Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pa...
Saved in:
Cover
Loading…
Abstract | Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane‐localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.
Stomata are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Stomatal movement is regulated by a combination of environmental factors including water status, light, CO2 levels and pathogen attack, as well as abscisic acid and apoplastic reactive oxygen species (ROS). |
---|---|
AbstractList | Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. Stomata,the pores formed by a pair of guard cells,are the main gateways for water transpiration and photosynthetic CO2 exchange,as well as pathogen invasion in land plants.Guard cell movement is regulated by a combination of environmental factors,including water status,light,CO2 levels and pathogen attack,as well as endogenous signals,such as abscisic acid and apoplastic reactive oxygen species (ROS).Under abiotic and biotic stress conditions,extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases,whereas intracellular ROS are produced in multiple organelles.These ROS form a sophisticated cellular signaling network,with the accumulation of apoplastic ROS an early hallmark of stomatal movement.Here,we review recent progress in understanding the molecular mechanisms of the ROS signaling network,primarily during drought stress and pathogen attack.We summarize the roles of apoplastic ROS in regulating stomatal movement,ABA and CO2 signaling,and immunity responses.Finally,we discuss ROS accumulation and communication between organelles and cells.This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO₂ exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO₂ levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane‐localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO₂ signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane‐localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. Stomata are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Stomatal movement is regulated by a combination of environmental factors including water status, light, CO2 levels and pathogen attack, as well as abscisic acid and apoplastic reactive oxygen species (ROS). |
Author | Zhu, Jian‐Kang Kangasjärvi, Jaakko Qi, Junsheng Gong, Zhizhong Zhou, Jianmin Song, Chun‐Peng Wang, Baoshan |
AuthorAffiliation | State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China%Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng 475001,China%Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan 250000, China%State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101,China%Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland%Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA |
AuthorAffiliation_xml | – name: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China%Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng 475001,China%Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan 250000, China%State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101,China%Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland%Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA |
Author_xml | – sequence: 1 givenname: Junsheng surname: Qi fullname: Qi, Junsheng organization: China Agricultural University – sequence: 2 givenname: Chun‐Peng surname: Song fullname: Song, Chun‐Peng organization: Henan University – sequence: 3 givenname: Baoshan surname: Wang fullname: Wang, Baoshan organization: Shandong Normal University – sequence: 4 givenname: Jianmin surname: Zhou fullname: Zhou, Jianmin organization: Chinese Academy of Sciences – sequence: 5 givenname: Jaakko surname: Kangasjärvi fullname: Kangasjärvi, Jaakko organization: University of Helsinki – sequence: 6 givenname: Jian‐Kang surname: Zhu fullname: Zhu, Jian‐Kang organization: Purdue University – sequence: 7 givenname: Zhizhong surname: Gong fullname: Gong, Zhizhong email: gongzz@cau.edu.cn organization: China Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29660240$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkltv1DAQhS1URC_wwg9AkRASQkrxbZ34ESouRZVACJ6tiTNJvSR2iJ22y6_H293yUCHwi0ej7xxrPOeYHPjgkZCnjJ6yfF6v3dScMq5W8gE5YpWUZaWpPsi1qnipacUPyXGMa0pFTRV_RA65VopySY_I9BXBJneFRbjZ9OiLOKF1GIvoeg-D830Bvi1iCiMkGIoxXOGIPhXOF9MAuZgxTsHHLEmhaOew9Jcp87kdb6UTpMuwdYaUwP54TB52MER8sr9PyPf3776dfSwvPn84P3tzUVpZK1mKpkHRWobQNbrpeMtBCdU2TCud21ZYwRTaVQeslazqKq4ttIpaqdrK1lKckBc732vwHfjerMMy54mi-XV903DKaqopVZl7ueOmOfxcMCYzumhxyLNhWKLhbCUUY0Lx_6OUK5kXUuuMPr-H_nmeU61rRrnYUs_21NKM2JppdiPMG3O3ngzQHWDnEOOMnbEuQXLBpxncYBg12wSYbQLMbQKy5NU9yZ3rX2G2_yQ34OYfpPl0_uXtTvMbEWbBvQ |
CitedBy_id | crossref_primary_10_7717_peerj_17537 crossref_primary_10_1016_j_resconrec_2024_107732 crossref_primary_10_1371_journal_ppat_1011796 crossref_primary_10_1016_j_stress_2024_100551 crossref_primary_10_1098_rsfs_2020_0036 crossref_primary_10_3389_fpls_2020_00164 crossref_primary_10_1080_07060661_2024_2364212 crossref_primary_10_1111_pce_14797 crossref_primary_10_3390_agronomy14061190 crossref_primary_10_3390_ijms22073347 crossref_primary_10_3389_fpls_2022_928897 crossref_primary_10_3390_ijms20133326 crossref_primary_10_1093_pcp_pcz120 crossref_primary_10_1111_nph_17211 crossref_primary_10_17221_53_2023_HORTSCI crossref_primary_10_1016_j_envexpbot_2019_103807 crossref_primary_10_1016_j_molp_2020_02_004 crossref_primary_10_1093_femsre_fuab002 crossref_primary_10_3390_f11090970 crossref_primary_10_1016_j_envexpbot_2023_105291 crossref_primary_10_1080_13102818_2020_1745688 crossref_primary_10_1134_S1021443724603720 crossref_primary_10_3390_agronomy13122918 crossref_primary_10_3390_plants13020302 crossref_primary_10_3389_fpls_2021_614909 crossref_primary_10_1007_s00468_020_01991_y crossref_primary_10_3390_ijms22168865 crossref_primary_10_3390_ijms24108985 crossref_primary_10_3390_plants13213104 crossref_primary_10_1016_j_plantsci_2018_05_017 crossref_primary_10_1007_s10725_024_01266_3 crossref_primary_10_3390_genes14061273 crossref_primary_10_1186_s12870_020_02355_x crossref_primary_10_1111_tpj_15409 crossref_primary_10_32615_ps_2022_022 crossref_primary_10_1094_PHYTO_01_23_0014_R crossref_primary_10_1186_s40529_024_00441_z crossref_primary_10_1021_acsomega_0c02735 crossref_primary_10_1111_oik_09352 crossref_primary_10_3390_ijms232314824 crossref_primary_10_3390_ijms241210044 crossref_primary_10_1111_tpj_70078 crossref_primary_10_1016_S2095_3119_21_63657_2 crossref_primary_10_3390_antiox12030605 crossref_primary_10_1111_rda_13748 crossref_primary_10_3390_jof9121155 crossref_primary_10_1093_plcell_koad019 crossref_primary_10_1111_tpj_16634 crossref_primary_10_1016_j_bcab_2021_102035 crossref_primary_10_1016_j_plantsci_2022_111305 crossref_primary_10_1093_plcell_koab071 crossref_primary_10_1016_j_postharvbio_2024_112888 crossref_primary_10_3390_ijms20051176 crossref_primary_10_3390_plants11091246 