Power and Sample Size Calculations for SNP Association Studies With Censored Time-to-Event Outcomes

For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating single‐nucleotide polymorphisms (SNPs) associated with clinical outcomes. The primary clinical endpoint for many of these studies are time‐to‐event outcomes such as time of death...

Full description

Saved in:
Bibliographic Details
Published inGenetic epidemiology Vol. 36; no. 6; pp. 538 - 548
Main Authors Owzar, Kouros, Li, Zhiguo, Cox, Nancy, Jung, Sin-Ho
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.09.2012
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0741-0395
1098-2272
1098-2272
DOI10.1002/gepi.21645

Cover

Abstract For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating single‐nucleotide polymorphisms (SNPs) associated with clinical outcomes. The primary clinical endpoint for many of these studies are time‐to‐event outcomes such as time of death or disease progression which are subject to censoring mechanisms. The Cox score test can be readily employed to test the association between a SNP and the outcome of interest. In addition to the effect and sample size, and censoring distribution, the power of the test will depend on the underlying genetic risk model and the distribution of the risk allele. We propose a rigorous account for power and sample size calculations under a variety of genetic risk models without resorting to the commonly used contiguous alternative assumption. Practical advice along with an open‐source software package to design SNP association studies with survival outcomes are provided.
AbstractList For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating single-nucleotide polymorphisms (SNPs) associated with clinical outcomes. The primary clinical endpoint for many of these studies are time-to-event outcomes such as time of death or disease progression which are subject to censoring mechanisms. The Cox score test can be readily employed to test the association between a SNP and the outcome of interest. In addition to the effect and sample size, and censoring distribution, the power of the test will depend on the underlying genetic risk model and the distribution of the risk allele. We propose a rigorous account for power and sample size calculations under a variety of genetic risk models without resorting to the commonly used contiguous alternative assumption. Practical advice along with an open-source software package to design SNP association studies with survival outcomes are provided.
For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating Single Nucleotide Polymorphisms associated with clinical outcomes. The primary clinical endpoint for many of these studies are time-to-event outcomes such as time of death or disease progression which are subject to censoring mechanisms. The Cox score test can be readily employed to test the association between a SNP and the outcome of interest. In addition to the effect and sample size, and censoring distribution, the power of the test will depend on the underlying genetic risk model and the distribution of the risk allele. We propose a rigorous account for power and sample size calculations under a variety of genetic risk models without resorting to the commonly used contiguous alternative assumption. Practical advice along with an open-source software package to design SNP association studies with survival outcomes are provided.
For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating single-nucleotide polymorphisms (SNPs) associated with clinical outcomes. The primary clinical endpoint for many of these studies are time-to-event outcomes such as time of death or disease progression which are subject to censoring mechanisms. The Cox score test can be readily employed to test the association between a SNP and the outcome of interest. In addition to the effect and sample size, and censoring distribution, the power of the test will depend on the underlying genetic risk model and the distribution of the risk allele. We propose a rigorous account for power and sample size calculations under a variety of genetic risk models without resorting to the commonly used contiguous alternative assumption. Practical advice along with an open-source software package to design SNP association studies with survival outcomes are provided.For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating single-nucleotide polymorphisms (SNPs) associated with clinical outcomes. The primary clinical endpoint for many of these studies are time-to-event outcomes such as time of death or disease progression which are subject to censoring mechanisms. The Cox score test can be readily employed to test the association between a SNP and the outcome of interest. In addition to the effect and sample size, and censoring distribution, the power of the test will depend on the underlying genetic risk model and the distribution of the risk allele. We propose a rigorous account for power and sample size calculations under a variety of genetic risk models without resorting to the commonly used contiguous alternative assumption. Practical advice along with an open-source software package to design SNP association studies with survival outcomes are provided.
