Differential effect of lithium on cell number in the hippocampus and prefrontal cortex in adult mice: a stereological study

Objectives Neuroimaging studies have revealed lithium‐related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium‐treated subjects. Rodents treated...

Full description

Saved in:
Bibliographic Details
Published inBipolar disorders Vol. 18; no. 1; pp. 41 - 51
Main Authors Rajkowska, Grazyna, Clarke, Gerard, Mahajan, Gouri, Licht, Camilla MM, van de Werd, Henri JJM, Yuan, Peter, Stockmeier, Craig A, Manji, Husseini K, Uylings, Harry BM
Format Journal Article
LanguageEnglish
Published Denmark Blackwell Publishing Ltd 01.02.2016
Subjects
Online AccessGet full text
ISSN1398-5647
1399-5618
1399-5618
DOI10.1111/bdi.12364

Cover

Loading…
Abstract Objectives Neuroimaging studies have revealed lithium‐related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium‐treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered. Methods Using stereological methods, this study estimated the total numbers of neurons and glia, and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium, and evaluated the total volume of these regions and the entire neocortex. Results Lithium treatment increased the total numbers of neurons and glia in the DG (by 25% and 21%, respectively) and the density of astrocytes but did not alter total numbers in the PFC. However, the volumes of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium. Conclusions Both neuronal and glial cells accounted for lithium‐induced cell proliferation in the DG. That the numbers of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus.
AbstractList Objectives Neuroimaging studies have revealed lithium‐related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium‐treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered. Methods Using stereological methods, this study estimated the total numbers of neurons and glia, and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium, and evaluated the total volume of these regions and the entire neocortex. Results Lithium treatment increased the total numbers of neurons and glia in the DG (by 25% and 21%, respectively) and the density of astrocytes but did not alter total numbers in the PFC. However, the volumes of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium. Conclusions Both neuronal and glial cells accounted for lithium‐induced cell proliferation in the DG. That the numbers of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus.
Neuroimaging studies have revealed lithium-related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium-treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered.OBJECTIVESNeuroimaging studies have revealed lithium-related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium-treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered.Using stereological methods, this study estimated the total numbers of neurons and glia, and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium, and evaluated the total volume of these regions and the entire neocortex.METHODSUsing stereological methods, this study estimated the total numbers of neurons and glia, and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium, and evaluated the total volume of these regions and the entire neocortex.Lithium treatment increased the total numbers of neurons and glia in the DG (by 25% and 21%, respectively) and the density of astrocytes but did not alter total numbers in the PFC. However, the volumes of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium.RESULTSLithium treatment increased the total numbers of neurons and glia in the DG (by 25% and 21%, respectively) and the density of astrocytes but did not alter total numbers in the PFC. However, the volumes of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium.Both neuronal and glial cells accounted for lithium-induced cell proliferation in the DG. That the numbers of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus.CONCLUSIONSBoth neuronal and glial cells accounted for lithium-induced cell proliferation in the DG. That the numbers of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus.
Objectives Neuroimaging studies have revealed lithium-related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium-treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered. Methods Using stereological methods, this study estimated the total numbers of neurons and glia, and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium, and evaluated the total volume of these regions and the entire neocortex. Results Lithium treatment increased the total numbers of neurons and glia in the DG (by 25% and 21%, respectively) and the density of astrocytes but did not alter total numbers in the PFC. However, the volumes of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium. Conclusions Both neuronal and glial cells accounted for lithium-induced cell proliferation in the DG. That the numbers of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus.
Neuroimaging studies have revealed lithium-related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium-treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered. Using stereological methods, this study estimated the total numbers of neurons and glia, and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium, and evaluated the total volume of these regions and the entire neocortex. Lithium treatment increased the total numbers of neurons and glia in the DG (by 25% and 21%, respectively) and the density of astrocytes but did not alter total numbers in the PFC. However, the volumes of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium. Both neuronal and glial cells accounted for lithium-induced cell proliferation in the DG. That the numbers of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus.
Author Uylings, Harry BM
Stockmeier, Craig A
Clarke, Gerard
van de Werd, Henri JJM
Mahajan, Gouri
Yuan, Peter
Manji, Husseini K
Rajkowska, Grazyna
Licht, Camilla MM
AuthorAffiliation 1 Dept. Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
3 Dept. Anatomy & Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
6 Janssen Research and Development LLC of Johnson & Johnson, Titusville, NJ, USA
4 Dept. Epidemiology & Biostatistics, VU University Medical Center, Amsterdam, the Netherlands
2 Department of Psychiatry and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
5 Laboratory of Molecular Pathophysiology and Experimental Therapeutics, NIMH, NIH, Bethesda, MD, USA
AuthorAffiliation_xml – name: 4 Dept. Epidemiology & Biostatistics, VU University Medical Center, Amsterdam, the Netherlands
– name: 1 Dept. Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
– name: 2 Department of Psychiatry and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
– name: 5 Laboratory of Molecular Pathophysiology and Experimental Therapeutics, NIMH, NIH, Bethesda, MD, USA
– name: 3 Dept. Anatomy & Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
– name: 6 Janssen Research and Development LLC of Johnson & Johnson, Titusville, NJ, USA
Author_xml – sequence: 1
  givenname: Grazyna
  surname: Rajkowska
  fullname: Rajkowska, Grazyna
  email: Corresponding author:Grazyna Rajkowska, Ph.D.Department of Psychiatry and Human BehaviorUniversity of Mississippi Medical Center2500 North State StreetJackson, MS 39216USAFax: 601-984-5899, grajkowska@umc.edu
  organization: Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, MS, Jackson, USA
– sequence: 2
  givenname: Gerard
  surname: Clarke
  fullname: Clarke, Gerard
  organization: Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
– sequence: 3
  givenname: Gouri
  surname: Mahajan
  fullname: Mahajan, Gouri
  organization: Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, MS, Jackson, USA
– sequence: 4
  givenname: Camilla MM
  surname: Licht
  fullname: Licht, Camilla MM
  organization: Department of Anatomy and Neuroscience, VU University Medical Center
– sequence: 5
  givenname: Henri JJM
  surname: van de Werd
  fullname: van de Werd, Henri JJM
  organization: Department of Anatomy and Neuroscience, VU University Medical Center
– sequence: 6
  givenname: Peter
  surname: Yuan
  fullname: Yuan, Peter
  organization: Laboratory of Molecular Pathophysiology and Experimental Therapeutics, National Institute of Mental Health, National Institutes of Health, MD, Bethesda, USA
– sequence: 7
