Quantitative dose-response analysis of ethyl methanesulfonate genotoxicity in adult gpt-delta transgenic mice
The assumption that mutagens have linear dose–responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA‐reactive mutagen and carcinogen, exhibited sublinear or thresholded dose‐responses for LacZ mutation in transgenic Muta™Mouse and for micronucleus (MN) frequency i...
Saved in:
Published in | Environmental and molecular mutagenesis Vol. 55; no. 5; pp. 385 - 399 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.06.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The assumption that mutagens have linear dose–responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA‐reactive mutagen and carcinogen, exhibited sublinear or thresholded dose‐responses for LacZ mutation in transgenic Muta™Mouse and for micronucleus (MN) frequency in CD1 mice (Gocke E and Müller L [2009]: Mutat Res 678:101–107). In order to explore variables in establishing genotoxicity dose–responses, we characterized the genotoxicity of EMS using gene mutation assays anticipated to have lower spontaneous mutant frequencies (MFs) than Muta™Mouse. Male gpt‐delta transgenic mice were treated daily for 28 days with 5 to 100 mg/kg EMS, and measurements were made on: (i) gpt MFs in liver, lung, bone marrow, kidney, small intestine, and spleen; and (ii) Pig‐a MFs in peripheral blood reticulocytes (RETs) and total red blood cells. MN induction also was measured in peripheral blood RETs. These data were used to calculate Points of Departure (PoDs) for the dose responses, i.e., no‐observed‐genotoxic‐effect‐levels (NOGELs), lower confidence limits of threshold effect levels (Td‐LCIs), and lower confidence limits of 10% benchmark response rates (BMDL10s). Similar PoDs were calculated from the published EMS dose–responses for LacZ mutation and CD1 MN induction. Vehicle control gpt and Pig‐a MFs were 13–40‐fold lower than published vehicle control LacZ MFs. In general, the EMS genotoxicity dose–responses in gpt‐delta mice had lower PoDs than those calculated from the Muta™Mouse and CD1 mouse data. Our results indicate that the magnitude and possibly the shape of mutagenicity dose responses differ between in vivo models, with lower PoDs generally detected by gene mutation assays with lower backgrounds. Environ. Mol. Mutagen. 55:385–399, 2014. © 2014 Wiley Periodicals, Inc. |
---|---|
AbstractList | The assumption that mutagens have linear dose–responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA‐reactive mutagen and carcinogen, exhibited sublinear or thresholded dose‐responses for
LacZ
mutation in transgenic Muta™Mouse and for micronucleus (MN) frequency in CD1 mice (Gocke E and Müller L [2009]: Mutat Res 678:101–107). In order to explore variables in establishing genotoxicity dose–responses, we characterized the genotoxicity of EMS using gene mutation assays anticipated to have lower spontaneous mutant frequencies (MFs) than Muta™Mouse. Male
gpt
‐delta transgenic mice were treated daily for 28 days with 5 to 100 mg/kg EMS, and measurements were made on: (i)
gpt
MFs in liver, lung, bone marrow, kidney, small intestine, and spleen; and (ii)
Pig‐a
MFs in peripheral blood reticulocytes (RETs) and total red blood cells. MN induction also was measured in peripheral blood RETs. These data were used to calculate Points of Departure (PoDs) for the dose responses, i.e., no‐observed‐genotoxic‐effect‐levels (NOGELs), lower confidence limits of threshold effect levels (Td‐LCIs), and lower confidence limits of 10% benchmark response rates (BMDL
10
s). Similar PoDs were calculated from the published EMS dose–responses for
LacZ
mutation and CD1 MN induction. Vehicle control
gpt
and
Pig‐a
MFs were 13–40‐fold lower than published vehicle control
LacZ
MFs. In general, the EMS genotoxicity dose–responses in
gpt
‐delta mice had lower PoDs than those calculated from the Muta™Mouse and CD1 mouse data. Our results indicate that the magnitude and possibly the shape of mutagenicity dose responses differ between in vivo models, with lower PoDs generally detected by gene mutation assays with lower backgrounds. Environ. Mol. Mutagen. 55:385–399, 2014. © 2014 Wiley Periodicals, Inc. The assumption that mutagens have linear dose-responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA-reactive mutagen and carcinogen, exhibited sublinear or thresholded dose-responses for LacZ mutation in transgenic Muta™Mouse and for micronucleus (MN) frequency in CD1 mice (Gocke E and Müller L [2009]: Mutat Res 678:101-107). In order to explore variables in establishing genotoxicity dose-responses, we characterized the genotoxicity of EMS using gene mutation assays anticipated to have lower spontaneous mutant frequencies (MFs) than Muta™Mouse. Male gpt-delta transgenic mice were treated daily for 28 days with 5 to 100 mg/kg EMS, and measurements were made on: (i) gpt MFs in liver, lung, bone marrow, kidney, small intestine, and spleen; and (ii) Pig-a MFs in peripheral blood reticulocytes (RETs) and total red blood cells. MN induction also was measured in peripheral blood RETs. These data were used to calculate Points of Departure (PoDs) for the dose responses, i.e., no-observed-genotoxic-effect-levels (NOGELs), lower confidence limits of threshold effect levels (Td-LCIs), and lower confidence limits of 10% benchmark response rates (BMDL10 s). Similar PoDs were calculated from the published EMS dose-responses for LacZ mutation and CD1 MN induction. Vehicle control gpt and Pig-a MFs were 13-40-fold lower than published vehicle control LacZ MFs. In general, the EMS genotoxicity dose-responses in gpt-delta mice had lower PoDs than those calculated from the Muta™Mouse and CD1 mouse data. Our results indicate that the magnitude and possibly the shape of mutagenicity dose responses differ between in vivo models, with lower PoDs generally detected by gene mutation assays with lower backgrounds. The assumption that mutagens have linear dose–responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA‐reactive mutagen and carcinogen, exhibited sublinear or thresholded dose‐responses for LacZ mutation in transgenic Muta™Mouse and for micronucleus (MN) frequency in CD1 mice (Gocke E and Müller L [2009]: Mutat Res 678:101–107). In order to explore variables in establishing genotoxicity dose–responses, we characterized the genotoxicity of EMS using gene mutation assays anticipated to have lower spontaneous mutant frequencies (MFs) than Muta™Mouse. Male gpt‐delta transgenic mice were treated daily for 28 days with 5 to 100 mg/kg EMS, and measurements were made on: (i) gpt MFs in liver, lung, bone marrow, kidney, small intestine, and spleen; and (ii) Pig‐a MFs in peripheral blood reticulocytes (RETs) and total red blood cells. MN induction also was measured in peripheral blood RETs. These data were used to calculate Points of Departure (PoDs) for the dose responses, i.e., no‐observed‐genotoxic‐effect‐levels (NOGELs), lower confidence limits of threshold effect levels (Td‐LCIs), and lower confidence limits of 10% benchmark response rates (BMDL10s). Similar PoDs were calculated from the published EMS dose–responses for LacZ mutation and CD1 MN induction. Vehicle control gpt and Pig‐a MFs were 13–40‐fold lower than published vehicle control LacZ MFs. In general, the EMS genotoxicity dose–responses in gpt‐delta mice had lower PoDs than those calculated from the Muta™Mouse and CD1 mouse data. Our results indicate that the magnitude and possibly the shape of mutagenicity dose responses differ between in vivo models, with lower PoDs generally detected by gene mutation assays with lower backgrounds. Environ. Mol. Mutagen. 