Author Jung, Sin-Ho
Owzar, Kouros
Cox, Nancy
Li, Zhiguo
AuthorAffiliation 2 Section of Genetic Medicine, Department of Medicine and Department of Human Genetics, University of Chicago
1 Department of Biostatistics and Bioinformatics, Duke University
AuthorAffiliation_xml – name: 1 Department of Biostatistics and Bioinformatics, Duke University
– name: 2 Section of Genetic Medicine, Department of Medicine and Department of Human Genetics, University of Chicago
Author_xml – sequence: 1
  givenname: Kouros
  surname: Owzar
  fullname: Owzar, Kouros
  email: kouros.owzar@duke.edu
  organization: Department of Biostatistics and Bioinformatics, Duke University, North Carolina, Durham
– sequence: 2
  givenname: Zhiguo
  surname: Li
  fullname: Li, Zhiguo
  organization: Department of Biostatistics and Bioinformatics, Duke University, North Carolina, Durham
– sequence: 3
  givenname: Nancy
  surname: Cox
  fullname: Cox, Nancy
  organization: Section of Genetic Medicine, Department of Medicine and Department of Human Genetics, University of Chicago, Illinois, Chicago
– sequence: 4
  givenname: Sin-Ho
  surname: Jung
  fullname: Jung, Sin-Ho
  organization: Department of Biostatistics and Bioinformatics, Duke University, North Carolina, Durham
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22685040$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9v0zAUxS00xLrBCx8AWeIFTcrwnziOX5BG1ZWhsRV1UIkXy3FuNo8kLnayMT49abtVMCGeLF3_ztG59-yhnda3gNBLSg4pIeztJSzdIaNZKp6gESUqTxiTbAeNiExpQrgSu2gvxmtCKE2VeIZ2GctyQVIyQnbmbyFg05Z4bpplDXjufgEem9r2temcbyOufMDzsxk-itFbtx7iedeXDiJeuO4Kj6GNPkCJL1wDSeeTyQ20HT7vO-sbiM_R08rUEV7cv_voy_HkYvwhOT2fnoyPThOb5plIqqK0UtKiSpUCw4ALkhcVl1TmhZS8rGRFRFYoZrPVMFOWVmlZppwJKImp-D56t_Fd9kUDpR0yBFPrZXCNCXfaG6f__mndlb70N5oLxThXg8Gbe4Pgf_QQO924aKGuTQu-j5oSzlMhBCED-voReu370A7raaryLCMkp9lAvfoz0TbKw_0H4GAD2OBjDFBtEUr0qly9Klevyx1g8gi2rlvXMWzj6n9L6EZy62q4-4-5nk5mJw-aZKNxsYOfW40J33UmuRR6cTbVi0-Lzx-_fZ3p9_w3Tv_Ggw
CitedBy_id crossref_primary_10_1016_j_thromres_2019_11_002
crossref_primary_10_1186_s13059_020_1942_6
crossref_primary_10_1016_j_psyneuen_2015_02_013
crossref_primary_10_1038_s41416_018_0117_7
crossref_primary_10_1038_s44276_023_00003_z
crossref_primary_10_1371_journal_pone_0154856
crossref_primary_10_1186_1471_2105_14_58
crossref_primary_10_1093_brain_awac414
crossref_primary_10_1002_ijc_32550
crossref_primary_10_1038_s41531_024_00729_8
crossref_primary_10_1002_1878_0261_13067
crossref_primary_10_1158_1055_9965_EPI_22_0314
crossref_primary_10_1038_s41467_023_41210_z
crossref_primary_10_1038_tpj_2015_1
crossref_primary_10_1556_IMAS_7_2015_1_1
crossref_primary_10_1002_ehf2_13517
crossref_primary_10_1136_bmjopen_2023_075981
crossref_primary_10_1186_s40246_019_0242_2
crossref_primary_10_1038_s41467_017_01775_y
crossref_primary_10_1158_1055_9965_EPI_19_0596
crossref_primary_10_1016_j_bbi_2023_09_010
crossref_primary_10_18632_oncotarget_3506
crossref_primary_10_1002_cam4_1819
crossref_primary_10_1002_cncr_35678
crossref_primary_10_1016_j_mex_2022_101987
crossref_primary_10_1186_s13073_022_01135_6
Cites_doi 10.1016/S0197-2456(00)00104-5
10.1023/A:1020518905233
10.1158/1078-0432.CCR-11-1387
10.1093/bioinformatics/bti456
10.1371/journal.pgen.1000477
10.1186/1471-2156-8-58
10.1186/1471-2156-9-36
10.1038/ng1706
10.1200/JCO.2010.28.1386
10.1007/978-1-4757-2545-2
10.1200/JCO.2011.40.6405
10.18637/jss.v040.i08
10.1200/JCO.2011.39.4767
10.1159/000066696
10.1002/gepi.10293
10.2307/2531021
10.1186/1471-2156-6-18
10.1159/000087918
10.1007/978-0-387-75969-2
10.1086/381563
ContentType Journal Article
Copyright 2012 Wiley Periodicals, Inc.
