemic prevention and control.
Author Zhao, Xingwang
Liu, Sumei
Yin, Yonggao
Zhang, Tengfei (Tim)
Chen, Qingyan
AuthorAffiliation 3 Engineering Research Center of Building Equipment, Energy, and Environment Ministry of Education Nanjing China
1 School of Energy and Environment Southeast University Nanjing China
2 Tianjin Key Laboratory of Indoor Air Environmental Quality Control School of Environmental Science and Engineering Tianjin University Tianjin China
4 26680 Department of Building Environment and Energy Engineering The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
AuthorAffiliation_xml – name: 3 Engineering Research Center of Building Equipment, Energy, and Environment Ministry of Education Nanjing China
– name: 4 26680 Department of Building Environment and Energy Engineering The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
– name: 1 School of Energy and Environment Southeast University Nanjing China
– name: 2 Tianjin Key Laboratory of Indoor Air Environmental Quality Control School of Environmental Science and Engineering Tianjin University Tianjin China
Author_xml – sequence: 1
  givenname: Xingwang
  surname: Zhao
  fullname: Zhao, Xingwang
  organization: Southeast University
– sequence: 2
  givenname: Sumei
  orcidid: 0000-0003-3166-1701
  surname: Liu
  fullname: Liu, Sumei
  email: smliu@tju.edu.cn
  organization: Tianjin University
– sequence: 3
  givenname: Yonggao
  surname: Yin
  fullname: Yin, Yonggao
  organization: Ministry of Education
– sequence: 4
  givenname: Tengfei (Tim)
  surname: Zhang
  fullname: Zhang, Tengfei (Tim)
  organization: Tianjin University
– sequence: 5
  givenname: Qingyan
  surname: Chen
  fullname: Chen, Qingyan
  organization: The Hong Kong Polytechnic University
BookMark eNp1kbtuGzEQRYlAQSw5LvwHBFK5WJuPXe4yhQFBfgkw4iZJZxDc2VmLhkTKpB5Ql0_IN-ZLQltCABeZZoo5c2cu7ogMfPBIyCln5zzXhfP2nEtWqQ9kyBVjBVOqGZAh06wqlC7rIzJK6ZkxXkstP5EjWdVKCFkNyePYxTZEj3QVrU8Ll5ILnoaeTh5-Tq_-_PrNNd24uE7UeYoe5iFhR9PSAqavdJzRDcaNw-3rTsSENsKMLnA1C136TD72dp7w5NCPyY-b6--Tu-L-4XY6Gd8XUDZKFdBjpwCELq1ifd0KAV1lG9bYTkkh2jabUl0HVkIJrBUIvQJZI6gMaKjlMbnc6y7X7QI7QJ_dzM0yuoWNOxOsM-8n3s3MU9gYLUvdVGUW-HIQiOFljWllnsM6-vyzEarhUtSM60yd7SmIIaWI_b8LnJnXJExOwrwlkdmLPbt1c9z9HzTTb-P9xl8uqo1L
CitedBy_id crossref_primary_10_3390_buildings14051272
crossref_primary_10_3390_ijerph192114560
crossref_primary_10_1080_09603123_2024_2308731
crossref_primary_10_1002_fld_5277
crossref_primary_10_1007_s12273_022_0975_z
crossref_primary_10_1016_j_scs_2023_104696
crossref_primary_10_1360_TB_2022_0811
crossref_primary_10_1016_j_buildenv_2024_111566
crossref_primary_10_1016_j_buildenv_2023_110594
crossref_primary_10_1007_s10311_022_01557_z
crossref_primary_10_1128_spectrum_00013_24
crossref_primary_10_1016_S2666_5247_23_00253_7
crossref_primary_10_1111_risa_14295
crossref_primary_10_1016_j_jclepro_2022_134351
crossref_primary_10_1016_j_buildenv_2022_109769
crossref_primary_10_3390_microbiolres15010017
crossref_primary_10_1016_j_jobe_2023_107913
crossref_primary_10_1080_23744731_2023_2247947
crossref_primary_10_1111_ina_13123
crossref_primary_10_1016_j_scs_2023_104468
crossref_primary_10_1016_j_scitotenv_2024_171373
crossref_primary_10_1111_ina_13121
crossref_primary_10_1016_j_scs_2023_104781
crossref_primary_10_2147_PPA_S448901
crossref_primary_10_1016_j_jobe_2022_105706
crossref_primary_10_1016_j_buildenv_2023_110343
crossref_primary_10_1002_adsr_202300061
crossref_primary_10_1016_j_buildenv_2023_110261
crossref_primary_10_1016_j_jobe_2023_107109
crossref_primary_10_1016_j_gloepi_2023_100124
crossref_primary_10_1063_5_0188610
crossref_primary_10_1016_j_scs_2023_104751
crossref_primary_10_48130_emst_0024_0006
crossref_primary_10_1016_j_buildenv_2023_110404
crossref_primary_10_3390_ijms241914800
crossref_primary_10_1016_j_scs_2023_105164
crossref_primary_10_1016_j_buildenv_2023_110292
crossref_primary_10_3390_ijerph191811185
crossref_primary_10_1063_5_0185296
crossref_primary_10_1177_1420326X231169710
crossref_primary_10_1038_s41598_023_27380_2
crossref_primary_10_1016_j_scs_2022_104382
crossref_primary_10_1177_1420326X231170787
crossref_primary_10_1016_j_buildenv_2023_110117
crossref_primary_10_1016_j_buildenv_2024_111229
crossref_primary_10_1109_TMBMC_2023_3273193
crossref_primary_10_3390_vaccines11071260
crossref_primary_10_3390_atmos15040404
crossref_primary_10_3390_chemengineering8020037
crossref_primary_10_1016_j_buildenv_2023_110963
crossref_primary_10_1016_j_envadv_2023_100376
crossref_primary_10_3390_ijerph20054144
crossref_primary_10_1016_j_enbenv_2024_01_012
crossref_primary_10_1016_j_enbuild_2023_113565
crossref_primary_10_3390_app14072948
crossref_primary_10_3389_fpubh_2023_1242891
Cites_doi 10.1111/j.1600-0668.2007.00469.x
10.1016/j.jaerosci.2021.105760
10.1016/j.envint.2020.105730
10.1177/1420326X20951968
10.1016/j.scs.2021.103408
10.1016/j.buildenv.2020.106859
10.1016/j.buildenv.2021.108280
10.3201/eid2611.203254