55:385–399, 2014. © 2014 Wiley Periodicals, Inc. The assumption that mutagens have linear dose-responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA-reactive mutagen and carcinogen, exhibited sublinear or thresholded dose-responses for LacZ mutation in transgenic Muta(TM)Mouse and for micronucleus (MN) frequency in CD1 mice (Gocke E and Muller L [2009]: Mutat Res 678:101-107). In order to explore variables in establishing genotoxicity dose-responses, we characterized the genotoxicity of EMS using gene mutation assays anticipated to have lower spontaneous mutant frequencies (MFs) than Muta(TM)Mouse. Male gpt-delta transgenic mice were treated daily for 28 days with 5 to 100 mg/kg EMS, and measurements were made on: (i) gpt MFs in liver, lung, bone marrow, kidney, small intestine, and spleen; and (ii) Pig-a MFs in peripheral blood reticulocytes (RETs) and total red blood cells. MN induction also was measured in peripheral blood RETs. These data were used to calculate Points of Departure (PoDs) for the dose responses, i.e., no-observed-genotoxic-effect-levels (NOGELs), lower confidence limits of threshold effect levels (Td-LCIs), and lower confidence limits of 10% benchmark response rates (BMDL10s). Similar PoDs were calculated from the published EMS dose-responses for LacZ mutation and CD1 MN induction. Vehicle control gpt and Pig-a MFs were 13-40-fold lower than published vehicle control LacZ MFs. In general, the EMS genotoxicity dose-responses in gpt-delta mice had lower PoDs than those calculated from the Muta(TM)Mouse and CD1 mouse data. Our results indicate that the magnitude and possibly the shape of mutagenicity dose responses differ between in vivo models, with lower PoDs generally detected by gene mutation assays with lower backgrounds. Environ. Mol. Mutagen. 55:385-399, 2014. © 2014 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] The assumption that mutagens have linear dose-responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA-reactive mutagen and carcinogen, exhibited sublinear or thresholded dose-responses for LacZ mutation in transgenic Muta(TM)Mouse and for micronucleus (MN) frequency in CD1 mice (Gocke E and Mueller L [2009]: Mutat Res 678:101-107). In order to explore variables in establishing genotoxicity dose-responses, we characterized the genotoxicity of EMS using gene mutation assays anticipated to have lower spontaneous mutant frequencies (MFs) than Muta(TM)Mouse. Male gpt-delta transgenic mice were treated daily for 28 days with 5 to 100 mg/kg EMS, and measurements were made on: (i) gpt MFs in liver, lung, bone marrow, kidney, small intestine, and spleen; and (ii) Pig-a MFs in peripheral blood reticulocytes (RETs) and total red blood cells. MN induction also was measured in peripheral blood RETs. These data were used to calculate Points of Departure (PoDs) for the dose responses, i.e., no-observed-genotoxic-effect-levels (NOGELs), lower confidence limits of threshold effect levels (Td-LCIs), and lower confidence limits of 10% benchmark response rates (BMDL sub(10)s). Similar PoDs were calculated from the published EMS dose-responses for LacZ mutation and CD1 MN induction. Vehicle control gpt and Pig-a MFs were 13-40-fold lower than published vehicle control LacZ MFs. In general, the EMS genotoxicity dose-responses in gpt-delta mice had lower PoDs than those calculated from the Muta(TM)Mouse and CD1 mouse data. Our results indicate that the magnitude and possibly the shape of mutagenicity dose responses differ between in vivo models, with lower PoDs generally detected by gene mutation assays with lower backgrounds. Environ. Mol. Mutagen. 55:385-399, 2014. copyright 2014 Wiley Periodicals, Inc. The assumption that mutagens have linear dose-responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA-reactive mutagen and carcinogen, exhibited sublinear or thresholded dose-responses for LacZ mutation in transgenic Muta™Mouse and for micronucleus (MN) frequency in CD1 mice (Gocke E and Müller L [2009]: Mutat Res 678:101-107). In order to explore variables in establishing genotoxicity dose-responses, we characterized the genotoxicity of EMS using gene mutation assays anticipated to have lower spontaneous mutant frequencies (MFs) than Muta™Mouse. Male gpt-delta transgenic mice were treated daily for 28 days with 5 to 100 mg/kg EMS, and measurements were made on: (i) gpt MFs in liver, lung, bone marrow, kidney, small intestine, and spleen; and (ii) Pig-a MFs in peripheral blood reticulocytes (RETs) and total red blood cells. MN induction also was measured in peripheral blood RETs. These data were used to calculate Points of Departure (PoDs) for the dose responses, i.e., no-observed-genotoxic-effect-levels (NOGELs), lower confidence limits of threshold effect levels (Td-LCIs), and lower confidence limits of 10% benchmark response rates (BMDL10 s). Similar PoDs were calculated from the published EMS dose-responses for LacZ mutation and CD1 MN induction. Vehicle control gpt and Pig-a MFs were 13-40-fold lower than published vehicle control LacZ MFs. In general, the EMS genotoxicity dose-responses in gpt-delta mice had lower PoDs than those calculated from the Muta™Mouse and CD1 mouse data. Our results indicate that the magnitude and possibly the shape of mutagenicity dose responses differ between in vivo models, with lower PoDs generally detected by gene mutation assays with lower backgrounds.The assumption that mutagens have linear dose-responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA-reactive mutagen and carcinogen, exhibited sublinear or thresholded dose-responses for LacZ mutation in transgenic Muta™Mouse and for micronucleus (MN) frequency in CD1 mice (Gocke E and Müller L [2009]: Mutat Res 678:101-107). In order to explore variables in establishing genotoxicity dose-responses, we characterized the genotoxicity of EMS using gene mutation assays anticipated to have lower spontaneous mutant frequencies (MFs) than Muta™Mouse. Male gpt-delta transgenic mice were treated daily for 28 days with 5 to 100 mg/kg EMS, and measurements were made on: (i) gpt MFs in liver, lung, bone marrow, kidney, small intestine, and spleen; and (ii) Pig-a MFs in peripheral blood reticulocytes (RETs) and total red blood cells. MN induction also was measured in peripheral blood RETs. These data were used to calculate Points of Departure (PoDs) for the dose responses, i.e., no-observed-genotoxic-effect-levels (NOGELs), lower confidence limits of threshold effect levels (Td-LCIs), and lower confidence limits of 10% benchmark response rates (BMDL10 s). Similar PoDs were calculated from the published EMS dose-responses for LacZ mutation and CD1 MN induction. Vehicle control gpt and Pig-a MFs were 13-40-fold lower than published vehicle control LacZ MFs. In general, the EMS genotoxicity dose-responses in gpt-delta mice had lower PoDs than those calculated from the Muta™Mouse and CD1 mouse data. Our results indicate that the magnitude and possibly the shape of mutagenicity dose responses differ between in vivo models, with lower PoDs generally detected by gene mutation assays with lower backgrounds. |
Author | Allen, Bruce C. Bigger, C. Anita H. Pearce, Mason G. Soeteman-Hernández, Lya G. Mittelstaedt, Roberta A. Cao, Xuefei Johnson, George E. Heflich, Robert H. |