Copyright_xml – notice: 2012 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/gepi.21645
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef

MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
EISSN 1098-2272
EndPage 548
ExternalDocumentID PMC3592339
22685040
10_1002_gepi_21645
GEPI21645
ark_67375_WNG_WMWQJZVP_B
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: PAAR‐Pharmacogenomics of Anticancer Agents Research Group
  funderid: U01GM061393
– fundername: National Cancer Institute
  funderid: P01CA142538; CA33601
– fundername: NCI NIH HHS
  grantid: P01 CA142538
– fundername: NCI NIH HHS
  grantid: P01CA142538
– fundername: NCI NIH HHS
  grantid: U10 CA033601
– fundername: NIGMS NIH HHS
  grantid: U01GM061393
– fundername: NIGMS NIH HHS
  grantid: U01 GM061393
– fundername: NCI NIH HHS
  grantid: CA33601
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: U01 GM061393 || GM
– fundername: National Cancer Institute : NCI
  grantid: P01 CA142538 || CA
– fundername: National Cancer Institute : NCI
  grantid: U10 CA033601 || CA
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M66
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZGI
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
RWV
WRC
WTM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4865-fbdc771bf499ea2e3508bf37178b773df7f056b92c6371769c1f4dd4325ed0af3
IEDL.DBID DR2
ISSN 0741-0395
1098-2272
IngestDate Thu Aug 21 13:29:55 EDT 2025
Thu Jul 10 19:02:47 EDT 2025
Sun Jul 13 05:27:49 EDT 2025
Mon Jul 21 06:00:58 EDT 2025
Thu Apr 24 22:53:41 EDT 2025
Tue Jul 01 02:45:07 EDT 2025
Wed Jan 22 17:01:17 EST 2025
Tue Sep 09 05:31:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2012 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4865-fbdc771bf499ea2e3508bf37178b773df7f056b92c6371769c1f4dd4325ed0af3
Notes National Cancer Institute - No. P01CA142538; No. CA33601
istex:C52FA2BDDEE4ACF7D4B626DAA541EC4F6F811AED
PAAR-Pharmacogenomics of Anticancer Agents Research Group - No. U01GM061393
ArticleID:GEPI21645
ark:/67375/WNG-WMWQJZVP-B
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3592339
PMID 22685040
PQID 1986600816
PQPubID 105460
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3592339
proquest_miscellaneous_1033455500
proquest_journals_1986600816
pubmed_primary_22685040
crossref_primary_10_1002_gepi_21645
crossref_citationtrail_10_1002_gepi_21645
wiley_primary_10_1002_gepi_21645_GEPI21645
istex_primary_ark_67375_WNG_WMWQJZVP_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2012
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: September 2012
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Genetic epidemiology
PublicationTitleAlternate Genet. Epidemiol
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Eddelbuettel D, Francois R. 2011. Rcpp: seamless R and C++ integration. J Stat Softw 40(8): 1-18.
Edwards B, Haynes C, Levenstien M, Finch S, Gordon D. 2005. Power and sample size calculations in the presence of phenotype errors for case/control genetic association studies.. BMC Genet 6(1): 18.
Hsieh F, Lavori P. 2000. Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates. Control Clin Trials 21(6): 552-560.
Skol A, Scott L, Abecasis G, Boehnke M. 2006. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38(2): 209-213.
Schoenfeld D. 1983. Sample-size formula for the proportional-hazards regression model. Biometrics 39(2): 499-503.
De La Vega F, Gordon D, Su X, Scafe C, Isaac H, Gilbert D, Spier E. 2005. Power and sample size calculations for genetic case/control studies using gene-centric SNP maps: application to human chromosomes 6, 21, and 22 in three populations. Hum Hered 60(1): 43-60.
Fleming T, Harrington D. 1991. Counting Processes and Survival Analysis. New York: Wiley.
Spencer C, Su Z, Donnelly P, Marchini J. 2009. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet 5(5): e1000477.
Galassi M, Davies J, Theiler J, Gough B, Jungman P, Alken P, Booth M, Rossi F. 2009. GNU Scientific Library Reference Manual (3rd ed.) Bristol, UK: Network Theory Ltd.
Gordon D, Finch SJ, Nothnagel M, Ott J. 2002. Power and sample size calculations for case-control genetic association tests when errors are present: application to single nucleotide polymorphisms. Hum Hered. 54(1):22-33.
Klein R. 2007. Power analysis for genome-wide association studies. BMC Genet 8(1): 58.
Hao K, Xu X, Laird N, Wang X, Xu X. 2004. Power estimation of multiple SNP association test of case-control study and application. Genet Epidemiol 26(1): 22-30.
Jung S. 2005. Sample size for FDR-control in microarray data analysis. Bioinformatics 21(14): 3097--3104.
Shulman LN, Cirrincione CT, Berry DA, Becker HP, Perez EA, O'Regan RO, Martino S, Atkins JN, Mayer E, Schneider CJ, Kimmick G, Norton L, Muss H, Winer EP, Hudis C. 2012. Six cycles of doxorubicin and cyclophosphamide or paclitaxel are not superior to 4 cycles as adjuvant chemotherapy for breast cancer in women with 0-3 positive axillary nodes: CALGB 40101. J Clin Oncology. In press.
