Power and Sample Size Calculations for SNP Association Studies With Censored Time-to-Event Outcomes
For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating single‐nucleotide polymorphisms (SNPs) associated with clinical outcomes. The primary clinical endpoint for many of these studies are time‐to‐event outcomes such as time of death...
Saved in:
Published in | Genetic epidemiology Vol. 36; no. 6; pp. 538 - 548 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.09.2012
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0741-0395 1098-2272 1098-2272 |
DOI | 10.1002/gepi.21645 |
Cover
Abstract | For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating single‐nucleotide polymorphisms (SNPs) associated with clinical outcomes. The primary clinical endpoint for many of these studies are time‐to‐event outcomes such as time of death or disease progression which are subject to censoring mechanisms. The Cox score test can be readily employed to test the association between a SNP and the outcome of interest. In addition to the effect and sample size, and censoring distribution, the power of the test will depend on the underlying genetic risk model and the distribution of the risk allele. We propose a rigorous account for power and sample size calculations under a variety of genetic risk models without resorting to the commonly used contiguous alternative assumption. Practical advice along with an open‐source software package to design SNP association studies with survival outcomes are provided. |
---|---|
AbstractList | For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating single-nucleotide polymorphisms (SNPs) associated with clinical outcomes. The primary clinical endpoint for many of these studies are time-to-event outcomes such as time of death or disease progression which are subject to censoring mechanisms. The Cox score test can be readily employed to test the association between a SNP and the outcome of interest. In addition to the effect and sample size, and censoring distribution, the power of the test will depend on the underlying genetic risk model and the distribution of the risk allele. We propose a rigorous account for power and sample size calculations under a variety of genetic risk models without resorting to the commonly used contiguous alternative assumption. Practical advice along with an open-source software package to design SNP association studies with survival outcomes are provided. For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating Single Nucleotide Polymorphisms associated with clinical outcomes. The primary clinical endpoint for many of these studies are time-to-event outcomes such as time of death or disease progression which are subject to censoring mechanisms. The Cox score test can be readily employed to test the association between a SNP and the outcome of interest. In addition to the effect and sample size, and censoring distribution, the power of the test will depend on the underlying genetic risk model and the distribution of the risk allele. We propose a rigorous account for power and sample size calculations under a variety of genetic risk models without resorting to the commonly used contiguous alternative assumption. Practical advice along with an open-source software package to design SNP association studies with survival outcomes are provided. For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating single-nucleotide polymorphisms (SNPs) associated with clinical outcomes. The primary clinical endpoint for many of these studies are time-to-event outcomes such as time of death or disease progression which are subject to censoring mechanisms. The Cox score test can be readily employed to test the association between a SNP and the outcome of interest. In addition to the effect and sample size, and censoring distribution, the power of the test will depend on the underlying genetic risk model and the distribution