  givenname: Craig A
  surname: Stockmeier
  fullname: Stockmeier, Craig A
  organization: Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, MS, Jackson, USA
– sequence: 8
  givenname: Husseini K
  surname: Manji
  fullname: Manji, Husseini K
  organization: Laboratory of Molecular Pathophysiology and Experimental Therapeutics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
– sequence: 9
  givenname: Harry BM
  surname: Uylings
  fullname: Uylings, Harry BM
  organization: Department of Anatomy and Neuroscience, VU University Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26842627$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URB-w4A8gL2GRNrYT22GBBE1fooINiKXlca47hiRObYd2xJ_H02lHgATCG1_J3zm-9559tDP6ERB6TspDks_RonOHhDJePUJ7hDVNUXMid-5qmetK7KL9GL-WJeG0rJ-gXcplRTkVe-hH66yFAGNyuseQa5Owt7h3aenmAfsRG-h7PM7DAgJ2I05LwEs3Td7oYZoj1mOHpwA2-DFlC-NDgts1qLu5T3hwBl5jjWPKv_jeXzmTqZjmbvUUPba6j_Ds_j5An09PPh2fF5cfzy6O314WppK8Kix0WthGS9Yx6CSFUovGCikIkdISXkHJeMlsLYmlDecEqBHc8qomkjRA2QF6s_Gd5sUAncnDBt2rKbhBh5Xy2qnfX0a3VFf-u6ok45KLbPDy3iD46xliUoOL67XoEfwcFRGC87qW8n9QXjeUMF5n9MWvbW37eQgnA682gAk-xrziLUJKtQ5e5eDVXfCZPfqDNS7p5Px6Itf_S3Hjelj93Vq9ay8eFMVG4XKYt1uFDt9UXpKo1ZcPZ6o9J9Vp-75Vgv0ERULPCw
CitedBy_id crossref_primary_10_1002_glia_23610
crossref_primary_10_3390_ijms18122679
crossref_primary_10_1016_j_pnpbp_2017_04_033
crossref_primary_10_1016_j_jad_2018_08_036
crossref_primary_10_1016_j_neubiorev_2019_04_015
crossref_primary_10_3390_cells11203315
crossref_primary_10_1016_j_bbr_2020_112719
crossref_primary_10_1002_nbm_4057
crossref_primary_10_1007_s40263_016_0380_1
crossref_primary_10_3389_fnmol_2018_00056
crossref_primary_10_1016_j_pnpbp_2020_109953
crossref_primary_10_1007_s11064_020_03212_x
crossref_primary_10_1002_ar_24069
crossref_primary_10_1016_j_chemosphere_2022_135668
crossref_primary_10_1002_hbm_25249
crossref_primary_10_1016_j_jpsychires_2018_08_012
crossref_primary_10_1016_j_jpsychires_2023_10_001
crossref_primary_10_1177_01926233221124497
crossref_primary_10_1017_neu_2016_56
crossref_primary_10_1038_s41380_018_0213_3
crossref_primary_10_1371_journal_pone_0192329
crossref_primary_10_1016_j_neuroscience_2019_06_031
crossref_primary_10_3389_fnana_2018_00083
crossref_primary_10_15360_1813_9779_2019_3_73_82
crossref_primary_10_1007_s00429_019_01940_7
crossref_primary_10_1016_j_jad_2016_09_049
crossref_primary_10_1016_j_aanat_2016_10_002
Cites_doi 10.1016/j.biopsych.2004.12.009
10.1002/dneu.22200
10.1016/S0006-3223(00)00836-2
10.1111/j.1399-5618.2009.00759.x
10.1016/j.biopsych.2011.12.004
10.1007/s00429-010-0247-z
10.1111/j.1365-2818.1986.tb02764.x
10.1007/s00362-009-0224-x
10.1016/S0006-3223(99)00041-4
10.1016/j.neuroscience.2005.07.048
10.1002/cne.902800405
10.1016/S1053-8119(02)00021-6
10.1016/S0006-3223(01)01080-0
10.1007/s40263-013-0039-0
10.1002/ar.1092310411
10.1038/417039a
10.1002/cne.23693
10.1093/cercor/5.4.307
10.1088/0954-898X_13_3_309
10.1017/S1461145712001423
10.1016/j.biopsych.2012.09.029
10.1016/0165-0270(86)90111-1
10.1016/S0006-8993(02)03475-3
10.1046/j.1471-4159.2000.0751729.x
10.1006/nimg.1999.0417
10.1016/S0304-3940(02)00615-8
10.1046/j.1365-2818.1999.00457.x
10.1038/npp.2010.41
10.1007/s00429-013-0630-7
10.1002/cne.901490104
10.1093/acprof:oso/9780198505280.003.0002
10.1111/j.1365-2818.1987.tb02837.x
10.4088/JCP.07m03745
10.1046/j.1471-4159.2004.02329.x
10.1016/S0022-3956(00)00043-1
10.1523/JNEUROSCI.21-18-07153.2001
10.1038/sj.npp.1301405
10.1046/j.1460-9568.2002.02042.x
10.1016/S0140-6736(00)02793-8
10.1111/j.1365-2818.2006.01535.x
10.1007/s004290050191
10.1016/S0079-6123(08)61238-8
10.1002/(SICI)1098-1063(1999)9:3<321::AID-HIPO11>3.0.CO;2-C
10.1016/j.neuroscience.2005.06.086
10.1016/S0165-0270(99)00114-4
10.1016/j.biopsych.2010.08.029
10.1016/S0006-3223(00)00999-9
10.1016/j.biopsych.2004.06.021
10.1046/j.1471-4159.2003.01725.x
10.1007/s00213-007-0906-9
10.1016/j.tins.2011.11.009
10.1007/s10571-009-9412-4
10.1046/j.1365-2818.1998.00417.x
10.1007/s00429-007-0169-6
10.1371/journal.pone.0038128
10.1016/j.neulet.2007.09.074
10.1016/j.jpsychires.2013.05.028
10.1016/j.conb.2014.03.008
10.3109/9780203007051
10.1016/S0006-3223(03)00114-8
10.1111/j.1399-5618.2012.01013.x
ContentType Journal Article
Copyright 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1111/bdi.12364
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
MEDLINE - Academic
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1399-5618
EndPage 51
ExternalDocumentID PMC4836867
26842627
10_1111_bdi_12364
BDI12364
ark_67375_WNG_DH14FDKD_7
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername:  
  funderid: MH61578
– fundername:  
  funderid: P30 GM103328
– fundername: NIMH NIH HHS
  grantid: R01 MH061578
– fundername: NIGMS NIH HHS
  grantid: P30 GM103328
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
23N
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c4864-feda7f9a83d3ed82e0a79f7871188f164e03603f581f29661e2c76f6451819e23
IEDL.DBID DR2
ISSN 1398-5647
1399-5618
IngestDate Thu Aug 21 18:24:16 EDT 2025
Fri Jul 11 10:00:23 EDT 2025
Fri Jul 11 03:59:48 EDT 2025
Mon Jul 21 05:53:38 EDT 2025
Tue Jul 01 04:32:28 EDT 2025
Thu Apr 24 22:57:05 EDT 2025
Wed Jan 22 16:30:15 EST 2025
Wed Oct 30 09:50:19 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords adult neurogenesis
lithium
bipolar disorder
stereology
astrocytes
glia
neurons
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4864-feda7f9a83d3ed82e0a79f7871188f164e03603f581f29661e2c76f6451819e23
Notes ArticleID:BDI12364
No. MH61578
istex:B35F2E02AB068EDC823BE5D235163F08D0D4DA7A
ark:/67375/WNG-DH14FDKD-7
No. P30 GM103328
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally.
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bdi.12364
PMID 26842627
PQID 1765921365
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4836867
proquest_miscellaneous_1776655887
proquest_miscellaneous_1765921365
pubmed_primary_26842627
crossref_primary_10_1111_bdi_12364
crossref_citationtrail_10_1111_bdi_12364
wiley_primary_10_1111_bdi_12364_BDI12364
istex_primary_ark_67375_WNG_DH14FDKD_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02
February 2016
2016-02-00
2016-Feb
20160201
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02
PublicationDecade 2010
PublicationPlace Denmark
PublicationPlace_xml – name: Denmark
PublicationTitle Bipolar disorders
PublicationTitleAlternate Bipolar Disord
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Schloesser RJ, Martinowich K, Manji HK. Mood-stabilizing drugs: mechanisms of action. Trends Neurosci 2012; 35: 36-46.
Strasser HC, Lilyestrom J, Ashby ER et al. Hippocampal and ventricular volumes in psychotic and nonpsychotic bipolar patients compared with schizophrenia patients and community control subjects: a pilot study. Biol Psychiatry 2005; 57: 633-639.
Cousins DA, Aribisala B. Nicol Ferrier I, Blamire AM. Lithium, gray matter, and magnetic resonance imaging signal. Biol Psychiatry 2013; 73: 652-657.
Yucel K, Taylor VH, McKinnon MC et al. Bilateral hippocampal volume increase in patients with bipolar disorder and short-term lithium treatment. Neuropsychopharmacology 2008; 33: 361-367.
Boekhoorn K, van Dis V, Goedknegt E, Sobel A, Lucassen PJ, Hoogenraad CC. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis. Dev Neurobiol 2014; 74: 1226-1242.
Chana G, Landau S, Beasley C, Everall IP, Cotter D. Two-dimensional assessment of cytoarchitecture in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size and increased neuronal density. Biol Psychiatry 2003; 53: 1086-1098.
Malhi GS, Tanious M, Das P, Coulston CM, Berk M. Potential Mechanisms of Action of Lithium in Bipolar Disorder. Current Understanding. CNS Drugs 2013; 27: 135-153.
Cho Y, Cavalli V. HDAC signaling in neuronal development and axon regeneration. Curr Opin Neurobiol 2014; 27: 118-126.
Glaser EM, Wilson PD. The coefficient of error of optical fractionator population size estimates: a computer simulation comparing three estimators. J Microsc 1998; 192: 163-171.
Moore GJ, Cortese BM, Glitz DA et al. A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment-responsive bipolar disorder patients. J Clin Psychiatry 2009; 70: 699-705.
Uylings HBM, Zilles K, Rajkowska G. Optimal staining methods for delineation of cortical areas and neuron counts in human brains. NeuroImage 1999; 9: 439-445.
Thune JJ, Uylings HBM, Pakkenberg B. Total number of neurons in the prefrontal cortex in schizophrenics and controls. J Psychiatr Res 2001; 35: 15-21.