10.1186/s12889-020-09296-y
10.1111/j.0272-4332.2004.00439.x
10.21203/rs.3.rs-18053/v1
10.1016/j.envint.2020.105794
10.1063/5.0019090
10.1063/5.0032006
10.1063/5.0015044
10.1111/j.1600-0668.2006.00452.x
10.1016/j.buildenv.2014.03.029
10.1016/j.envres.2020.110343
10.15585/mmwr.mm6912e3
10.1080/02786826.2015.1031724
10.1016/j.buildenv.2020.107467
10.3763/asre.2008.5103
10.1063/5.0011353
10.1001/jamanetworkopen.2020.18044
10.1002/2475-8876.12183
10.1007/s12273-011-0041-8
10.1111/ina.12661
10.1016/S2666-5247(20)30003-3
10.1038/s41598-020-76442-2
10.3201/eid2607.200764
10.1007/s12273-020-0703-5
10.1093/oxfordjournals.aje.a112560
10.1111/j.1539-6924.1996.tb01098.x
10.1016/j.buildenv.2021.108543
10.1016/j.atmosenv.2006.05.086
10.1016/j.buildenv.2020.107204
10.1016/j.buildenv.2016.07.005
10.1016/j.buildenv.2007.10.023
10.1016/j.buildenv.2021.108049
10.1063/5.0029118
10.1038/s41586-020-2271-3
10.4324/9781315468013
10.1111/ina.12735
10.1080/10789669.2012.682692
10.1101/2020.07.20.20158238
10.1016/j.meegid.2021.104896
10.1016/j.scs.2021.103280
10.1016/j.psep.2021.09.021
10.3201/eid2611.203299
10.1016/j.scitotenv.2020.139178
10.1016/j.apm.2020.10.019
10.1111/ina.12751
10.1016/j.buildenv.2020.107368
10.4209/aaqr.2020.06.0302
10.1016/j.scs.2021.103102
10.3201/eid2612.203910
10.1016/j.scs.2020.102390
10.1038/s41586-020-2342-5
10.1111/ina.12314
10.1111/0272-4332.214142
10.1016/j.atmosenv.2008.09.041
10.1016/S2213-2600(20)30245-9
10.1063/5.0022859
10.1007/s12273-009-9325-7
10.1080/02786826.2020.1749229
10.1063/5.0035414
10.1177/0022034520940288
10.1093/ofid/ofaa430
10.1016/j.jaerosci.2020.105585
10.3201/eid2611.203353
10.1016/j.tmaid.2020.101816
10.1016/j.enbuild.2021.111171
10.1080/10789669.2010.10390934
10.1016/j.apm.2021.02.018
10.1183/09031936.93.01090852
10.1038/s41467-020-17367-2
10.1016/j.jclepro.2021.128147
10.1002/ppap.202000154
10.1080/09603123.2021.1910629
10.1016/j.scs.2021.102942
10.1016/j.ssci.2020.104866
10.1063/5.0039224
10.1111/j.1600-0668.2011.00736.x
10.1080/23744731.2021.1977693
10.1016/j.envres.2020.110612
10.1016/j.buildenv.2020.107402
10.1063/5.0011960
10.1016/S0140-6736(20)30528-6
10.1111/j.1539-6924.2007.00990.x
10.1016/j.jaerosci.2010.07.002
10.1061/(ASCE)EE.1943-7870.0001870
10.3390/diseases4030026
10.4209/aaqr.2020.04.0158
10.1016/j.scs.2021.102719
10.1111/ina.12589
10.1016/j.buildenv.2021.107788
10.1001/jamainternmed.2020.5225
10.1056/NEJMc2004973
10.1111/j.1600-0668.2012.00794.x
10.1017/jfm.2020.720
10.1016/j.buildenv.2019.106591
10.1080/15459620701487539
10.1063/5.0046870
10.1016/j.buildenv.2020.107336
10.1063/5.0018432
10.1016/j.physa.2021.126014
10.1016/j.atmosenv.2006.05.088
10.1038/sj.jea.7500165
10.1111/ina.12127
ContentType Journal Article
Copyright 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright © 2022 John Wiley & Sons A/S
Copyright_xml – notice: 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2022 John Wiley & Sons A/S
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
5PM
DOI 10.1111/ina.13056
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate ZHAO et al
EISSN 1600-0668
EndPage n/a
ExternalDocumentID 10_1111_ina_13056
INA13056
Genre reviewArticle
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2020M680886
– fundername: National Natural Science Foundation of China
  funderid: 52108084
– fundername: Jiangsu Planned Projects for Postdoctoral Research Funds
  funderid: 2021K069A
– fundername: ;
  grantid: 52108084
– fundername: Jiangsu Planned Projects for Postdoctoral Research Funds
  grantid: 2021K069A
– fundername: ;
  grantid: 2020M680886
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
36B
3SF
4.4
4P2
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8C1
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAJEY
AAKAS
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHEFC
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOETA
ASPBG
ATCPS
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BROTX
BRXPI
BY8
C45
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EDH
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
FYUFA
FZ0
G-S
G.N
GODZA
H.X
H13
HCIFZ
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PALCI
PATMY
PIMPY
PQQKQ
PYCSY
Q.N
Q11
QB0
R.K
RHX
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
W8V
W99
WBKPD
WIH
WIJ
WIK
WLBEL
WOHZO
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZZTAW
~IA
~WT
AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
5PM
ID FETCH-LOGICAL-c4866-cfed6cc294a60f7b22cd5a808ad6322bb1606ddca3c4c0b2ecf6c37ec6ad69c73
IEDL.DBID DR2
ISSN 0905-6947
IngestDate Tue Sep 17 21:27:47 EDT 2024
Fri Sep 13 05:22:13 EDT 2024
Fri Aug 23 01:11:53 EDT 2024
Sat Aug 24 00:55:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4866-cfed6cc294a60f7b22cd5a808ad6322bb1606ddca3c4c0b2ecf6c37ec6ad69c73
Notes Xingwang Zhao and Sumei Liu contributed equally to this work and should be considered co‐first authors.