Sarkar D. 2008. Lattice: Multivariate Data Visualization with R. New York: Springer.
Innocenti F, Owzar K, Cox NL, Evans P, Kubo M, Zembutsu H, Jiang C, Hollis D, Mushiroda T, Li L, Friedman P, Wang L, Glubb D, Hurwitz H, Giacomini KM, McLeod HL, Goldberg RM, Schilsky RL, Kindler HL, Nakamura Y, Ratain MJ. 2012. A genome-wide association study of overall survival in pancreatic cancer patients treated with gemcitabine in CALGB 80303. Clin Cancer Res 18(2):577-584.
Kindler H, Niedzwiecki D, Hollis D, Sutherland S, Schrag D, Hurwitz H, Innocenti F, Mulcahy M, O'Reilly E, Wozniak T, Picus J, Bhargava P, Mayer R, Schilsky R, Goldberg R. 2010. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol 28(22): 3617--3622.
van der Vaart A, Wellner J. 1996. Weak Convergence and Empirical Processes. New York: Springer-Verlag.
Jung S, Hui S. 2002. Sample size calculation for rank tests comparing k survival distributions. Lifetime Data Analysis 8(4): 361-373.
Kelly W, Halabi S, Carducci M, George D, Mahoney J, Stadler W, Morris M, Kantoff P, Monk JP, Kaplan E, Vogelzang NJ, Small, EJ. 2012. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel, and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol 30(13):1534-1540.
Lange C, DeMeo D, Silverman E, Weiss S, Laird N. 2004. PBAT: tools for family-based association studies. Am J Hum Genet. 74(2): 367--369.
R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Therneau T. 2011. survival: Survival analysis, including penalised likelihood, R package version 2.36-9.
Menashe I, Rosenberg P, Chen B. 2008. PGA: power calculator for case-control genetic association analyses.. BMC Genet 9(1): 36.
2004; 74
2012
2011
2010; 28
2000; 21
2006; 38
2004; 26
2011; 40
2002; 54
2002; 8
2009
2007; 8
2008; 9
2008
2007
1996
2005; 6
2005; 21
2012; 18
2005; 60
2009; 5
1991
1983; 39
2012; 30
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
R Development Core Team (e_1_2_8_20_1) 2011
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_9_1
Therneau T (e_1_2_8_29_1) 2011
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Fleming T (e_1_2_8_6_1) 1991
Galassi M (e_1_2_8_7_1) 2009
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
22142827 - Clin Cancer Res. 2012 Jan 15;18(2):577-84
19492015 - PLoS Genet. 2009 May;5(5):e1000477
15845654 - Bioinformatics. 2005 Jul 15;21(14):3097-104
15819990 - BMC Genet. 2005;6:18
12471945 - Lifetime Data Anal. 2002 Dec;8(4):361-73
17725844 - BMC Genet. 2007;8:58
6354290 - Biometrics. 1983 Jun;39(2):499-503
11146149 - Control Clin Trials. 2000 Dec;21(6):552-60
14691954 - Genet Epidemiol. 2004 Jan;26(1):22-30
12446984 - Hum Hered. 2002;54(1):22-33
18477402 - BMC Genet. 2008;9:36
22454414 - J Clin Oncol. 2012 May 1;30(13):1534-40
20606091 - J Clin Oncol. 2010 Aug 1;28(22):3617-22
14740322 - Am J Hum Genet. 2004 Feb;74(2):367-9
16415888 - Nat Genet. 2006 Feb;38(2):209-13
16137993 - Hum Hered. 2005;60(1):43-60
References_xml – reference: Spencer C, Su Z, Donnelly P, Marchini J. 2009. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet 5(5): e1000477.
– reference: Eddelbuettel D, Francois R. 2011. Rcpp: seamless R and C++ integration. J Stat Softw 40(8): 1-18.
– reference: De La Vega F, Gordon D, Su X, Scafe C, Isaac H, Gilbert D, Spier E. 2005. Power and sample size calculations for genetic case/control studies using gene-centric SNP maps: application to human chromosomes 6, 21, and 22 in three populations. Hum Hered 60(1): 43-60.
– reference: Jung S. 2005. Sample size for FDR-control in microarray data analysis. Bioinformatics 21(14): 3097--3104.
– reference: Skol A, Scott L, Abecasis G, Boehnke M. 2006. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38(2): 209-213.
– reference: Hsieh F, Lavori P. 2000. Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates. Control Clin Trials 21(6): 552-560.