of the risk allele. We propose a rigorous account for power and sample size calculations under a variety of genetic risk models without resorting to the commonly used contiguous alternative assumption. Practical advice along with an open-source software package to design SNP association studies with survival outcomes are provided.For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating single-nucleotide polymorphisms (SNPs) associated with clinical outcomes. The primary clinical endpoint for many of these studies are time-to-event outcomes such as time of death or disease progression which are subject to censoring mechanisms. The Cox score test can be readily employed to test the association between a SNP and the outcome of interest. In addition to the effect and sample size, and censoring distribution, the power of the test will depend on the underlying genetic risk model and the distribution of the risk allele. We propose a rigorous account for power and sample size calculations under a variety of genetic risk models without resorting to the commonly used contiguous alternative assumption. Practical advice along with an open-source software package to design SNP association studies with survival outcomes are provided. |
Author | Jung, Sin-Ho Owzar, Kouros Cox, Nancy Li, Zhiguo |
AuthorAffiliation | 2 Section of Genetic Medicine, Department of Medicine and Department of Human Genetics, University of Chicago 1 Department of Biostatistics and Bioinformatics, Duke University |
AuthorAffiliation_xml | – name: 1 Department of Biostatistics and Bioinformatics, Duke University – name: 2 Section of Genetic Medicine, Department of Medicine and Department of Human Genetics, University of Chicago |
Author_xml | – sequence: 1 givenname: Kouros surname: Owzar fullname: Owzar, Kouros email: kouros.owzar@duke.edu organization: Department of Biostatistics and Bioinformatics, Duke University, North Carolina, Durham – sequence: 2 givenname: Zhiguo surname: Li fullname: Li, Zhiguo organization: Department of Biostatistics and Bioinformatics, Duke University, North Carolina, Durham – sequence: 3 givenname: Nancy surname: Cox fullname: Cox, Nancy organization: Section of Genetic Medicine, Department of Medicine and Department of Human Genetics, University of Chicago, Illinois, Chicago – sequence: 4 givenname: Sin-Ho surname: Jung fullname: Jung, Sin-Ho organization: Department of Biostatistics and Bioinformatics, Duke University, North Carolina, Durham |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22685040$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV9v0zAUxS00xLrBCx8AWeIFTcrwnziOX5BG1ZWhsRV1UIkXy3FuNo8kLnayMT49abtVMCGeLF3_ztG59-yhnda3gNBLSg4pIeztJSzdIaNZKp6gESUqTxiTbAeNiExpQrgSu2gvxmtCKE2VeIZ2GctyQVIyQnbmbyFg05Z4bpplDXjufgEem9r2temcbyOufMDzsxk-itFbtx7iedeXDiJeuO4Kj6GNPkCJL1wDSeeTyQ20HT7vO-sbiM_R08rUEV7cv_voy_HkYvwhOT2fnoyPThOb5plIqqK0UtKiSpUCw4ALkhcVl1TmhZS8rGRFRFYoZrPVMFOWVmlZppwJKImp-D56t_Fd9kUDpR0yBFPrZXCNCXfaG6f__mndlb70N5oLxThXg8Gbe4Pgf_QQO924aKGuTQu-j5oSzlMhBCED-voReu370A7raaryLCMkp9lAvfoz0TbKw_0H4GAD2OBjDFBtEUr0qly9Klevyx1g8gi2rlvXMWzj6n9L6EZy62q4-4-5nk5mJw-aZKNxsYOfW40J33UmuRR6cTbVi0-Lzx-_fZ3p9_w3Tv_Ggw |
CitedBy_id | crossref_primary_10_1016_j_thromres_2019_11_002 crossref_primary_10_1186_s13059_020_1942_6 crossref_primary_10_1016_j_psyneuen_2015_02_013 crossref_primary_10_1038_s41416_018_0117_7 crossref_primary_10_1038_s44276_023_00003_z crossref_primary_10_1371_journal_pone_0154856 crossref_primary_10_1186_1471_2105_14_58 crossref_primary_10_1093_brain_awac414 crossref_primary_10_1002_ijc_32550 crossref_primary_10_1038_s41531_024_00729_8 crossref_primary_10_1002_1878_0261_13067 crossref_primary_10_1158_1055_9965_EPI_22_0314 crossref_primary_10_1038_s41467_023_41210_z crossref_primary_10_1038_tpj_2015_1 crossref_primary_10_1556_IMAS_7_2015_1_1 crossref_primary_10_1002_ehf2_13517 crossref_primary_10_1136_bmjopen_2023_075981 crossref_primary_10_1186_s40246_019_0242_2 crossref_primary_10_1038_s41467_017_01775_y crossref_primary_10_1158_1055_9965_EPI_19_0596 crossref_primary_10_1016_j_bbi_2023_09_010 crossref_primary_10_18632_oncotarget_3506 crossref_primary_10_1002_cam4_1819 crossref_primary_10_1002_cncr_35678 crossref_primary_10_1016_j_mex_2022_101987 crossref_primary_10_1186_s13073_022_01135_6 |