Uylings HBM, Van Eden CG, Hofman MA. Morphometry of size/volume variables and comparisons of their bivariate relations in the nervous system under different conditions. J Neurosci Methods 1986; 18: 19-37.
West MJ. Stereological studies of the hippocampus: a comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men. Prog Brain Res 1990; 83: 13-36.
García-Fiñana M, Cruz-Orive LM, Mackay CE, Pakkenberg B, Roberts N. Comparison of MR imaging against physical sectioning to estimate the volume of human cerebral compartments. NeuroImage 2003; 18: 505-516.
McDonald C, Zanelli J, Rabe-Hesketh S et al. Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder. Biol Psychiatry 2004; 56: 411-417.
Kim JS, Chang MY, Yu IT et al. Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo. J Neurochem 2004; 89: 324-336.
Miguel-Hidalgo JJ, Baucom C, Dilley G et al. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry 2000; 48: 861-873.
Uylings HBM, Van PJ. Measures for quantifying dendritic arborizations. Network: Computation in Neural Systems 2002; 13: 397-414.
Altshuler LL, Bartzokis G, Grieder T et al. An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia. Biol Psychiatry 2000; 48: 147-162.
Son H, Yu IT, Hwang SJ et al. Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus. J Neurochem 2003; 85: 872-81. Erratum in: J Neurochem 2003; 85: 1624.
Hallahan B, Newell J, Soares JC et al. Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data. Biol Psychiatry 2011; 69: 326-335.
Van De Werd HJJM, Uylings HBM. Comparison of (stereotactic) parcellations in mouse prefrontal cortex. Brain Struct Funct 2014; 219: 433-459.
Gundersen HJG. Stereology of arbitrary particles: a review of unbiased number and size estimators and presentation of some new ones, in memory of William R. Thompson. J Microsc 1986; 143: 3-45.
Gundersen HJG, Jensen EB. The efficiency of systematic sampling in stereology and its prediction. J Microsc 1987; 147: 229-263.
Kempermann G, Gage FH. Experience-dependent regulation of adult hippocampal neurogenesis: effects of long-term stimulation and stimulus withdrawal. Hippocampus 1999; 9: 321-332.
Vita A, De Peri L, Sacchetti E. Gray matter, white matter, brain, and intracranial volumes in first-episode bipolar disorder: a meta-analysis of magnetic resonance imaging studies. Bipolar Disord 2009; 11: 807-814.
Slomianka L, West MJ. Comparative quantitative study of the hippocampal region of two closely related species of wild mice: interspecific and intraspecific variations in volumes of hippocampal components. J Comp Neurol 1989; 280: 544-552.
Kimoto H, Eto R, Abe M, Kato H, Araki T. Alterations of glial cells in the mouse hippocampus during postnatal development. Cell Mol Neurobiol 2009; 29: 1181-1189.
Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 2001; 21: 7153-60.
Ling EA, Paterson JA, Privat A, Mori S, Leblond CP. Investigation of Glial Cells in Semithin Sections I. Identification of glial cells in the brain of young rats. J Comp Neurol 1973; 149: 43-72.
Cruz-Orive LM. A general variance predictor for Cavalieri slices. J Microsc 2006; 222: 158-165.
Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 2001; 49: 741-752.
Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK. Enhancement of hippocampal neurogenesis by lithium. J Neurochemistry 2000; 75: 1729-1734.
Ookubo M, Kanai H, Aoki H, Yamada N. Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: brain region specific changes. J Psychiatr Res 2013; 47: 1204-1214.
Rasch D, Kubinger KD, Moder K. The two-sample t test: pre-testing its assumptions does not pay off. Stat Papers 2011; 52: 219-231.
Slomianka L, West MJ. Estimators of the precision of stereological estimates: an example based on the CA1 pyramidal cell layer of rats. Neuroscience 2005; 136: 757-767.
Mouton PR, Long JM, Lei DL et al. Age and gender effects on microglia and astrocyte numbers in brains of mice. Brain Res 2002; 956: 30-35.
Bauer M, Grof P, Müller-Oerlingausen B. Lithium in neuropsychiatry: the comprehensive guide. London: Informa Healthcare, 2006.
Fabricius K, Wörtwein G, Pakkenberg B. The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus. Brain Struct Funct 2008; 212: 403-416.
Seong SS, Hammonds MD, Mervis RF. Four weeks lithium treatment alters neuronal dendrites in the rat hippocampus. Int J Neuropsychopharmacol 2013; 16: 1373-1382.
Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature 2002; 417: 39-44.
Rajkowska G, Miguel-Hidalgo JJ, Wei J et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45: 1085-1098.
Kempermann G, Gage FH. Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur J Neurosci 2002; 16: 129-136.
Schmitz C. Variation of fractionator estimates and its prediction. Anat Embryol (Berl) 1998; 198: 371-397.
Van De Werd HJJM, Rajkowska G, Evers P, Uylings HBM. Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct 2010; 214: 339-353.
Sassi RB, Nicoletti M, Brambilla P et al. Increased gray matter volume in lithium treated bipolar disorder patients. Neurosci Lett 2002; 329: 243-245.
Monkul ES, Matsuo K, Nicoletti MA et al. Prefrontal gray matter increases in healthy individuals after lithium treatment: a voxel-based morphometry study. Neurosci Lett 2007; 429: 7-11.
Moore GJ, Bebchuk JM, Wilds IB, Chen G, Manji HK. Lithium-induced increase in human grey matter. Lancet 2000; 356: 1241-1242. Erratum in: Lancet 2000; 356: 2104.
Gundersen HJG, Jensen EBV, Kiêu K, Nielsen J. The efficiency of systematic sampling in stereology: reconsidered. J Microsc 1999; 193: 199-211.
Vernon AC, Natesan S, Crum WR et al. Contrasting effects of haloperidol and lithium on rodent brain structure: a magnetic resonance imaging study with postmortem confirmation. Biol Psychiatry 2012; 71: 855-863.
Rajkowska G, Goldman-Rakic PS. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. Cereb Cortex 1995; 5: 307-322.
West MJ, Slomianka L, Gundersen HJG. Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using optical fractionator. Anat Rec 1991; 231: 482-497.
Saul MC, Gessay GM, Gammie SC. A new mouse model for mania shares genetic correlates with human bipolar disorder. PLoS ONE 2012; 7 (6): e38128, doi:10.1371/journal.pone.0038128.
Uylings HBM, Malofeeva LI, Bogolepova IN, Jacobsen AM, Amunts K, Zilles K. No postnatal doubling of number of neurons in human Broca's area (BA 44 and 45)? A stereological study. Neuroscience 2005; 136: 715-728.
Hajek T, Cullis J, Novak T et al. Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment. Bipolar Disord 2012; 14: 261-270.