– reference: Kelly W, Halabi S, Carducci M, George D, Mahoney J, Stadler W, Morris M, Kantoff P, Monk JP, Kaplan E, Vogelzang NJ, Small, EJ. 2012. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel, and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol 30(13):1534-1540.
– reference: R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
– reference: Galassi M, Davies J, Theiler J, Gough B, Jungman P, Alken P, Booth M, Rossi F. 2009. GNU Scientific Library Reference Manual (3rd ed.) Bristol, UK: Network Theory Ltd.
– reference: Schoenfeld D. 1983. Sample-size formula for the proportional-hazards regression model. Biometrics 39(2): 499-503.
– reference: Innocenti F, Owzar K, Cox NL, Evans P, Kubo M, Zembutsu H, Jiang C, Hollis D, Mushiroda T, Li L, Friedman P, Wang L, Glubb D, Hurwitz H, Giacomini KM, McLeod HL, Goldberg RM, Schilsky RL, Kindler HL, Nakamura Y, Ratain MJ. 2012. A genome-wide association study of overall survival in pancreatic cancer patients treated with gemcitabine in CALGB 80303. Clin Cancer Res 18(2):577-584.
– reference: Menashe I, Rosenberg P, Chen B. 2008. PGA: power calculator for case-control genetic association analyses.. BMC Genet 9(1): 36.
– reference: Therneau T. 2011. survival: Survival analysis, including penalised likelihood, R package version 2.36-9.
– reference: Fleming T, Harrington D. 1991. Counting Processes and Survival Analysis. New York: Wiley.
– reference: Kindler H, Niedzwiecki D, Hollis D, Sutherland S, Schrag D, Hurwitz H, Innocenti F, Mulcahy M, O'Reilly E, Wozniak T, Picus J, Bhargava P, Mayer R, Schilsky R, Goldberg R. 2010. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol 28(22): 3617--3622.
– reference: Shulman LN, Cirrincione CT, Berry DA, Becker HP, Perez EA, O'Regan RO, Martino S, Atkins JN, Mayer E, Schneider CJ, Kimmick G, Norton L, Muss H, Winer EP, Hudis C. 2012. Six cycles of doxorubicin and cyclophosphamide or paclitaxel are not superior to 4 cycles as adjuvant chemotherapy for breast cancer in women with 0-3 positive axillary nodes: CALGB 40101. J Clin Oncology. In press.
– reference: van der Vaart A, Wellner J. 1996. Weak Convergence and Empirical Processes. New York: Springer-Verlag.
– reference: Edwards B, Haynes C, Levenstien M, Finch S, Gordon D. 2005. Power and sample size calculations in the presence of phenotype errors for case/control genetic association studies.. BMC Genet 6(1): 18.
– reference: Hao K, Xu X, Laird N, Wang X, Xu X. 2004. Power estimation of multiple SNP association test of case-control study and application. Genet Epidemiol 26(1): 22-30.
– reference: Gordon D, Finch SJ, Nothnagel M, Ott J. 2002. Power and sample size calculations for case-control genetic association tests when errors are present: application to single nucleotide polymorphisms. Hum Hered. 54(1):22-33.
– reference: Lange C, DeMeo D, Silverman E, Weiss S, Laird N. 2004. PBAT: tools for family-based association studies. Am J Hum Genet. 74(2): 367--369.
– reference: Sarkar D. 2008. Lattice: Multivariate Data Visualization with R. New York: Springer.
– reference: Jung S, Hui S. 2002. Sample size calculation for rank tests comparing k survival distributions. Lifetime Data Analysis 8(4): 361-373.
– reference: Klein R. 2007. Power analysis for genome-wide association studies. BMC Genet 8(1): 58.