ORCID 0000-0003-3166-1701
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9349854
PMID 35762235
PQID 2681327019
PQPubID 105551
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9349854
proquest_journals_2681327019
crossref_primary_10_1111_ina_13056
wiley_primary_10_1111_ina_13056_INA13056
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Malden
PublicationPlace_xml – name: Malden
– name: Hoboken
PublicationTitle Indoor air
PublicationYear 2022
Publisher Hindawi Limited
John Wiley and Sons Inc
Publisher_xml – name: Hindawi Limited
– name: John Wiley and Sons Inc
References 2021; 27
2010; 16
2021; 67
2009; 43
2020; 20
2020; 62
2013; 23
2021; 202
2021; 248
2021; 207
2021; 206
2004; 24
2020; 17
2020; 14
2016; 106
2012; 18
2020; 13
2020; 11
2020; 99
2020; 54
2020; 10
2020; 169
2021; 73
2021; 70
2020; 8
2020; 7
2021; 32
2021; 31
2020; 3
2021; 75
2015; 49
2020; 1
2021; 33
2020; 130
2020; 176
2021; 316
2021; 193
2020; 731
2020; 139
2007; 4
2021; 196
2021; 155
2021; 154
2001; 11
2012; 22
1978; 107
2007; 27
2007; 17
2021; 4
2019; 6
2009; 20
2020; 382
2020; 141
2011
2020; 186
2020; 583
2020; 582
2021; 147
2020; 180
2020; 183
2020; 36
2021; 188
2021; 187
2020; 147
2020; 32
2008; 51
1996; 16
2021; 95
2021; 90
2010; 41
2020; 903
2021; 92
1955
2001; 21
2016; 4
1988; 1
2015; 25
2021; 574
2020; 30
2020
2020; 395
2020; 26
2020; 69
2017
2008; 43
2007; 41
2009; 2
2016; 27
2012; 5
2014; 77
2020; 29
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_1
Wells WF (e_1_2_11_76_1) 1955
e_1_2_11_102_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_59_1
e_1_2_11_113_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_122_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_110_1
e_1_2_11_39_1
Deng Z (e_1_2_11_72_1) 2021; 32
e_1_2_11_91_1
ASHRAE (e_1_2_11_57_1) 2011
e_1_2_11_30_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_123_1
e_1_2_11_83_1
e_1_2_11_60_1
Salah B (e_1_2_11_52_1) 1988; 1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
Bolashikov ZD (e_1_2_11_63_1) 2012; 18
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Li Y (e_1_2_11_117_1) 2021; 4
e_1_2_11_101_1
To G (e_1_2_11_74_1) 2009; 20
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_116_1
e_1_2_11_37_1
e_1_2_11_112_1
References_xml – year: 2011
– volume: 32
  issue: 9
  year: 2020
  article-title: Transmission of airborne virus through sneezed and coughed droplets
  publication-title: Phys Fluids
– volume: 31
  start-page: 587
  issue: 2
  year: 2021
  end-page: 601
  article-title: Three‐dimensional analysis of the effect of human movement on indoor airflow patterns
  publication-title: Indoor Air
– volume: 43
  start-page: 1805
  year: 2008
  end-page: 1817
  article-title: The airborne transmission of infection between flats in high‐rise residential buildings: tracer gas simulation
  publication-title: Build Environ
– volume: 4
  start-page: 26
  year: 2016
  article-title: Human coronaviruses: a review of virus‐host interactions
  publication-title: Diseases
– volume: 32
  start-page: 103311
  year: 2020
  article-title: Numerical investigation of aerosol transport in a classroom with relevance to COVID‐19
  publication-title: Phys Fluids
– volume: 202
  issue: 11
  year: 2021
  article-title: Experimental evaluation of particle exposure at different seats in a single‐aisle aircraft cabin
  publication-title: Build Environ
– volume: 17
  start-page: 167
  issue: 3
  year: 2007
  end-page: 177
  article-title: Identification of contaminant sources in enclosed environments by inverse CFD modeling
  publication-title: Indoor Air
– volume: 11
  start-page: 231
  issue: 3
  year: 2001
  end-page: 252
  article-title: The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants
  publication-title: J Expo Anal Environ Epidemiol
– volume: 147
  year: 2020
  article-title: Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID‐19 airborne transmission: a numerical study
  publication-title: J Aerosol Sci
– volume: 33
  issue: 4
  year: 2021
  article-title: Effects of slope and speed of escalator on the dispersion of cough‐generated droplets from a passenger
  publication-title: Phys Fluids
– volume: 316
  year: 2021
  article-title: Investigating the effect of air conditioning on the distribution and transmission of COVID‐19 virus particles
  publication-title: J Clean Prod
– volume: 36
  year: 2020
  article-title: Potential transmission of SARS‐CoV‐2 on a flight from Singapore to Hangzhou, China: an epidemiological investigation
  publication-title: Travel Med Infect Dis
– volume: 29
  start-page: 1195
  issue: 9
  year: 2020
  end-page: 1201
  article-title: HVAC systems for environmental control to minimize the COVID‐19 infection
  publication-title: Indoor Built Environ
– volume: 10
  year: 2020
  article-title: Long‐distance airborne dispersal of SARS‐CoV‐2 in COVID‐19 wards
  publication-title: Sci Rep
– volume: 17
  start-page: 211
  issue: 3
  year: 2007
  end-page: 225
  article-title: How far droplets can move in indoor environments‐revisiting the Wells evaporation‐falling curve
  publication-title: Indoor Air
– volume: 1
  start-page: e10
  issue: 1
  year: 2020
  article-title: Stability of SARS‐CoV‐2 in different environmental conditions
  publication-title: Lancet Microbe
– volume: 54
  start-page: 635
  issue: 6
  year: 2020
  end-page: 638
  article-title: The coronavirus pandemic and aerosols: does COVID‐19 transmit via expiratory particles?
  publication-title: Aerosol Sci Technol
– volume: 32
  year: 2020
  article-title: On coughing and airborne droplet transmission to humans
  publication-title: Phys Fluids
– volume: 176
  year: 2020
  article-title: Short‐range airborne route dominates exposure of respiratory infection during close contact
  publication-title: Build Environ
– volume: 248
  issue: 9
  year: 2021
  article-title: Numerical study on the effect of diner divider on the airborne transmission of diseases in canteens
  publication-title: Energy Build
– volume: 1
  start-page: 852
  issue: 9
  year: 1988
  end-page: 855
  article-title: Nasal mucociliary transport IN healthy subjects IS slower when breathing dry air
  publication-title: Eur Respir J
– volume: 107
  start-page: 421
  year: 1978
  end-page: 432
  article-title: Airborne spread of measles in a suburban elementary school
  publication-title: Am J Epidemiol
– volume: 20
  start-page: 2
  issue: 1
  year: 2009
  end-page: 16
  article-title: Review and comparison between the Wells–Riley and dose‐response approaches to risk assessment of infectious respiratory diseases
  publication-title: Indoor Air
– volume: 22
  start-page: 64
  year: 2012
  end-page: 76
  article-title: Distribution of exhaled contaminants and personal exposure in a room using three different air distribution strategies
  publication-title: Indoor Air
– volume: 69
  start-page: 347
  issue: 12
  year: 2020
