Differential effect of lithium on cell number in the hippocampus and prefrontal cortex in adult mice: a stereological study
Objectives Neuroimaging studies have revealed lithium‐related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium‐treated subjects. Rodents treated...
Saved in:
Published in | Bipolar disorders Vol. 18; no. 1; pp. 41 - 51 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Denmark
Blackwell Publishing Ltd
01.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1398-5647 1399-5618 1399-5618 |
DOI | 10.1111/bdi.12364 |
Cover
Loading…
Abstract | Objectives
Neuroimaging studies have revealed lithium‐related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium‐treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered.
Methods
Using stereological methods, this study estimated the total numbers of neurons and glia, and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium, and evaluated the total volume of these regions and the entire neocortex.
Results
Lithium treatment increased the total numbers of neurons and glia in the DG (by 25% and 21%, respectively) and the density of astrocytes but did not alter total numbers in the PFC. However, the volumes of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium.
Conclusions
Both neuronal and glial cells accounted for lithium‐induced cell proliferation in the DG. That the numbers of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus. |
---|---|
AbstractList | Objectives
Neuroimaging studies have revealed lithium‐related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium‐treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered.
Methods
Using stereological methods, this study estimated the total numbers of neurons and glia, and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium, and evaluated the total volume of these regions and the entire neocortex.
Results
Lithium treatment increased the total numbers of neurons and glia in the DG (by 25% and 21%, respectively) and the density of astrocytes but did not alter total numbers in the PFC. However, the volumes of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium.
Conclusions
Both neuronal and glial cells accounted for lithium‐induced cell proliferation in the DG. That the numbers of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus. Neuroimaging studies have revealed lithium-related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium-treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered.OBJECTIVESNeuroimaging studies have revealed lithium-related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium-treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered.Using stereological methods, this study estimated the total numbers of neurons and glia, and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium, and evaluated the total volume of these regions and the entire neocortex.METHODSUsing stereological methods, this study estimated the total numbers of neurons and glia, and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium, and evaluated the total volume of these regions and the entire neocortex.Lithium treatment increased the total numbers of neurons and glia in the DG (by 25% and 21%, respectively) and the density of astrocytes but did not alter total numbers in the PFC. However, the volumes of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium.RESULTSLithium treatment increased the total numbers of neurons and glia in the DG (by 25% and 21%, respectively) and the density of astrocytes but did not alter total numbers in the PFC. However, the volumes of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium.Both neuronal and glial cells accounted for lithium-induced cell proliferation in the DG. That the numbers of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus.CONCLUSIONSBoth neuronal and glial cells accounted for lithium-induced cell proliferation in the DG. That the numbers of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus. Objectives Neuroimaging studies have revealed lithium-related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium-treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered. Methods Using stereological methods, this study estimated the total numbers of neurons and glia, and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium, and evaluated the total volume of these regions and the entire neocortex. Results Lithium treatment increased the total numbers of neurons and glia in the DG (by 25% and 21%, respectively) and the density of astrocytes but did not alter total numbers in the PFC. However, the volumes of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium. Conclusions Both neuronal and glial cells accounted for lithium-induced cell proliferation in the DG. That the numbers of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus. Neuroimaging studies have revealed lithium-related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium-treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered. Using stereological methods, this study estimated the total numbers of neurons and glia, and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium, and evaluated the total volume of these regions and the entire neocortex. Lithium treatment increased the total numbers of neurons and glia in the DG (by 25% and 21%, respectively) and the density of astrocytes but did not alter total numbers in the PFC. However, the volumes of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium. Both neuronal and glial cells accounted for lithium-induced cell proliferation in the DG. That the numbers of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus. |
Author | Uylings, Harry BM Stockmeier, Craig A Clarke, Gerard van de Werd, Henri JJM Mahajan, Gouri Yuan, Peter Manji, Husseini K Rajkowska, Grazyna Licht, Camilla MM |
AuthorAffiliation | 1 Dept. Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA 3 Dept. Anatomy & Neuroscience, VU University Medical Center, Amsterdam, the Netherlands 6 Janssen Research and Development LLC of Johnson & Johnson, Titusville, NJ, USA 4 Dept. Epidemiology & Biostatistics, VU University Medical Center, Amsterdam, the Netherlands 2 Department of Psychiatry and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland 5 Laboratory of Molecular Pathophysiology and Experimental Therapeutics, NIMH, NIH, Bethesda, MD, USA |
AuthorAffiliation_xml | – name: 4 Dept. Epidemiology & Biostatistics, VU University Medical Center, Amsterdam, the Netherlands – name: 1 Dept. Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA – name: 2 Department of Psychiatry and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland – name: 5 Laboratory of Molecular Pathophysiology and Experimental Therapeutics, NIMH, NIH, Bethesda, MD, USA – name: 3 Dept. Anatomy & Neuroscience, VU University Medical Center, Amsterdam, the Netherlands – name: 6 Janssen Research and Development LLC of Johnson & Johnson, Titusville, NJ, USA |