Cites_doi | 10.1016/S0197-2456(00)00104-5 10.1023/A:1020518905233 10.1158/1078-0432.CCR-11-1387 10.1093/bioinformatics/bti456 10.1371/journal.pgen.1000477 10.1186/1471-2156-8-58 10.1186/1471-2156-9-36 10.1038/ng1706 10.1200/JCO.2010.28.1386 10.1007/978-1-4757-2545-2 10.1200/JCO.2011.40.6405 10.18637/jss.v040.i08 10.1200/JCO.2011.39.4767 10.1159/000066696 10.1002/gepi.10293 10.2307/2531021 10.1186/1471-2156-6-18 10.1159/000087918 10.1007/978-0-387-75969-2 10.1086/381563 |
ContentType | Journal Article |
Copyright | 2012 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2012 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/gepi.21645 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology |
EISSN | 1098-2272 |
EndPage | 548 |
ExternalDocumentID | PMC3592339 22685040 10_1002_gepi_21645 GEPI21645 ark_67375_WNG_WMWQJZVP_B |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: PAAR‐Pharmacogenomics of Anticancer Agents Research Group funderid: U01GM061393 – fundername: National Cancer Institute funderid: P01CA142538; CA33601 – fundername: NCI NIH HHS grantid: P01 CA142538 – fundername: NCI NIH HHS grantid: P01CA142538 – fundername: NCI NIH HHS grantid: U10 CA033601 – fundername: NIGMS NIH HHS grantid: U01GM061393 – fundername: NIGMS NIH HHS grantid: U01 GM061393 – fundername: NCI NIH HHS grantid: CA33601 – fundername: National Institute of General Medical Sciences : NIGMS grantid: U01 GM061393 || GM – fundername: National Cancer Institute : NCI grantid: P01 CA142538 || CA – fundername: National Cancer Institute : NCI grantid: U10 CA033601 || CA |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DVXWH EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M66 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XV2 ZGI ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI RWV WRC WTM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4865-fbdc771bf499ea2e3508bf37178b773df7f056b92c6371769c1f4dd4325ed0af3 |
IEDL.DBID | DR2 |
ISSN | 0741-0395 1098-2272 |
IngestDate | Thu Aug 21 13:29:55 EDT 2025 Thu Jul 10 19:02:47 EDT 2025 Sun Jul 13 05:27:49 EDT 2025 Mon Jul 21 06:00:58 EDT 2025 Thu Apr 24 22:53:41 EDT 2025 Tue Jul 01 02:45:07 EDT 2025 Wed Jan 22 17:01:17 EST 2025 Tue Sep 09 05:31:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2012 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4865-fbdc771bf499ea2e3508bf37178b773df7f056b92c6371769c1f4dd4325ed0af3 |
Notes | National Cancer Institute - No. P01CA142538; No. CA33601 istex:C52FA2BDDEE4ACF7D4B626DAA541EC4F6F811AED PAAR-Pharmacogenomics of Anticancer Agents Research Group - No. U01GM061393 ArticleID:GEPI21645 ark:/67375/WNG-WMWQJZVP-B ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3592339 |
PMID | 22685040 |
PQID | 1986600816 |
PQPubID | 105460 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3592339 proquest_miscellaneous_1033455500 proquest_journals_1986600816 pubmed_primary_22685040 crossref_primary_10_1002_gepi_21645 crossref_citationtrail_10_1002_gepi_21645 wiley_primary_10_1002_gepi_21645_GEPI21645 istex_primary_ark_67375_WNG_WMWQJZVP_B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2012 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: September 2012 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Genetic epidemiology |