  end-page: 352
  article-title: Public health responses to COVID‐19 outbreaks on cruise ships—worldwide, February–March 2020
  publication-title: Morb Mortal Wkly Rep
– volume: 187
  year: 2021
  article-title: Review and comparison of HVAC operation guidelines in different countries during the COVID‐19 pandemic
  publication-title: Build Environ
– volume: 130
  year: 2020
  article-title: Modelling aerosol transport and virus exposure with numerical simulations in relation to Sars‐CoV‐2 transmission by inhalation indoors
  publication-title: Saf Sci
– volume: 62
  year: 2020
  article-title: The efficacy of social distance and ventilation effectiveness in preventing COVID‐19 transmission
  publication-title: Sustain Cities Soc
– volume: 154
  start-page: 105760
  year: 2021
  article-title: Insights into the evaporation characteristics of saliva droplets and aerosols: levitation experiments and numerical modeling
  publication-title: J Aerosol Sci
– volume: 26
  start-page: 2872
  issue: 12
  year: 2020
  end-page: 2880
  article-title: Flight‐associated transmission of severe acute respiratory syndrome coronavirus 2 corroborated by whole‐genome sequencing
  publication-title: Emerg Infect Dis
– volume: 26
  start-page: 2713
  issue: 11
  year: 2020
  end-page: 2716
  article-title: In‐flight transmission of SARS‐CoV‐2
  publication-title: Emerg Infect Dis
– volume: 67
  issue: 17
  year: 2021
  article-title: Assessing and controlling infection risk with Wells–Riley model and spatial flow impact factor (SFIF)
  publication-title: Sustain Cities Soc
– volume: 95
  start-page: 297
  year: 2021
  end-page: 319
  article-title: Modeling airborne pathogen transport and transmission risks of SARS‐CoV‐2
  publication-title: Appl Math Model
– volume: 139
  year: 2020
  article-title: Airborne transmission of SARS‐CoV‐2: The world should face the reality
  publication-title: Environ Int
– volume: 582
  start-page: 557
  year: 2020
  end-page: 560
  article-title: Aerodynamic analysis of SARS‐CoV‐2 in two Wuhan hospitals
  publication-title: Nature
– volume: 73
  year: 2021
  article-title: Experimental study on the control effect of different ventilation systems on fine particles in a simulated hospital ward
  publication-title: Sustain Cities Soc
– volume: 21
  start-page: 657
  year: 2001
  end-page: 673
  article-title: Estimation of tuberculosis risk and incidence under upper room ultraviolet germicidal irradiation in a waiting room in a hypothetical scenario
  publication-title: Risk Anal
– volume: 193
  year: 2021
  article-title: The role of air conditioning in the diffusion of SARS‐CoV‐2 in indoor environments: a first computational fluid dynamic model, based on investigations performed at the Vatican State Children's hospital
  publication-title: Environ Res
– volume: 13
  start-page: 1321
  year: 2020
  end-page: 1327
  article-title: Association of the infection probability of COVID‐19 with ventilation rates in confined spaces
  publication-title: Build Simul
– volume: 14
  issue: 4
  year: 2020
  article-title: Simulation of nanoparticle transport and adsorption in a microfluidic lung‐on‐a‐chip device
  publication-title: Biomicrofluidics
– volume: 206
  year: 2021
  article-title: Implication of coughing dynamics on safe social distancing in an indoor environment—a numerical perspective
  publication-title: Build Environ
– volume: 3
  issue: 8
  year: 2020
  article-title: Assessment of SARS‐CoV‐2 transmission on an international flight and among a tourist group
  publication-title: JAMA Network Open
– volume: 207
  year: 2021
  article-title: Evaluation of airborne particle exposure for riding elevators
  publication-title: Build Environ
– volume: 395
  start-page: 1039
  issue: 10229
  year: 2020
  end-page: 1046
  article-title: Investigation of three clusters of COVID‐19 in Singapore: Implications for surveillance and response measures
  publication-title: Lancet
– volume: 183
  year: 2020
  article-title: Reducing the exposure risk in hospital wards by applying stratum ventilation system
  publication-title: Build Environ
– volume: 20
  start-page: 911
  issue: 5
  year: 2020
  end-page: 914
  article-title: A letter about the airborne transmission of SARS‐CoV‐2 based on the current evidence
  publication-title: Aerosol Air Qual Res
– volume: 41
  start-page: 5236
  year: 2007
  end-page: 5248
  article-title: Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces
  publication-title: Atmos Environ
– start-page: 117
  year: 1955
  end-page: 122
– volume: 155
  start-page: 230
  year: 2021
  end-page: 261
  article-title: A critical review of heating, ventilation, and air conditioning (HVAC) systems within the context of a global SARS‐CoV‐2 epidemic
  publication-title: Process Saf Environ Prot
– volume: 27
  start-page: 1331
  year: 2021
  end-page: 1367
  article-title: Airborne transmission of SARS‐CoV‐2 in indoor environments: a comprehensive review
  publication-title: Sci Technol Built Environ
– volume: 186
  year: 2020
  article-title: COVID‐19: reduction of airborne transmission needs paradigm shift in ventilation
  publication-title: Build Environ
– volume: 32
  year: 2020
  article-title: Sneezing and asymptomatic virus transmission
  publication-title: Phys Fluids
– volume: 75
  year: 2021
  article-title: Effective ventilation and air disinfection system for reducing coronavirus disease 2019 (COVID‐19) infection risk in office buildings
  publication-title: Sustain Cities Soc
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  end-page: 9
  article-title: The evidence of indirect transmission of SARS‐CoV‐2 reported in Guangzhou, China
  publication-title: BMC Public Health
– volume: 23
  start-page: 62
  year: 2013
  end-page: 73
  article-title: The risk of airborne cross infection in a room with vertical low‐velocity ventilation
  publication-title: Indoor Air
– volume: 16
  start-page: 527
  year: 1996
  end-page: 538
  article-title: An analytical framework for relating dose, risk, and incidence: an application to occupational tuberculosis infection
  publication-title: Risk Anal
– volume: 8
  start-page: 658
  issue: 7
  year: 2020
  end-page: 659
  article-title: Small droplet aerosols in poorly ventilated spaces and SARS‐CoV‐2 transmission
  publication-title: Lancet Respir Med
– volume: 32
  year: 2020
  article-title: On respiratory droplets and face masks
  publication-title: Phys Fluids
– volume: 4
  start-page: 634
  year: 2007
  end-page: 646
  article-title: Quantitative microbial risk assessment model for Legionnaire’s disease: assessment of human exposures for selected spa outbreaks
  publication-title: J Occup Environ Hyg
– volume: 574
  year: 2021
  article-title: A random walk Monte Carlo simulation study of COVID‐19‐like infection spread
  publication-title: Phys A Stat Mech Appl
– volume: 17