– year: 2011
– year: 2009
– volume: 26
  start-page: 22
  issue: 1
  year: 2004
  end-page: 30
  article-title: Power estimation of multiple SNP association test of case‐control study and application
  publication-title: Genet Epidemiol
– volume: 60
  start-page: 43
  issue: 1
  year: 2005
  end-page: 60
  article-title: Power and sample size calculations for genetic case/control studies using gene‐centric SNP maps: application to human chromosomes 6, 21, and 22 in three populations
  publication-title: Hum Hered
– volume: 30
  start-page: 1534
  issue: 13
  year: 2012
  end-page: 1540
  article-title: Randomized, double‐blind, placebo‐controlled phase III trial comparing docetaxel, and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401
  publication-title: J Clin Oncol
– volume: 40
  start-page: 1
  issue: 8
  year: 2011
  end-page: 18
  article-title: Rcpp: seamless R and C++ integration
  publication-title: J Stat Softw
– volume: 9
  start-page: 36
  issue: 1
  year: 2008
  article-title: PGA: power calculator for case‐control genetic association analyses
  publication-title: BMC Genet
– volume: 21
  start-page: 552
  year: 2000
  end-page: 560
  article-title: Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates
  publication-title: Control Clin Trials
– volume: 5
  start-page: e1000477
  issue: 5
  year: 2009
  article-title: Designing genome‐wide association studies: sample size, power, imputation, and the choice of genotyping chip
  publication-title: PLoS Genet
– volume: 28
  start-page: 3617--3622
  issue: 22
  year: 2010
  article-title: Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303)
  publication-title: J Clin Oncol
– year: 2007
– volume: 21
  start-page: 3097--3104
  issue: 14
  year: 2005
  article-title: Sample size for FDR‐control in microarray data analysis
  publication-title: Bioinformatics
– year: 1996
– volume: 18
  start-page: 577
  issue: 2
  year: 2012
  end-page: 584
  article-title: A genome‐wide association study of overall survival in pancreatic cancer patients treated with gemcitabine in CALGB 80303
  publication-title: Clin Cancer Res
– year: 2012
  article-title: Six cycles of doxorubicin and cyclophosphamide or paclitaxel are not superior to 4 cycles as adjuvant chemotherapy for breast cancer in women with 0-3 positive axillary nodes: CALGB 40101
  publication-title: J Clin Oncology
– volume: 6
  start-page: 18
  issue: 1
  year: 2005
  article-title: Power and sample size calculations in the presence of phenotype errors for case/control genetic association studies
  publication-title: BMC Genet
– start-page: 2.36
  year: 2011
  end-page: 9
  article-title: survival: Survival analysis, including penalised likelihood
  publication-title: R package version
– year: 2012
– volume: 39
  start-page: 499
  issue: 2
  year: 1983
  end-page: 503
  article-title: Sample-size formula for the proportional-hazards regression model
  publication-title: Biometrics
– volume: 8
  start-page: 361
  issue: 4
  year: 2002
  end-page: 373
  article-title: Sample size calculation for rank tests comparing survival distributions
  publication-title: Lifetime Data Analysis
– volume: 38
  start-page: 209
  issue: 2
  year: 2006
  end-page: 213
  article-title: Joint analysis is more efficient than replication-based analysis for two‐stage genome‐wide association studies
  publication-title: Nat Genet
– year: 2008
– volume: 74
  start-page: 367--369
  issue: 2
  year: 2004
  article-title: PBAT: tools for family-based association studies
  publication-title: Am J Hum Genet.
– volume: 54