crossref_primary_10_1016_j_plgene_2020_100264 crossref_primary_10_3390_biology13060421 crossref_primary_10_3390_ijms23010343 crossref_primary_10_3390_ijms241713297 crossref_primary_10_1016_j_envexpbot_2020_104125 crossref_primary_10_3389_fpls_2022_1029997 crossref_primary_10_1007_s00299_022_02969_5 crossref_primary_10_3390_plants14050826 crossref_primary_10_1111_tpj_15631 crossref_primary_10_1093_hr_uhae090 crossref_primary_10_3389_fpls_2022_1050995 crossref_primary_10_3390_plants13223133 crossref_primary_10_3390_agronomy13092241 crossref_primary_10_3390_plants11192480 crossref_primary_10_1016_j_jare_2024_09_004 crossref_primary_10_1093_jxb_erac418 crossref_primary_10_1016_j_cj_2024_12_013 crossref_primary_10_1111_jac_12748 crossref_primary_10_1111_jipb_13058 crossref_primary_10_1111_nph_18348 crossref_primary_10_1186_s12870_020_02476_3 crossref_primary_10_3390_ijms242216388 crossref_primary_10_3390_plants13101345 crossref_primary_10_1111_tpj_16736 crossref_primary_10_3390_ijms21082738 crossref_primary_10_1111_nph_17019 crossref_primary_10_1098_rsob_180162 crossref_primary_10_31857_S0555109923050185 crossref_primary_10_1016_j_stress_2022_100092 crossref_primary_10_1021_acs_chemrestox_9b00028 crossref_primary_10_1007_s11356_024_33449_w crossref_primary_10_1007_s12038_023_00418_3 crossref_primary_10_3390_ijms22020522 crossref_primary_10_1016_j_sajb_2024_11_039 crossref_primary_10_1016_j_plantsci_2023_111892 crossref_primary_10_1093_plphys_kiae389 crossref_primary_10_1111_nph_17593 crossref_primary_10_3389_fpls_2022_850441 crossref_primary_10_1093_pcp_pcac158 crossref_primary_10_1002_npp2_22 crossref_primary_10_1093_aob_mcad006 crossref_primary_10_3389_fpls_2022_833326 crossref_primary_10_1016_j_envexpbot_2018_11_013 crossref_primary_10_3389_fpls_2021_778270 crossref_primary_10_1016_j_devcel_2022_03_010 crossref_primary_10_1111_tpj_15749 crossref_primary_10_1007_s00344_021_10460_w crossref_primary_10_1111_jipb_13061 crossref_primary_10_1111_ppa_13119 crossref_primary_10_1016_j_envexpbot_2023_105232 crossref_primary_10_1016_j_envexpbot_2024_105656 crossref_primary_10_1111_pbi_13701 crossref_primary_10_1016_j_envexpbot_2022_104865 crossref_primary_10_1016_j_plaphy_2021_03_007 crossref_primary_10_3390_jof7040253 crossref_primary_10_1128_spectrum_00264_22 crossref_primary_10_1111_jipb_13019 crossref_primary_10_3390_plants9030311 crossref_primary_10_1007_s00299_024_03264_1 crossref_primary_10_1111_pce_14707 crossref_primary_10_3390_plants12010148 crossref_primary_10_3390_agronomy13123034 crossref_primary_10_1016_j_hpj_2022_07_001 crossref_primary_10_3390_plants12102019 crossref_primary_10_3390_plants12233955 crossref_primary_10_1016_j_ncrops_2024_100012 crossref_primary_10_3389_fpls_2023_1154431 crossref_primary_10_1016_j_postharvbio_2023_112738 crossref_primary_10_3390_microbiolres15030102 crossref_primary_10_1111_jipb_13257 crossref_primary_10_1080_15592324_2019_1657343 crossref_primary_10_1016_j_envexpbot_2024_106015 crossref_primary_10_1007_s10142_023_00967_8 crossref_primary_10_1111_nph_17290 crossref_primary_10_1007_s00299_021_02813_2 crossref_primary_10_1007_s11427_020_1683_x crossref_primary_10_3389_fpls_2019_00549 crossref_primary_10_1007_s40502_023_00743_7 crossref_primary_10_1080_13102818_2020_1749529 crossref_primary_10_1007_s11427_020_1910_1 crossref_primary_10_3390_plants11010055 crossref_primary_10_1111_jipb_13247 crossref_primary_10_1038_s41396_022_01288_7 crossref_primary_10_1007_s13258_022_01335_9 