Yucel K, McKinnon MC, Taylor VH, Macdonald K, Alda M, Young LT, MacQueen GM. Bilatera
1991; 231
2002; 16
1973; 149
2014; 219
2013; 27
2000; 48
1987; 147
2005; 136
2002; 13
1989; 280
2014; 27
1999; 45
2011; 52
2001; 49
2008; 33
2003; 18
2002; 956
2012; 14
1998; 198
2007; 429
2003; 53
2012; 71
2009; 11
2013; 16
1986; 143
2011; 69
1999; 93
2003; 85
2013; 47
2010; 35
2015; 523
2000; 356
1999; 193
2004; 89
1986; 18
2006
2004
2002; 417
2012; 35
1995; 5
2009; 29
1999; 9
1990; 83
2001; 21
1998; 192
2009; 70
2007; 195
2013; 73
2010; 214
2004; 56
2000; 75
2002; 329
2008; 212
2014; 74
2012; 7
2001; 35
2006; 222
2005; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
11986659 - Nature. 2002 May 2;417(6884):39-44
12153537 - Eur J Neurosci. 2002 Jul;16(1):129-36
11063981 - Biol Psychiatry. 2000 Oct 15;48(8):861-73
25308320 - J Comp Neurol. 2015 Apr 15;523(6):849-68
24072162 - Brain Struct Funct. 2014 Mar;219(2):433-59
11072948 - Lancet. 2000 Oct 7;356(9237):1241-2
3540468 - J Neurosci Methods. 1986 Oct;18(1-2):19-37
3430576 - J Microsc. 1987 Sep;147(Pt 3):229-63
22548899 - Bipolar Disord. 2012 May;14(3):261-70
17996370 - Neurosci Lett. 2007 Dec 11;429(1):7-11
23331381 - Int J Neuropsychopharmacol. 2013 Jul;16(6):1373-82
16344146 - Neuroscience. 2005;136(3):715-28
11331082 - Biol Psychiatry. 2001 May 1;49(9):741-52
17406649 - Neuropsychopharmacology. 2008 Jan;33(2):361-7
9853373 - J Microsc. 1998 Nov;192(Pt 2):163-71
23777937 - J Psychiatr Res. 2013 Sep;47(9):1204-14
12716419 - J Neurochem. 2003 May;85(4):872-81
12222821 - Network. 2002 Aug;13(3):397-414
24727244 - Curr Opin Neurobiol. 2014 Aug;27:118-26
10191172 - Neuroimage. 1999 Apr;9(4):439-45
12814860 - Biol Psychiatry. 2003 Jun 15;53(12):1086-98
12165422 - Neurosci Lett. 2002 Aug 30;329(2):243-5
17705060 - Psychopharmacology (Berl). 2007 Dec;195(3):357-67
10598866 - J Neurosci Methods. 1999 Oct 30;93(1):69-79
10401646 - Hippocampus. 1999;9(3):321-32
19389332 - J Clin Psychiatry. 2009 May;70(5):699-705
16344149 - Neuroscience. 2005;136(3):757-67
4121705 - J Comp Neurol. 1973 May 1;149(1):43-71
19472050 - Cell Mol Neurobiol. 2009 Dec;29(8):1181-9
21030008 - Biol Psychiatry. 2011 Feb 15;69(4):326-35
15364039 - Biol Psychiatry. 2004 Sep 15;56(6):411-7
12595203 - Neuroimage. 2003 Feb;18(2):505-16
23158114 - Biol Psychiatry. 2013 Apr 1;73(7):652-7
24909416 - Dev Neurobiol. 2014 Dec;74(12):1226-42
2203095 - Prog Brain Res. 1990;83:13-36
10903411 - Biol Psychiatry. 2000 Jul 15;48(2):147-62
15056276 - J Neurochem. 2004 Apr;89(2):324-36
11287052 - J Psychiatr Res. 2001 Jan-Feb;35(1):15-21
9801058 - Anat Embryol (Berl). 1998 Nov;198(5):371-97
22217451 - Trends Neurosci. 2012 Jan;35(1):36-46
10987856 - J Neurochem. 2000 Oct;75(4):1729-34
7580124 - Cereb Cortex. 1995 Jul-Aug;5(4):307-22
10348656 - J Microsc. 1999 Mar;193(Pt 3):199-211
22244831 - Biol Psychiatry. 2012 May 15;71(10):855-63
16872414 - J Microsc. 2006 Jun;222(Pt 3):158-65
3761363 - J Microsc. 1986 Jul;143(Pt 1):3-45
18200448 - Brain Struct Funct. 2008 Feb;212(5):403-16
10331101 - Biol Psychiatry. 1999 May 1;45(9):1085-98
1793176 - Anat Rec. 1991 Dec;231(4):482-97
20221886 - Brain Struct Funct. 2010 May;214(4):339-53
19922551 - Bipolar Disord. 2009 Dec;11(8):807-14
23371914 - CNS Drugs. 2013 Feb;27(2):135-53
11549726 - J Neurosci. 2001 Sep 15;21(18):7153-60
2708565 - J Comp Neurol. 1989 Feb 22;280(4):544-52
20357761 - Neuropsychopharmacology. 2010 Jul;35(8):1743-50
22675514 - PLoS One. 2012;7(6):e38128
12426043 - Brain Res. 2002 Nov 22;956(1):30-5
15780850 - Biol Psychiatry. 2005 Mar 15;57(6):633-9
References_xml – reference: Hajek T, Cullis J, Novak T et al. Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment. Bipolar Disord 2012; 14: 261-270.
– reference: Son H, Yu IT, Hwang SJ et al. Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus. J Neurochem 2003; 85: 872-81. Erratum in: J Neurochem 2003; 85: 1624.
– reference: Strasser HC, Lilyestrom J, Ashby ER et al. Hippocampal and ventricular volumes in psychotic and nonpsychotic bipolar patients compared with schizophrenia patients and community control subjects: a pilot study. Biol Psychiatry 2005; 57: 633-639.
– reference: Moore GJ, Bebchuk JM, Wilds IB, Chen G, Manji HK. Lithium-induced increase in human grey matter. Lancet 2000; 356: 1241-1242. Erratum in: Lancet 2000; 356: 2104.
– reference: Uylings HBM, Malofeeva LI, Bogolepova IN, Jacobsen AM, Amunts K, Zilles K. No postnatal doubling of number of neurons in human Broca's area (BA 44 and 45)? A stereological study. Neuroscience 2005; 136: 715-728.
– reference: Cho Y, Cavalli V. HDAC signaling in neuronal development and axon regeneration. Curr Opin Neurobiol 2014; 27: 118-126.
– reference: Seong SS, Hammonds MD, Mervis RF. Four weeks lithium treatment alters neuronal dendrites in the rat hippocampus. Int J Neuropsychopharmacol 2013; 16: 1373-1382.
– reference: Yucel K, McKinnon MC, Taylor VH, Macdonald K, Alda M, Young LT, MacQueen GM. Bilateral hippocampal volume increases after long-term lithium treatment in patients with bipolar disorder: a longitudinal MRI study. Psychopharmacology 2007; 195: 357-367.
– reference: Uylings HBM, Van Eden CG, Hofman MA. Morphometry of size/volume variables and comparisons of their bivariate relations in the nervous system under different conditions. J Neurosci Methods 1986; 18: 19-37.
– reference: West MJ. Stereological studies of the hippocampus: a comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men. Prog Brain Res 1990; 83: 13-36.
– reference: Rasch D, Kubinger KD, Moder K. The two-sample t test: pre-testing its assumptions does not pay off. Stat Papers 2011; 52: 219-231.
– reference: Mouton PR, Long JM, Lei DL et al. Age and gender effects on microglia and astrocyte numbers in brains of mice. Brain Res 2002; 956: 30-35.
– reference: Hallahan B, Newell J, Soares JC et al. Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data. Biol Psychiatry 2011; 69: 326-335.
– reference: Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK. Enhancement of hippocampal neurogenesis by lithium. J Neurochemistry 2000; 75: 1729-1734.
– reference: Gundersen HJG. Stereology of arbitrary particles: a review of unbiased number and size estimators and presentation of some new ones, in memory of William R. Thompson. J Microsc 1986; 143: 3-45.
– reference: Schloesser RJ, Martinowich K, Manji HK. Mood-stabilizing drugs: mechanisms of action. Trends Neurosci 2012; 35: 36-46.
– reference: Monkul ES, Matsuo K, Nicoletti MA et al. Prefrontal gray matter increases in healthy individuals after lithium treatment: a voxel-based morphometry study. Neurosci Lett 2007; 429: 7-11.
– reference: Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 2001; 21: 7153-60.
– reference: Fabricius K, Wörtwein G, Pakkenberg B. The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus. Brain Struct Funct 2008; 212: 403-416.
– reference: Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 2001; 49: 741-752.
– reference: West MJ, Slomianka L, Gundersen HJG. Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using optical fractionator. Anat Rec 1991; 231: 482-497.
– reference: Rajkowska G, Miguel-Hidalgo JJ, Wei J et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45: 1085-1098.
– reference: Rajkowska G, Goldman-Rakic PS. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. Cereb Cortex 1995; 5: 307-322.
– reference: Moore GJ, Cortese BM, Glitz DA et al. A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment-responsive bipolar disorder patients. J Clin Psychiatry 2009; 70: 699-705.
– reference: Altshuler LL, Bartzokis G, Grieder T et al. An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia. Biol Psychiatry 2000; 48: 147-162.
– reference: Cousins DA, Aribisala B. Nicol Ferrier I, Blamire AM. Lithium, gray matter, and magnetic resonance imaging signal. Biol Psychiatry 2013; 73: 652-657.
– reference: Gundersen HJG, Jensen EB. The efficiency of systematic sampling in stereology and its prediction. J Microsc 1987; 147: 229-263.
– reference: Gundersen HJG, Jensen EBV, Kiêu K, Nielsen J. The efficiency of systematic sampling in stereology: reconsidered. J Microsc 1999; 193: 199-211.
– reference: Bauer M, Grof P, Müller-Oerlingausen B. Lithium in neuropsychiatry: the comprehensive guide. London: Informa Healthcare, 2006.
– reference: Yucel K, Taylor VH, McKinnon MC et al. Bilateral hippocampal volume increase in patients with bipolar disorder and short-term lithium treatment. Neuropsychopharmacology 2008; 33: 361-367.
– reference: Kempermann G, Gage FH. Experience-dependent regulation of adult hippocampal neurogenesis: effects of long-term stimulation and stimulus withdrawal. Hippocampus 1999; 9: 321-332.