  start-page: 2000154
  issue: 10
  year: 2020
  article-title: Cold atmospheric plasma inactivation of aerosolized microdroplets containing bacteria and purified SARS‐CoV‐2 RNA to contrast airborne indoor transmission
  publication-title: Plasma Processes Polym
– volume: 25
  start-page: 176
  issue: 2
  year: 2015
  end-page: 187
  article-title: Performance evaluation of a novel personalized ventilation–personalized exhaust system for airborne infection control
  publication-title: Indoor Air
– volume: 583
  start-page: 834
  issue: 7818
  year: 2020
  end-page: 838
  article-title: Pathogenesis and transmission of SARS‐CoV‐2 in golden hamsters
  publication-title: Nature
– volume: 2
  start-page: 281
  issue: 4
  year: 2009
  end-page: 289
  article-title: Investigating a safe ventilation rate for the prevention of indoor SARS transmission: an attempt based on a simulation approach
  publication-title: Build Simul
– volume: 169
  year: 2020
  article-title: A relationship for the diffusion coefficient in eddy diffusion based indoor dispersion modelling
  publication-title: Build Environ
– volume: 6
  start-page: 993
  issue: 29
  year: 2019
  end-page: 1004
  article-title: Influence of pulmonary ventilation rate and breathing cycle period on the risk of cross‐infection
  publication-title: Indoor Air
– volume: 33
  issue: 3
  year: 2021
  article-title: Eulerian‐Lagrangian modeling of cough droplets irradiated by ultraviolet‐C light in relation to SARS‐CoV‐2 transmission
  publication-title: Phys Fluids
– volume: 3
  start-page: 423
  issue: 4
  year: 2020
  end-page: 434
  article-title: Measures against COVID concerning Summer Indoor Environment in Japan
  publication-title: Jpn Archit Rev
– volume: 26
  start-page: 2705
  issue: 11
  year: 2020
  end-page: 2708
  article-title: Asymptomatic transmission of SARS‐CoV‐2 on evacuation flight
  publication-title: Emerg Infect Dis
– volume: 32
  issue: 8
  year: 2020
  article-title: Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough
  publication-title: Phys Fluids
– volume: 106
  start-page: 340
  year: 2016
  end-page: 351
  article-title: Influence of human breathing modes on airborne cross infection risk
  publication-title: Build Environ
– volume: 27
  start-page: 1581
  year: 2007
  end-page: 1596
  article-title: A quantitative microbial risk assessment model for Legionnaire’s disease: animal model selection and dose‐response modeling
  publication-title: Risk Anal
– volume: 99
  start-page: 1192
  issue: 10
  year: 2020
  end-page: 1198
  article-title: Modeling of the transmission of coronaviruses, measles virus, influenza virus, , and in dental clinics
  publication-title: J Dent Res
– volume: 147
  issue: 4
  year: 2021
  article-title: Transport and fate of virus‐laden particles in a supermarket: recommendations for risk reduction of COVID‐19 spreading
  publication-title: J Environ Eng
– volume: 141
  year: 2020
  article-title: Estimation of airborne viral emission: Quanta emission rate of SARS‐CoV‐2 for infection risk assessment
  publication-title: Environ Int
– volume: 180
  start-page: 1665
  issue: 12
  year: 2020
  end-page: 1671
  article-title: Community outbreak investigation of SARS‐CoV‐2 transmission among bus riders in eastern China
  publication-title: JAMA Intern Med
– volume: 32
  year: 2021
  article-title: What is suitable social distancing for people wearing face masks during the COVID‐19 pandemic?
  publication-title: Indoor Air
– volume: 24
  start-page: 379
  year: 2004
  end-page: 388
  article-title: Estimation of tuberculosis risk on a commercial airliner
  publication-title: Risk Anal
– volume: 20
  start-page: 1856
  issue: 9
  year: 2020
  end-page: 1861
  article-title: An overview on the role of relative humidity in airborne transmission of SARS‐CoV‐2 in indoor environments
  publication-title: Aerosol Air Qual Res
– volume: 187
  year: 2021
  article-title: Experimental and numerical study on the transport of droplet aerosols generated by occupants in a fever clinic
  publication-title: Build Environ
– volume: 903
  start-page: F1
  year: 2020
  article-title: Effects of ventilation on the indoor spread of COVID‐19
  publication-title: J Fluid Mech
– volume: 193
  year: 2021
  article-title: A systematic review of possible airborne transmission of the COVID‐19 virus (SARS‐CoV‐2) in the indoor air environment
  publication-title: Environ Res
– volume: 32
  year: 2020
  article-title: A study of fluid dynamics and human physiology factors driving droplet dispersion from a human sneeze
  publication-title: Phys Fluids
– volume: 41
  start-page: 921
  issue: 10
  year: 2010
  end-page: 934
  article-title: Refinement and testing of the drift‐flux model for indoor aerosol dispersion and deposition modelling
  publication-title: J Aerosol Sci
– volume: 188
  year: 2021
  article-title: Numerical study of three ventilation strategies in a prefabricated COVID‐19 inpatient ward
  publication-title: Build Environ
– volume: 31
  start-page: 314
  issue: 2
  year: 2021
  end-page: 323
  article-title: Transmission of SARS‐CoV‐2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event
  publication-title: Indoor Air
– volume: 92
  year: 2021
  article-title: Novel approach for Monte Carlo simulation of the new COVID‐19 spread dynamics
  publication-title: Infect Genet Evol
– volume: 70
  year: 2021
  article-title: Indoor air quality improvement in COVID‐19 pandemic: review
  publication-title: Sustain Cities Soc
– volume: 5
  start-page: 5
  issue: 1
  year: 2012
  end-page: 14
  article-title: Experimental verification of tracking algorithm for dynamically‐releasing single indoor contaminant
  publication-title: Build Simul
– volume: 51
  start-page: 14
  year: 2008
  end-page: 20
  article-title: Infection risk of indoor airborne transmission of diseases in multiple spaces
  publication-title: Archit Sci Rev
– volume: 4
  start-page: 1
  year: 2021
  end-page: 12
  article-title: Transmission characteristics of respiratory droplets aerosol in indoor environment: an experimental study
  publication-title: Int J Environ Health Res
– volume: 30
  start-page: 1039
  issue: 5
  year: 2020
  end-page: 1051
  article-title: Inverse design of an indoor environment using a filter‐based topology method with experimental verification
  publication-title: Indoor Air
– volume: 41
  start-page: 5249
  year: 2007
  end-page: 5256
  article-title: Comparison of a new Eulerian model with a modified Lagrangian approach for particle distribution and deposition indoors
  publication-title: Atmos Environ
– volume: 26
  start-page: 1628
  issue: 7
  year: 2020
  end-page: 1631
  article-title: COVID‐19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020
  publication-title: Emerg Infect Dis
– volume: 49
  start-page: 351
  issue: 5
  year: 2015
  end-page: 361