PublicationTitleAlternate | Genet. Epidemiol |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Eddelbuettel D, Francois R. 2011. Rcpp: seamless R and C++ integration. J Stat Softw 40(8): 1-18. Edwards B, Haynes C, Levenstien M, Finch S, Gordon D. 2005. Power and sample size calculations in the presence of phenotype errors for case/control genetic association studies.. BMC Genet 6(1): 18. Hsieh F, Lavori P. 2000. Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates. Control Clin Trials 21(6): 552-560. Skol A, Scott L, Abecasis G, Boehnke M. 2006. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38(2): 209-213. Schoenfeld D. 1983. Sample-size formula for the proportional-hazards regression model. Biometrics 39(2): 499-503. De La Vega F, Gordon D, Su X, Scafe C, Isaac H, Gilbert D, Spier E. 2005. Power and sample size calculations for genetic case/control studies using gene-centric SNP maps: application to human chromosomes 6, 21, and 22 in three populations. Hum Hered 60(1): 43-60. Fleming T, Harrington D. 1991. Counting Processes and Survival Analysis. New York: Wiley. Spencer C, Su Z, Donnelly P, Marchini J. 2009. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet 5(5): e1000477. Galassi M, Davies J, Theiler J, Gough B, Jungman P, Alken P, Booth M, Rossi F. 2009. GNU Scientific Library Reference Manual (3rd ed.) Bristol, UK: Network Theory Ltd. Gordon D, Finch SJ, Nothnagel M, Ott J. 2002. Power and sample size calculations for case-control genetic association tests when errors are present: application to single nucleotide polymorphisms. Hum Hered. 54(1):22-33. Klein R. 2007. Power analysis for genome-wide association studies. BMC Genet 8(1): 58. Hao K, Xu X, Laird N, Wang X, Xu X. 2004. Power estimation of multiple SNP association test of case-control study and application. Genet Epidemiol 26(1): 22-30. Jung S. 2005. Sample size for FDR-control in microarray data analysis. Bioinformatics 21(14): 3097--3104. Shulman LN, Cirrincione CT, Berry DA, Becker HP, Perez EA, O'Regan RO, Martino S, Atkins JN, Mayer E, Schneider CJ, Kimmick G, Norton L, Muss H, Winer EP, Hudis C. 2012. Six cycles of doxorubicin and cyclophosphamide or paclitaxel are not superior to 4 cycles as adjuvant chemotherapy for breast cancer in women with 0-3 positive axillary nodes: CALGB 40101. J Clin Oncology. In press. Sarkar D. 2008. Lattice: Multivariate Data Visualization with R. New York: Springer. Innocenti F, Owzar K, Cox NL, Evans P, Kubo M, Zembutsu H, Jiang C, Hollis D, Mushiroda T, Li L, Friedman P, Wang L, Glubb D, Hurwitz H, Giacomini KM, McLeod HL, Goldberg RM, Schilsky RL, Kindler HL, Nakamura Y, Ratain MJ. 2012. A genome-wide association study of overall survival in pancreatic cancer patients treated with gemcitabine in CALGB 80303. Clin Cancer Res 18(2):577-584. Kindler H, Niedzwiecki D, Hollis D, Sutherland S, Schrag D, Hurwitz H, Innocenti F, Mulcahy M, O'Reilly E, Wozniak T, Picus J, Bhargava P, Mayer R, Schilsky R, Goldberg R. 2010. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol 28(22): 3617--3622. van der Vaart A, Wellner J. 1996. Weak Convergence and Empirical Processes. New York: Springer-Verlag. Jung S, Hui S. 2002. Sample size calculation for rank tests comparing k survival distributions. Lifetime Data Analysis 8(4): 361-373. Kelly W, Halabi S, Carducci M, George D, Mahoney J, Stadler W, Morris M, Kantoff P, Monk JP, Kaplan E, Vogelzang NJ, Small, EJ. 2012. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel, and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol 30(13):1534-1540. Lange C, DeMeo D, Silverman E, Weiss S, Laird N. 2004. PBAT: tools for family-based association studies. Am J Hum Genet. 74(2): 367--369. R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Therneau T. 2011. survival: Survival analysis, including penalised likelihood, R package version 2.36-9. Menashe I, Rosenberg P, Chen B. 2008. PGA: power calculator for case-control genetic association analyses.. BMC Genet 9(1): 36. 