– reference: Kimoto H, Eto R, Abe M, Kato H, Araki T. Alterations of glial cells in the mouse hippocampus during postnatal development. Cell Mol Neurobiol 2009; 29: 1181-1189.
– reference: Kim JS, Chang MY, Yu IT et al. Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo. J Neurochem 2004; 89: 324-336.
– reference: Slomianka L, West MJ. Estimators of the precision of stereological estimates: an example based on the CA1 pyramidal cell layer of rats. Neuroscience 2005; 136: 757-767.
– reference: McDonald C, Zanelli J, Rabe-Hesketh S et al. Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder. Biol Psychiatry 2004; 56: 411-417.
– reference: Cruz-Orive LM. A general variance predictor for Cavalieri slices. J Microsc 2006; 222: 158-165.
– reference: Vita A, De Peri L, Sacchetti E. Gray matter, white matter, brain, and intracranial volumes in first-episode bipolar disorder: a meta-analysis of magnetic resonance imaging studies. Bipolar Disord 2009; 11: 807-814.
– reference: Kempermann G, Gage FH. Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur J Neurosci 2002; 16: 129-136.
– reference: Ookubo M, Kanai H, Aoki H, Yamada N. Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: brain region specific changes. J Psychiatr Res 2013; 47: 1204-1214.
– reference: Uylings HBM, Van PJ. Measures for quantifying dendritic arborizations. Network: Computation in Neural Systems 2002; 13: 397-414.
– reference: Sassi RB, Nicoletti M, Brambilla P et al. Increased gray matter volume in lithium treated bipolar disorder patients. Neurosci Lett 2002; 329: 243-245.
– reference: Stanton GB, Kohler SJ, Boklweski J, Cameron JL, Greenough WT. Cytogenesis in the adult monkey motor cortex: perivascular NG2 cells are the major adult born cell type. J Comp Neurol 2015; 523: 849-868.
– reference: Thune JJ, Uylings HBM, Pakkenberg B. Total number of neurons in the prefrontal cortex in schizophrenics and controls. J Psychiatr Res 2001; 35: 15-21.
– reference: García-Fiñana M, Cruz-Orive LM, Mackay CE, Pakkenberg B, Roberts N. Comparison of MR imaging against physical sectioning to estimate the volume of human cerebral compartments. NeuroImage 2003; 18: 505-516.
– reference: Lyoo IK, Dager SR, Kim JE et al. Lithium-induced gray matter volume increase as a neural correlate of treatment response in bipolar disorder: a longitudinal brain imaging study. Neuropsychopharmacology 2010; 35: 1743-1750.
– reference: Vernon AC, Natesan S, Crum WR et al. Contrasting effects of haloperidol and lithium on rodent brain structure: a magnetic resonance imaging study with postmortem confirmation. Biol Psychiatry 2012; 71: 855-863.
– reference: Saul MC, Gessay GM, Gammie SC. A new mouse model for mania shares genetic correlates with human bipolar disorder. PLoS ONE 2012; 7 (6): e38128, doi:10.1371/journal.pone.0038128.
– reference: Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature 2002; 417: 39-44.
– reference: Van De Werd HJJM, Uylings HBM. Comparison of (stereotactic) parcellations in mouse prefrontal cortex. Brain Struct Funct 2014; 219: 433-459.
– reference: Chana G, Landau S, Beasley C, Everall IP, Cotter D. Two-dimensional assessment of cytoarchitecture in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size and increased neuronal density. Biol Psychiatry 2003; 53: 1086-1098.
– reference: Glaser EM, Wilson PD. The coefficient of error of optical fractionator population size estimates: a computer simulation comparing three estimators. J Microsc 1998; 192: 163-171.
– reference: Van De Werd HJJM, Rajkowska G, Evers P, Uylings HBM. Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct 2010; 214: 339-353.
– reference: Boekhoorn K, van Dis V, Goedknegt E, Sobel A, Lucassen PJ, Hoogenraad CC. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis. Dev Neurobiol 2014; 74: 1226-1242.
– reference: Miguel-Hidalgo JJ, Baucom C, Dilley G et al. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry 2000; 48: 861-873.
– reference: Slomianka L, West MJ. Comparative quantitative study of the hippocampal region of two closely related species of wild mice: interspecific and intraspecific variations in volumes of hippocampal components. J Comp Neurol 1989; 280: 544-552.
– reference: Malhi GS, Tanious M, Das P, Coulston CM, Berk M. Potential Mechanisms of Action of Lithium in Bipolar Disorder. Current Understanding. CNS Drugs 2013; 27: 135-153.
– reference: Schmitz C. Variation of fractionator estimates and its prediction. Anat Embryol (Berl) 1998; 198: 371-397.
– reference: Miguel-Hidalgo JJ, Rajkowska G. Immunohistochemistry of neural markers for the study of the laminar architecture in celloidin sections from the human cerebral cortex. J Neurosci Methods 1999; 93: 69-79.
– reference: Uylings HBM, Zilles K, Rajkowska G. Optimal staining methods for delineation of cortical areas and neuron counts in human brains. NeuroImage 1999; 9: 439-445.
– reference: Ling EA, Paterson JA, Privat A, Mori S, Leblond CP. Investigation of Glial Cells in Semithin Sections I. Identification of glial cells in the brain of young rats. J Comp Neurol 1973; 149: 43-72.
– volume: 149
  start-page: 43
  year: 1973
  end-page: 72
  article-title: Investigation of Glial Cells in Semithin Sections I. Identification of glial cells in the brain of young rats
  publication-title: J Comp Neurol
– volume: 143
  start-page: 3
  year: 1986
  end-page: 45
  article-title: Stereology of arbitrary particles: a review of unbiased number and size estimators and presentation of some new ones, in memory of William R
  publication-title: Thompson. J Microsc
– volume: 69
  start-page: 326
  year: 2011
  end-page: 335
  article-title: Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega‐analysis of individual adult patient data
  publication-title: Biol Psychiatry
– volume: 9
  start-page: 321
  year: 1999
  end-page: 332
  article-title: Experience‐dependent regulation of adult hippocampal neurogenesis: effects of long‐term stimulation and stimulus withdrawal
  publication-title: Hippocampus
– volume: 5
  start-page: 307
  year: 1995
  end-page: 322
  article-title: Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria
  publication-title: Cereb Cortex
– volume: 29
  start-page: 1181
  year: 2009
  end-page: 1189
  article-title: Alterations of glial cells in the mouse hippocampus during postnatal development
  publication-title: Cell Mol Neurobiol
– volume: 56
  start-page: 411
  year: 2004
  end-page: 417
  article-title: Meta‐analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder
  publication-title: Biol Psychiatry
– volume: 47
  start-page: 1204
  year: 2013
  end-page: 1214
  article-title: Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: brain region specific changes
  publication-title: J Psychiatr Res
– volume: 417
  start-page: 39
  year: 2002
  end-page: 44
  article-title: Astroglia induce neurogenesis from adult neural stem cells
  publication-title: Nature
– volume: 83
  start-page: 13
  year: 1990
  end-page: 36
  article-title: Stereological studies of the hippocampus: a comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men
  publication-title: Prog Brain Res
– volume: 85
  start-page: 872
  year: 2003
  end-page: 81
  article-title: Lithium enhances long‐term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus
  publication-title: J Neurochem
– start-page: 16
  year: 2004
  end-page: 64
– volume: 89
  start-page: 324
  year: 2004
  end-page: 336
  article-title: Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both and
  publication-title: J Neurochem
– volume: 73
  start-page: 652
  year: 2013
  end-page: 657
  article-title: Nicol Ferrier I, Blamire AM. Lithium, gray matter, and magnetic resonance imaging signal
  publication-title: Biol Psychiatry
– volume: 136
  start-page: 715
  year: 2005
  end-page: 728
  article-title: No postnatal doubling of number of neurons in human Broca's area (BA 44 and 45)?