Author_xml | – sequence: 1 givenname: Xuefei surname: Cao fullname: Cao, Xuefei organization: U.S. Food and Drug Administration, National Center for Toxicological Research, Arkansas, Jefferson – sequence: 2 givenname: Roberta A. surname: Mittelstaedt fullname: Mittelstaedt, Roberta A. organization: U.S. Food and Drug Administration, National Center for Toxicological Research, Arkansas, Jefferson – sequence: 3 givenname: Mason G. surname: Pearce fullname: Pearce, Mason G. organization: U.S. Food and Drug Administration, National Center for Toxicological Research, Arkansas, Jefferson – sequence: 4 givenname: Bruce C. surname: Allen fullname: Allen, Bruce C. organization: Bruce Allen Consulting, North Carolina, Chapel Hill – sequence: 5 givenname: Lya G. surname: Soeteman-Hernández fullname: Soeteman-Hernández, Lya G. organization: Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands – sequence: 6 givenname: George E. surname: Johnson fullname: Johnson, George E. organization: Institute of Life Science, College of Medicine, Swansea University, Wales, United Kingdom – sequence: 7 givenname: C. Anita H. surname: Bigger fullname: Bigger, C. Anita H. organization: Bigger Consulting, Florida, St. Augustine – sequence: 8 givenname: Robert H. surname: Heflich fullname: Heflich, Robert H. email: robert.heflich@fda.hhs.gov organization: U.S. Food and Drug Administration, National Center for Toxicological Research, Arkansas, Jefferson |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24535894$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0VtrFDEUAOAgFbutgr9AAr74Mmvul0dZ6lqoiqWibyE7k6mpmWQ7yWjn35tua4VFQQgcAt-5cM4ROIgpOgCeY7TECJHXblgSrDh7BBYYadUQotABWCClaSOEJofgKOcrhDBmmjwBh4RxypVmCzB8mmwsvtjifzjYpeya0eVtitlBG22Ys88w9dCVb3OAQw02ujyFPkVbHLx0MZV041tfZugjtN0UCrzclqZzoVhYRhtzRb6Fg2_dU_C4tyG7Z_fxGHx-e3KxetecfVyfrt6cNS1TgjVKc7ShvJcdwrIjxLbS4o2yRIqNIFSKVmLeYavrp1e9ZB3jvVAbJhCltqP0GLy6q7sd0_XkcjGDz60LoQ6fpmww51gQphX-D0pJHYcLVunLPXqVprEuaafq40TLql7cq2kzuM5sRz_YcTa_d_6nYzumnEfXPxCMzO05jRvM7pyVLvdouztVinWxPvwtoblL-OmDm_9Z2Jy83_M-F3fz4O343QhJJTdfPqzN-kJ_PWd4Zc7pLwDCvds |
CitedBy_id | crossref_primary_10_1016_j_mrgentox_2018_02_001 crossref_primary_10_1002_em_22077 crossref_primary_10_1002_em_21981 crossref_primary_10_1002_em_22058 crossref_primary_10_1093_toxsci_kfw028 crossref_primary_10_1002_em_22137 crossref_primary_10_1016_j_mrgentox_2017_02_003 crossref_primary_10_1007_s00204_023_03553_w crossref_primary_10_1093_mutage_gev035 crossref_primary_10_1002_em_21932 crossref_primary_10_1111_bcpt_12806 crossref_primary_10_1039_C4TX00118D crossref_primary_10_1093_mutage_gev039 crossref_primary_10_1016_j_mrgentox_2014_10_008 crossref_primary_10_3389_fphar_2024_1484111 crossref_primary_10_1186_s41021_016_0072_6 crossref_primary_10_3109_10408444_2016_1171294 crossref_primary_10_1007_s11356_022_21605_z crossref_primary_10_1016_j_mrrev_2014_11_001 crossref_primary_10_1016_j_mrrev_2015_11_001 crossref_primary_10_1111_risa_13191 crossref_primary_10_5487_TR_2018_34_4_303 crossref_primary_10_1002_em_22151 |
Cites_doi | 10.1073/pnas.86.20.7971 10.1016/j.toxlet.2009.03.021 10.1084/jem.177.2.517 10.3123/jemsge.31.105 10.1002/em.20667 10.1093/toxsci/66.2.298 10.1002/(SICI)1098-2280(1999)34:1<1::AID-EM1>3.0.CO;2-P 10.1093/toxsci/kfq341 10.1002/(SICI)1098-2280(1996)28:4<465::AID-EM24>3.0.CO;2-C 10.1016/j.mrgentox.2003.07.004 10.1080/15287391003689234 10.1002/em.20654 10.1073/pnas.86.22.8620 10.1086/100259 10.1016/j.toxlet.2004.04.004 10.1007/978-1-4899-0301-3_29 10.1073/pnas.96.9.5209 10.1016/j.mrrev.2005.04.002 10.1002/em.20414 10.1016/j.mrgentox.2011.06.005 10.1016/j.toxlet.2009.03.016 10.1016/j.mrgentox.2008.08.011 10.1002/em.20627 10.18637/jss.v034.i02 10.1016/0165-1110(84)90007-1 10.1002/em.20413 10.1093/mutage/14.1.113 10.1016/j.toxlet.2009.03.027 10.1016/S0027-5107(98)00147-X 10.1016/j.mrgentox.2011.03.016 10.1016/S0027-5107(00)00077-4 10.1002/em.20682 10.1093/toxsci/kfs341 10.1002/em.20379 10.1016/0165-1218(89)90089-X 10.1016/S0027-5107(99)00208-0 10.1016/0165-1161(94)90053-1 10.1007/978-1-62703-529-3_5 10.1016/0735-0651(90)90003-X 10.1016/j.mrgentox.2013.03.002 10.1016/j.mrgentox.2009.05.010 10.1016/j.mrgentox.2009.04.005 10.1016/j.toxlet.2009.04.031 10.1016/0027-5107(70)90049-7 10.1016/j.toxlet.2009.03.015 10.1016/j.mrfmmm.2003.11.009 10.1002/(SICI)1098-2280(2000)35:3<253::AID-EM11>3.0.CO;2-J 10.1073/pnas.90.22.10681 10.1016/S1383-5718(99)00161-8 10.1016/j.toxlet.2009.03.008 10.1002/em.21727 10.1016/j.mrgentox.2009.05.009 |
ContentType | Journal Article |
Copyright | Copyright © 2014 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2014 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7ST 7TM 7U7 8FD C1K FR3 P64 RC3 SOI 7X8 |
DOI | 10.1002/em.21854 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Environment Abstracts Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts Engineering Research Database Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Genetics Abstracts Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-2280 |
EndPage | 399 |
ExternalDocumentID | 3322907541 24535894 10_1002_em_21854 EM21854 ark_67375_WNG_GT9XR41C_R |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Commissioner's Fellowship Program of the U.S. FDA |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHHS AAIKC AAMNW AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EBD EBS EDH EJD EMOBN ESTFP F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 TEORI TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIJ WIK WJL WNSPC WOHZO WQJ WRC WUP WWO WXI WXSBR WYISQ XG1 XV2 ZGI ZXP ZZTAW ~IA ~KM ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7ST 7TM 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c4864-8950b35f7d017d22ac7a1b8a276b62376c715d1a9623f8f74d45f68b46033ad33 |
IEDL.DBID | DR2 |
ISSN | 0893-6692 1098-2280 |
IngestDate | Thu Jul 10 18:11:59 EDT 2025 Fri Jul 11 02:52:02 EDT 2025 Fri Jul 25 10:34:41 EDT 2025 Thu Apr 03 06:58:15 EDT 2025 Thu Apr 24 22:56:24 EDT 2025 Tue Jul 01 00:43:31 EDT 2025 Wed Jan 22 16:36:30 EST 2025 Wed Oct 30 09:51:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | micronucleus gene mutation dose-response benchmark dose Pig-a gpt threshold bilinear model NOGEL |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2014 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4864-8950b35f7d017d22ac7a1b8a276b62376c715d1a9623f8f74d45f68b46033ad33 |
Notes | ArticleID:EM21854 ark:/67375/WNG-GT9XR41C-R Commissioner's Fellowship Program of the U.S. FDA istex:7F2F6852319A93F253F6B4167E90A82520A50D1F ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24535894 |
PQID | 1531535297 |
PQPubID | 105685 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1551624981 proquest_miscellaneous_1532950564 proquest_journals_1531535297 pubmed_primary_24535894 crossref_primary_10_1002_em_21854 crossref_citationtrail_10_1002_em_21854 wiley_primary_10_1002_em_21854_EM21854 istex_primary_ark_67375_WNG_GT9XR41C_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2014 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: June 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Reston |
PublicationTitle | Environmental and molecular mutagenesis |