  start-page: 22
  issue: 1
  year: 2002
  end-page: 33
  article-title: Power and sample size calculations for case‐control genetic association tests when errors are present: application to single nucleotide polymorphisms
  publication-title: Hum Hered
– year: 1991
– volume: 8
  start-page: 58
  issue: 1
  year: 2007
  article-title: Power analysis for genome‐wide association studies
  publication-title: BMC Genet
– start-page: 2.36
  year: 2011
  ident: e_1_2_8_29_1
  article-title: survival: Survival analysis, including penalised likelihood
  publication-title: R package version
– ident: e_1_2_8_10_1
  doi: 10.1016/S0197-2456(00)00104-5
– ident: e_1_2_8_13_1
  doi: 10.1023/A:1020518905233
– ident: e_1_2_8_11_1
  doi: 10.1158/1078-0432.CCR-11-1387
– ident: e_1_2_8_12_1
  doi: 10.1093/bioinformatics/bti456
– ident: e_1_2_8_28_1
  doi: 10.1371/journal.pgen.1000477
– ident: e_1_2_8_25_1
– ident: e_1_2_8_16_1
  doi: 10.1186/1471-2156-8-58
– ident: e_1_2_8_18_1
  doi: 10.1186/1471-2156-9-36
– ident: e_1_2_8_27_1
  doi: 10.1038/ng1706
– ident: e_1_2_8_15_1
  doi: 10.1200/JCO.2010.28.1386
– ident: e_1_2_8_21_1
– ident: e_1_2_8_30_1
  doi: 10.1007/978-1-4757-2545-2
– volume-title: Counting Processes and Survival Analysis
  year: 1991
  ident: e_1_2_8_6_1
– ident: e_1_2_8_26_1
  doi: 10.1200/JCO.2011.40.6405
– ident: e_1_2_8_2_1
– ident: e_1_2_8_4_1
  doi: 10.18637/jss.v040.i08
– ident: e_1_2_8_14_1
  doi: 10.1200/JCO.2011.39.4767
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2011
  ident: e_1_2_8_20_1
– ident: e_1_2_8_8_1
  doi: 10.1159/000066696
– ident: e_1_2_8_19_1
– ident: e_1_2_8_9_1
  doi: 10.1002/gepi.10293
– ident: e_1_2_8_24_1
  doi: 10.2307/2531021
– ident: e_1_2_8_5_1
  doi: 10.1186/1471-2156-6-18
– ident: e_1_2_8_3_1
  doi: 10.1159/000087918
– ident: e_1_2_8_22_1
  doi: 10.1007/978-0-387-75969-2
– ident: e_1_2_8_23_1
– volume-title: GNU Scientific Library Reference Manual
  year: 2009
  ident: e_1_2_8_7_1
– ident: e_1_2_8_17_1
  doi: 10.1086/381563
– reference: 22142827 - Clin Cancer Res. 2012 Jan 15;18(2):577-84
– reference: 12446984 - Hum Hered. 2002;54(1):22-33
– reference: 15819990 - BMC Genet. 2005;6:18
– reference: 22454414 - J Clin Oncol. 2012 May 1;30(13):1534-40
– reference: 16137993 - Hum Hered. 2005;60(1):43-60
– reference: 19492015 - PLoS Genet. 2009 May;5(5):e1000477
– reference: 18477402 - BMC Genet. 2008;9:36
– reference: 15845654 - Bioinformatics. 2005 Jul 15;21(14):3097-104
– reference: 12471945 - Lifetime Data Anal. 2002 Dec;8(4):361-73
– reference: 17725844 - BMC Genet. 2007;8:58
– reference: 14740322 - Am J Hum Genet. 2004 Feb;74(2):367-9
– reference: 14691954 - Genet Epidemiol. 2004 Jan;26(1):22-30
– reference: 6354290 - Biometrics. 1983 Jun;39(2):499-503
– reference: 11146149 - Control Clin Trials. 2000 Dec;21(6):552-60
– reference: 16415888 - Nat Genet. 2006 Feb;38(2):209-13
– reference: 20606091 - J Clin Oncol. 2010 Aug 1;28(22):3617-22
SSID ssj0011495
Score 2.1541464
Snippet For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating single‐nucleotide polymorphisms...
For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating single-nucleotide polymorphisms...
For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating Single Nucleotide Polymorphisms...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 538
SubjectTerms Cancer
censoring pharmacogenomics
Cox score test
Deoxyribonucleic acid
DNA
Genetic Predisposition to Disease
genetic risk
Genome-Wide Association Study
Humans
Models, Genetic
Polymorphism
Polymorphism, Single Nucleotide
Proportional Hazards Models