  publication-title: A stereological study. Neuroscience
– volume: 71
  start-page: 855
  year: 2012
  end-page: 863
  article-title: Contrasting effects of haloperidol and lithium on rodent brain structure: a magnetic resonance imaging study with postmortem confirmation
  publication-title: Biol Psychiatry
– volume: 18
  start-page: 19
  year: 1986
  end-page: 37
  article-title: Morphometry of size/volume variables and comparisons of their bivariate relations in the nervous system under different conditions
  publication-title: J Neurosci Methods
– volume: 13
  start-page: 397
  year: 2002
  end-page: 414
  article-title: Measures for quantifying dendritic arborizations
  publication-title: Network: Computation in Neural Systems
– volume: 74
  start-page: 1226
  year: 2014
  end-page: 1242
  article-title: The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis
  publication-title: Dev Neurobiol
– volume: 214
  start-page: 339
  year: 2010
  end-page: 353
  article-title: Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse
  publication-title: Brain Struct Funct
– volume: 70
  start-page: 699
  year: 2009
  end-page: 705
  article-title: A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment‐responsive bipolar disorder patients
  publication-title: J Clin Psychiatry
– volume: 222
  start-page: 158
  year: 2006
  end-page: 165
  article-title: A general variance predictor for Cavalieri slices
  publication-title: J Microsc
– volume: 14
  start-page: 261
  year: 2012
  end-page: 270
  article-title: Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment
  publication-title: Bipolar Disord
– volume: 16
  start-page: 129
  year: 2002
  end-page: 136
  article-title: Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task
  publication-title: Eur J Neurosci
– volume: 329
  start-page: 243
  year: 2002
  end-page: 245
  article-title: Increased gray matter volume in lithium treated bipolar disorder patients
  publication-title: Neurosci Lett
– volume: 33
  start-page: 361
  year: 2008
  end-page: 367
  article-title: Bilateral hippocampal volume increase in patients with bipolar disorder and short‐term lithium treatment
  publication-title: Neuropsychopharmacology
– volume: 356
  start-page: 1241
  year: 2000
  end-page: 1242
  article-title: Lithium‐induced increase in human grey matter
  publication-title: Lancet
– volume: 147
  start-page: 229
  year: 1987
  end-page: 263
  article-title: The efficiency of systematic sampling in stereology and its prediction
  publication-title: J Microsc
– volume: 192
  start-page: 163
  year: 1998
  end-page: 171
  article-title: The coefficient of error of optical fractionator population size estimates: a computer simulation comparing three estimators
  publication-title: J Microsc
– volume: 93
  start-page: 69
  year: 1999
  end-page: 79
  article-title: Immunohistochemistry of neural markers for the study of the laminar architecture in celloidin sections from the human cerebral cortex
  publication-title: J Neurosci Methods
– volume: 429
  start-page: 7
  year: 2007
  end-page: 11
  article-title: Prefrontal gray matter increases in healthy individuals after lithium treatment: a voxel‐based morphometry study
  publication-title: Neurosci Lett
– volume: 48
  start-page: 861
  year: 2000
  end-page: 873
  article-title: Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder
  publication-title: Biol Psychiatry
– volume: 48
  start-page: 147
  year: 2000
  end-page: 162
  article-title: An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia
  publication-title: Biol Psychiatry
– volume: 35
  start-page: 36
  year: 2012
  end-page: 46
  article-title: Mood‐stabilizing drugs: mechanisms of action
  publication-title: Trends Neurosci
– volume: 27
  start-page: 135
  year: 2013
  end-page: 153
  article-title: Potential Mechanisms of Action of Lithium in Bipolar Disorder
  publication-title: Current Understanding. CNS Drugs
– volume: 57
  start-page: 633
  year: 2005
  end-page: 639
  article-title: Hippocampal and ventricular volumes in psychotic and nonpsychotic bipolar patients compared with schizophrenia patients and community control subjects: a pilot study
  publication-title: Biol Psychiatry
– volume: 35
  start-page: 15
  year: 2001
  end-page: 21
  article-title: Total number of neurons in the prefrontal cortex in schizophrenics and controls
  publication-title: J Psychiatr Res
– volume: 7
  start-page: e38128
  issue: 6
  year: 2012
  article-title: A new mouse model for mania shares genetic correlates with human bipolar disorder
  publication-title: PLoS ONE
– volume: 9
  start-page: 439
  year: 1999
  end-page: 445
  article-title: Optimal staining methods for delineation of cortical areas and neuron counts in human brains
  publication-title: NeuroImage
– volume: 231
  start-page: 482
  year: 1991
  end-page: 497
  article-title: Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using optical fractionator
  publication-title: Anat Rec
– volume: 21
  start-page: 7153
  year: 2001
  end-page: 60
  article-title: Astrocytes give rise to new neurons in the adult mammalian hippocampus
  publication-title: J Neurosci
– volume: 53
  start-page: 1086
  year: 2003
  end-page: 1098
  article-title: Two‐dimensional assessment of cytoarchitecture in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size and increased neuronal density
  publication-title: Biol Psychiatry
– volume: 49
  start-page: 741
  year: 2001
  end-page: 752
  article-title: Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder
  publication-title: Biol Psychiatry
– volume: 212
  start-page: 403
  year: 2008
  end-page: 416
  article-title: The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus
  publication-title: Brain Struct Funct
– volume: 136
  start-page: 757
  year: 2005
  end-page: 767
  article-title: Estimators of the precision of stereological estimates: an example based on the CA1 pyramidal cell layer of rats
  publication-title: Neuroscience
– volume: 280
  start-page: 544
  year: 1989
  end-page: 552
  article-title: Comparative quantitative study of the hippocampal region of two closely related species of wild mice: interspecific and intraspecific variations in volumes of hippocampal components
  publication-title: J Comp Neurol
– volume: 27
  start-page: 118
  year: 2014
  end-page: 126
  article-title: HDAC signaling in neuronal development and axon regeneration
  publication-title: Curr Opin Neurobiol
– volume: 195
  start-page: 357
  year: 2007
  end-page: 367
  article-title: Bilateral hippocampal volume increases after long‐term lithium treatment in patients with bipolar disorder: a longitudinal MRI study
  publication-title: Psychopharmacology
– year: 2006
– volume: 219
  start-page: 433
  year: 2014
  end-page: 459
  article-title: Comparison of (stereotactic) parcellations in mouse prefrontal cortex
  publication-title: Brain Struct Funct
– volume: 193
  start-page: 199
  year: 1999
  end-page: 211
  article-title: The efficiency of systematic sampling in stereology: reconsidered
  publication-title: J Microsc
– volume: 956
  start-page: 30
  year: 2002
  end-page: 35
  article-title: Age and gender effects on microglia and astrocyte numbers in brains of mice
  publication-title: Brain Res
– volume: 35
  start-page: 1743
  year: 2010
  end-page: 1750
  article-title: Lithium‐induced gray matter volume increase as a neural correlate of treatment response in bipolar disorder: a longitudinal brain imaging study
  publication-title: Neuropsychopharmacology
– volume: 523
  start-page: 849
  year: 2015
  end-page: 868
  article-title: Cytogenesis in the adult monkey motor cortex: perivascular NG2 cells are the major adult born cell type
  publication-title: J Comp Neurol
– volume: 52
  start-page: 219
  year: 2011
  end-page: 231
  article-title: The two‐sample test: pre‐testing its assumptions does not pay off
  publication-title: Stat Papers
– volume: 75
  start-page: 1729
  year: 2000
  end-page: 1734
  article-title: Enhancement of hippocampal neurogenesis by lithium
  publication-title: J Neurochemistry
– volume: 16
  start-page: 1373
  year: 2013
  end-page: 1382
  article-title: Four weeks lithium treatment alters neuronal dendrites in the rat hippocampus