PublicationTitleAlternate | Environ. Mol. Mutagen |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Sega GA. 1984. A review of the genetic effects of EMS. Mutat Res 134:113-142. Johnson GE, Doak SH, Griffiths SM, Quick EL, Skibinski DOF, Azir ZM, Jenkins GJ. 2009. Non-linear dose-response of DNA-reactive genotoxins: Recommendations for data analysis. Mutat Res 678:95-100. Slob W. 2002. Dose-response modeling of continuous endpoints. Toxicol Sci 66:298-312. Manjanatha MG, Shelton SD, Bishop M, Shaddock JG, Dobrovolsky VN, Heflich RH, Webb PJ, Blankenship LR, Beland FA, Greenlees KJ, et al. 2004. Analysis of mutations and bone marrow micronuclei in Big Blue® rats fed leucomalachite green. Mutat Res 547:5-18. Nohmi T, Katoh M, Suzuki H, Matsui M, Tamada M, Watanabe M, Suzuki M, Horiya N, Ueda O, Shibuya T, et al. 1996. A new transgenic mouse mutagenesis test system using Spi- and 6-thioguanine selections. Environ Mol Mutagen 28:465-470. Masumura K, Matsui M, Katoh M, Horiya N, Ueda O, Tanabe H, Yamada M, Suzuki H, Sofuni T, Nohmi T. 1999. Spectra of gpt mutations in ethylnitrosourea-treated and untreated transgenic mice. Environ Mol Mutagen 34:1-8. European Food Safety Authority (EFSA). 2009. Guidance of the scientific committee on a request from EFSA on the use of the benchmark dose approach in risk assessment. EFSA J 1150:1-72. Bolt HM, Foth H, Hengstler JG, Degen GH. 2004. Carcinogenicity categorization of chemicals-new aspects to be considered in a European perspective. Toxicol Lett 151:29-41. Gollapudi BB, Johnson GE, Hernandez LG, Pottenger LH, Dearfield KL, Jeffery AM, Julien E, Kim JH, Lovell DP, MacGregor JT, et al. 2013. Quantitative approaches for assessing dose-response relationships in gentic toxicology studies. Environ Mol Mugagen 54:8-18. Müller L, Gocke E. 2009. Considerations regarding a permitted daily exposure calculation for ethyl methanesulfonate. Toxicol Lett 190:330-332. Trentin GA, Moody J, Heddle JA. 1998. Effect of maternal folate levels on somatic mutation frequency in the developing colon. Mutat Res 405:81-87. Gocke E, Burgin H, Müller L, Phister T. 2009b. Literature review on the genotoxicity, reproductive toxicity, and carcinogenicity of ethyl methanesulfonate. Toxicol Lett 190:254-265. Masumura K. 2009. Spontaneous and induced gpt and Spi- mutant frequencies in gpt delta transgenic rodents. Gene Environ 31:105-118. Yang Y, Allen BC, Tan Y-M, Liao KH, Clewell III HJ. 2010. Bayesian analysis of a rat formaldehyde DNA-protein cross-link model. J Toxicol Environ Health A 73:787-806. Gocke E, Wall M. 2009. In vivo genotoxicity of EMS: Statistical assessment of the dose response curves. Toxicol Lett 190:298-302. Cosentino L, Heddle JA. 1999. A comparison of the effects of diverse mutagens at the LacZ transgene and Dlb-1 locus in vivo. Mutagenesis 14:113-119. Kohler SW, Provost GS, Kretz PL, Fieck A, Sorge JA, Short JM. 1990. The use of transgenic mice for short-term, in vivo mutagenicity testing. Genet Anal Tech Appl (GATA) 7:212-218. Lutz WK, Lutz RW. 2009. Statistical model to estimate threshold dose and its confidence limits for the analysis of sublinear dose-response relationships, exemplified for mutagenicity data. Mutat Res 678:118-122. Tao KS, Urlando C, Heddle JA. 1993. Comparison of somatic mutation in a transgenic versus host locus. Proc Natl Acad Sci USA 90:10681-10685. Miura D, Shaddock JG, Mittelstaedt RA, Dobrovolsky VN, Kimoto T, Kasahara Y, Heflich RH. 2011. Analysis of mutations in the Pig-a gene of spleen T-cells from N-ethyl-N-nitrosourea-treated Fisher 344 rats. Environ Mol Mutagen 52:419-423. Cribari-Neto F, Zeileis A. 2010. Beta regression in R. J Stat Software 34:1-24. Bhalli JA, Ding W, Shaddock JG, Pearce MG, Dobrovolsky VN, Heflich RH. 2013. Evaluating the weak in vivo micronucleus response of a genotoxic carcinogen, Aristolochic acids. Mutat Res 753:82-92. Dobrovolsky, VN, Elespuru RK, Bigger CAH, Robinson TW, Heflich RH. 2011. Monitoring humans for somatic mutation in the endogenous PIG-A gene using red blood cells. Environ Mol Mutagen 52:784-794. Robinson DR, Goodall K, Albertini RJ, O'Neill JP, Finette B, Sala-Trepat M, Moustacchi E, Tates AD, Beare DM, Green MHL, et al. 1994. An analysis of the in vivo hprt mutant frequency in circulating T-lymphocytes in the normal human population: a comparison of four datasets. Mutat Res 313:227-247. Gossen JA, de Leeuw WJF, Tan CHT, Zwarthoff EC, Berends F, Lohman PHM, Knook DL, Vijg J. 1989. Efficient rescue of integrated shuttle vectors from transgenic mice: A model for studying mutations in vivo. Proc Natl Acad Sci USA 86:7971-7975. Kirsch-Volders M, Aardema M, Elhajouji A. 2000. Concepts of threshold in mutagenesis and carcinogenesis. Mutat Res 464:3-11. Peirce B. 1852. Criterion for the rejection of doubtful observations. Astronomical J 2:161-163. Miura D, Dobrovolsky VN, Mittelstaedt RA, Kasahara Y, Katsuura Y, Heflich RH. 2008b. Development of an in vivo gene mutation assay using the endogenous Pig-A gene: II. Selection of Pig-A mutant rat spleen T-cells with proaerolysin and sequencing Pig-A cDNA from the mutants. Environ Mol Mutagen 49:622-630. Takahashi M, Takeda J, Hirose S, Hyman R, Inoue N, Miyata T, Ueda E, Kitani T, Medof ME, Kinoshita T. 1993. Deficient biosynthesis of N-acetylglucosaminyl-phospatidylinositol, the first intermediate of glycosyl phosphatidylinositol anchor biosynthesis, in cell lines established from patients with Paroxysmal Nocturnal Hemoglobinuria. J Exp Med 177:517-521. Gocke E, Ballantyne M, Whitwell J, Müller L. 2009a. MNT and Muta™Mouse studies to define the in vivo dose response relations of the genotoxicity of EMS and ENU. Toxicol Lett 190:287-297. Walker VE, Casciano DA, Tweats DJ. 2009. The Viracept-EMS case: Impact and outlook. Toxicol Lett 190:333-339. Bryce SM, Bemis JC, Dertinger SD. 2008. In vivo mutation assay based on the endogenous Pig-a locus. Environ Mol Mutagen 49:256-264. Phonethepswath S, Bryce SM, Bemis JC, Dertinger SD. 2008. Erythrocyte-based Pig-a gene mutation assay: Demonstration of cross-species potential. Mutat Res 657:122-126. van Sittert NJ, Boogaard PJ, Natarajan AT, Tates AD, Ehrenberg LG, Tornqvist MA. 2000. Formation of DNA adducts and induction of mutagenic effects in rats following 4 weeks inhalation exposure to ethylene oxide as a basis for cancer risk assessment. Mutat Res 447:27-48. Thomas AD, Jenkins GJS, Kaina B, Bodger O, Tomaszowaki K-H, Lewis PD, Doak SH, Johnson GE. 2013. Influence of DNA repair on nonlinear dose-responses for mutation. Toxicol Sci 132:87-95. Heddle JA, Dean S, Nohmi T, Boerrigter M, Casciano D, Douglas GR, Glickman BW, Gorelick NJ, Mirsalis JC, Martus H-J, et al. 2000. In vivo transgenic mutation assays. Environ Mol Mutagen 35:253-259. Nohmi T, Suzuki T, Masumura K-i. 2000. Recent advances in the protocols of transgenic mouse mutation assays. Mutat Res 455:191-215. Ellison KS, Dogliotti E, Connors TD, Basu AK, Essigmann JM. 1989. Site-specific mutagenesis by O6-alkylguanines located in the chromosomes of mammalian cells: Influence of the mammalian O6-alkylguanine-DNA alkyltransferase. Proc Natl Acad Sci USA 86:8620-8624. Gocke E, Müller L. 2009. In vivo studies in the mouse to define a threshold for the genotoxicity of EMS and ENU. Mutat Res 678:101-107. Araten DJ, Nafa K, Pakdeesuwan K, Luzzatto L. 1999. Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals. Proc Natl Acad Sci USA 96:5209-5214. Dobrovolsky VN, Miura D, Heflich RH, Dertinger SD. 2010. The in vivo Pig-a gene mutation assay, a potential tool for regulatory safety assessment. Environ Mol Mutagen 51:825-835. Kondo K, Suzuki H, Hoshi K, Yasui H. 1989. Micronucleus test with ethyl methanesulfonate administered by intraperitoneal injection and oral gavage. Mutat Res 223:373-375. Zair ZM, Jenkins GJ, Doak SH, Singh R, Brown K, Johnson GE. 2011. N-Methylpurine DNA glycosylase plays a pivotal role in the threshold response of ethylmethansulfonate-induced chromosome damage. Toxicol Sci 119:346-358. Zito R. 2001. Low doses and thresholds in genotoxicity: From theories to experiments. J Exp Clin Cancer Res 20:315-325. Bhalli JA, Pearce MG, Dobrovolsky VN, Heflich RH. 2011. Manifestation and persistence of Pig-a mutant red blood cells in C57BL/6 mice following single and split doses of N-ethyl-N-nitrosourea. Environ Mol Mutagen 52:766-773. Dobo KL, Fiedler RD, Gunther WC, Thiffeault CJ, Cammerer Z, Coffing SL, Shutsky T, Schuler M. 2011. Defining EMS and ENU dose-response relationships using the Pig-a mutation assay in rats. Mutat Res 725:13-21. Kimoto T, Suzuki K, Kobayashi Xm, Dobrovolsky VN, Heflich