Random Allocation
Research Design
Sample Size
Single-nucleotide polymorphism
SNP association study
Software
Survival Rate
Title Power and Sample Size Calculations for SNP Association Studies With Censored Time-to-Event Outcomes
URI https://api.istex.fr/ark:/67375/WNG-WMWQJZVP-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgepi.21645
https://www.ncbi.nlm.nih.gov/pubmed/22685040
https://www.proquest.com/docview/1986600816
https://www.proquest.com/docview/1033455500
https://pubmed.ncbi.nlm.nih.gov/PMC3592339
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3_a9QwFA9jIgiic-qsTokogkJv1yZtUvAXPW-bg52n57whjJDmy3Zs9MZdD-Z-8k_wb_Qv8aXpdTsdgv5SSvNKk_S95POSl89D6HmmTZtSZsNIaR3SVJGQc0vA57EqA_yc82pHd7eXbu_Rnf1kfwm9np-F8fwQzYKbs4xqvHYGLvPpxgVp6KE5HbViQPvuhHlEUkec_-5Twx0VOejvOThdzFCWNNyk8cbFqwuz0TXXsWdXQc0_IyYvI9lqKtq8jQ7mjfARKMetWZm31Plv_I7_28oVdKvGqPiNV6o7aMkUq-i6z1r5bRXd9Et92J9guosO-y7TGpaFxgPpyIbxYHRucEeeqDo32BQDNMaDXh9f0gZchzDi4ag8wh1wp8cTo7E7k_Lz-49yDJeuC8bEH2Yl1NpM76G9ze7nznZY528IFeVpEtpcK8ai3IJXZWRsCIDB3BJwIHnOGNGWWYBfeRar1D1MMxVZqjUlcWJ0W1pyHy0X48I8QFhzpYzjwqeSUQlOYp5xwyyXMk1kzNIAvZz_R6FqcnOXY-NEeFrmWLiOFFVHBuhZI3vqKT2ulHpRqUMjIifHLgiOJWLY2xLD3eHHna9f-uJtgNbn-iJq-5-KKONp6uAW1OxpUwyW67ZjZGHGM5BpE0IT8BDbAVrz6tV8DEAxT2B8DRBbULxGwLGCL5YUo6OKHZwkgNlJFqBXlV79pYliq9t_X909_BfhR-gGoMbYB9qto-VyMjOPAZmV-ZPKAn8BsB82-g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgEwIJcRm3wAAjEBJI6drYjpNHKN26sZZCNzrxYjm-bNWmdGpTCfbET-A38ks4jrNshQkJXqIoPlFs5xz7O_bxdxB6kWrTpJTbsKW0DmmsSJgkloDPY1UK-DlLyh3dXj_u7tKtPbZXxea4szCeH6JecHOWUY7XzsDdgvTaGWvovjkeNyKA--wyWqaANJzv9e5TzR7VcuDfs3C6qKGU1eyk0drZuwvz0bLr2q8Xgc0_YybPY9lyMlq_6TOuzkoOQxeDctiYF1lDnfzG8Pjf7byFblQwFb_xenUbXTL5CrriE1d-W0HX_Wof9oeY7qD9gUu2hmWu8VA6vmE8HJ8Y3JZHqkoPNsOAjvGwP8DnFAJXUYx4NC4OcBs86snUaOyOpfz8_qOYwKXj4jHxh3kB1Tazu2h3vbPT7oZVCodQ0SRmoc204ryVWXCsjIwMATyYWQI-ZJJxTrTlFhBYlkYqdg_jVLUs1ZqSiBndlJbcQ0v5JDcPENaJUsbR4VPJqQQ_MUsTw20iZcxkxOMAvTr9kUJV_OYuzcaR8MzMkXAdKcqODNDzWvbYs3pcKPWy1IdaRE4PXRwcZ2LU3xCj3ujj1pfPA_E2QKunCiOqIWAmWmkSxw5xQc2e1cVgvG5HRuZmMgeZJiGUgZPYDNB9r1_1xwAXJwyG2ADxBc2rBRwx-GJJPj4oCcIJA9hO0gC9LhXrL00UG53BZnn38F-En6Kr3Z3ettje7L9_hK4BiIx83N0qWiqmc_MYgFqRPSnN8Rf89jsZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am0BIiMu4BQYYgZBAStfETpxIvEBpd4GVjjI6ISHL8WWrNqVVm0qwJ34Cv5Ffgh2n2QoTErxEUXyi2M459nfs4-8APE2lahJCtR8IKX0SC-wnicbG59EiNfg5S8od3Z1uvLlHtvej_SV4OT8L4_gh6gU3axnleG0NfCz1-ilp6IEaDxuhQfvRBVghsYESFhJ9qMmjAov9HQmnDRpKo5qcNFw_fXdhOlqxPfv1PKz5Z8jkWShbzkWda_Bl3goXgnLUmBVZQ5z8RvD4v828DlcrkIpeOa26AUsqX4WLLm3lt1W44tb6kDvCdBMOejbVGuK5RH1u2YZRf3iiUIsfiyo52BQZbIz63R46ow6oimFEg2FxiFrGnx5NlET2UMrP7z-Kkbm0bTQmej8rTK3V9BbsddofW5t-lcDBFySJI19nUlAaZNq4VYqHChs0mGlsPMgkoxRLTbXBX1kaitg-jFMRaCIlwWGkZJNrfBuW81Gu7gKSiRDKkuETTgk3XmKWJorqhPM44iGNPXg-_49MVOzmNsnGMXO8zCGzHcnKjvTgSS07dpwe50o9K9WhFuGTIxsFRyM26G6wwc5gd_vzpx577cHaXF9YNQBMWZAmcWzxlqnZ47rYmK7dj-G5Gs2MTBNjEhkXsenBHade9ccMKk4iM8B6QBcUrxawtOCLJfnwsKQHx5EB7Tj14EWpV39pItto97bKu3v_IvwILvXedNi7re7b-3DZIMjQBd2twXIxmakHBqUV2cPSGH8BKj85yA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+and+sample+size+calculations+for+SNP+association+studies+with+censored+time-to-event+outcomes&rft.jtitle=Genetic+epidemiology&rft.au=Owzar%2C+Kouros&rft.au=Li%2C+Zhiguo&rft.au=Cox%2C+Nancy&rft.au=Jung%2C+Sin-Ho&rft.date=2012-09-01&rft.issn=1098-2272&rft.eissn=1098-2272&rft.volume=36&rft.issue=6&rft.spage=538&rft_id=info:doi/10.1002%2Fgepi.21645&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-0395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-0395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-0395&client=summon