  publication-title: Int J Neuropsychopharmacol
– volume: 45
  start-page: 1085
  year: 1999
  end-page: 1098
  article-title: Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression
  publication-title: Biol Psychiatry
– volume: 198
  start-page: 371
  year: 1998
  end-page: 397
  article-title: Variation of fractionator estimates and its prediction
  publication-title: Anat Embryol (Berl)
– volume: 18
  start-page: 505
  year: 2003
  end-page: 516
  article-title: Comparison of MR imaging against physical sectioning to estimate the volume of human cerebral compartments
  publication-title: NeuroImage
– volume: 11
  start-page: 807
  year: 2009
  end-page: 814
  article-title: Gray matter, white matter, brain, and intracranial volumes in first‐episode bipolar disorder: a meta‐analysis of magnetic resonance imaging studies
  publication-title: Bipolar Disord
– ident: e_1_2_7_56_1
  doi: 10.1016/j.biopsych.2004.12.009
– ident: e_1_2_7_47_1
  doi: 10.1002/dneu.22200
– ident: e_1_2_7_54_1
  doi: 10.1016/S0006-3223(00)00836-2
– ident: e_1_2_7_59_1
  doi: 10.1111/j.1399-5618.2009.00759.x
– ident: e_1_2_7_13_1
  doi: 10.1016/j.biopsych.2011.12.004
– ident: e_1_2_7_24_1
  doi: 10.1007/s00429-010-0247-z
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1365-2818.1986.tb02764.x
– ident: e_1_2_7_35_1
  doi: 10.1007/s00362-009-0224-x
– ident: e_1_2_7_18_1
  doi: 10.1016/S0006-3223(99)00041-4
– ident: e_1_2_7_31_1
  doi: 10.1016/j.neuroscience.2005.07.048
– ident: e_1_2_7_23_1
  doi: 10.1002/cne.902800405
– ident: e_1_2_7_40_1
  doi: 10.1016/S1053-8119(02)00021-6
– ident: e_1_2_7_2_1
  doi: 10.1016/S0006-3223(01)01080-0
– ident: e_1_2_7_8_1
  doi: 10.1007/s40263-013-0039-0
– ident: e_1_2_7_28_1
  doi: 10.1002/ar.1092310411
– ident: e_1_2_7_51_1
  doi: 10.1038/417039a
– ident: e_1_2_7_41_1
  doi: 10.1002/cne.23693
– ident: e_1_2_7_17_1
  doi: 10.1093/cercor/5.4.307
– ident: e_1_2_7_52_1
  doi: 10.1088/0954-898X_13_3_309
– ident: e_1_2_7_53_1
  doi: 10.1017/S1461145712001423
– ident: e_1_2_7_60_1
  doi: 10.1016/j.biopsych.2012.09.029
– ident: e_1_2_7_36_1
  doi: 10.1016/0165-0270(86)90111-1
– ident: e_1_2_7_49_1
  doi: 10.1016/S0006-8993(02)03475-3
– ident: e_1_2_7_14_1
  doi: 10.1046/j.1471-4159.2000.0751729.x
– ident: e_1_2_7_19_1
  doi: 10.1006/nimg.1999.0417
– ident: e_1_2_7_9_1
  doi: 10.1016/S0304-3940(02)00615-8
– ident: e_1_2_7_38_1
  doi: 10.1046/j.1365-2818.1999.00457.x
– ident: e_1_2_7_61_1
  doi: 10.1038/npp.2010.41
– ident: e_1_2_7_25_1
  doi: 10.1007/s00429-013-0630-7
– ident: e_1_2_7_26_1
  doi: 10.1002/cne.901490104
– ident: e_1_2_7_32_1
  doi: 10.1093/acprof:oso/9780198505280.003.0002
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1365-2818.1987.tb02837.x
– ident: e_1_2_7_5_1
  doi: 10.4088/JCP.07m03745
– ident: e_1_2_7_16_1
  doi: 10.1046/j.1471-4159.2004.02329.x
– ident: e_1_2_7_27_1
  doi: 10.1016/S0022-3956(00)00043-1
– ident: e_1_2_7_50_1
  doi: 10.1523/JNEUROSCI.21-18-07153.2001
– ident: e_1_2_7_11_1
  doi: 10.1038/sj.npp.1301405
– ident: e_1_2_7_45_1
  doi: 10.1046/j.1460-9568.2002.02042.x
– ident: e_1_2_7_4_1
  doi: 10.1016/S0140-6736(00)02793-8
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1365-2818.2006.01535.x
– ident: e_1_2_7_29_1
  doi: 10.1007/s004290050191
– ident: e_1_2_7_22_1
  doi: 10.1016/S0079-6123(08)61238-8
– ident: e_1_2_7_44_1
  doi: 10.1002/(SICI)1098-1063(1999)9:3<321::AID-HIPO11>3.0.CO;2-C
– ident: e_1_2_7_39_1
  doi: 10.1016/j.neuroscience.2005.06.086
– ident: e_1_2_7_20_1
  doi: 10.1016/S0165-0270(99)00114-4
– ident: e_1_2_7_58_1
  doi: 10.1016/j.biopsych.2010.08.029
– ident: e_1_2_7_21_1
  doi: 10.1016/S0006-3223(00)00999-9
– ident: e_1_2_7_55_1
  doi: 10.1016/j.biopsych.2004.06.021
– ident: e_1_2_7_15_1
  doi: 10.1046/j.1471-4159.2003.01725.x
– ident: e_1_2_7_10_1
  doi: 10.1007/s00213-007-0906-9
– ident: e_1_2_7_7_1
  doi: 10.1016/j.tins.2011.11.009
– ident: e_1_2_7_48_1
  doi: 10.1007/s10571-009-9412-4
– ident: e_1_2_7_30_1
  doi: 10.1046/j.1365-2818.1998.00417.x
– ident: e_1_2_7_46_1
  doi: 10.1007/s00429-007-0169-6
– ident: e_1_2_7_62_1
  doi: 10.1371/journal.pone.0038128
– ident: e_1_2_7_12_1
  doi: 10.1016/j.neulet.2007.09.074
– ident: e_1_2_7_42_1
  doi: 10.1016/j.jpsychires.2013.05.028
– ident: e_1_2_7_43_1
  doi: 10.1016/j.conb.2014.03.008
– ident: e_1_2_7_6_1
  doi: 10.3109/9780203007051
– ident: e_1_2_7_3_1
  doi: 10.1016/S0006-3223(03)00114-8
– ident: e_1_2_7_57_1
  doi: 10.1111/j.1399-5618.2012.01013.x
– reference: 20221886 - Brain Struct Funct. 2010 May;214(4):339-53
– reference: 11986659 - Nature. 2002 May 2;417(6884):39-44
– reference: 10331101 - Biol Psychiatry. 1999 May 1;45(9):1085-98
– reference: 19922551 - Bipolar Disord. 2009 Dec;11(8):807-14
– reference: 10401646 - Hippocampus. 1999;9(3):321-32
– reference: 2708565 - J Comp Neurol. 1989 Feb 22;280(4):544-52
– reference: 3540468 - J Neurosci Methods. 1986 Oct;18(1-2):19-37
– reference: 25308320 - J Comp Neurol. 2015 Apr 15;523(6):849-68
– reference: 11287052 - J Psychiatr Res. 2001 Jan-Feb;35(1):15-21
– reference: 24909416 - Dev Neurobiol. 2014 Dec;74(12):1226-42
– reference: 16344149 - Neuroscience. 2005;136(3):757-67
– reference: 17406649 - Neuropsychopharmacology. 2008 Jan;33(2):361-7
– reference: 22548899 - Bipolar Disord. 2012 May;14(3):261-70
– reference: 15364039 - Biol Psychiatry. 2004 Sep 15;56(6):411-7
– reference: 10191172 - Neuroimage. 1999 Apr;9(4):439-45
– reference: 19389332 - J Clin Psychiatry. 2009 May;70(5):699-705
– reference: 21030008 - Biol Psychiatry. 2011 Feb 15;69(4):326-35
– reference: 23158114 - Biol Psychiatry. 2013 Apr 1;73(7):652-7
– reference: 16344146 - Neuroscience. 2005;136(3):715-28
– reference: 12153537 - Eur J Neurosci. 2002 Jul;16(1):129-36
– reference: 7580124 - Cereb Cortex. 1995 Jul-Aug;5(4):307-22
– reference: 9801058 - Anat Embryol (Berl). 1998 Nov;198(5):371-97
– reference: 12165422 - Neurosci Lett. 2002 Aug 30;329(2):243-5
– reference: 11072948 - Lancet. 2000 Oct 7;356(9237):1241-2
– reference: 2203095 - Prog Brain Res. 1990;83:13-36
– reference: 20357761 - Neuropsychopharmacology. 2010 Jul;35(8):1743-50
– reference: 4121705 - J Comp Neurol. 1973 May 1;149(1):43-71
– reference: 23331381 - Int J Neuropsychopharmacol. 2013 Jul;16(6):1373-82
– reference: 23777937 - J Psychiatr Res. 2013 Sep;47(9):1204-14
– reference: 23371914 - CNS Drugs. 2013 Feb;27(2):135-53
– reference: 24072162 - Brain Struct Funct. 2014 Mar;219(2):433-59
– reference: 10903411 - Biol Psychiatry. 2000 Jul 15;48(2):147-62
– reference: 16872414 - J Microsc. 2006 Jun;222(Pt 3):158-65
– reference: 3430576 - J Microsc. 1987 Sep;147(Pt 3):229-63
– reference: 18200448 - Brain Struct Funct. 2008 Feb;212(5):403-16
– reference: 24727244 - Curr Opin Neurobiol. 2014 Aug;27:118-26
– reference: 1793176 - Anat Rec. 1991 Dec;231(4):482-97
– reference: 11549726 - J Neurosci. 2001 Sep 15;21(18):7153-60
– reference: 3761363 - J Microsc. 1986 Jul;143(Pt 1):3-45
– reference: 10348656 - J Microsc. 1999 Mar;193(Pt 3):199-211
– reference: 17705060 - Psychopharmacology (Berl). 2007 Dec;195(3):357-67
– reference: 12814860 - Biol Psychiatry. 2003 Jun 15;53(12):1086-98
– reference: 11063981 - Biol Psychiatry. 2000 Oct 15;48(8):861-73
– reference: 12595203 - Neuroimage. 2003 Feb;18(2):505-16
– reference: 11331082 - Biol Psychiatry. 2001 May 1;49(9):741-52
– reference: 17996370 - Neurosci Lett. 2007 Dec 11;429(1):7-11
– reference: 22244831 - Biol Psychiatry. 2012 May 15;71(10):855-63
– reference: 15056276 - J Neurochem. 2004 Apr;89(2):324-36
– reference: 12222821 - Network. 2002 Aug;13(3):397-414
– reference: 15780850 - Biol Psychiatry. 2005 Mar 15;57(6):633-9
– reference: 22675514 - PLoS One. 2012;7(6):e38128
– reference: 22217451 - Trends Neurosci. 2012 Jan;35(1):36-46
– reference: 12716419 - J Neurochem. 2003 May;85(4):872-81
– reference: 10987856 - J Neurochem. 2000 Oct;75(4):1729-34
– reference: 10598866 - J Neurosci Methods. 1999 Oct 30;93(1):69-79
– reference: 19472050 - Cell Mol Neurobiol. 2009 Dec;29(8):1181-9
– reference: 12426043 - Brain Res. 2002 Nov 22;956(1):30-5
– reference: 9853373 - J Microsc. 1998 Nov;192(Pt 2):163-71
SSID ssj0016205
Score 2.3077655
Snippet Objectives Neuroimaging studies have revealed lithium‐related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem...