  article-title: Accelerating the Lagrangian method for modeling transient particle transport in indoor environments
  publication-title: Aerosol Sci Technol
– volume: 75
  year: 2021
  article-title: Passenger exposure to respiratory aerosols in a train cabin: effects of window, injection source, output flow location
  publication-title: Sustain Cities Soc
– volume: 382
  start-page: 1564
  issue: 16
  year: 2020
  end-page: 1567
  article-title: Aerosol and surface stability of SARS‐CoV‐2 as compared with SARS‐CoV‐1
  publication-title: N Engl J Med
– volume: 77
  start-page: 119
  year: 2014
  end-page: 134
  article-title: The influence of human walking on the flow and airborne transmission in a six‐bed isolation room: tracer gas simulation
  publication-title: Build Environ
– volume: 27
  start-page: 452
  issue: 2
  year: 2016
  end-page: 462
  article-title: Short‐range airborne transmission of expiratory droplets between two people
  publication-title: Indoor Air
– volume: 16
  start-page: 785
  issue: 6
  year: 2010
  end-page: 798
  article-title: Simulations of air distribution in buildings by FFD on GPU
  publication-title: HVAC R Res
– volume: 10
  year: 2020
  article-title: Fluid dynamics simulations show that facial masks can suppress the spread of COVID‐19 in indoor environments
  publication-title: AIP Adv
– volume: 26
  start-page: 2617
  issue: 11
  year: 2020
  end-page: 2624
  article-title: Transmission of SARS‐CoV 2 during long‐haul flight
  publication-title: Emerg Infect Dis
– year: 2020
– volume: 18
  start-page: 602
  issue: 4
  year: 2012
  end-page: 615
  article-title: Exposure of health care workers and occupants to coughed airborne pathogens in a double‐bed hospital patient room with overhead mixing ventilation
  publication-title: HVAC R Res
– volume: 90
  start-page: 995
  year: 2021
  end-page: 1008
  article-title: Global analysis of the COVID‐19 pandemic using simple epidemiological models
  publication-title: Appl Math Model
– volume: 11
  start-page: 3496
  issue: 1
  year: 2020
  article-title: SARS‐CoV‐2 is transmitted via contact and via the air between ferrets
  publication-title: Nat Commun
– volume: 731
  year: 2020
  article-title: On airborne transmission and control of SARS‐CoV‐2
  publication-title: Sci Total Environ
– year: 2017
– volume: 196
  issue: 5
  year: 2021
  article-title: Probable airborne transmission of SARS‐CoV‐2 in a poorly ventilated restaurant
  publication-title: Build Environ
– volume: 43
  start-page: 319
  issue: 2
  year: 2009
  end-page: 328
  article-title: Prediction of particle deposition onto indoor surfaces by CFD with a modified Lagrangian method
  publication-title: Atmos Environ
– volume: 7
  start-page: ofaa430
  issue: 10
  year: 2020
  article-title: Transmission of SARS‐CoV‐2 in public transportation vehicles: a case study in Hunan Province, China
  publication-title: Open Forum Infect Dis
– ident: e_1_2_11_15_1
  doi: 10.1111/j.1600-0668.2007.00469.x
– ident: e_1_2_11_114_1
  doi: 10.1016/j.jaerosci.2021.105760
– ident: e_1_2_11_9_1
  doi: 10.1016/j.envint.2020.105730
– ident: e_1_2_11_42_1
  doi: 10.1177/1420326X20951968
– ident: e_1_2_11_97_1
  doi: 10.1016/j.scs.2021.103408
– ident: e_1_2_11_44_1
  doi: 10.1016/j.buildenv.2020.106859
– ident: e_1_2_11_66_1
  doi: 10.1016/j.buildenv.2021.108280
– ident: e_1_2_11_34_1
  doi: 10.3201/eid2611.203254
– ident: e_1_2_11_41_1
  doi: 10.1186/s12889-020-09296-y
– ident: e_1_2_11_10_1
– ident: e_1_2_11_80_1
  doi: 10.1111/j.0272-4332.2004.00439.x
– ident: e_1_2_11_29_1
  doi: 10.21203/rs.3.rs-18053/v1
– ident: e_1_2_11_47_1
  doi: 10.1016/j.envint.2020.105794
– ident: e_1_2_11_112_1
  doi: 10.1063/5.0019090
– ident: e_1_2_11_108_1
  doi: 10.1063/5.0032006
– volume-title: ASHRAE Handbook – HVAC Applications (SI)
  year: 2011
  ident: e_1_2_11_57_1
  contributor:
    fullname: ASHRAE
– ident: e_1_2_11_109_1
  doi: 10.1063/5.0015044
– ident: e_1_2_11_122_1
  doi: 10.1111/j.1600-0668.2006.00452.x
– ident: e_1_2_11_69_1
  doi: 10.1016/j.buildenv.2014.03.029
– ident: e_1_2_11_104_1
  doi: 10.1016/j.envres.2020.110343
– ident: e_1_2_11_40_1
  doi: 10.15585/mmwr.mm6912e3
– ident: e_1_2_11_99_1
  doi: 10.1080/02786826.2015.1031724
– ident: e_1_2_11_100_1
  doi: 10.1016/j.buildenv.2020.107467
– ident: e_1_2_11_82_1
  doi: 10.3763/asre.2008.5103
– ident: e_1_2_11_94_1
  doi: 10.1063/5.0011353
– ident: e_1_2_11_33_1
  doi: 10.1001/jamanetworkopen.2020.18044
– ident: e_1_2_11_54_1
  doi: 10.1002/2475-8876.12183
– ident: e_1_2_11_123_1
  doi: 10.1007/s12273-011-0041-8
– ident: e_1_2_11_11_1
– ident: e_1_2_11_121_1
  doi: 10.1111/ina.12661
– ident: e_1_2_11_50_1
  doi: 10.1016/S2666-5247(20)30003-3
– ident: e_1_2_11_21_1
  doi: 10.1038/s41598-020-76442-2
– ident: e_1_2_11_16_1
  doi: 10.3201/eid2607.200764
– ident: e_1_2_11_77_1
  doi: 10.1007/s12273-020-0703-5
– ident: e_1_2_11_75_1
  doi: 10.1093/oxfordjournals.aje.a112560
– ident: e_1_2_11_84_1
  doi: 10.1111/j.1539-6924.1996.tb01098.x
– ident: e_1_2_11_105_1
  doi: 10.1016/j.buildenv.2021.108543
– ident: e_1_2_11_93_1
  doi: 10.1016/j.atmosenv.2006.05.086
– ident: e_1_2_11_96_1
  doi: 10.1016/j.buildenv.2020.107204
– ident: e_1_2_11_58_1
– ident: e_1_2_11_59_1
  doi: 10.1016/j.buildenv.2016.07.005
– ident: e_1_2_11_81_1
  doi: 10.1016/j.buildenv.2007.10.023
– ident: e_1_2_11_116_1
  doi: 10.1016/j.buildenv.2021.108049
– ident: e_1_2_11_113_1
  doi: 10.1063/5.0029118
– ident: e_1_2_11_20_1
  doi: 10.1038/s41586-020-2271-3
– ident: e_1_2_11_120_1
  doi: 10.4324/9781315468013
– ident: e_1_2_11_70_1
  doi: 10.1111/ina.12735
– volume: 18
  start-page: 602
  issue: 4
  year: 2012
  ident: e_1_2_11_63_1
  article-title: Exposure of health care workers and occupants to coughed airborne pathogens in a double‐bed hospital patient room with overhead mixing ventilation
  publication-title: HVAC R Res
  doi: 10.1080/10789669.2012.682692
  contributor:
    fullname: Bolashikov ZD
– ident: e_1_2_11_51_1
  doi: 10.1101/2020.07.20.20158238
– ident: e_1_2_11_89_1
  doi: 10.1016/j.meegid.2021.104896
– ident: e_1_2_11_102_1
  doi: 10.1016/j.scs.2021.103280
– volume: 20
  start-page: 2
  issue: 1
  year: 2009
  ident: e_1_2_11_74_1
  article-title: Review and comparison between the Wells–Riley and dose‐response approaches to risk assessment of infectious respiratory diseases
  publication-title: Indoor Air
  contributor:
    fullname: To G
– ident: e_1_2_11_23_1
  doi: 10.1016/j.psep.2021.09.021
– ident: e_1_2_11_32_1
  doi: 10.3201/eid2611.203299
– ident: e_1_2_11_49_1
  doi: 10.1016/j.scitotenv.2020.139178
– ident: e_1_2_11_90_1
  doi: 10.1016/j.apm.2020.10.019
– ident: e_1_2_11_45_1
– ident: e_1_2_11_30_1
  doi: 10.1111/ina.12751
– volume: 32
  start-page: e12935
  year: 2021
  ident: e_1_2_11_72_1
  article-title: What is suitable social distancing for people wearing face masks during the COVID‐19 pandemic?