2004; 74 2012 2011 2010; 28 2000; 21 2006; 38 2004; 26 2011; 40 2002; 54 2002; 8 2009 2007; 8 2008; 9 2008 2007 1996 2005; 6 2005; 21 2012; 18 2005; 60 2009; 5 1991 1983; 39 2012; 30 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 R Development Core Team (e_1_2_8_20_1) 2011 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_9_1 Therneau T (e_1_2_8_29_1) 2011 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Fleming T (e_1_2_8_6_1) 1991 Galassi M (e_1_2_8_7_1) 2009 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 22142827 - Clin Cancer Res. 2012 Jan 15;18(2):577-84 19492015 - PLoS Genet. 2009 May;5(5):e1000477 15845654 - Bioinformatics. 2005 Jul 15;21(14):3097-104 15819990 - BMC Genet. 2005;6:18 12471945 - Lifetime Data Anal. 2002 Dec;8(4):361-73 17725844 - BMC Genet. 2007;8:58 6354290 - Biometrics. 1983 Jun;39(2):499-503 11146149 - Control Clin Trials. 2000 Dec;21(6):552-60 14691954 - Genet Epidemiol. 2004 Jan;26(1):22-30 12446984 - Hum Hered. 2002;54(1):22-33 18477402 - BMC Genet. 2008;9:36 22454414 - J Clin Oncol. 2012 May 1;30(13):1534-40 20606091 - J Clin Oncol. 2010 Aug 1;28(22):3617-22 14740322 - Am J Hum Genet. 2004 Feb;74(2):367-9 16415888 - Nat Genet. 2006 Feb;38(2):209-13 16137993 - Hum Hered. 2005;60(1):43-60 |
References_xml | – reference: Spencer C, Su Z, Donnelly P, Marchini J. 2009. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet 5(5): e1000477. – reference: Eddelbuettel D, Francois R. 2011. Rcpp: seamless R and C++ integration. J Stat Softw 40(8): 1-18. – reference: De La Vega F, Gordon D, Su X, Scafe C, Isaac H, Gilbert D, Spier E. 2005. Power and sample size calculations for genetic case/control studies using gene-centric SNP maps: application to human chromosomes 6, 21, and 22 in three populations. Hum Hered 60(1): 43-60. – reference: Jung S. 2005. Sample size for FDR-control in microarray data analysis. Bioinformatics 21(14): 3097--3104. – reference: Skol A, Scott L, Abecasis G, Boehnke M. 2006. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38(2): 209-213. – reference: Hsieh F, Lavori P. 2000. Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates. Control Clin Trials 21(6): 552-560. – reference: Kelly W, Halabi S, Carducci M, George D, Mahoney J, Stadler W, Morris M, Kantoff P, Monk JP, Kaplan E, Vogelzang NJ, Small, EJ. 2012. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel, and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol 30(13):1534-1540. – reference: R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. – reference: Galassi M, Davies J, Theiler J, Gough B, Jungman P, Alken P, Booth M, Rossi F. 2009. GNU Scientific Library Reference Manual (3rd ed.) Bristol, UK: Network Theory Ltd. – reference: Schoenfeld D. 1983. Sample-size formula for the proportional-hazards regression model. Biometrics 39(2): 499-503. – reference: Innocenti F, Owzar K, Cox NL, Evans P, Kubo M, Zembutsu H, Jiang C, Hollis D, Mushiroda T, Li L, Friedman P, Wang L, Glubb D, Hurwitz H, Giacomini KM, McLeod HL, Goldberg RM, Schilsky RL, Kindler HL, Nakamura Y, Ratain MJ. 2012. A genome-wide association study of overall survival in pancreatic cancer patients treated with gemcitabine in CALGB 80303. Clin Cancer Res 18(2):577-584. – reference: Menashe I, Rosenberg P, Chen B. 2008. PGA: power calculator for case-control genetic association analyses.. BMC Genet 9(1): 36. – reference: Therneau T. 2011. survival: Survival analysis, including penalised likelihood, R package version 2.36-9. – reference: Fleming T, Harrington D. 1991. Counting Processes and Survival Analysis. New York: Wiley. – reference: Kindler H, Niedzwiecki D, Hollis D, Sutherland S, Schrag D, Hurwitz H, Innocenti F, Mulcahy M, O'Reilly E, Wozniak T, Picus J, Bhargava P, Mayer R, Schilsky R, Goldberg R. 2010. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol 28(22): 3617--3622. – reference: Shulman LN, Cirrincione CT, Berry DA, Becker HP, Perez EA, O'Regan RO, Martino S, Atkins JN, Mayer E, Schneider CJ, Kimmick G, Norton L, Muss H, Winer EP, Hudis C. 2012. Six cycles of doxorubicin and cyclophosphamide or paclitaxel are not superior to 4 cycles as adjuvant chemotherapy for breast cancer in women with 0-3 positive axillary nodes: CALGB 40101. J Clin Oncology. In press. – reference: van der Vaart A, Wellner J. 1996. Weak Convergence and Empirical Processes. New York: Springer-Verlag. – reference: Edwards B, Haynes C, Levenstien M, Finch S, Gordon D. 2005. Power and sample size calculations in the presence of phenotype errors for case/control genetic association studies.. BMC Genet 6(1): 18. – reference: Hao K, Xu X, Laird N, Wang X, Xu X. 2004. Power estimation of multiple SNP association test of case-control study and application. Genet Epidemiol 26(1): 22-30. – reference: Gordon D, Finch SJ, Nothnagel M, Ott J. 2002. Power and sample size calculations for case-control genetic association tests when errors are present: application to single nucleotide polymorphisms. Hum Hered. 54(1):22-33. – reference: Lange C, DeMeo D, Silverman E, Weiss S, Laird N. 2004. PBAT: tools for family-based association studies. Am J Hum Genet. 74(2): 367--369. – reference: Sarkar D. 2008. Lattice: Multivariate Data Visualization with R. New York: Springer. – reference: Jung S, Hui S. 2002. Sample size calculation for rank tests comparing k survival distributions. Lifetime Data Analysis 8(4): 361-373. – reference: Klein R. 2007. Power analysis for genome-wide association studies. BMC Genet 8(1): 58. – year: 2011 – year: 2009 – volume: 26 start-page: 22 issue: 1 year: 2004 end-page: 30 article-title: Power estimation of multiple SNP association test of case‐control study and application publication-title: Genet Epidemiol – volume: 60 start-page: 43 issue: 1 year: 2005 end-page: 60 article-title: Power and sample size calculations for genetic case/control studies using gene‐centric SNP maps: application to human chromosomes 6, 21, and 22 in three populations publication-title: Hum Hered – volume: 30 start-page: 1534 issue: 13 year: 2012 end-page: 1540 article-title: Randomized, double‐blind, placebo‐controlled phase III trial comparing docetaxel, and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401 publication-title: J Clin Oncol – volume: 40 start-page: 1 issue: 8 year: 2011 end-page: 18 article-title: Rcpp: seamless R and C++ integration publication-title: J Stat Softw – volume: 9 start-page: 36 issue: 1 year: 2008 article-title: PGA: power calculator for case‐control genetic association analyses publication-title: BMC Genet – volume: 21 start-page: 552 year: 2000 end-page: 560 article-title: Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates publication-title: Control Clin Trials – volume: 5 start-page: e1000477 issue: 5 year: 2009 article-title: Designing genome‐wide association studies: sample size, power, imputation, and the choice of genotyping chip publication-title: PLoS Genet – volume: 28 start-page: 3617--3622 issue: 22 year: 2010 article-title: Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303) publication-title: J Clin Oncol – year: 2007 – volume: 21 start-page: 3097--3104 issue: 14 year: 2005 article-title: Sample size for FDR‐control in microarray data analysis publication-title: Bioinformatics – year: 1996 – volume: 18 start-page: 577 issue: 2 year: 2012 end-page: 584 article-title: A genome‐wide association study of overall survival in pancreatic cancer patients treated with gemcitabine in CALGB 80303 publication-title: Clin Cancer Res – year: 2012 article-title: Six cycles of doxorubicin and cyclophosphamide or paclitaxel are not superior to 4 cycles as adjuvant chemotherapy for breast cancer in women with 0-3 positive axillary nodes: CALGB 40101 publication-title: J Clin Oncology – volume: 6 start-page: 18 issue: 1 year: 2005 article-title: Power and sample size calculations in the presence of phenotype errors for case/control genetic association studies publication-title: BMC Genet – start-page: 2.36 year: 2011 end-page: 9 article-title: survival: Survival analysis, including penalised likelihood publication-title: R package version – year: 2012 – volume: 39 start-page: 499 issue: 2 year: 