Author_xml | – sequence: 1 givenname: Grazyna surname: Rajkowska fullname: Rajkowska, Grazyna email: Corresponding author:Grazyna Rajkowska, Ph.D.Department of Psychiatry and Human BehaviorUniversity of Mississippi Medical Center2500 North State StreetJackson, MS 39216USAFax: 601-984-5899, grajkowska@umc.edu organization: Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, MS, Jackson, USA – sequence: 2 givenname: Gerard surname: Clarke fullname: Clarke, Gerard organization: Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA – sequence: 3 givenname: Gouri surname: Mahajan fullname: Mahajan, Gouri organization: Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, MS, Jackson, USA – sequence: 4 givenname: Camilla MM surname: Licht fullname: Licht, Camilla MM organization: Department of Anatomy and Neuroscience, VU University Medical Center – sequence: 5 givenname: Henri JJM surname: van de Werd fullname: van de Werd, Henri JJM organization: Department of Anatomy and Neuroscience, VU University Medical Center – sequence: 6 givenname: Peter surname: Yuan fullname: Yuan, Peter organization: Laboratory of Molecular Pathophysiology and Experimental Therapeutics, National Institute of Mental Health, National Institutes of Health, MD, Bethesda, USA – sequence: 7 givenname: Craig A surname: Stockmeier fullname: Stockmeier, Craig A organization: Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, MS, Jackson, USA – sequence: 8 givenname: Husseini K surname: Manji fullname: Manji, Husseini K organization: Laboratory of Molecular Pathophysiology and Experimental Therapeutics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA – sequence: 9 givenname: Harry BM surname: Uylings fullname: Uylings, Harry BM organization: Department of Anatomy and Neuroscience, VU University Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26842627$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URB-w4A8gL2GRNrYT22GBBE1fooINiKXlca47hiRObYd2xJ_H02lHgATCG1_J3zm-9559tDP6ERB6TspDks_RonOHhDJePUJ7hDVNUXMid-5qmetK7KL9GL-WJeG0rJ-gXcplRTkVe-hH66yFAGNyuseQa5Owt7h3aenmAfsRG-h7PM7DAgJ2I05LwEs3Td7oYZoj1mOHpwA2-DFlC-NDgts1qLu5T3hwBl5jjWPKv_jeXzmTqZjmbvUUPba6j_Ds_j5An09PPh2fF5cfzy6O314WppK8Kix0WthGS9Yx6CSFUovGCikIkdISXkHJeMlsLYmlDecEqBHc8qomkjRA2QF6s_Gd5sUAncnDBt2rKbhBh5Xy2qnfX0a3VFf-u6ok45KLbPDy3iD46xliUoOL67XoEfwcFRGC87qW8n9QXjeUMF5n9MWvbW37eQgnA682gAk-xrziLUJKtQ5e5eDVXfCZPfqDNS7p5Px6Itf_S3Hjelj93Vq9ay8eFMVG4XKYt1uFDt9UXpKo1ZcPZ6o9J9Vp-75Vgv0ERULPCw |
CitedBy_id | crossref_primary_10_1002_glia_23610 crossref_primary_10_3390_ijms18122679 crossref_primary_10_1016_j_pnpbp_2017_04_033 crossref_primary_10_1016_j_jad_2018_08_036 crossref_primary_10_1016_j_neubiorev_2019_04_015 crossref_primary_10_3390_cells11203315 crossref_primary_10_1016_j_bbr_2020_112719 crossref_primary_10_1002_nbm_4057 crossref_primary_10_1007_s40263_016_0380_1 crossref_primary_10_3389_fnmol_2018_00056 crossref_primary_10_1016_j_pnpbp_2020_109953 crossref_primary_10_1007_s11064_020_03212_x crossref_primary_10_1002_ar_24069 crossref_primary_10_1016_j_chemosphere_2022_135668 crossref_primary_10_1002_hbm_25249 crossref_primary_10_1016_j_jpsychires_2018_08_012 crossref_primary_10_1016_j_jpsychires_2023_10_001 crossref_primary_10_1177_01926233221124497 crossref_primary_10_1017_neu_2016_56 crossref_primary_10_1038_s41380_018_0213_3 crossref_primary_10_1371_journal_pone_0192329 crossref_primary_10_1016_j_neuroscience_2019_06_031 crossref_primary_10_3389_fnana_2018_00083 crossref_primary_10_15360_1813_9779_2019_3_73_82 crossref_primary_10_1007_s00429_019_01940_7 crossref_primary_10_1016_j_jad_2016_09_049 crossref_primary_10_1016_j_aanat_2016_10_002 |
Cites_doi | 10.1016/j.biopsych.2004.12.009 10.1002/dneu.22200 10.1016/S0006-3223(00)00836-2 10.1111/j.1399-5618.2009.00759.x 10.1016/j.biopsych.2011.12.004 10.1007/s00429-010-0247-z 10.1111/j.1365-2818.1986.tb02764.x 10.1007/s00362-009-0224-x 10.1016/S0006-3223(99)00041-4 10.1016/j.neuroscience.2005.07.048 10.1002/cne.902800405 10.1016/S1053-8119(02)00021-6 10.1016/S0006-3223(01)01080-0 10.1007/s40263-013-0039-0 10.1002/ar.1092310411 10.1038/417039a 10.1002/cne.23693 10.1093/cercor/5.4.307 10.1088/0954-898X_13_3_309 10.1017/S1461145712001423 10.1016/j.biopsych.2012.09.029 10.1016/0165-0270(86)90111-1 10.1016/S0006-8993(02)03475-3 10.1046/j.1471-4159.2000.0751729.x 10.1006/nimg.1999.0417 10.1016/S0304-3940(02)00615-8 10.1046/j.1365-2818.1999.00457.x 10.1038/npp.2010.41 10.1007/s00429-013-0630-7 10.1002/cne.901490104 10.1093/acprof:oso/9780198505280.003.0002 10.1111/j.1365-2818.1987.tb02837.x 10.4088/JCP.07m03745 10.1046/j.1471-4159.2004.02329.x 10.1016/S0022-3956(00)00043-1 10.1523/JNEUROSCI.21-18-07153.2001 10.1038/sj.npp.1301405 10.1046/j.1460-9568.2002.02042.x 10.1016/S0140-6736(00)02793-8 10.1111/j.1365-2818.2006.01535.x 10.1007/s004290050191 10.1016/S0079-6123(08)61238-8 10.1002/(SICI)1098-1063(1999)9:3<321::AID-HIPO11>3.0.CO;2-C 10.1016/j.neuroscience.2005.06.086 10.1016/S0165-0270(99)00114-4 10.1016/j.biopsych.2010.08.029 10.1016/S0006-3223(00)00999-9 10.1016/j.biopsych.2004.06.021 10.1046/j.1471-4159.2003.01725.x 10.1007/s00213-007-0906-9 10.1016/j.tins.2011.11.009 10.1007/s10571-009-9412-4 10.1046/j.1365-2818.1998.00417.x 10.1007/s00429-007-0169-6 10.1371/journal.pone.0038128 10.1016/j.neulet.2007.09.074 10.1016/j.jpsychires.2013.05.028 10.1016/j.conb.2014.03.008 10.3109/9780203007051 10.1016/S0006-3223(03)00114-8 10.1111/j.1399-5618.2012.01013.x |
ContentType | Journal Article |
Copyright | 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1111/bdi.12364 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1399-5618 |
EndPage | 51 |
ExternalDocumentID | PMC4836867 26842627 10_1111_bdi_12364 BDI12364 ark_67375_WNG_DH14FDKD_7 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: funderid: MH61578 – fundername: funderid: P30 GM103328 – fundername: NIMH NIH HHS grantid: R01 MH061578 – fundername: NIGMS NIH HHS grantid: P30 GM103328 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 23N 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c4864-feda7f9a83d3ed82e0a79f7871188f164e03603f581f29661e2c76f6451819e23 |
IEDL.DBID | DR2 |
ISSN | 1398-5647 1399-5618 |
IngestDate | Thu Aug 21 18:24:16 EDT 2025 Fri Jul 11 10:00:23 EDT 2025 Fri Jul 11 03:59:48 EDT 2025 Mon Jul 21 05:53:38 EDT 2025 Tue Jul 01 04:32:28 EDT 2025 Thu Apr 24 22:57:05 EDT 2025 Wed Jan 22 16:30:15 EST 2025 Wed Oct 30 09:50:19 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | adult neurogenesis lithium bipolar disorder stereology astrocytes glia neurons |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4864-feda7f9a83d3ed82e0a79f7871188f164e03603f581f29661e2c76f6451819e23 |
Notes | ArticleID:BDI12364 No. MH61578 istex:B35F2E02AB068EDC823BE5D235163F08D0D4DA7A ark:/67375/WNG-DH14FDKD-7 No. P30 GM103328 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally. |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bdi.12364 |
PMID | 26842627 |
PQID | 1765921365 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4836867 proquest_miscellaneous_1776655887 proquest_miscellaneous_1765921365 pubmed_primary_26842627 crossref_primary_10_1111_bdi_12364 crossref_citationtrail_10_1111_bdi_12364 wiley_primary_10_1111_bdi_12364_BDI12364 istex_primary_ark_67375_WNG_DH14FDKD_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02 February 2016 2016-02-00 2016-Feb 20160201 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02 |
PublicationDecade | 2010 |
PublicationPlace | Denmark |
PublicationPlace_xml | – name: Denmark |
PublicationTitle | Bipolar disorders |