  publication-title: Indoor Air
  contributor:
    fullname: Deng Z
– ident: e_1_2_11_43_1
  doi: 10.1016/j.buildenv.2020.107368
– ident: e_1_2_11_55_1
  doi: 10.4209/aaqr.2020.06.0302
– ident: e_1_2_11_4_1
– ident: e_1_2_11_115_1
  doi: 10.1016/j.scs.2021.103102
– ident: e_1_2_11_35_1
  doi: 10.3201/eid2612.203910
– ident: e_1_2_11_67_1
  doi: 10.1016/j.scs.2020.102390
– ident: e_1_2_11_5_1
  doi: 10.1038/s41586-020-2342-5
– ident: e_1_2_11_60_1
  doi: 10.1111/ina.12314
– ident: e_1_2_11_79_1
  doi: 10.1111/0272-4332.214142
– ident: e_1_2_11_98_1
  doi: 10.1016/j.atmosenv.2008.09.041
– ident: e_1_2_11_19_1
  doi: 10.1016/S2213-2600(20)30245-9
– ident: e_1_2_11_71_1
  doi: 10.1063/5.0022859
– ident: e_1_2_11_68_1
  doi: 10.1007/s12273-009-9325-7
– ident: e_1_2_11_8_1
  doi: 10.1080/02786826.2020.1749229
– ident: e_1_2_11_107_1
  doi: 10.1063/5.0035414
– ident: e_1_2_11_48_1
  doi: 10.1177/0022034520940288
– ident: e_1_2_11_39_1
  doi: 10.1093/ofid/ofaa430
– ident: e_1_2_11_56_1
  doi: 10.1016/j.jaerosci.2020.105585
– ident: e_1_2_11_36_1
  doi: 10.3201/eid2611.203353
– ident: e_1_2_11_31_1
  doi: 10.1016/j.tmaid.2020.101816
– start-page: 117
  volume-title: Airborne Contagion and Air Hygiene
  year: 1955
  ident: e_1_2_11_76_1
  contributor:
    fullname: Wells WF
– ident: e_1_2_11_78_1
  doi: 10.1016/j.enbuild.2021.111171
– ident: e_1_2_11_119_1
  doi: 10.1080/10789669.2010.10390934
– ident: e_1_2_11_95_1
  doi: 10.1016/j.apm.2021.02.018
– volume: 1
  start-page: 852
  issue: 9
  year: 1988
  ident: e_1_2_11_52_1
  article-title: Nasal mucociliary transport IN healthy subjects IS slower when breathing dry air
  publication-title: Eur Respir J
  doi: 10.1183/09031936.93.01090852
  contributor:
    fullname: Salah B
– ident: e_1_2_11_6_1
  doi: 10.1038/s41467-020-17367-2
– ident: e_1_2_11_101_1
  doi: 10.1016/j.jclepro.2021.128147
– ident: e_1_2_11_18_1
  doi: 10.1002/ppap.202000154
– volume: 4
  start-page: 1
  year: 2021
  ident: e_1_2_11_117_1
  article-title: Transmission characteristics of respiratory droplets aerosol in indoor environment: an experimental study
  publication-title: Int J Environ Health Res
  doi: 10.1080/09603123.2021.1910629
  contributor:
    fullname: Li Y
– ident: e_1_2_11_14_1
– ident: e_1_2_11_26_1
  doi: 10.1016/j.scs.2021.102942
– ident: e_1_2_11_87_1
  doi: 10.1016/j.ssci.2020.104866
– ident: e_1_2_11_111_1
  doi: 10.1063/5.0039224
– ident: e_1_2_11_62_1
  doi: 10.1111/j.1600-0668.2011.00736.x
– ident: e_1_2_11_24_1
  doi: 10.1080/23744731.2021.1977693
– ident: e_1_2_11_25_1
  doi: 10.1016/j.envres.2020.110612
– ident: e_1_2_11_3_1
  doi: 10.1016/j.buildenv.2020.107402
– ident: e_1_2_11_110_1
  doi: 10.1063/5.0011960
– ident: e_1_2_11_28_1
  doi: 10.1016/S0140-6736(20)30528-6
– ident: e_1_2_11_85_1
  doi: 10.1111/j.1539-6924.2007.00990.x
– ident: e_1_2_11_118_1
  doi: 10.1016/j.jaerosci.2010.07.002
– ident: e_1_2_11_12_1
– ident: e_1_2_11_103_1
  doi: 10.1061/(ASCE)EE.1943-7870.0001870
– ident: e_1_2_11_13_1
  doi: 10.3390/diseases4030026
– ident: e_1_2_11_7_1
  doi: 10.4209/aaqr.2020.04.0158
– ident: e_1_2_11_83_1
  doi: 10.1016/j.scs.2021.102719
– ident: e_1_2_11_37_1
– ident: e_1_2_11_64_1
  doi: 10.1111/ina.12589
– ident: e_1_2_11_27_1
  doi: 10.1016/j.buildenv.2021.107788
– ident: e_1_2_11_38_1
  doi: 10.1001/jamainternmed.2020.5225
– ident: e_1_2_11_17_1
  doi: 10.1056/NEJMc2004973
– ident: e_1_2_11_61_1
  doi: 10.1111/j.1600-0668.2012.00794.x
– ident: e_1_2_11_46_1
  doi: 10.1017/jfm.2020.720
– ident: e_1_2_11_88_1
  doi: 10.1016/j.buildenv.2019.106591
– ident: e_1_2_11_86_1
  doi: 10.1080/15459620701487539
– ident: e_1_2_11_53_1
– ident: e_1_2_11_106_1
  doi: 10.1063/5.0046870
– ident: e_1_2_11_2_1
  doi: 10.1016/j.buildenv.2020.107336
– ident: e_1_2_11_73_1
  doi: 10.1063/5.0018432
– ident: e_1_2_11_91_1
  doi: 10.1016/j.physa.2021.126014
– ident: e_1_2_11_92_1
  doi: 10.1016/j.atmosenv.2006.05.088
– ident: e_1_2_11_22_1
  doi: 10.1038/sj.jea.7500165
– ident: e_1_2_11_65_1
  doi: 10.1111/ina.12127
SSID ssj0017393
Score 2.585082
SecondaryResourceType review_article
Snippet Since the outbreak of COVID‐19 in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS CoV‐2) has spread worldwide. This study summarized...