1983 end-page: 503 article-title: Sample-size formula for the proportional-hazards regression model publication-title: Biometrics – volume: 8 start-page: 361 issue: 4 year: 2002 end-page: 373 article-title: Sample size calculation for rank tests comparing survival distributions publication-title: Lifetime Data Analysis – volume: 38 start-page: 209 issue: 2 year: 2006 end-page: 213 article-title: Joint analysis is more efficient than replication-based analysis for two‐stage genome‐wide association studies publication-title: Nat Genet – year: 2008 – volume: 74 start-page: 367--369 issue: 2 year: 2004 article-title: PBAT: tools for family-based association studies publication-title: Am J Hum Genet. – volume: 54 start-page: 22 issue: 1 year: 2002 end-page: 33 article-title: Power and sample size calculations for case‐control genetic association tests when errors are present: application to single nucleotide polymorphisms publication-title: Hum Hered – year: 1991 – volume: 8 start-page: 58 issue: 1 year: 2007 article-title: Power analysis for genome‐wide association studies publication-title: BMC Genet – start-page: 2.36 year: 2011 ident: e_1_2_8_29_1 article-title: survival: Survival analysis, including penalised likelihood publication-title: R package version – ident: e_1_2_8_10_1 doi: 10.1016/S0197-2456(00)00104-5 – ident: e_1_2_8_13_1 doi: 10.1023/A:1020518905233 – ident: e_1_2_8_11_1 doi: 10.1158/1078-0432.CCR-11-1387 – ident: e_1_2_8_12_1 doi: 10.1093/bioinformatics/bti456 – ident: e_1_2_8_28_1 doi: 10.1371/journal.pgen.1000477 – ident: e_1_2_8_25_1 – ident: e_1_2_8_16_1 doi: 10.1186/1471-2156-8-58 – ident: e_1_2_8_18_1 doi: 10.1186/1471-2156-9-36 – ident: e_1_2_8_27_1 doi: 10.1038/ng1706 – ident: e_1_2_8_15_1 doi: 10.1200/JCO.2010.28.1386 – ident: e_1_2_8_21_1 – ident: e_1_2_8_30_1 doi: 10.1007/978-1-4757-2545-2 – volume-title: Counting Processes and Survival Analysis year: 1991 ident: e_1_2_8_6_1 – ident: e_1_2_8_26_1 doi: 10.1200/JCO.2011.40.6405 – ident: e_1_2_8_2_1 – ident: e_1_2_8_4_1 doi: 10.18637/jss.v040.i08 – ident: e_1_2_8_14_1 doi: 10.1200/JCO.2011.39.4767 – volume-title: R: A Language and Environment for Statistical Computing year: 2011 ident: e_1_2_8_20_1 – ident: e_1_2_8_8_1 doi: 10.1159/000066696 – ident: e_1_2_8_19_1 – ident: e_1_2_8_9_1 doi: 10.1002/gepi.10293 – ident: e_1_2_8_24_1 doi: 10.2307/2531021 – ident: e_1_2_8_5_1 doi: 10.1186/1471-2156-6-18 – ident: e_1_2_8_3_1 doi: 10.1159/000087918 – ident: e_1_2_8_22_1 doi: 10.1007/978-0-387-75969-2 – ident: e_1_2_8_23_1 – volume-title: GNU Scientific Library Reference Manual year: 2009 ident: e_1_2_8_7_1 – ident: e_1_2_8_17_1 doi: 10.1086/381563 – reference: 22142827 - Clin Cancer Res. 2012 Jan 15;18(2):577-84 – reference: 12446984 - Hum Hered. 2002;54(1):22-33 – reference: 15819990 - BMC Genet. 2005;6:18 – reference: 22454414 - J Clin Oncol. 2012 May 1;30(13):1534-40 – reference: 16137993 - Hum Hered. 2005;60(1):43-60 – reference: 19492015 - PLoS Genet. 2009 May;5(5):e1000477 – reference: 18477402 - BMC Genet. 2008;9:36 – reference: 15845654 - Bioinformatics. 2005 Jul 15;21(14):3097-104 – reference: 12471945 - Lifetime Data Anal. 2002 Dec;8(4):361-73 – reference: 17725844 - BMC Genet. 2007;8:58 – reference: 14740322 - Am J Hum Genet. 2004 Feb;74(2):367-9 – reference: 14691954 - Genet Epidemiol. 2004 Jan;26(1):22-30 – reference: 6354290 - Biometrics. 1983 Jun;39(2):499-503 – reference: 11146149 - Control Clin Trials. 2000 Dec;21(6):552-60 – reference: 16415888 - Nat Genet. 2006 Feb;38(2):209-13 – reference: 20606091 - J Clin Oncol. 2010 Aug 1;28(22):3617-22 |
SSID | ssj0011495 |
Score | 2.1541464 |
Snippet | For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating single‐nucleotide polymorphisms... For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating single-nucleotide polymorphisms... For many clinical studies in cancer, germline DNA is prospectively collected for the purpose of discovering or validating Single Nucleotide Polymorphisms... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 538 |