PublicationTitleAlternate | Bipolar Disord |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Schloesser RJ, Martinowich K, Manji HK. Mood-stabilizing drugs: mechanisms of action. Trends Neurosci 2012; 35: 36-46. Strasser HC, Lilyestrom J, Ashby ER et al. Hippocampal and ventricular volumes in psychotic and nonpsychotic bipolar patients compared with schizophrenia patients and community control subjects: a pilot study. Biol Psychiatry 2005; 57: 633-639. Cousins DA, Aribisala B. Nicol Ferrier I, Blamire AM. Lithium, gray matter, and magnetic resonance imaging signal. Biol Psychiatry 2013; 73: 652-657. Yucel K, Taylor VH, McKinnon MC et al. Bilateral hippocampal volume increase in patients with bipolar disorder and short-term lithium treatment. Neuropsychopharmacology 2008; 33: 361-367. Boekhoorn K, van Dis V, Goedknegt E, Sobel A, Lucassen PJ, Hoogenraad CC. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis. Dev Neurobiol 2014; 74: 1226-1242. Chana G, Landau S, Beasley C, Everall IP, Cotter D. Two-dimensional assessment of cytoarchitecture in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size and increased neuronal density. Biol Psychiatry 2003; 53: 1086-1098. Malhi GS, Tanious M, Das P, Coulston CM, Berk M. Potential Mechanisms of Action of Lithium in Bipolar Disorder. Current Understanding. CNS Drugs 2013; 27: 135-153. Cho Y, Cavalli V. HDAC signaling in neuronal development and axon regeneration. Curr Opin Neurobiol 2014; 27: 118-126. Glaser EM, Wilson PD. The coefficient of error of optical fractionator population size estimates: a computer simulation comparing three estimators. J Microsc 1998; 192: 163-171. Moore GJ, Cortese BM, Glitz DA et al. A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment-responsive bipolar disorder patients. J Clin Psychiatry 2009; 70: 699-705. Uylings HBM, Zilles K, Rajkowska G. Optimal staining methods for delineation of cortical areas and neuron counts in human brains. NeuroImage 1999; 9: 439-445. Thune JJ, Uylings HBM, Pakkenberg B. Total number of neurons in the prefrontal cortex in schizophrenics and controls. J Psychiatr Res 2001; 35: 15-21. Uylings HBM, Van Eden CG, Hofman MA. Morphometry of size/volume variables and comparisons of their bivariate relations in the nervous system under different conditions. J Neurosci Methods 1986; 18: 19-37. West MJ. Stereological studies of the hippocampus: a comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men. Prog Brain Res 1990; 83: 13-36. García-Fiñana M, Cruz-Orive LM, Mackay CE, Pakkenberg B, Roberts N. Comparison of MR imaging against physical sectioning to estimate the volume of human cerebral compartments. NeuroImage 2003; 18: 505-516. McDonald C, Zanelli J, Rabe-Hesketh S et al. Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder. Biol Psychiatry 2004; 56: 411-417. Kim JS, Chang MY, Yu IT et al. Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo. J Neurochem 2004; 89: 324-336. Miguel-Hidalgo JJ, Baucom C, Dilley G et al. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry 2000; 48: 861-873. Uylings HBM, Van PJ. Measures for quantifying dendritic arborizations. Network: Computation in Neural Systems 2002; 13: 397-414. Altshuler LL, Bartzokis G, Grieder T et al. An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia. Biol Psychiatry 2000; 48: 147-162. Son H, Yu IT, Hwang SJ et al. Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus. J Neurochem 2003; 85: 872-81. Erratum in: J Neurochem 2003; 85: 1624. Hallahan B, Newell J, Soares JC et al. Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data. Biol Psychiatry 2011; 69: 326-335. Van De Werd HJJM, Uylings HBM. Comparison of (stereotactic) parcellations in mouse prefrontal cortex. Brain Struct Funct 2014; 219: 433-459. Gundersen HJG. Stereology of arbitrary particles: a review of unbiased number and size estimators and presentation of some new ones, in memory of William R. Thompson. J Microsc 1986; 143: 3-45. Gundersen HJG, Jensen EB. The efficiency of systematic sampling in stereology and its prediction. J Microsc 1987; 147: 229-263. Kempermann G, Gage FH. Experience-dependent regulation of adult hippocampal neurogenesis: effects of long-term stimulation and stimulus withdrawal. Hippocampus 1999; 9: 321-332. Vita A, De Peri L, Sacchetti E. Gray matter, white matter, brain, and intracranial volumes in first-episode bipolar disorder: a meta-analysis of magnetic resonance imaging studies. Bipolar Disord 2009; 11: 807-814. Slomianka L, West MJ. Comparative quantitative study of the hippocampal region of two closely related species of wild mice: interspecific and intraspecific variations in volumes of hippocampal components. J Comp Neurol 1989; 280: 544-552. Kimoto H, Eto R, Abe M, Kato H, Araki T. Alterations of glial cells in the mouse hippocampus during postnatal development. Cell Mol Neurobiol 2009; 29: 1181-1189. Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 2001; 21: 7153-60. Ling EA, Paterson JA, Privat A, Mori S, Leblond CP. Investigation of Glial Cells in Semithin Sections I. Identification of glial cells in the brain of young rats. J Comp Neurol 1973; 149: 43-72. Cruz-Orive LM. A general variance predictor for Cavalieri slices. J Microsc 2006; 222: 158-165. Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 2001; 49: 741-752. Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK. Enhancement of hippocampal neurogenesis by lithium. J Neurochemistry 2000; 75: 1729-1734. Ookubo M, Kanai H, Aoki H, Yamada N. Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: brain region specific changes. J Psychiatr Res 2013; 47: 1204-1214. Rasch D, Kubinger KD, Moder K. The two-sample t test: pre-testing its assumptions does not pay off. Stat Papers 2011; 52: 219-231. Slomianka L, West MJ. Estimators of the precision of stereological estimates: an example based on the CA1 pyramidal cell layer of rats. Neuroscience 2005; 136: 757-767. Mouton PR, Long JM, Lei DL et al. Age and gender effects on microglia and astrocyte numbers in brains of mice. Brain Res 2002; 956: 30-35. Bauer M, Grof P, Müller-Oerlingausen B. Lithium in neuropsychiatry: the comprehensive guide. London: Informa Healthcare, 2006. Fabricius K, Wörtwein G, Pakkenberg B. The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus. Brain Struct Funct 2008; 212: 403-416. Seong SS, Hammonds MD, Mervis RF. Four weeks lithium treatment alters neuronal dendrites in the rat hippocampus. Int J Neuropsychopharmacol 2013; 16: 1373-1382. Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature 2002; 417: 39-44. Rajkowska G, Miguel-Hidalgo JJ, Wei J et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45: 1085-1098. Kempermann G, Gage FH. Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur J Neurosci 2002; 16: 129-136. Schmitz C. Variation of fractionator estimates and its prediction. Anat Embryol (Berl) 1998; 198: 371-397. Van De Werd HJJM, Rajkowska G, Evers P, Uylings HBM. Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct 2010; 214: 339-353. Sassi RB, Nicoletti M, Brambilla P et al. Increased gray matter volume in lithium treated bipolar disorder patients. Neurosci Lett 2002; 329: 243-245. Monkul ES, Matsuo K, Nicoletti MA et al. Prefrontal gray matter increases in healthy individuals after lithium treatment: a voxel-based morphometry study. Neurosci Lett 2007; 429: 7-11. Moore GJ, Bebchuk JM, Wilds IB, Chen G, Manji HK. Lithium-induced increase in human grey matter. Lancet 2000; 356: 1241-1242. Erratum in: Lancet 2000; 356: 2104. Gundersen HJG, Jensen EBV, Kiêu K, Nielsen J. The efficiency of systematic sampling in stereology: reconsidered. J Microsc 1999; 193: 199-211. Vernon AC, Natesan S, Crum WR et al. Contrasting effects of haloperidol and lithium on rodent brain structure: a magnetic resonance imaging study with postmortem confirmation. Biol Psychiatry 2012; 71: 855-863. Rajkowska G, Goldman-Rakic PS. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. Cereb Cortex 1995; 5: 307-322. West MJ, Slomianka L, Gundersen HJG. Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using optical fractionator. Anat Rec 1991; 231: 482-497. Saul MC, Gessay GM, Gammie SC. A new mouse model for mania shares genetic correlates with human bipolar disorder. PLoS ONE 2012; 7 (6): e38128, doi:10.1371/journal.pone.0038128. Uylings HBM, Malofeeva LI, Bogolepova IN, Jacobsen AM, Amunts K, Zilles K. No postnatal doubling of number of neurons in human Broca's area (BA 44 and 45)? A stereological study. Neuroscience 2005; 136: 715-728. Hajek T, Cullis J, Novak T et al. Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment. Bipolar Disord 2012; 14: 261-270. Yucel K, McKinnon MC, Taylor VH, Macdonald K, Alda M, Young LT, MacQueen GM. Bilatera 1991; 231 2002; 16 1973; 149 2014; 219 2013; 27 2000; 48 1987; 147 2005; 136 2002; 13 1989; 280 2014; 27 1999; 45 2011; 52 2001; 49 2008; 33 2003; 18 2002; 956 2012; 14 1998; 198 2007; 429 2003; 53 2012; 71 2009; 11 2013; 16 1986; 143 2011; 69 1999; 93 2003; 85 2013; 47 2010; 35 2015; 523 2000; 356 1999; 193 2004; 89 1986; 18 2006 2004 2002; 417 2012; 35 1995; 5 2009; 29 1999; 9 1990; 83 2001; 21 1998; 192 2009; 70 2007; 195 2013; 73 2010; 214 2004; 56 2000; 75 2002; 329 2008; 212 2014; 74 2012; 7 2001; 35 2006; 222 2005; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 11986659 - Nature. 2002 May 2;417(6884):39-44 12153537 - Eur J Neurosci. 2002 Jul;16(1):129-36 11063981 - Biol Psychiatry. 2000 Oct 15;48(8):861-73 25308320 - J Comp Neurol. 2015 Apr 15;523(6):849-68 24072162 - Brain Struct Funct. 2014 Mar;219(2):433-59 11072948 - Lancet. 2000 Oct 7;356(9237):1241-2 3540468 - J Neurosci Methods. 1986 Oct;18(1-2):19-37 3430576 - J Microsc. 1987 Sep;147(Pt 3):229-63 22548899 - Bipolar Disord. 2012 May;14(3):261-70 17996370 - Neurosci Lett. 2007 Dec 11;429(1):7-11 23331381 - Int J Neuropsychopharmacol. 2013 Jul;16(6):1373-82 16344146 - Neuroscience. 2005;136(3):715-28 11331082 - Biol Psychiatry. 2001 May 1;49(9):741-52 17406649 - Neuropsychopharmacology. 2008 Jan;33(2):361-7 9853373 - J Microsc. 1998 Nov;192(Pt 2):163-71 23777937 - J Psychiatr Res. 2013 Sep;47(9):1204-14 12716419 - J Neurochem. 2003 May;85(4):872-81 12222821 - Network. 2002 Aug;13(3):397-414 24727244 - Curr Opin Neurobiol. 2014 Aug;27:118-26 10191172 - Neuroimage. 1999 Apr;9(4):439-45 12814860 - Biol Psychiatry. 2003 Jun 15;53(12):1086-98 12165422 - Neurosci Lett. 2002 Aug 30;329(2):243-5 17705060 - Psychopharmacology (Berl). 2007 Dec;195(3):357-67 10598866 - J Neurosci Methods. 1999 Oct 30;93(1):69-79 10401646 - Hippocampus. 1999;9(3):321-32 19389332 - J Clin Psychiatry. 2009 May;70(5):699-705 16344149 - Neuroscience. 2005;136(3):757-67 4121705 - J Comp Neurol. 1973 May 1;149(1):43-71 19472050 - Cell Mol Neurobiol. 2009 Dec;29(8):1181-9 21030008 - Biol Psychiatry. 2011 Feb 15;69(4):326-35 15364039 - Biol Psychiatry. 2004 Sep 15;56(6):411-7 12595203 - Neuroimage. 2003 Feb;18(2):505-16 23158114 - Biol Psychiatry. 2013 Apr 1;73(7):652-7 24909416 - Dev Neurobiol. 2014 Dec;74(12):1226-42 2203095 - Prog Brain Res. 1990;83:13-36 10903411 - Biol Psychiatry. 2000 Jul 15;48(2):147-62 15056276 - J Neurochem. 2004 Apr;89(2):324-36 11287052 - J Psychiatr Res. 2001 Jan-Feb;35(1):15-21 9801058 - Anat Embryol (Berl). 1998 Nov;198(5):371-97 22217451 - Trends Neurosci. 2012 Jan;35(1):36-46 10987856 - J Neurochem. 2000 Oct;75(4):1729-34 7580124 - Cereb Cortex. 1995 Jul-Aug;5(4):307-22 10348656 - J Microsc. 1999 Mar;193(Pt 3):199-211 22244831 - Biol Psychiatry. 2012 May 15;71(10):855-63 16872414 - J Microsc. 2006 Jun;222(Pt 3):158-65 3761363 - J Microsc. 1986 Jul;143(Pt 1):3-45 18200448 - Brain Struct Funct. 2008 Feb;212(5):403-16 10331101 - Biol Psychiatry. 1999 May 1;45(9):1085-98 1793176 - Anat Rec. 1991 Dec;231(4):482-97 20221886 - Brain Struct Funct. 2010 May;214(4):339-53 19922551 - Bipolar Disord. 2009 Dec;11(8):807-14 23371914 - CNS Drugs. 2013 Feb;27(2):135-53 11549726 - J Neurosci. 2001 Sep 15;21(18):7153-60 2708565 - J Comp Neurol. 1989 Feb 22;280(4):544-52 20357761 - Neuropsychopharmacology. 2010 Jul;35(8):1743-50 22675514 - PLoS One. 2012;7(6):e38128 12426043 - Brain Res. 2002 Nov 22;956(1):30-5 15780850 - Biol Psychiatry. 2005 Mar 15;57(6):633-9 |
References_xml | – reference: Hajek T, Cullis J, Novak T et al. Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment. Bipolar Disord 2012; 14: 261-270. – reference: Son H, Yu IT, Hwang SJ et al. Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus. J Neurochem 2003; 85: 872-81. Erratum in: J Neurochem 2003; 85: 1624. – reference: Strasser HC, Lilyestrom J, Ashby ER et al. Hippocampal and ventricular volumes in psychotic and nonpsychotic bipolar patients compared with schizophrenia patients and community control subjects: a pilot study. Biol Psychiatry 2005; 57: 633-639. – reference: Moore GJ, Bebchuk JM, Wilds IB, Chen G, Manji HK. Lithium-induced increase in human grey matter. Lancet 2000; 356: 1241-1242. Erratum in: Lancet 2000; 356: 2104. – reference: Uylings HBM, Malofeeva LI, Bogolepova IN, Jacobsen AM, Amunts K, Zilles K. No postnatal doubling of number of neurons in human Broca's area (BA 44 and 45)? A stereological study. Neuroscience 2005; 136: 715-728. – reference: Cho Y, Cavalli V. HDAC signaling in neuronal development and axon regeneration. Curr Opin Neurobiol 2014; 27: 118-126. – reference: Seong SS, Hammonds MD, Mervis RF. Four weeks lithium treatment alters neuronal dendrites in the rat hippocampus. Int J Neuropsychopharmacol 2013; 16: 1373-1382. – reference: Yucel K, McKinnon MC, Taylor VH, Macdonald K, Alda M, Young LT, MacQueen GM. Bilateral hippocampal volume increases after long-term lithium treatment in patients with bipolar disorder: a longitudinal MRI study. Psychopharmacology 2007; 195: 357-367. – reference: Uylings HBM, Van Eden CG, Hofman MA. Morphometry of size/volume variables and comparisons of their bivariate relations in the nervous system under different conditions. J Neurosci Methods 1986; 18: 19-37. – reference: West MJ. Stereological studies of the hippocampus: a comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men. Prog Brain Res 1990; 83: 13-36. – reference: Rasch D, Kubinger KD, Moder K. The two-sample t test: pre-testing its assumptions does not pay off. Stat Papers 2011; 52: 219-231. – reference: Mouton PR, Long JM, Lei DL et al. Age and gender effects on microglia and astrocyte numbers in brains of mice. Brain Res 2002; 956: 30-35. – reference: Hallahan B, Newell J, Soares JC et al. Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data. Biol Psychiatry 2011; 69: 326-335. – reference: Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK. Enhancement of hippocampal neurogenesis by lithium. J Neurochemistry 2000; 75: 1729-1734. – reference: Gundersen HJG. Stereology of arbitrary particles: a review of unbiased number and size estimators and presentation of some new ones, in memory of William R. Thompson. J Microsc 1986; 143: 3-45. – reference: Schloesser RJ, Martinowich K, Manji HK. Mood-stabilizing drugs: mechanisms of action. Trends Neurosci 2012; 35: 36-46. – reference: Monkul ES, Matsuo K, Nicoletti MA et al. Prefrontal gray matter increases in healthy individuals after lithium treatment: a voxel-based morphometry study. Neurosci Lett 2007; 429: 7-11. – reference: Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 2001; 21: 7153-60. – reference: Fabricius K, Wörtwein G, Pakkenberg B. The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus. Brain Struct Funct 2008; 212: 403-416. – reference: Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 2001; 49: 741-752. – reference: West MJ, Slomianka L, Gundersen HJG. Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using optical fractionator. Anat Rec 1991; 231: 482-497. – reference: Rajkowska G, Miguel-Hidalgo JJ, Wei J et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45: 1085-1098. – reference: Rajkowska G, Goldman-Rakic PS. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. Cereb Cortex 1995; 5: 307-322. – reference: Moore GJ, Cortese BM, Glitz DA et al. A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment-responsive bipolar disorder patients. J Clin Psychiatry 2009; 70: 699-705. – reference: Altshuler LL, Bartzokis G, Grieder T et al. An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia. Biol Psychiatry 2000; 48: 147-162. – reference: Cousins DA, Aribisala B. Nicol Ferrier I, Blamire AM. Lithium, gray matter, and magnetic resonance imaging signal. Biol Psychiatry 2013; 73: 652-657. – reference: Gundersen HJG, Jensen EB. The efficiency of systematic sampling in stereology and its prediction. J Microsc 1987; 147: 229-263. – reference: Gundersen HJG, Jensen EBV, Kiêu K, Nielsen J. The efficiency of systematic sampling in stereology: reconsidered. J Microsc 1999; 193: 199-211. – reference: Bauer M, Grof P, Müller-Oerlingausen B. Lithium in neuropsychiatry: the comprehensive guide. London: Informa Healthcare, 2006. – reference: Yucel K, Taylor VH, McKinnon MC et al. Bilateral hippocampal volume increase in patients with bipolar disorder and short-term lithium treatment. Neuropsychopharmacology 2008; 33: 361-367. – reference: Kempermann G, Gage FH. Experience-dependent regulation of adult hippocampal neurogenesis: effects of long-term stimulation and stimulus withdrawal. Hippocampus 1999; 9: 321-332. – reference: Kimoto H, Eto R, Abe M, Kato H, Araki T. Alterations of glial cells in the mouse hippocampus during postnatal development. Cell Mol Neurobiol 2009; 29: 1181-1189. – reference: Kim JS, Chang MY, Yu IT et al. Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo. J Neurochem 2004; 89: 324-336. – reference: Slomianka L, West MJ. Estimators of the precision of stereological estimates: an example based on the CA1 pyramidal cell layer of rats. Neuroscience 2005; 136: 757-767. – reference: McDonald C, Zanelli J, Rabe-Hesketh S et al. Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder. Biol Psychiatry 2004; 56: 411-417. – reference: Cruz-Orive LM. A general variance predictor for Cavalieri slices. J Microsc 2006; 222: 158-165. – reference: Vita A, De Peri L, Sacchetti E. Gray matter, white matter, brain, and intracranial volumes in first-episode bipolar disorder: a meta-analysis of magnetic resonance imaging studies. Bipolar Disord 2009; 11: 807-814. – reference: Kempermann G, Gage FH. Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur J Neurosci 2002; 16: 129-136. – reference: Ookubo M, Kanai H, Aoki H, Yamada N. Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: brain region specific changes. J Psychiatr Res 2013; 47: 1204-1214. – reference: Uylings HBM, Van PJ. Measures for quantifying dendritic arborizations. Network: Computation in Neural Systems 2002; 13: 397-414. – reference: Sassi RB, Nicoletti M, Brambilla P et al. Increased gray matter volume in lithium treated bipolar disorder patients. Neurosci Lett 2002; 329: 243-245. – reference: Stanton GB, Kohler SJ, Boklweski J, Cameron JL, Greenough WT. Cytogenesis in the adult monkey motor cortex: perivascular NG2 cells are the major adult born cell type. J Comp Neurol 2015; 523: 849-868. – reference: Thune JJ, Uylings HBM, Pakkenberg B. Total number of neurons in the prefrontal cortex in schizophrenics and controls. J Psychiatr Res 2001; 35: 15-21. – reference: García-Fiñana M, Cruz-Orive LM, Mackay CE, Pakkenberg B, Roberts N. Comparison of MR imaging against physical sectioning to estimate the volume of human cerebral compartments. NeuroImage 2003; 18: 505-516. – reference: Lyoo IK, Dager SR, Kim JE et al. Lithium-induced gray matter volume increase as a neural correlate of treatment response in bipolar disorder: a longitudinal brain imaging study. Neuropsychopharmacology 2010; 35: 1743-1750. – reference: Vernon AC, Natesan S, Crum WR et al. Contrasting effects of haloperidol and lithium on rodent brain structure: a magnetic resonance imaging study with postmortem confirmation. Biol Psychiatry 2012; 71: 855-863. – reference: Saul MC, Gessay GM, Gammie SC. A new mouse model for mania shares genetic correlates with human bipolar disorder. PLoS ONE 2012; 7 (6): e38128, doi:10.1371/journal.pone.0038128. – reference: Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature 2002; 417: 39-44. – reference: Van De Werd HJJM, Uylings HBM. Comparison of (stereotactic) parcellations in mouse prefrontal cortex. Brain Struct Funct 2014; 219: 433-459. – reference: Chana G, Landau S, Beasley C, Everall IP, Cotter D. Two-dimensional assessment of cytoarchitecture in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size and increased neuronal density. Biol Psychiatry 2003; 53: 1086-1098. – reference: Glaser EM, Wilson PD. The coefficient of error of optical fractionator population size estimates: a computer simulation comparing three estimators. J Microsc 1998; 192: 163-171. – reference: Van De Werd HJJM, Rajkowska G, Evers P, Uylings HBM. Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct 2010; 214: 339-353. – reference: Boekhoorn K, van Dis V, Goedknegt E, Sobel A, Lucassen PJ, Hoogenraad CC. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis. Dev Neurobiol 2014; 74: 1226-1242. – reference: Miguel-Hidalgo JJ, Baucom C, Dilley G et al. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry 2000; 48: 861-873. – reference: Slomianka L, West MJ. Comparative quantitative study of the hippocampal region of two closely related species of wild mice: interspecific and intraspecific variations in volumes of hippocampal components. J Comp Neurol 1989; 280: 544-552. – reference: Malhi GS, Tanious M, Das P, Coulston CM, Berk M. Potential Mechanisms of Action of Lithium in Bipolar Disorder. Current Understanding. CNS Drugs 2013; 27: 135-153. – reference: Schmitz C. Variation of fractionator estimates and its prediction. Anat Embryol (Berl) 1998; 198: 371-397. – reference: Miguel-Hidalgo JJ, Rajkowska G. Immunohistochemistry of neural markers for the study of the laminar architecture in celloidin sections from the human cerebral cortex. J Neurosci Methods 1999; 93: 69-79. – reference: Uylings HBM, Zilles K, Rajkowska G. Optimal staining methods for delineation of cortical areas and neuron counts in human brains. NeuroImage 1999; 9: 439-445. – reference: Ling EA, Paterson JA, Privat A, Mori S, Leblond CP. Investigation of Glial Cells in Semithin Sections I. Identification of glial cells in the brain of young rats. J Comp Neurol 1973; 149: 43-72. – volume: 149 start-page: 43 year: 1973 end-page: 72 article-title: Investigation of Glial Cells in Semithin Sections I. Identification of glial cells in the brain of young rats publication-title: J Comp Neurol – volume: 143 start-page: 3 year: 1986 end-page: 45 article-title: Stereology of arbitrary particles: a review of unbiased number and size estimators and presentation of some new ones, in