SourceID pubmedcentral
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Air flow
Air temperature
Airborne infection
airborne transmission
Computational fluid dynamics
Computer applications
Coronaviruses
COVID-19
Disease control
dose‐response model
Epidemics
Eulerian method
experimental approach
Fluid dynamics
Health risks
Hydrodynamics
Infections
Lagrangian method
Mathematical models
Monte‐Carlo model
Numerical methods
Numerical models
Relative humidity
Research methodology
Research methods
Respiratory diseases
Review
Reviews
Risk
Risk taking
SARS CoV‐2
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Spatial distribution
ventilation
Viral diseases
Viruses
Wells–Riley equation
Title Airborne transmission of COVID‐19 virus in enclosed spaces: An overview of research methods
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fina.13056
https://www.proquest.com/docview/2681327019/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC9349854
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS9xAFMAfopd6qLYqrm5lKD14ieRjZpLYU1a7aKEWRMWDEjKTCS5KVja7Cj35J_g3-pf43iTZ7goF6S2QmXzM-5j3hje_AfgmuDSY5GhHKI4JiiDkbR4EjgwNV5HyI1PQ3uFfJ_LonP-8FJcL8L3dC1PzIaYLbmQZ1l-TgWeqmjFyOrXAowAY_S-B9CggOp2iozwivVnOniscGfOwoQpRFc-05_xc9DfAfFseORu22nmnvwJX7RfX5Sa3e5Ox2tN_3sAc__OXVuFjE4-ypFagT7Bgys-wPEMpXIPrZDBCTSkNG9PEhopBK2xsWLCD3xfHhy9Pz17MHgajScUGJUOtvxtWJmfoqtAH7bMEmz6QRzKP1KehC92w-uzqah3O-z_ODo6c5lQGR_NISkcXJqdi65hn0i1C5fs6F1nkRlku0Tso5WFOlOc6CzTXrvKNLqQOQqMlNoh1GGzAYjkszSYwHWuTyUgrQZAaKVWRux52NfjcWBSqA19b-aT3NXwjbZMWHKvUjlUHuq3k0sb-qtSXEWogoeY7EM5Jc_og4mrP3ykHN5avHQc8jgTvwK4V1r9fnR6fJPZi6_1Nt-GDTzso7EJOFxbHo4n5gnHNWO3AUtI77PV3rCK_Anfx-VE
link.rule.ids 230,315,786,790,891,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JS-RAFIAfjh4cD-ps2G5TyBy8RLJUVRLx0rjQPaMtiIoXCalKBZuRtPSi4Mmf4G_0l_heJWm7hQGZWyBVWeot9V7x6iuAX4JLg0mOdoTimKAIQt5mQeDI0HAVKT8yOe0dPunI1gX_fSWuZmCv3gtT8iHGC25kGdZfk4HTgvSEldOxBR5FwJ9gDs1d2ITqbAyP8oj1Zkl7rnBkzMOKK0R1POOu07PRW4j5vkByMnC1M8_RElzX31wWnPzdGQ3Vjn58h3P8359ahsUqJGXNUoe-wIwpvsLCBKjwG1w3u31UlsKwIc1tqBu0yMZ6Ods_vWwfvDw9ezG77_ZHA9YtGCr-bW9gMobeCt3QLmti03tySuaB-lSAoRtWHl89-A4XR4fn-y2nOpjB0TyS0tG5yajeOuapdPNQ-b7ORBq5UZpJdBBKeZgWZZlOA821q3yjc6mD0GiJDWIdBj9gtugVZgWYjrVJZaSVIE6NlCrPXA-7GnxuLHLVgK1aQMldyd9I6rwFxyqxY9WA9Vp0SWWCg8SXESoh0eYbEE6Jc_wgQmtP3ym6NxaxHQc8jgRvwLaV1r9fnbQ7TXux-vGmP2G-dX5ynBy3O3_W4LNPGyrsus46zA77I7OBYc5QbVptfgUrkPwB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bb9MwFICPxpAmeGCwMa1QhoX2wEumXGwngaeqXdVyKRNapz1siuJLtAqUTk06JJ74CfzG_RJ8nAvtpEmIt0ixc_G5-Bzr-DPAIaNcmyRHOkxQk6AwRN6qIHB4qKmIhB_pDPcOf57w0ZR-OGfnG_C-2QtT8SHaBTe0DOuv0cCvVbZi5HhqgYcB8AN4SHngo0oPvrbsKA9Rbxa05zKHxzSssUJYxtN2XZ-M_kaYd-sjV-NWO_EMt-Gi-eSq3uTb0bIUR_LnHZrjf_7TU3hSB6SkV2nQM9jQ-Q48XsEU7sJlb7YwqpJrUuLMZjQDl9jIPCP9L2fjwe2v315MbmaLZUFmOTFq_31eaEWMrzJO6B3pmaY36JL0D-xT44WuSHV4dfEcpsPj0_7IqY9lcCSNOHdkphVWW8c05W4WCt-XiqWRG6XKiMEXwjNJkVIyDSSVrvC1zLgMQi25aRDLMNiDzXye630gMpY65ZEUDCk1nItMuZ7pqs1zY5aJDrxp5JNcV_SNpMlazFgldqw60G0kl9QGWCQ-j4wKImu-A-GaNNsHIVh7_U4-u7KA7TigccRoB95aYd3_6mQ86dmLF__e9DVsnQyGyafx5ONLeOTjbgq7qNOFzXKx1K9MjFOKA6vLfwBOgvqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Airborne+transmission+of+COVID%E2%80%9019+virus+in+enclosed+spaces%3A+An+overview+of+research+methods&rft.jtitle=Indoor+air&rft.au=Zhao%2C+Xingwang&rft.au=Liu%2C+Sumei&rft.au=Yin%2C+Yonggao&rft.au=Zhang%2C+Tengfei+%28Tim%29&rft.date=2022-06-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0905-6947&rft.eissn=1600-0668&rft.volume=32&rft.issue=6&rft_id=info:doi/10.1111%2Fina.13056&rft_id=info%3Apmid%2F35762235&rft.externalDBID=PMC9349854
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0905-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0905-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0905-6947&client=summon