SubjectTerms | Cancer censoring pharmacogenomics Cox score test Deoxyribonucleic acid DNA Genetic Predisposition to Disease genetic risk Genome-Wide Association Study Humans Models, Genetic Polymorphism Polymorphism, Single Nucleotide Proportional Hazards Models Random Allocation Research Design Sample Size Single-nucleotide polymorphism SNP association study Software Survival Rate |
Title | Power and Sample Size Calculations for SNP Association Studies With Censored Time-to-Event Outcomes |
URI | https://api.istex.fr/ark:/67375/WNG-WMWQJZVP-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgepi.21645 https://www.ncbi.nlm.nih.gov/pubmed/22685040 https://www.proquest.com/docview/1986600816 https://www.proquest.com/docview/1033455500 https://pubmed.ncbi.nlm.nih.gov/PMC3592339 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3_a9QwFA9jIgiic-qsTokogkJv1yZtUvAXPW-bg52n57whjJDmy3Zs9MZdD-Z-8k_wb_Qv8aXpdTsdgv5SSvNKk_S95POSl89D6HmmTZtSZsNIaR3SVJGQc0vA57EqA_yc82pHd7eXbu_Rnf1kfwm9np-F8fwQzYKbs4xqvHYGLvPpxgVp6KE5HbViQPvuhHlEUkec_-5Twx0VOejvOThdzFCWNNyk8cbFqwuz0TXXsWdXQc0_IyYvI9lqKtq8jQ7mjfARKMetWZm31Plv_I7_28oVdKvGqPiNV6o7aMkUq-i6z1r5bRXd9Et92J9guosO-y7TGpaFxgPpyIbxYHRucEeeqDo32BQDNMaDXh9f0gZchzDi4ag8wh1wp8cTo7E7k_Lz-49yDJeuC8bEH2Yl1NpM76G9ze7nznZY528IFeVpEtpcK8ai3IJXZWRsCIDB3BJwIHnOGNGWWYBfeRar1D1MMxVZqjUlcWJ0W1pyHy0X48I8QFhzpYzjwqeSUQlOYp5xwyyXMk1kzNIAvZz_R6FqcnOXY-NEeFrmWLiOFFVHBuhZI3vqKT2ulHpRqUMjIifHLgiOJWLY2xLD3eHHna9f-uJtgNbn-iJq-5-KKONp6uAW1OxpUwyW67ZjZGHGM5BpE0IT8BDbAVrz6tV8DEAxT2B8DRBbULxGwLGCL5YUo6OKHZwkgNlJFqBXlV79pYliq9t_X909_BfhR-gGoMbYB9qto-VyMjOPAZmV-ZPKAn8BsB82-g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgEwIJcRm3wAAjEBJI6drYjpNHKN26sZZCNzrxYjm-bNWmdGpTCfbET-A38ks4jrNshQkJXqIoPlFs5xz7O_bxdxB6kWrTpJTbsKW0DmmsSJgkloDPY1UK-DlLyh3dXj_u7tKtPbZXxea4szCeH6JecHOWUY7XzsDdgvTaGWvovjkeNyKA--wyWqaANJzv9e5TzR7VcuDfs3C6qKGU1eyk0drZuwvz0bLr2q8Xgc0_YybPY9lyMlq_6TOuzkoOQxeDctiYF1lDnfzG8Pjf7byFblQwFb_xenUbXTL5CrriE1d-W0HX_Wof9oeY7qD9gUu2hmWu8VA6vmE8HJ8Y3JZHqkoPNsOAjvGwP8DnFAJXUYx4NC4OcBs86snUaOyOpfz8_qOYwKXj4jHxh3kB1Tazu2h3vbPT7oZVCodQ0SRmoc204ryVWXCsjIwMATyYWQI-ZJJxTrTlFhBYlkYqdg_jVLUs1ZqSiBndlJbcQ0v5JDcPENaJUsbR4VPJqQQ_MUsTw20iZcxkxOMAvTr9kUJV_OYuzcaR8MzMkXAdKcqODNDzWvbYs3pcKPWy1IdaRE4PXRwcZ2LU3xCj3ujj1pfPA_E2QKunCiOqIWAmWmkSxw5xQc2e1cVgvG5HRuZmMgeZJiGUgZPYDNB9r1_1xwAXJwyG2ADxBc2rBRwx-GJJPj4oCcIJA9hO0gC9LhXrL00UG53BZnn38F-En6Kr3Z3ettje7L9_hK4BiIx83N0qWiqmc_MYgFqRPSnN8Rf89jsZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am0BIiMu4BQYYgZBAStfETpxIvEBpd4GVjjI6ISHL8WWrNqVVm0qwJ34Cv5Ffgh2n2QoTErxEUXyi2M459nfs4-8APE2lahJCtR8IKX0SC-wnicbG59EiNfg5S8od3Z1uvLlHtvej_SV4OT8L4_gh6gU3axnleG0NfCz1-ilp6IEaDxuhQfvRBVghsYESFhJ9qMmjAov9HQmnDRpKo5qcNFw_fXdhOlqxPfv1PKz5Z8jkWShbzkWda_Bl3goXgnLUmBVZQ5z8RvD4v828DlcrkIpeOa26AUsqX4WLLm3lt1W44tb6kDvCdBMOejbVGuK5RH1u2YZRf3iiUIsfiyo52BQZbIz63R46ow6oimFEg2FxiFrGnx5NlET2UMrP7z-Kkbm0bTQmej8rTK3V9BbsddofW5t-lcDBFySJI19nUlAaZNq4VYqHChs0mGlsPMgkoxRLTbXBX1kaitg-jFMRaCIlwWGkZJNrfBuW81Gu7gKSiRDKkuETTgk3XmKWJorqhPM44iGNPXg-_49MVOzmNsnGMXO8zCGzHcnKjvTgSS07dpwe50o9K9WhFuGTIxsFRyM26G6wwc5gd_vzpx577cHaXF9YNQBMWZAmcWzxlqnZ47rYmK7dj-G5Gs2MTBNjEhkXsenBHade9ccMKk4iM8B6QBcUrxawtOCLJfnwsKQHx5EB7Tj14EWpV39pItto97bKu3v_IvwILvXedNi7re7b-3DZIMjQBd2twXIxmakHBqUV2cPSGH8BKj85yA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+and+sample+size+calculations+for+SNP+association+studies+with+censored+time-to-event+outcomes&rft.jtitle=Genetic+epidemiology&rft.au=Owzar%2C+Kouros&rft.au=Li%2C+Zhiguo&rft.au=Cox%2C+Nancy&rft.au=Jung%2C+Sin-Ho&rft.date=2012-09-01&rft.issn=1098-2272&rft.eissn=1098-2272&rft.volume=36&rft.issue=6&rft.spage=538&rft_id=info:doi/10.1002%2Fgepi.21645&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-0395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-0395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-0395&client=summon |