crossref_primary_10_3389_fpls_2021_643403 crossref_primary_10_1080_13102818_2020_1824618 crossref_primary_10_1111_jipb_13363 crossref_primary_10_1080_15592324_2020_1868131 crossref_primary_10_1016_j_plaphy_2024_109183 crossref_primary_10_1016_j_chemosphere_2020_126486 crossref_primary_10_1016_j_tplants_2024_09_007 crossref_primary_10_1007_s44154_022_00040_7 crossref_primary_10_3389_fpls_2019_00319 crossref_primary_10_1002_pei3_10060 crossref_primary_10_1007_s11356_024_33762_4 crossref_primary_10_1016_j_jhazmat_2022_129323 crossref_primary_10_3390_ijms241310915 crossref_primary_10_20289_zfdergi_1418307 crossref_primary_10_1016_j_plantsci_2019_110186 crossref_primary_10_3390_ijms222010943 crossref_primary_10_1186_s42483_022_00139_9 crossref_primary_10_1016_j_ijbiomac_2022_06_099 crossref_primary_10_1016_j_plaphy_2023_107717 crossref_primary_10_3390_ijms232012075 crossref_primary_10_1007_s12229_021_09267_x crossref_primary_10_1016_j_hpj_2021_06_005 crossref_primary_10_3389_fpls_2021_795919 crossref_primary_10_3390_horticulturae8080723 crossref_primary_10_3390_plants12040925 crossref_primary_10_1111_jipb_13022 crossref_primary_10_3389_fpls_2021_615114 crossref_primary_10_3390_plants11020188 crossref_primary_10_3390_plants11243472 crossref_primary_10_1111_jipb_13571 crossref_primary_10_3389_fpls_2022_1005710 crossref_primary_10_3390_plants13141990 crossref_primary_10_3390_ijms232315058 crossref_primary_10_3390_plants13162210 crossref_primary_10_1111_jpi_12570 crossref_primary_10_1111_jipb_13210 crossref_primary_10_1186_s12870_024_05875_y crossref_primary_10_1016_j_envexpbot_2022_104933 crossref_primary_10_3389_fpls_2023_1100838 crossref_primary_10_3389_fpls_2022_1025969 crossref_primary_10_1021_acs_jafc_3c03881 crossref_primary_10_3390_ijms23168909 crossref_primary_10_15252_embj_2021107660 crossref_primary_10_3390_ijms25189845 crossref_primary_10_1016_j_plaphy_2022_10_008 crossref_primary_10_1007_s10265_021_01259_7 crossref_primary_10_15835_nbha50112600 crossref_primary_10_1111_jipb_13324 crossref_primary_10_1007_s11783_021_1432_4 crossref_primary_10_1007_s10343_023_00912_6 crossref_primary_10_1016_j_algal_2022_102909 crossref_primary_10_1016_j_plantsci_2024_112292 crossref_primary_10_1016_j_plantsci_2024_112293 crossref_primary_10_1186_s12870_023_04332_6 crossref_primary_10_3389_fpls_2019_00228 crossref_primary_10_12677_BP_2023_131005 crossref_primary_10_3390_life13061359 crossref_primary_10_1016_j_ecolind_2024_112037 crossref_primary_10_3389_fpls_2019_01453 crossref_primary_10_3390_plants10010180 crossref_primary_10_1016_j_envexpbot_2021_104519 crossref_primary_10_1080_09168451_2020_1740970 crossref_primary_10_1016_j_chemosphere_2024_143438 crossref_primary_10_1016_j_sajb_2024_06_018 crossref_primary_10_3390_ijms25137196 crossref_primary_10_1016_j_indcrop_2023_117228 crossref_primary_10_3390_ijms23073741 crossref_primary_10_3389_fpls_2022_904037 crossref_primary_10_1007_s11103_020_01074_z crossref_primary_10_7717_peerj_8404 crossref_primary_10_1016_j_ijbiomac_2024_135518 crossref_primary_10_1016_j_molp_2023_04_003 crossref_primary_10_1111_ppa_13827 crossref_primary_10_1093_plphys_kiab419 crossref_primary_10_3389_fpls_2020_00968 crossref_primary_10_1186_s12864_022_08311_3 crossref_primary_10_1080_15592324_2019_1649569 crossref_primary_10_1007_s11033_022_07548_1 crossref_primary_10_1007_s11816_025_00960_6 crossref_primary_10_1094_PHYTO_04_24_0125_R crossref_primary_10_3390_ijms21041419 