Neuroimaging studies have revealed lithium-related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human...
Objectives Neuroimaging studies have revealed lithium-related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 41
SubjectTerms adult neurogenesis
Animals
astrocytes
Astrocytes - drug effects
bipolar disorder
Bipolar Disorder - pathology
Cell Count
Dentate Gyrus - cytology
Dentate Gyrus - drug effects
Dentate Gyrus - pathology
glia
Hippocampus - cytology
Hippocampus - drug effects
Hippocampus - pathology
lithium
Lithium Compounds - pharmacology
Male
Mice
Mice, Inbred C57BL
Neuroglia - drug effects
neurons
Neurons - drug effects
Organ Size - drug effects
Prefrontal Cortex - cytology
Prefrontal Cortex - drug effects
Prefrontal Cortex - pathology
stereology
Title Differential effect of lithium on cell number in the hippocampus and prefrontal cortex in adult mice: a stereological study
URI https://api.istex.fr/ark:/67375/WNG-DH14FDKD-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbdi.12364
https://www.ncbi.nlm.nih.gov/pubmed/26842627
https://www.proquest.com/docview/1765921365
https://www.proquest.com/docview/1776655887
https://pubmed.ncbi.nlm.nih.gov/PMC4836867
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRUJcoDwbCmhBCPXiKLbX-ygnwIQAag-Iih6QrPV6V7HaOFYTSxX988ysH2qgIMQtkseOdjwz-032yzeEvOQqViY2KBuqoEExLAoA5evAiMLyRBXM-nE-h0d8dsw-nSQnW-R1_1-YVh9i-MENM8PXa0xwna-uJHlelGOUDkEtUORqISD6MkhHhTzy9EUAODJIOBOdqhCyeIY7N_aiG-jWi-uA5u98yas41m9E0zvke7-Eln9yOm7W-dj8-EXd8T_XuENudwCVvmkj6i7ZstU9cvOwO4K_Ty7TbqQKlIYz2tJB6NJRgPPzslnQZUXxMIC2o0ZoWVGAmHRe1jXsmou6WVFdFbQGZ6B0AjzCIN33Ag29FghdQOk6oJqigoPtSzP1MrgPyPH0_dd3s6Cb4BAYJjkLnC20cErLuIhtISM70UI5qBHQ1kgHnZqFDXQSu0SGLoLGK7SREdxxlgDwUDaKH5LtalnZXUIVdmYArvNQTljulMohzKyBFnuiVcH1iOz37zIznbw5Ttk4y_o2B5yZeWeOyIvBtG41Pa4zeuUDYrDQ56dIghNJ9u3oQ5bOQjZNP6eZGJHnfcRkkJroYl3ZZbPKQoFn1hibf7MRnCcJlPoRedRG2fCNKMQT8QiuiI34GwxQGnzzSlXOvUQ4kzGXHO7c9-H152Vmb9OP_sPjfzfdI7cANnbc9Sdke33e2KcAzdb5M5-DPwHfqTSo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJgEv45uVT4MQ2kuqJnHsGPEChNKxtQ9oE3tBluM4arQ1jbZGmuCf58750AoDId4q5dLK17vz7-JffkfIKy5DaUKDsqESGhTDAg9QvvaMyCyPZMasG-cznfHJEft8HB1vkLfduzCNPkT_wA0zw9VrTHB8IH0py9OsGKJ2CLtGtnCit2uovvTiUT4PHIERIE7sRZyJVlcIeTz9rWu70RY69uIqqPk7Y_IyknVb0fgW-dYtomGgnAzrVTo033_Rd_zfVd4m2y1Gpe-aoLpDNmx5l1yftqfw98iPpJ2qAtXhlDaMELrMKSD6eVEv6LKkeB5Am2kjtCgpoEw6L6oKNs5FVZ9TXWa0Am-gegJ8hUHG7wUaOjkQuoDq9YZqiiIOtqvO1Cnh3idH44-HHyZeO8TBMyzmzMttpkUudRxmoc3iwI60kDmUCehs4hyaNQt76CjMo9jPA-i9fBsYwXPOIsAe0gbhA7JZLku7Q6jE5gzwderHI5bmUqYQadZAlz3SMuN6QHa7P1OZVuEcB22cqq7TAWcq58wBedmbVo2sx1VGr11E9Bb67AR5cCJSX2efVDLx2TjZT5QYkBddyCjITnSxLu2yPle-wGNrpBL-zUZwHkVQ7QfkYRNm_S-iFk_AA7gi1gKwN0B18PUrZTF3KuEsDnnM4c5dF19_XqZ6n-y5D4_-3fQ5uTE5nB6og73Z_mNyE1BkS2V_QjZXZ7V9CkhtlT5zCfkTAl84ww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZKK1W8cB_LaRBCfckqh-MDnoCwbCldIURFHypZjmNro3azUbuRKvjzjJ1DXSgI8bZSJll5MjP-Zv3tNwi9oCIROtFONlRAg6JJHADKV4FmhaGpKIjx43z2Z3R6QD4epocb6HX_X5hWH2L4wc1lhq_XLsHrwl5I8rwox046hFxBW4SG3IV09mXQjopo7PmLgHB4kFLCOlkhR-MZbl3bjLacX88vQ5q_EyYvAlm_E02uo6N-DS0B5XjcrPKx_v6LvON_LvIGutYhVPymDambaMNUt9D2fncGfxv9yLqZKlAbTnDLB8FLiwHPz8tmgZcVdqcBuJ01gssKA8bE87KuYdtc1M0ZVlWBa3CG006AR2jH9z13hl4MBC-gdr3CCjsJB9PXZux1cO-gg8n7r--mQTfCIdCEUxJYUyhmheJJkZiCxyZUTFgoEtDXcAutmoEdNExsyiMbQ-cVmVgzailJAXkIEyd30Wa1rMx9hIVrzQBd5xEPSW6FyCHOjIYeO1SioGqEdvp3KXWnb-7GbJzIvs8BZ0rvzBF6PpjWrajHZUYvfUAMFur02LHgWCq_zT7IbBqRSbaXSTZCz_qIkZCbzsWqMsvmTEbMHVo7IuHfbBilaQq1foTutVE2fKNT4olpDFfYWvwNBk4bfP1KVc69RjjhCeUU7tzx4fXnZcq32a7_8ODfTZ-i7c_ZRH7ane09RFcBQnY89kdoc3XamMcA01b5E5-OPwFR-Dd7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+effect+of+lithium+on+cell+number+in+the+hippocampus+and+prefrontal+cortex+in+adult+mice%3A+a+stereological+study&rft.jtitle=Bipolar+disorders&rft.au=Rajkowska%2C+Grazyna&rft.au=Clarke%2C+Gerard&rft.au=Mahajan%2C+Gouri&rft.au=Licht%2C+Camilla+MM&rft.date=2016-02-01&rft.issn=1398-5647&rft.eissn=1399-5618&rft.volume=18&rft.issue=1&rft.spage=41&rft.epage=51&rft_id=info:doi/10.1111%2Fbdi.12364&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1398-5647&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1398-5647&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1398-5647&client=summon