memory of William R publication-title: Thompson. J Microsc – volume: 69 start-page: 326 year: 2011 end-page: 335 article-title: Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega‐analysis of individual adult patient data publication-title: Biol Psychiatry – volume: 9 start-page: 321 year: 1999 end-page: 332 article-title: Experience‐dependent regulation of adult hippocampal neurogenesis: effects of long‐term stimulation and stimulus withdrawal publication-title: Hippocampus – volume: 5 start-page: 307 year: 1995 end-page: 322 article-title: Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria publication-title: Cereb Cortex – volume: 29 start-page: 1181 year: 2009 end-page: 1189 article-title: Alterations of glial cells in the mouse hippocampus during postnatal development publication-title: Cell Mol Neurobiol – volume: 56 start-page: 411 year: 2004 end-page: 417 article-title: Meta‐analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder publication-title: Biol Psychiatry – volume: 47 start-page: 1204 year: 2013 end-page: 1214 article-title: Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: brain region specific changes publication-title: J Psychiatr Res – volume: 417 start-page: 39 year: 2002 end-page: 44 article-title: Astroglia induce neurogenesis from adult neural stem cells publication-title: Nature – volume: 83 start-page: 13 year: 1990 end-page: 36 article-title: Stereological studies of the hippocampus: a comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men publication-title: Prog Brain Res – volume: 85 start-page: 872 year: 2003 end-page: 81 article-title: Lithium enhances long‐term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus publication-title: J Neurochem – start-page: 16 year: 2004 end-page: 64 – volume: 89 start-page: 324 year: 2004 end-page: 336 article-title: Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both and publication-title: J Neurochem – volume: 73 start-page: 652 year: 2013 end-page: 657 article-title: Nicol Ferrier I, Blamire AM. Lithium, gray matter, and magnetic resonance imaging signal publication-title: Biol Psychiatry – volume: 136 start-page: 715 year: 2005 end-page: 728 article-title: No postnatal doubling of number of neurons in human Broca's area (BA 44 and 45)? publication-title: A stereological study. Neuroscience – volume: 71 start-page: 855 year: 2012 end-page: 863 article-title: Contrasting effects of haloperidol and lithium on rodent brain structure: a magnetic resonance imaging study with postmortem confirmation publication-title: Biol Psychiatry – volume: 18 start-page: 19 year: 1986 end-page: 37 article-title: Morphometry of size/volume variables and comparisons of their bivariate relations in the nervous system under different conditions publication-title: J Neurosci Methods – volume: 13 start-page: 397 year: 2002 end-page: 414 article-title: Measures for quantifying dendritic arborizations publication-title: Network: Computation in Neural Systems – volume: 74 start-page: 1226 year: 2014 end-page: 1242 article-title: The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis publication-title: Dev Neurobiol – volume: 214 start-page: 339 year: 2010 end-page: 353 article-title: Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse publication-title: Brain Struct Funct – volume: 70 start-page: 699 year: 2009 end-page: 705 article-title: A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment‐responsive bipolar disorder patients publication-title: J Clin Psychiatry – volume: 222 start-page: 158 year: 2006 end-page: 165 article-title: A general variance predictor for Cavalieri slices publication-title: J Microsc – volume: 14 start-page: 261 year: 2012 end-page: 270 article-title: Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment publication-title: Bipolar Disord – volume: 16 start-page: 129 year: 2002 end-page: 136 article-title: Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task publication-title: Eur J Neurosci – volume: 329 start-page: 243 year: 2002 end-page: 245 article-title: Increased gray matter volume in lithium treated bipolar disorder patients publication-title: Neurosci Lett – volume: 33 start-page: 361 year: 2008 end-page: 367 article-title: Bilateral hippocampal volume increase in patients with bipolar disorder and short‐term lithium treatment publication-title: Neuropsychopharmacology – volume: 356 start-page: 1241 year: 2000 end-page: 1242 article-title: Lithium‐induced increase in human grey matter publication-title: Lancet – volume: 147 start-page: 229 year: 1987 end-page: 263 article-title: The efficiency of systematic sampling in stereology and its prediction publication-title: J Microsc – volume: 192 start-page: 163 year: 1998 end-page: 171 article-title: The coefficient of error of optical fractionator population size estimates: a computer simulation comparing three estimators publication-title: J Microsc – volume: 93 start-page: 69 year: 1999 end-page: 79 article-title: Immunohistochemistry of neural markers for the study of the laminar architecture in celloidin sections from the human cerebral cortex publication-title: J Neurosci Methods – volume: 429 start-page: 7 year: 2007 end-page: 11 article-title: Prefrontal gray matter increases in healthy individuals after lithium treatment: a voxel‐based morphometry study publication-title: Neurosci Lett – volume: 48 start-page: 861 year: 2000 end-page: 873 article-title: Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder publication-title: Biol Psychiatry – volume: 48 start-page: 147 year: 2000 end-page: 162 article-title: An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia publication-title: Biol Psychiatry – volume: 35 start-page: 36 year: 2012 end-page: 46 article-title: Mood‐stabilizing drugs: mechanisms of action publication-title: Trends Neurosci – volume: 27 start-page: 135 year: 2013 end-page: 153 article-title: Potential Mechanisms of Action of Lithium in Bipolar Disorder publication-title: Current Understanding. CNS Drugs – volume: 57 start-page: 633 year: 2005 end-page: 639 article-title: Hippocampal and ventricular volumes in psychotic and nonpsychotic bipolar patients compared with schizophrenia patients and community control subjects: a pilot study publication-title: Biol Psychiatry – volume: 35 start-page: 15 year: 2001 end-page: 21 article-title: Total number of neurons in the prefrontal cortex in schizophrenics and controls publication-title: J Psychiatr Res – volume: 7 start-page: e38128 issue: 6 year: 2012 article-title: A new mouse model for mania shares genetic correlates with human bipolar disorder publication-title: PLoS ONE – volume: 9 start-page: 439 year: 1999 end-page: 445 article-title: Optimal staining methods for delineation of cortical areas and neuron counts in human brains publication-title: NeuroImage – volume: 231 start-page: 482 year: 1991 end-page: 497 article-title: Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using optical fractionator publication-title: Anat Rec – volume: 21 start-page: 7153 year: 2001 end-page: 60 article-title: Astrocytes give rise to new neurons in the adult mammalian hippocampus publication-title: J Neurosci – volume: 53 start-page: 1086 year: 2003 end-page: 1098 article-title: Two‐dimensional assessment of cytoarchitecture in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size and increased neuronal density publication-title: Biol Psychiatry – volume: 49 start-page: 741 year: 2001 