RH, Miura D, Kasahara Y. 2011. Manifestation of Pig-a mutant bone marrow erythroids and peripheral blood erythrocytes in mice treated with N-ethyl-N-nitrosourea: Direct sequencing of Pig-a cDNA from bone marrow cells negative for GPI-anchored protein expression. Mutat Res 723:36-42. Pfister T, Eichinger-Chapelon A. 2009. General 4-week toxicity study with EMS in the rat. Toxicol Lett 190:271-285. Cumming RB, Walton MF. 1970. Fate and metabolism of some mutagenic alkylating agents in the mouse. I. Ethyl methanesulfonate and methyl methanesulfonate at sublethal dose in hybrid males. Mutat Res 10:365-377. Lambert IB, Singer TM, Boucher SE, Douglas GR. 2005. Detailed review of transgenic rodent mutation assays. Mutat Res 590:1-280. Miura D, Dobrovolsky VN, Kasahara Y, Katsuura Y, Heflich RH. 2008a. Development of an in vivo gene mutation assay using the endogenous Pig-A gene: I. Flow cytometric detection of CD59-negative peripheral red blood cells and CD48-negative spleen T-cells from the rat. Environ Mol Mutagen 49:614-621. Thybaud V, Dean S, Nohmi T, de Boer J, Douglas GR, Glickman BW, Gorelick NJ, Heddle JA, Heflich RH, Lambert I, et al. 2003. In vivo transgenic mutation assays. Mutat Res 540:141-151. 2011; 119 1989; 86 2000; 455 1987; 7 2011; 52 2009a; 190 2009; 678 2011; 725 1996; 28 2011; 723 2008a; 49 2013; 1044 2013; 54 1989; 223 1852; 2 2000; 447 2013; 753 1999; 14 1998; 405 1999; 96 2008b; 49 2009; 1150 2009b; 190 2010; 73 1993; 177 2010; 34 2005; 590 1994; 313 2012 2011 2009 1970; 10 1996 2006 1993; 90 2004; 547 2001; 20 2009; 31 2009; 190 1984; 134 2000; 35 2004; 151 2008; 49 2002; 66 1999; 34 2008; 657 2013; 132 2000; 464 1990; 7 2003; 20 2003; 540 2010; 51 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Sega GA. (e_1_2_7_49_1) 1984; 134 e_1_2_7_6_1 European Food Safety Authority (EFSA) (e_1_2_7_13_1) 2009; 1150 e_1_2_7_4_1 Zito R. (e_1_2_7_61_1) 2001; 20 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – reference: Gollapudi BB, Johnson GE, Hernandez LG, Pottenger LH, Dearfield KL, Jeffery AM, Julien E, Kim JH, Lovell DP, MacGregor JT, et al. 2013. Quantitative approaches for assessing dose-response relationships in gentic toxicology studies. Environ Mol Mugagen 54:8-18. – reference: Dobrovolsky, VN, Elespuru RK, Bigger CAH, Robinson TW, Heflich RH. 2011. Monitoring humans for somatic mutation in the endogenous PIG-A gene using red blood cells. Environ Mol Mutagen 52:784-794. – reference: Pfister T, Eichinger-Chapelon A. 2009. General 4-week toxicity study with EMS in the rat. Toxicol Lett 190:271-285. – reference: Sega GA. 1984. A review of the genetic effects of EMS. Mutat Res 134:113-142. – reference: Johnson GE, Doak SH, Griffiths SM, Quick EL, Skibinski DOF, Azir ZM, Jenkins GJ. 2009. Non-linear dose-response of DNA-reactive genotoxins: Recommendations for data analysis. Mutat Res 678:95-100. – reference: Kohler SW, Provost GS, Kretz PL, Fieck A, Sorge JA, Short JM. 1990. The use of transgenic mice for short-term, in vivo mutagenicity testing. Genet Anal Tech Appl (GATA) 7:212-218. – reference: Zair ZM, Jenkins GJ, Doak SH, Singh R, Brown K, Johnson GE. 2011. N-Methylpurine DNA glycosylase plays a pivotal role in the threshold response of ethylmethansulfonate-induced chromosome damage. Toxicol Sci 119:346-358. – reference: Bhalli JA, Ding W, Shaddock JG, Pearce MG, Dobrovolsky VN, Heflich RH. 2013. Evaluating the weak in vivo micronucleus response of a genotoxic carcinogen, Aristolochic acids. Mutat Res 753:82-92. – reference: Masumura K. 2009. Spontaneous and induced gpt and Spi- mutant frequencies in gpt delta transgenic rodents. Gene Environ 31:105-118. – reference: Phonethepswath S, Bryce SM, Bemis JC, Dertinger SD. 2008. Erythrocyte-based Pig-a gene mutation assay: Demonstration of cross-species potential. Mutat Res 657:122-126. – reference: Walker VE, Casciano DA, Tweats DJ. 2009. The Viracept-EMS case: Impact and outlook. Toxicol Lett 190:333-339. – reference: Yang Y, Allen BC, Tan Y-M, Liao KH, Clewell III HJ. 2010. Bayesian analysis of a rat formaldehyde DNA-protein cross-link model. J Toxicol Environ Health A 73:787-806. – reference: Gocke E, Ballantyne M, Whitwell J, Müller L. 2009a. MNT and Muta™Mouse studies to define the in vivo dose response relations of the genotoxicity of EMS and ENU. Toxicol Lett 190:287-297. – reference: Kondo K, Suzuki H, Hoshi K, Yasui H. 1989. Micronucleus test with ethyl methanesulfonate administered by intraperitoneal injection and oral gavage. Mutat Res 223:373-375. – reference: Miura D, Shaddock JG, Mittelstaedt RA, Dobrovolsky VN, Kimoto T, Kasahara Y, Heflich RH. 2011. Analysis of mutations in the Pig-a gene of spleen T-cells from N-ethyl-N-nitrosourea-treated Fisher 344 rats. Environ Mol Mutagen 52:419-423. – reference: Cumming RB, Walton MF. 1970. Fate and metabolism of some mutagenic alkylating agents in the mouse. I. Ethyl methanesulfonate and methyl methanesulfonate at sublethal dose in hybrid males. Mutat Res 10:365-377. – reference: Ellison KS, Dogliotti E, Connors TD, Basu AK, Essigmann JM. 1989. Site-specific mutagenesis by O6-alkylguanines located in the chromosomes of mammalian cells: Influence of the mammalian O6-alkylguanine-DNA alkyltransferase. Proc Natl Acad Sci USA 86:8620-8624. – reference: Gossen JA, de Leeuw WJF, Tan CHT, Zwarthoff EC, Berends F, Lohman PHM, Knook DL, Vijg J. 1989. Efficient rescue of integrated shuttle vectors from transgenic mice: A model for studying mutations in vivo. Proc Natl Acad Sci USA 86:7971-7975. – reference: Thybaud V, Dean S, Nohmi T, de Boer J, Douglas GR, Glickman BW, Gorelick NJ, Heddle JA, Heflich RH, Lambert I, et al. 2003. In vivo transgenic mutation assays. Mutat Res 540:141-151. – reference: Tao KS, Urlando C, Heddle JA. 1993. Comparison of somatic mutation in a transgenic versus host locus. Proc Natl Acad Sci USA 90:10681-10685. – reference: Miura D, Dobrovolsky VN, Mittelstaedt RA, Kasahara Y, Katsuura Y, Heflich RH. 2008b. Development of an in vivo gene mutation assay using the endogenous Pig-A gene: II. Selection of Pig-A mutant rat spleen T-cells with proaerolysin and sequencing Pig-A cDNA from the mutants. Environ Mol Mutagen 49:622-630. – reference: Masumura K, Matsui M, Katoh M, Horiya N, Ueda O, Tanabe H, Yamada M, Suzuki H, Sofuni T, Nohmi T. 1999. Spectra of gpt mutations in ethylnitrosourea-treated and untreated transgenic mice. Environ Mol Mutagen 34:1-8. – reference: Bryce SM, Bemis JC, Dertinger SD. 2008. In vivo mutation assay based on the endogenous Pig-a locus. Environ Mol Mutagen 49:256-264. – reference: Araten DJ, Nafa K, Pakdeesuwan K, Luzzatto L. 1999. Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals. Proc Natl Acad Sci USA 96:5209-5214. – reference: Zito R. 2001. Low doses and thresholds in genotoxicity: From theories to experiments. J Exp Clin Cancer Res 20:315-325. – reference: Thomas AD, Jenkins GJS, Kaina B, Bodger O, Tomaszowaki K-H, Lewis PD, Doak SH, Johnson GE. 2013. Influence of DNA repair on nonlinear dose-responses for mutation. Toxicol Sci 132:87-95. – reference: Miura D, Dobrovolsky VN, Kasahara Y, Katsuura Y, Heflich RH. 2008a. Development of an in vivo gene mutation assay using the endogenous Pig-A gene: I. Flow cytometric detection of CD59-negative peripheral red blood cells and CD48-negative spleen T-cells from the rat. Environ Mol Mutagen 49:614-621. – reference: Gocke E, Burgin H, Müller L, Phister T. 2009b. Literature review on the genotoxicity, reproductive toxicity, and carcinogenicity of ethyl methanesulfonate. Toxicol Lett 190:254-265. – reference: Nohmi T, Suzuki T, Masumura K-i. 2000. Recent advances in the protocols of transgenic mouse mutation assays. Mutat Res 455:191-215. – reference: Bolt HM, Foth H, Hengstler JG, Degen GH. 2004. Carcinogenicity categorization of chemicals-new aspects to be considered in a European perspective. Toxicol Lett 151:29-41. – reference: Gocke E, Müller L. 2009. In vivo studies in the mouse to define a threshold for the genotoxicity of EMS and ENU. Mutat Res 678:101-107. – reference: Peirce B. 1852. Criterion for the rejection of doubtful observations. Astronomical J 2:161-163. – reference: Slob W. 2002. Dose-response modeling of continuous endpoints. Toxicol Sci 66:298-312. – reference: Kirsch-Volders M, Aardema M, Elhajouji A. 2000. Concepts of threshold in mutagenesis and carcinogenesis. Mutat Res 464:3-11. – reference: Cribari-Neto F, Zeileis A. 2010. Beta regression in R. J Stat Software 34:1-24. – reference: Manjanatha MG, Shelton SD, Bishop M, Shaddock JG, Dobrovolsky VN, Heflich RH, Webb PJ, Blankenship LR, Beland FA, Greenlees KJ, et al. 2004. Analysis of mutations and bone marrow micronuclei in Big Blue® rats fed leucomalachite green. Mutat Res 547:5-18. – reference: Trentin GA, Moody J, Heddle JA. 1998. Effect of maternal folate levels on somatic mutation frequency in the developing colon. Mutat Res 405:81-87. – reference: Dobrovolsky VN, Miura D, Heflich RH, Dertinger SD. 2010. The in vivo Pig-a gene mutation assay, a potential tool for regulatory safety assessment. Environ Mol Mutagen 51:825-835. – reference: Kimoto T, Suzuki K, Kobayashi Xm, Dobrovolsky VN, Heflich RH, Miura D, Kasahara Y. 2011. Manifestation of Pig-a mutant bone marrow erythroids and peripheral blood erythrocytes in mice treated with N-ethyl-N-nitrosourea: Direct sequencing of Pig-a cDNA from bone marrow cells negative for GPI-anchored protein expression. Mutat Res 723:36-42. – reference: Robinson DR, Goodall K, Albertini RJ, O'Neill JP, Finette B, Sala-Trepat M, Moustacchi E, Tates AD, Beare DM, Green MHL, et al. 1994. An analysis of the in vivo hprt mutant frequency in circulating T-lymphocytes in the normal human population: a comparison of four datasets. Mutat Res 313:227-247. – reference: Cosentino L, Heddle JA. 1999. A comparison of the effects of diverse mutagens at the LacZ transgene and Dlb-1 locus in vivo. Mutagenesis 14:113-119. – reference: Heddle JA, Dean S, Nohmi T, Boerrigter M, Casciano D, Douglas GR, Glickman BW, Gorelick NJ, Mirsalis JC, Martus H-J, et al. 2000. In vivo transgenic mutation assays. Environ Mol Mutagen 35:253-259. – reference: Nohmi T, Katoh M, Suzuki H, Matsui M, Tamada M, Watanabe M, Suzuki M, Horiya N, Ueda O, Shibuya T, et al. 1996. A new transgenic mouse mutagenesis test system using Spi- and 6-thioguanine selections. Environ Mol Mutagen 28:465-470. – reference: Gocke E, Wall M. 2009. In vivo genotoxicity of EMS: Statistical assessment of the dose response curves. Toxicol Lett 190:298-302. – reference: European Food Safety Authority (EFSA). 2009. Guidance of the scientific committee on a request from EFSA on the use of the benchmark dose approach in risk assessment. EFSA J 1150:1-72. – reference: Dobo KL, Fiedler RD, Gunther WC, Thiffeault CJ, Cammerer Z, Coffing SL, Shutsky T, Schuler M. 2011. Defining EMS and ENU dose-response relationships using the Pig-a mutation assay in rats. Mutat Res 725:13-21. – reference: Lambert IB, Singer TM, Boucher SE, Douglas GR. 2005. Detailed review of transgenic rodent mutation assays. Mutat Res 590:1-280. – reference: Takahashi M, Takeda J, Hirose S, Hyman R, Inoue N, Miyata T, Ueda E, Kitani T, Medof ME, Kinoshita T. 1993. Deficient biosynthesis of N-acetylglucosaminyl-phospatidylinositol, the first intermediate of glycosyl phosphatidylinositol anchor biosynthesis, in cell lines established from patients with Paroxysmal Nocturnal Hemoglobinuria. J Exp Med 177:517-521. – reference: van Sittert NJ, Boogaard PJ, Natarajan AT, Tates AD, Ehrenberg LG, Tornqvist MA. 2000. Formation of DNA adducts and induction of mutagenic effects in rats following 4 weeks inhalation exposure to ethylene oxide as a basis for cancer risk assessment. Mutat Res 447:27-48. – reference: Lutz WK, Lutz RW. 2009. Statistical model to estimate threshold dose and its confidence limits for the analysis of sublinear dose-response relationships, exemplified for mutagenicity data. Mutat Res 678:118-122. – reference: Bhalli JA, Pearce MG, Dobrovolsky VN, Heflich RH. 2011. Manifestation and persistence of Pig-a mutant red blood cells in C57BL/6 mice following single and split doses of N-ethyl-N-nitrosourea. Environ Mol Mutagen 52:766-773. – reference: Müller L, Gocke E. 2009. Considerations regarding a permitted daily exposure calculation for ethyl methanesulfonate. Toxicol Lett 190:330-332. – year: 2011 – year: 2009 – volume: 90 start-page: 10681 year: 1993 end-page: 10685 article-title: Comparison of somatic mutation in a transgenic versus host locus publication-title: Proc Natl Acad Sci USA – volume: 678 start-page: 118 year: 2009 end-page: 122 article-title: Statistical model to estimate threshold dose and its confidence limits for the analysis of sublinear dose‐response relationships, exemplified for mutagenicity data publication-title: Mutat Res – volume: 34 start-page: 1 year: 1999 end-page: 8 article-title: Spectra of mutations in ethylnitrosourea‐treated and untreated transgenic mice publication-title: Environ Mol Mutagen – volume: 678 start-page: 95 year: 2009 end-page: 100 article-title: Non‐linear dose‐response of DNA‐reactive genotoxins: Recommendations for data analysis publication-title: Mutat Res – volume: 10 start-page: 365 year: 1970 end-page: 377 article-title: Fate and metabolism of some mutagenic alkylating agents in the mouse. I. Ethyl methanesulfonate and methyl methanesulfonate at sublethal dose in hybrid males publication-title: Mutat Res – volume: 49 start-page: 256 year: 2008 end-page: 264 article-title: In vivo mutation assay based on the endogenous locus publication-title: Environ Mol Mutagen – volume: 313 start-page: 227 year: 1994 end-page: 247 article-title: An analysis of the in vivo mutant frequency in circulating T‐lymphocytes in the normal human population: a comparison of four datasets publication-title: Mutat Res – volume: 35 start-page: 253 year: 2000 end-page: 259 article-title: In vivo transgenic mutation assays publication-title: Environ Mol Mutagen – volume: 447 start-page: 27 year: 2000 end-page: 48 article-title: Formation of DNA adducts and induction of mutagenic effects in rats following 4 weeks inhalation exposure to ethylene oxide as a basis for cancer risk assessment publication-title: Mutat Res – volume: 151 start-page: 29 year: 2004 end-page: 41 article-title: Carcinogenicity categorization of chemicals‐new aspects to be considered in a European perspective publication-title: Toxicol Lett – volume: 119 start-page: 346 year: 2011 end-page: 358 article-title: ‐Methylpurine DNA glycosylase plays a pivotal role in the threshold response of ethylmethansulfonate‐induced chromosome damage publication-title: Toxicol Sci – volume: 190 start-page: 298 year: 2009 end-page: 302 article-title: In vivo genotoxicity of EMS: Statistical assessment of the dose response curves publication-title: Toxicol Lett – volume: 49 start-page: 614 year: 2008a end-page: 621 article-title: Development of an in vivo gene mutation assay using the endogenous gene: I. Flow cytometric detection of CD59‐negative peripheral red blood cells and CD48‐negative spleen T‐cells from the rat publication-title: Environ Mol Mutagen – volume: 31 start-page: 105 year: 2009 end-page: 118 article-title: Spontaneous and induced and Spi mutant frequencies in delta transgenic rodents publication-title: Gene Environ – volume: 51 start-page: 825 year: 2010 end-page: 