end-page: 752 article-title: Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder publication-title: Biol Psychiatry – volume: 212 start-page: 403 year: 2008 end-page: 416 article-title: The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus publication-title: Brain Struct Funct – volume: 136 start-page: 757 year: 2005 end-page: 767 article-title: Estimators of the precision of stereological estimates: an example based on the CA1 pyramidal cell layer of rats publication-title: Neuroscience – volume: 280 start-page: 544 year: 1989 end-page: 552 article-title: Comparative quantitative study of the hippocampal region of two closely related species of wild mice: interspecific and intraspecific variations in volumes of hippocampal components publication-title: J Comp Neurol – volume: 27 start-page: 118 year: 2014 end-page: 126 article-title: HDAC signaling in neuronal development and axon regeneration publication-title: Curr Opin Neurobiol – volume: 195 start-page: 357 year: 2007 end-page: 367 article-title: Bilateral hippocampal volume increases after long‐term lithium treatment in patients with bipolar disorder: a longitudinal MRI study publication-title: Psychopharmacology – year: 2006 – volume: 219 start-page: 433 year: 2014 end-page: 459 article-title: Comparison of (stereotactic) parcellations in mouse prefrontal cortex publication-title: Brain Struct Funct – volume: 193 start-page: 199 year: 1999 end-page: 211 article-title: The efficiency of systematic sampling in stereology: reconsidered publication-title: J Microsc – volume: 956 start-page: 30 year: 2002 end-page: 35 article-title: Age and gender effects on microglia and astrocyte numbers in brains of mice publication-title: Brain Res – volume: 35 start-page: 1743 year: 2010 end-page: 1750 article-title: Lithium‐induced gray matter volume increase as a neural correlate of treatment response in bipolar disorder: a longitudinal brain imaging study publication-title: Neuropsychopharmacology – volume: 523 start-page: 849 year: 2015 end-page: 868 article-title: Cytogenesis in the adult monkey motor cortex: perivascular NG2 cells are the major adult born cell type publication-title: J Comp Neurol – volume: 52 start-page: 219 year: 2011 end-page: 231 article-title: The two‐sample test: pre‐testing its assumptions does not pay off publication-title: Stat Papers – volume: 75 start-page: 1729 year: 2000 end-page: 1734 article-title: Enhancement of hippocampal neurogenesis by lithium publication-title: J Neurochemistry – volume: 16 start-page: 1373 year: 2013 end-page: 1382 article-title: Four weeks lithium treatment alters neuronal dendrites in the rat hippocampus publication-title: Int J Neuropsychopharmacol – volume: 45 start-page: 1085 year: 1999 end-page: 1098 article-title: Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression publication-title: Biol Psychiatry – volume: 198 start-page: 371 year: 1998 end-page: 397 article-title: Variation of fractionator estimates and its prediction publication-title: Anat Embryol (Berl) – volume: 18 start-page: 505 year: 2003 end-page: 516 article-title: Comparison of MR imaging against physical sectioning to estimate the volume of human cerebral compartments publication-title: NeuroImage – volume: 11 start-page: 807 year: 2009 end-page: 814 article-title: Gray matter, white matter, brain, and intracranial volumes in first‐episode bipolar disorder: a meta‐analysis of magnetic resonance imaging studies publication-title: Bipolar Disord – ident: e_1_2_7_56_1 doi: 10.1016/j.biopsych.2004.12.009 – ident: e_1_2_7_47_1 doi: 10.1002/dneu.22200 – ident: e_1_2_7_54_1 doi: 10.1016/S0006-3223(00)00836-2 – ident: e_1_2_7_59_1 doi: 10.1111/j.1399-5618.2009.00759.x – ident: e_1_2_7_13_1 doi: 10.1016/j.biopsych.2011.12.004 – ident: e_1_2_7_24_1 doi: 10.1007/s00429-010-0247-z – ident: e_1_2_7_34_1 doi: 10.1111/j.1365-2818.1986.tb02764.x – ident: e_1_2_7_35_1 doi: 10.1007/s00362-009-0224-x – ident: e_1_2_7_18_1 doi: 10.1016/S0006-3223(99)00041-4 – ident: e_1_2_7_31_1 doi: 10.1016/j.neuroscience.2005.07.048 – ident: e_1_2_7_23_1 doi: 10.1002/cne.902800405 – ident: e_1_2_7_40_1 doi: 10.1016/S1053-8119(02)00021-6 – ident: e_1_2_7_2_1 doi: 10.1016/S0006-3223(01)01080-0 – ident: e_1_2_7_8_1 doi: 10.1007/s40263-013-0039-0 – ident: e_1_2_7_28_1 doi: 10.1002/ar.1092310411 – ident: e_1_2_7_51_1 doi: 10.1038/417039a – ident: e_1_2_7_41_1 doi: 10.1002/cne.23693 – ident: e_1_2_7_17_1 doi: 10.1093/cercor/5.4.307 – ident: e_1_2_7_52_1 doi: 10.1088/0954-898X_13_3_309 – ident: e_1_2_7_53_1 doi: 10.1017/S1461145712001423 – ident: e_1_2_7_60_1 doi: 10.1016/j.biopsych.2012.09.029 – ident: e_1_2_7_36_1 doi: 10.1016/0165-0270(86)90111-1 – ident: e_1_2_7_49_1 doi: 10.1016/S0006-8993(02)03475-3 – ident: e_1_2_7_14_1 doi: 10.1046/j.1471-4159.2000.0751729.x – ident: e_1_2_7_19_1 doi: 10.1006/nimg.1999.0417 – ident: e_1_2_7_9_1 doi: 10.1016/S0304-3940(02)00615-8 – ident: e_1_2_7_38_1 doi: 10.1046/j.1365-2818.1999.00457.x – ident: e_1_2_7_61_1 doi: 10.1038/npp.2010.41 – ident: e_1_2_7_25_1 doi: 10.1007/s00429-013-0630-7 – ident: e_1_2_7_26_1 doi: 10.1002/cne.901490104 – ident: e_1_2_7_32_1 doi: 10.1093/acprof:oso/9780198505280.003.0002 – ident: e_1_2_7_37_1 doi: 10.1111/j.1365-2818.1987.tb02837.x – ident: e_1_2_7_5_1 doi: 10.4088/JCP.07m03745 – ident: e_1_2_7_16_1 doi: 10.1046/j.1471-4159.2004.02329.x – ident: e_1_2_7_27_1 doi: 10.1016/S0022-3956(00)00043-1 – ident: e_1_2_7_50_1 doi: 10.1523/JNEUROSCI.21-18-07153.2001 – ident: e_1_2_7_11_1 doi: 10.1038/sj.npp.1301405 – ident: e_1_2_7_45_1 doi: 10.1046/j.1460-9568.2002.02042.x – ident: e_1_2_7_4_1 doi: 10.1016/S0140-6736(00)02793-8 – ident: e_1_2_7_33_1 doi: 10.1111/j.1365-2818.2006.01535.x – ident: e_1_2_7_29_1 doi: 10.1007/s004290050191 – ident: e_1_2_7_22_1 doi: 10.1016/S0079-6123(08)61238-8 – ident: e_1_2_7_44_1 doi: 10.1002/(SICI)1098-1063(1999)9:3<321::AID-HIPO11>3.0.CO;2-C – ident: e_1_2_7_39_1 doi: 10.1016/j.neuroscience.2005.06.086 – ident: e_1_2_7_20_1 doi: 10.1016/S0165-0270(99)00114-4 – ident: e_1_2_7_58_1 doi: 10.1016/j.biopsych.2010.08.029 – ident: e_1_2_7_21_1 doi: 10.1016/S0006-3223(00)00999-9 – ident: e_1_2_7_55_1 doi: 10.1016/j.biopsych.2004.06.021 – ident: e_1_2_7_15_1 doi: 10.1046/j.1471-4159.2003.01725.x – ident: e_1_2_7_10_1 doi: 10.1007/s00213-007-0906-9 – ident: e_1_2_7_7_1 doi: 10.1016/j.tins.2011.11.009 – ident: e_1_2_7_48_1 doi: 10.1007/s10571-009-9412-4 – ident: e_1_2_7_30_1 doi: 10.1046/j.1365-2818.1998.00417.x – ident: e_1_2_7_46_1 doi: 10.1007/s00429-007-0169-6 – ident: e_1_2_7_62_1 doi: 10.1371/journal.pone.0038128 – ident: e_1_2_7_12_1 doi: 10.1016/j.neulet.2007.09.074 – ident: e_1_2_7_42_1 doi: 10.1016/j.jpsychires.2013.05.028 – ident: e_1_2_7_43_1 doi: 10.1016/j.conb.2014.03.008 – ident: e_1_2_7_6_1 doi: 10.3109/9780203007051 – ident: e_1_2_7_3_1 doi: 10.1016/S0006-3223(03)00114-8 – ident: e_1_2_7_57_1 doi: 10.1111/j.1399-5618.2012.01013.x – reference: 20221886 - Brain Struct Funct. 2010 May;214(4):339-53 – reference: 11986659 - Nature. 2002 May 2;417(6884):39-44 – reference: 10331101 - Biol Psychiatry. 1999 May 1;45(9):1085-98 – reference: 19922551 - Bipolar Disord. 2009 Dec;11(8):807-14 – reference: 10401646 - Hippocampus. 1999;9(3):321-32 – reference: 2708565 - J Comp Neurol. 1989 Feb 22;280(4):544-52 – reference: 3540468 - J Neurosci Methods. 1986 Oct;18(1-2):19-37 – reference: 25308320 - J Comp Neurol. 2015 Apr 15;523(6):849-68 – reference: 11287052 - J Psychiatr Res. 2001 Jan-Feb;35(1):15-21 – reference: 24909416 - Dev Neurobiol. 2014 Dec;74(12):1226-42 – reference: 16344149 - Neuroscience. 2005;136(3):757-67 – reference: 17406649 - Neuropsychopharmacology. 2008 Jan;33(2):361-7 – reference: 22548899 - Bipolar Disord. 2012 May;14(3):261-70 – reference: 15364039 - Biol Psychiatry. 2004 Sep 15;56(6):411-7 – reference: 10191172 - Neuroimage. 1999 Apr;9(4):439-45 – reference: 19389332 - J Clin Psychiatry. 2009 May;70(5):699-705 – reference: 21030008 - Biol Psychiatry. 2011 Feb 15;69(4):326-35 – reference: 23158114 - Biol Psychiatry. 2013 Apr 1;73(7):652-7 – reference: 16344146 - Neuroscience. 2005;136(3):715-28 – reference: 12153537 - Eur J Neurosci. 2002 Jul;16(1):129-36 – reference: 7580124 - Cereb Cortex. 1995 Jul-Aug;5(4):307-22 – reference: 9801058 - Anat Embryol (Berl). 1998 Nov;198(5):371-97 – reference: 12165422 - Neurosci Lett. 2002 Aug 30;329(2):243-5 – reference: 11072948 - Lancet. 2000 Oct 7;356(9237):1241-2 – reference: 2203095 - Prog Brain Res. 1990;83:13-36 – reference: 20357761 - Neuropsychopharmacology. 2010 Jul;35(8):1743-50 – reference: 4121705 - J Comp Neurol. 1973 May 1;149(1):43-71 – reference: 23331381 - Int J Neuropsychopharmacol. 2013 Jul;16(6):1373-82 – reference: 23777937 - J Psychiatr Res. 2013 Sep;47(9):1204-14 – reference: 23371914 - CNS Drugs. 2013 Feb;27(2):135-53 – reference: 24072162 - Brain Struct Funct. 2014 Mar;219(2):433-59 – reference: 10903411 - Biol Psychiatry. 2000 Jul 15;48(2):147-62 – reference: 16872414 - J Microsc. 2006 Jun;222(Pt 3):158-65 – reference: 3430576 - J Microsc. 1987 Sep;147(Pt 3):229-63 – reference: 18200448 - Brain Struct Funct. 2008 Feb;212(5):403-16 – reference: 24727244 - Curr Opin Neurobiol. 2014 Aug;27:118-26 – reference: 1793176 - Anat Rec. 1991 Dec;231(4):482-97 – reference: 11549726 - J Neurosci. 2001 Sep 15;21(18):7153-60 – reference: 3761363 - J Microsc. 1986 Jul;143(Pt 1):3-45 – reference: 10348656 - J Microsc. 1999 Mar;193(Pt 3):199-211 – reference: 17705060 - Psychopharmacology (Berl). 2007 Dec;195(3):357-67 – reference: 12814860 - Biol Psychiatry. 2003 Jun 15;53(12):1086-98 – reference: 11063981 - Biol Psychiatry. 2000 Oct 15;48(8):861-73 – reference: 12595203 - Neuroimage. 2003 Feb;18(2):505-16 – reference: 11331082 - Biol Psychiatry. 2001 May 1;49(9):741-52 – reference: 17996370 - Neurosci Lett. 2007 Dec 11;429(1):7-11 – reference: 22244831 - Biol Psychiatry. 2012 May 15;71(10):855-63 – reference: 15056276 - J Neurochem. 2004 Apr;89(2):324-36 – reference: 12222821 - Network. 2002 Aug;13(3):397-414 – reference: 15780850 - Biol Psychiatry. 2005 Mar 15;57(6):633-9 – reference: 22675514 - PLoS One. 2012;7(6):e38128 – reference: 22217451 - Trends Neurosci. 2012 Jan;35(1):36-46 – reference: 12716419 - J Neurochem. 2003 May;85(4):872-81 – reference: 10987856 - J Neurochem. 2000 Oct;75(4):1729-34 – reference: 10598866 - J Neurosci Methods. 1999 Oct 30;93(1):69-79 – reference: 19472050 - Cell Mol Neurobiol. 2009 Dec;29(8):1181-9 – reference: 12426043 - Brain Res. 2002 Nov 22;956(1):30-5 – reference: 9853373 - J Microsc. 1998 Nov;192(Pt 2):163-71 |
SSID | ssj0016205 |
Score | 2.3077655 |
Snippet | Objectives
Neuroimaging studies have revealed lithium‐related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem... Neuroimaging studies have revealed lithium-related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human... Objectives Neuroimaging studies have revealed lithium-related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 41 |
SubjectTerms | adult neurogenesis Animals astrocytes Astrocytes - drug effects bipolar disorder Bipolar Disorder - pathology Cell Count Dentate Gyrus - cytology Dentate Gyrus - drug effects Dentate Gyrus - pathology glia Hippocampus - cytology Hippocampus - drug effects Hippocampus - pathology lithium Lithium Compounds - pharmacology Male Mice Mice, Inbred C57BL Neuroglia - drug effects neurons Neurons - drug effects Organ Size - drug effects Prefrontal Cortex - cytology Prefrontal Cortex - drug effects Prefrontal Cortex - pathology stereology |
Title | Differential effect of lithium on cell number in the hippocampus and prefrontal cortex in adult mice: a stereological study |
URI | https://api.istex.fr/ark:/67375/WNG-DH14FDKD-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbdi.12364 https://www.ncbi.nlm.nih.gov/pubmed/26842627 https://www.proquest.com/docview/1765921365 https://www.proquest.com/docview/1776655887 https://pubmed.ncbi.nlm.nih.gov/PMC4836867 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRUJcoDwbCmhBCPXiKLbX-ygnwIQAag-Iih6QrPV6V7HaOFYTSxX988ysH2qgIMQtkseOdjwz-032yzeEvOQqViY2KBuqoEExLAoA5evAiMLyRBXM-nE-h0d8dsw-nSQnW-R1_1-YVh9i-MENM8PXa0xwna-uJHlelGOUDkEtUORqISD6MkhHhTzy9EUAODJIOBOdqhCyeIY7N_aiG-jWi-uA5u98yas41m9E0zvke7-Eln9yOm7W-dj8-EXd8T_XuENudwCVvmkj6i7ZstU9cvOwO4K_Ty7TbqQKlIYz2tJB6NJRgPPzslnQZUXxMIC2o0ZoWVGAmHRe1jXsmou6WVFdFbQGZ6B0AjzCIN33Ag29FghdQOk6oJqigoPtSzP1MrgPyPH0_dd3s6Cb4BAYJjkLnC20cErLuIhtISM70UI5qBHQ1kgHnZqFDXQSu0SGLoLGK7SREdxxlgDwUDaKH5LtalnZXUIVdmYArvNQTljulMohzKyBFnuiVcH1iOz37zIznbw5Ttk4y_o2B5yZeWeOyIvBtG41Pa4zeuUDYrDQ56dIghNJ9u3oQ5bOQjZNP6eZGJHnfcRkkJroYl3ZZbPKQoFn1hibf7MRnCcJlPoRedRG2fCNKMQT8QiuiI34GwxQGnzzSlXOvUQ4kzGXHO7c9-H152Vmb9OP_sPjfzfdI7cANnbc9Sdke33e2KcAzdb5M5-DPwHfqTSo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJgEv45uVT4MQ2kuqJnHsGPEChNKxtQ9oE3tBluM4arQ1jbZGmuCf58750AoDId4q5dLK17vz7-JffkfIKy5DaUKDsqESGhTDAg9QvvaMyCyPZMasG-cznfHJEft8HB1vkLfduzCNPkT_wA0zw9VrTHB8IH0py9OsGKJ2CLtGtnCit2uovvTiUT4PHIERIE7sRZyJVlcIeTz9rWu70RY69uIqqPk7Y_IyknVb0fgW-dYtomGgnAzrVTo033_Rd_zfVd4m2y1Gpe-aoLpDNmx5l1yftqfw98iPpJ2qAtXhlDaMELrMKSD6eVEv6LKkeB5Am2kjtCgpoEw6L6oKNs5FVZ9TXWa0Am-gegJ8hUHG7wUaOjkQuoDq9YZqiiIOtqvO1Cnh3idH44-HHyZeO8TBMyzmzMttpkUudRxmoc3iwI60kDmUCehs4hyaNQt76CjMo9jPA-i9fBsYwXPOIsAe0gbhA7JZLku7Q6jE5gzwderHI5bmUqYQadZAlz3SMuN6QHa7P1OZVuEcB22cqq7TAWcq58wBedmbVo2sx1VGr11E9Bb67AR5cCJSX2efVDLx2TjZT5QYkBddyCjITnSxLu2yPle-wGNrpBL-zUZwHkVQ7QfkYRNm_S-iFk_AA7gi1gKwN0B18PUrZTF3KuEsDnnM4c5dF19_XqZ6n-y5D4_-3fQ5uTE5nB6og73Z_mNyE1BkS2V_QjZXZ7V9CkhtlT5zCfkTAl84ww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZKK1W8cB_LaRBCfckqh-MDnoCwbCldIURFHypZjmNro3azUbuRKvjzjJ1DXSgI8bZSJll5MjP-Zv3tNwi9oCIROtFONlRAg6JJHADKV4FmhaGpKIjx43z2Z3R6QD4epocb6HX_X5hWH2L4wc1lhq_XLsHrwl5I8rwox046hFxBW4SG3IV09mXQjopo7PmLgHB4kFLCOlkhR-MZbl3bjLacX88vQ5q_EyYvAlm_E02uo6N-DS0B5XjcrPKx_v6LvON_LvIGutYhVPymDambaMNUt9D2fncGfxv9yLqZKlAbTnDLB8FLiwHPz8tmgZcVdqcBuJ01gssKA8bE87KuYdtc1M0ZVlWBa3CG006AR2jH9z13hl4MBC-gdr3CCjsJB9PXZux1cO-gg8n7r--mQTfCIdCEUxJYUyhmheJJkZiCxyZUTFgoEtDXcAutmoEdNExsyiMbQ-cVmVgzailJAXkIEyd30Wa1rMx9hIVrzQBd5xEPSW6FyCHOjIYeO1SioGqEdvp3KXWnb-7GbJzIvs8BZ0rvzBF6PpjWrajHZUYvfUAMFur02LHgWCq_zT7IbBqRSbaXSTZCz_qIkZCbzsWqMsvmTEbMHVo7IuHfbBilaQq1foTutVE2fKNT4olpDFfYWvwNBk4bfP1KVc69RjjhCeUU7tzx4fXnZcq32a7_8ODfTZ-i7c_ZRH7ane09RFcBQnY89kdoc3XamMcA01b5E5-OPwFR-Dd7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+effect+of+lithium+on+cell+number+in+the+hippocampus+and+prefrontal+cortex+in+adult+mice%3A+a+stereological+study&rft.jtitle=Bipolar+disorders&rft.au=Rajkowska%2C+Grazyna&rft.au=Clarke%2C+Gerard&rft.au=Mahajan%2C+Gouri&rft.au=Licht%2C+Camilla+MM&rft.date=2016-02-01&rft.issn=1398-5647&rft.eissn=1399-5618&rft.volume=18&rft.issue=1&rft.spage=41&rft.epage=51&rft_id=info:doi/10.1111%2Fbdi.12364&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1398-5647&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1398-5647&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1398-5647&client=summon |