835 article-title: The in vivo gene mutation assay, a potential tool for regulatory safety assessment publication-title: Environ Mol Mutagen – volume: 52 start-page: 766 year: 2011 end-page: 773 article-title: Manifestation and persistence of mutant red blood cells in C57BL/6 mice following single and split doses of ‐ethyl‐ ‐nitrosourea publication-title: Environ Mol Mutagen – volume: 49 start-page: 622 year: 2008b end-page: 630 article-title: Development of an in vivo gene mutation assay using the endogenous gene: II. Selection of mutant rat spleen T‐cells with proaerolysin and sequencing cDNA from the mutants publication-title: Environ Mol Mutagen – volume: 73 start-page: 787 year: 2010 end-page: 806 article-title: Bayesian analysis of a rat formaldehyde DNA‐protein cross‐link model publication-title: J Toxicol Environ Health A – volume: 54 start-page: 8 year: 2013 end-page: 18 article-title: Quantitative approaches for assessing dose‐response relationships in gentic toxicology studies publication-title: Environ Mol Mugagen – volume: 177 start-page: 517 year: 1993 end-page: 521 article-title: Deficient biosynthesis of ‐acetylglucosaminyl‐phospatidylinositol, the first intermediate of glycosyl phosphatidylinositol anchor biosynthesis, in cell lines established from patients with Paroxysmal Nocturnal Hemoglobinuria publication-title: J Exp Med – volume: 7) start-page: 1 year: 1987 end-page: 440 – volume: 96 start-page: 5209 year: 1999 end-page: 5214 article-title: Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals publication-title: Proc Natl Acad Sci USA – volume: 20 start-page: 315 year: 2001 end-page: 325 article-title: Low doses and thresholds in genotoxicity: From theories to experiments publication-title: J Exp Clin Cancer Res – volume: 28 start-page: 465 year: 1996 end-page: 470 article-title: A new transgenic mouse mutagenesis test system using Spi and 6‐thioguanine selections publication-title: Environ Mol Mutagen – volume: 52 start-page: 784 year: 2011 end-page: 794 article-title: Monitoring humans for somatic mutation in the endogenous gene using red blood cells publication-title: Environ Mol Mutagen – volume: 1150 start-page: 1 year: 2009 end-page: 72 article-title: Guidance of the scientific committee on a request from EFSA on the use of the benchmark dose approach in risk assessment publication-title: EFSA J – volume: 753 start-page: 82 year: 2013 end-page: 92 article-title: Evaluating the weak micronucleus response of a genotoxic carcinogen, Aristolochic acids publication-title: Mutat Res – volume: 7 start-page: 212 year: 1990 end-page: 218 article-title: The use of transgenic mice for short‐term, in vivo mutagenicity testing publication-title: Genet Anal Tech Appl (GATA) – volume: 190 start-page: 254 year: 2009b end-page: 265 article-title: Literature review on the genotoxicity, reproductive toxicity, and carcinogenicity of ethyl methanesulfonate publication-title: Toxicol Lett – volume: 34 start-page: 1 year: 2010 end-page: 24 article-title: Beta regression in R publication-title: J Stat Software – volume: 1044 start-page: 97 year: 2013 end-page: 119 – volume: 20 start-page: 1 year: 2003 end-page: 12 – volume: 86 start-page: 8620 year: 1989 end-page: 8624 article-title: Site‐specific mutagenesis by ‐alkylguanines located in the chromosomes of mammalian cells: Influence of the mammalian ‐alkylguanine‐DNA alkyltransferase publication-title: Proc Natl Acad Sci USA – start-page: 391 year: 1996 end-page: 410 – volume: 657 start-page: 122 year: 2008 end-page: 126 article-title: Erythrocyte‐based gene mutation assay: Demonstration of cross‐species potential publication-title: Mutat Res – volume: 14 start-page: 113 year: 1999 end-page: 119 article-title: A comparison of the effects of diverse mutagens at the transgene and locus publication-title: Mutagenesis – volume: 52 start-page: 419 year: 2011 end-page: 423 article-title: Analysis of mutations in the gene of spleen T‐cells from ‐ethyl‐ ‐nitrosourea‐treated Fisher 344 rats publication-title: Environ Mol Mutagen – volume: 134 start-page: 113 year: 1984 end-page: 142 article-title: A review of the genetic effects of EMS publication-title: Mutat Res – year: 2012 – volume: 678 start-page: 101 year: 2009 end-page: 107 article-title: studies in the mouse to define a threshold for the genotoxicity of EMS and ENU publication-title: Mutat Res – volume: 190 start-page: 287 year: 2009a end-page: 297 article-title: MNT and Muta™Mouse studies to define the dose response relations of the genotoxicity of EMS and ENU publication-title: Toxicol Lett – volume: 547 start-page: 5 year: 2004 end-page: 18 article-title: Analysis of mutations and bone marrow micronuclei in Big Blue® rats fed leucomalachite green publication-title: Mutat Res – volume: 405 start-page: 81 year: 1998 end-page: 87 article-title: Effect of maternal folate levels on somatic mutation frequency in the developing colon publication-title: Mutat Res – volume: 190 start-page: 271 year: 2009 end-page: 285 article-title: General 4‐week toxicity study with EMS in the rat publication-title: Toxicol Lett – volume: 464 start-page: 3 year: 2000 end-page: 11 article-title: Concepts of threshold in mutagenesis and carcinogenesis publication-title: Mutat Res – volume: 725 start-page: 13 year: 2011 end-page: 21 article-title: Defining EMS and ENU dose‐response relationships using the mutation assay in rats publication-title: Mutat Res – volume: 590 start-page: 1 year: 2005 end-page: 280 article-title: Detailed review of transgenic rodent mutation assays publication-title: Mutat Res – year: 2006 – volume: 132 start-page: 87 year: 2013 end-page: 95 article-title: Influence of DNA repair on nonlinear dose‐responses for mutation publication-title: Toxicol Sci – volume: 190 start-page: 333 year: 2009 end-page: 339 article-title: The Viracept‐EMS case: Impact and outlook publication-title: Toxicol Lett – volume: 66 start-page: 298 year: 2002 end-page: 312 article-title: Dose‐response modeling of continuous endpoints publication-title: Toxicol Sci – volume: 455 start-page: 191 year: 2000 end-page: 215 article-title: Recent advances in the protocols of transgenic mouse mutation assays publication-title: Mutat Res – volume: 86 start-page: 7971 year: 1989 end-page: 7975 article-title: Efficient rescue of integrated shuttle vectors from transgenic mice: A model for studying mutations publication-title: Proc Natl Acad Sci USA – volume: 723 start-page: 36 year: 2011 end-page: 42 article-title: Manifestation of mutant bone marrow erythroids and peripheral blood erythrocytes in mice treated with ‐ethyl‐ ‐nitrosourea: Direct sequencing of cDNA from bone marrow cells negative for GPI‐anchored protein expression publication-title: Mutat Res – volume: 190 start-page: 330 year: 2009 end-page: 332 article-title: Considerations regarding a permitted daily exposure calculation for ethyl methanesulfonate publication-title: Toxicol Lett – volume: 540 start-page: 141 year: 2003 end-page: 151 article-title: transgenic mutation assays publication-title: Mutat Res – volume: 223 start-page: 373 year: 1989 end-page: 375 article-title: Micronucleus test with ethyl methanesulfonate administered by intraperitoneal injection and oral gavage publication-title: Mutat Res – volume: 2 start-page: 161 year: 1852 end-page: 163 article-title: Criterion for the rejection of doubtful observations publication-title: Astronomical J – ident: e_1_2_7_22_1 doi: 10.1073/pnas.86.20.7971 – ident: e_1_2_7_19_1 doi: 10.1016/j.toxlet.2009.03.021 – ident: e_1_2_7_51_1 doi: 10.1084/jem.177.2.517 – ident: e_1_2_7_36_1 doi: 10.3123/jemsge.31.105 – ident: e_1_2_7_48_1 – ident: e_1_2_7_12_1 doi: 10.1002/em.20667 – ident: e_1_2_7_25_1 – volume: 20 start-page: 315 year: 2001 ident: e_1_2_7_61_1 article-title: Low doses and thresholds in genotoxicity: From theories to experiments publication-title: J Exp Clin Cancer Res – ident: e_1_2_7_50_1 doi: 10.1093/toxsci/66.2.298 – ident: e_1_2_7_37_1 doi: 10.1002/(SICI)1098-2280(1999)34:1<1::AID-EM1>3.0.CO;2-P – ident: e_1_2_7_60_1 doi: 10.1093/toxsci/kfq341 – ident: e_1_2_7_42_1 doi: 10.1002/(SICI)1098-2280(1996)28:4<465::AID-EM24>3.0.CO;2-C – ident: e_1_2_7_54_1 doi: 10.1016/j.mrgentox.2003.07.004 – ident: e_1_2_7_59_1 doi: 10.1080/15287391003689234 – ident: e_1_2_7_40_1 doi: 10.1002/em.20654 – ident: e_1_2_7_14_1 doi: 10.1073/pnas.86.22.8620 – ident: e_1_2_7_44_1 doi: 10.1086/100259 – volume: 1150 start-page: 1 year: 2009 ident: e_1_2_7_13_1 article-title: Guidance of the scientific committee on a request from EFSA on the use of the benchmark dose approach in risk assessment publication-title: EFSA J – ident: e_1_2_7_16_1 – ident: e_1_2_7_5_1 doi: 10.1016/j.toxlet.2004.04.004 – ident: e_1_2_7_57_1 doi: 10.1007/978-1-4899-0301-3_29 – ident: e_1_2_7_2_1 doi: 10.1073/pnas.96.9.5209 – ident: e_1_2_7_32_1 doi: 10.1016/j.mrrev.2005.04.002 – ident: e_1_2_7_38_1 doi: 10.1002/em.20414 – ident: e_1_2_7_10_1 doi: 10.1016/j.mrgentox.2011.06.005 – ident: e_1_2_7_20_1 doi: 10.1016/j.toxlet.2009.03.016 – ident: e_1_2_7_46_1 doi: 10.1016/j.mrgentox.2008.08.011 – ident: e_1_2_7_11_1 doi: 10.1002/em.20627 – ident: e_1_2_7_8_1 doi: 10.18637/jss.v034.i02 – volume: 134 start-page: 113 year: 1984 ident: e_1_2_7_49_1 article-title: A review of the genetic effects of EMS publication-title: Mutat Res doi: 10.1016/0165-1110(84)90007-1 – ident: e_1_2_7_39_1 doi: 10.1002/em.20413 – ident: e_1_2_7_7_1 doi: 10.1093/mutage/14.1.113 – ident: e_1_2_7_58_1 doi: 10.1016/j.toxlet.2009.03.027 – ident: e_1_2_7_55_1 doi: 10.1016/S0027-5107(98)00147-X – ident: e_1_2_7_28_1 doi: 10.1016/j.mrgentox.2011.03.016 – ident: e_1_2_7_43_1 doi: 10.1016/S0027-5107(00)00077-4 – ident: e_1_2_7_3_1 doi: 10.1002/em.20682 – ident: e_1_2_7_53_1 doi: 10.1093/toxsci/kfs341 – ident: e_1_2_7_6_1 doi: 10.1002/em.20379 – ident: e_1_2_7_31_1 doi: 10.1016/0165-1218(89)90089-X – ident: e_1_2_7_56_1 doi: 10.1016/S0027-5107(99)00208-0 – ident: e_1_2_7_47_1 doi: 10.1016/0165-1161(94)90053-1 – ident: e_1_2_7_35_1 doi: 10.1007/978-1-62703-529-3_5 – ident: e_1_2_7_30_1 doi: 10.1016/0735-0651(90)90003-X – ident: e_1_2_7_4_1 doi: 10.1016/j.mrgentox.2013.03.002 – ident: e_1_2_7_33_1 doi: 10.1016/j.mrgentox.2009.05.010 – ident: e_1_2_7_17_1 doi: 10.1016/j.mrgentox.2009.04.005 – ident: e_1_2_7_45_1 doi: 10.1016/j.toxlet.2009.04.031 – ident: e_1_2_7_9_1 doi: 10.1016/0027-5107(70)90049-7 – ident: e_1_2_7_41_1 doi: 10.1016/j.toxlet.2009.03.015 – ident: e_1_2_7_34_1 doi: 10.1016/j.mrfmmm.2003.11.009 – ident: e_1_2_7_24_1 doi: 10.1002/(SICI)1098-2280(2000)35:3<253::AID-EM11>3.0.CO;2-J – ident: e_1_2_7_52_1 doi: 10.1073/pnas.90.22.10681 – ident: e_1_2_7_29_1 doi: 10.1016/S1383-5718(99)00161-8 – ident: e_1_2_7_18_1 doi: 10.1016/j.toxlet.2009.03.008 – ident: e_1_2_7_21_1 doi: 10.1002/em.21727 – ident: e_1_2_7_26_1 – ident: e_1_2_7_23_1 – ident: e_1_2_7_27_1 doi: 10.1016/j.mrgentox.2009.05.009 – ident: e_1_2_7_15_1 |
SSID | ssj0011492 |
Score | 2.2188911 |
Snippet | The assumption that mutagens have linear dose–responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA‐reactive mutagen and... The assumption that mutagens have linear dose-responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA-reactive mutagen and... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 385 |
SubjectTerms | Animals benchmark dose bilinear model Bone marrow DNA Damage - drug effects DNA Damage - genetics dose-response Dose-Response Relationship, Drug Escherichia coli Proteins - physiology Ethyl Methanesulfonate - toxicity gene mutation Genotoxicity gpt Hypoxanthine Phosphoribosyltransferase - genetics Lac Operon - genetics Male Membrane Proteins - genetics Mice Mice, Inbred C57BL Mice, Transgenic micronucleus Micronucleus Tests Mutagenicity Mutagens Mutagens - toxicity Mutation Mutation - genetics Mutation Rate NOGEL Pentosyltransferases - physiology Pig-a Reticulocytes - drug effects Spleen - drug effects threshold |
Title | Quantitative dose-response analysis of ethyl methanesulfonate genotoxicity in adult gpt-delta transgenic mice |
URI | https://api.istex.fr/ark:/67375/WNG-GT9XR41C-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fem.21854 https://www.ncbi.nlm.nih.gov/pubmed/24535894 https://www.proquest.com/docview/1531535297 https://www.proquest.com/docview/1532950564 https://www.proquest.com/docview/1551624981 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB6kIvii1utqKyOIPmWbmcwtj1J6QWjBpcUFH4bJzESW7mbrbgLVp_4EwX_YX-KZyUUqVcSnEHLC3M7ly-TMdxB6zQ1JFXNlYkuWJeDwZGKynIMup9yGA2qqDAecj47F4Sl7P-XTLqsynIVp-SGGDbdgGdFfBwM3xXrnF2moX4whPPFABRpStQIemgzMUYDyYz3kFMJxIkROe97ZlO70L16LRLfDpF7cBDOvo9YYdvbvo099h9tsk7NxUxdj--03Lsf_G9EDdK9Do_hdqz6b6JavHqI7bX3Kr4_Qlw-NqeIpNPCJ2C3X_uryx6rNqvXYdHwmeFliD-s9x6EctQHf2czLsCnvcWCArZcXMwtYH88qHNk-8Ofz-uryu_Pz2uA6xEoQm1m8AJ_1GJ3u753sHiZdjYbEMiVYonKeFhkvpQPTdpQaKw0plKFSFCJk3FhJuCMmh5tSlZI5xkuhCibSLDMuy56gjWpZ-WcIW0cKoqShXlImfaakI14wYQQFnFPkI_S2Xy9tOwLzUEdjrlvqZar9QscJHKFXg-R5S9pxg8ybuOSDgFmdhSQ3yfXH4wN9cJJPJ4zs6skIbfU6oTv7XmuIEyQQ4-QS2hoeg2WG3y0w0csmytA8AEz2NxlOBHwBKzJCT1t9GzpEGbSg8tDTqDV_HIreO4rX5_8q-ALdBdzH2oy3LbRRrxq_DdiqLl5GK_oJIXEf7A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqVgg2vB8DBYzEY5Vp7PiVBQvU15R2RmI0Fd0ZJ3HQqPMoMxnRsuonIPEZ_Apf0S_h2nmgooLYdMEqinKlOPbxvcfO9bkIPeeGhIpleZDmLArA4cnARDEHLIc8dQfUVO4OOHd7orPP3h7wgyX0vT4LU-pDNBtubmZ4f-0muNuQXvulGmrHbYhPnFUZlbv25DOs1-avdzZgcF9QurU5WO8EVUmBIGVKsEDFPEwinssMkJhRalJpSKIMlSIRLkEklYRnxMRwk6tcsozxXKiEiTCKTOZ2P8Hfr7gC4k6of6PfaFXBusJXYA6BAARCxLRWug3pWt3Sc7FvxQ3j8UXE9jxP9oFu6wb6UXdRmd9y2F4USTv98pt65H_ShzfR9Ypw4zflDLmFluzkNrpSluA8uYM-vVuYiT9oB24fZ9O5PTv9NisThy02lWQLnubYAqRH2FXcNhAeFqPc_Xew2IncFtPjYQrLGTycYC9ogj8eFWenXzM7KgwuHB0As2GKx-CW76L9S_nee2h5Mp3YBwinGUmIkoZaSZm0kZIZsYIJIyhQuSRuoVc1QHRaabS7UiEjXapLU23H2g9YCz1rLI9KXZILbF56jDUGZnbo8vgk1-9723p7EB_0GVnX_RZarUGoKxc21xAKidP-iSW8q3kMzsf9UYKOni68DY0dh2Z_s-FEwCJfkRa6XwK8aRBl8AYVu5Z6mP7xU_Rm118f_qvhU3S1M-ju6b2d3u4jdA1oLisT_FbRcjFb2MdAJYvkiZ_CGH24bLz_BEe6ev4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhQxELWiRCAu7MtAACOxnHrSdnvrAweUySQhZARRIubWuNtuNMpszPSIhFM-AYm_4Ff4i3wJZfeCggLikgOnltUleXuuKtvlVwg95ZqEipk8yHIWBaDwZKCjmAOWQ565B2oqdw-cd3ti64C97vP-Evpev4Up-SGaAze3Mry-dgt8avK1X6ShdtQG88RZFVC5Y48_w3Zt_nK7A3P7jNLuxv76VlBlFAgypgQLVMzDNOK5NABEQ6nOpCap0lSKVLj4kEwSboiOoZCrXDLDeC5UykQYRdq4w09Q9ytQjF2aiM5eQ1UF2wqfgDkE-x8IEdOa6Daka3VLz5i-FTeLR-f5tWfdZG_nutfQj3qEyvCWw_aiSNvZl9_II_-PIbyOrlbuNn5Vro8baMmOb6JLZQLO41vo07uFHvtndqD0sZnM7enJt1kZNmyxrghb8CTHFgA9xC7ftgbjsBjm7tbBYkdxW0yOBhlsZvBgjD2dCf44LU5Pvho7LDQunDMAYoMMj0Ap30YHF9LfO2h5PBnbewhnhqRESU2tpEzaSElDrGBCCwqOXBq30IsaH0lWMbS7RCHDpOSWpokdJX7CWuhJIzktWUnOkXnuIdYI6Nmhi-KTPHnf20w29-P-HiPryV4LrdYYTCoFNk_AEBLH_BNLqKv5DarH3SfBQE8WXobGzoNmf5PhRMAWX5EWulviu2kQZVCDil1LPUr_2JVkY9d_7_-r4GN0-W2nm7zZ7u08QFfAx2VldN8qWi5mC_sQ_MgifeQXMEYfLhruPwFEt3mt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+dose%E2%80%93response+analysis+of+ethyl+methanesulfonate+genotoxicity+in+adult+gpt%E2%80%90delta+transgenic+mice&rft.jtitle=Environmental+and+molecular+mutagenesis&rft.au=Cao%2C+Xuefei&rft.au=Mittelstaedt%2C+Roberta+A.&rft.au=Pearce%2C+Mason+G.&rft.au=Allen%2C+Bruce+C.&rft.date=2014-06-01&rft.issn=0893-6692&rft.eissn=1098-2280&rft.volume=55&rft.issue=5&rft.spage=385&rft.epage=399&rft_id=info:doi/10.1002%2Fem.21854&rft.externalDBID=10.1002%252Fem.21854&rft.externalDocID=EM21854 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6692&client=summon |