crossref_primary_10_1016_j_jplph_2021_153585 crossref_primary_10_1111_plb_13360 crossref_primary_10_1016_j_bbrc_2020_04_082 crossref_primary_10_1016_j_stress_2021_100026 crossref_primary_10_3390_polym12112486 crossref_primary_10_1080_15592324_2020_1748283 crossref_primary_10_3390_stresses2010006 crossref_primary_10_1111_plb_13245 crossref_primary_10_1111_nph_16921 crossref_primary_10_1007_s00344_024_11586_3 crossref_primary_10_3390_life13010204 crossref_primary_10_1186_s12870_024_05422_9 crossref_primary_10_3390_cells11244105 crossref_primary_10_3390_plants11121615 crossref_primary_10_1016_j_jplph_2021_153574 crossref_primary_10_1093_jxb_erad161 crossref_primary_10_3390_ijms24032325 crossref_primary_10_1071_FP24246 crossref_primary_10_1093_jxb_erad280 crossref_primary_10_3390_biom9120763 crossref_primary_10_3389_fpls_2023_1068296 crossref_primary_10_1007_s12298_024_01417_w crossref_primary_10_3390_antiox11061168 crossref_primary_10_3390_plants12010210 crossref_primary_10_3390_microorganisms11081993 crossref_primary_10_1111_nph_20171 crossref_primary_10_1016_j_cj_2023_05_002 crossref_primary_10_1093_plphys_kiac601 crossref_primary_10_1007_s00122_023_04451_6 crossref_primary_10_1111_pce_15181 crossref_primary_10_1016_j_ccr_2024_215953 crossref_primary_10_3390_ijms222112036 crossref_primary_10_1186_s12864_024_10665_9 crossref_primary_10_1016_j_tplants_2021_10_002 crossref_primary_10_3389_fpls_2023_1118941 crossref_primary_10_1093_jxb_erae249 crossref_primary_10_3390_ijms21155208 crossref_primary_10_1016_j_plaphy_2021_10_003 crossref_primary_10_3389_fpls_2020_485932 crossref_primary_10_3390_nano9121777 crossref_primary_10_1016_j_plaphy_2019_12_019 crossref_primary_10_1146_annurev_arplant_070623_091552 crossref_primary_10_1016_j_cj_2022_03_009 crossref_primary_10_1016_j_postharvbio_2025_113514 crossref_primary_10_1016_j_plaphy_2024_109236 crossref_primary_10_1080_13102818_2020_1787863 crossref_primary_10_1111_ppl_14277 crossref_primary_10_3389_fpls_2023_1138494 crossref_primary_10_1093_jxb_erae037 crossref_primary_10_1016_j_jplph_2023_154082 crossref_primary_10_3389_fpls_2022_910408 crossref_primary_10_1007_s00299_024_03281_0 crossref_primary_10_1016_j_plantsci_2020_110420 crossref_primary_10_3390_life12111757 crossref_primary_10_1111_jipb_13611 crossref_primary_10_1016_j_scienta_2023_111827 crossref_primary_10_1016_j_indcrop_2024_118547 crossref_primary_10_1093_plphys_kiad516 crossref_primary_10_3390_agronomy14102225 crossref_primary_10_3390_agronomy14081698 crossref_primary_10_1186_s12284_021_00453_4 crossref_primary_10_1016_j_marenvres_2025_106997 crossref_primary_10_3390_air1010004 crossref_primary_10_3389_fpls_2022_1027071 crossref_primary_10_1111_plb_13284 crossref_primary_10_3390_agriculture15050522 crossref_primary_10_1016_j_plaphy_2025_109518 crossref_primary_10_1111_jipb_13601 crossref_primary_10_1111_nph_17933 crossref_primary_10_1111_ppl_14452 crossref_primary_10_20935_AcadBiol6265 crossref_primary_10_1111_jipb_12993 crossref_primary_10_1016_j_tiv_2024_105974 crossref_primary_10_1007_s00344_022_10804_0 crossref_primary_10_1007_s11427_021_2024_0 crossref_primary_10_1111_mpp_13317 crossref_primary_10_1016_j_indcrop_2025_120601 crossref_primary_10_1080_26895293_2023_2224936 crossref_primary_10_3389_fpls_2024_1342814 crossref_primary_10_4103_pm_pm_127_20 crossref_primary_10_1016_j_pmpp_2021_101687 crossref_primary_10_3389_fpls_2024_1476126 crossref_primary_10_1007_s10725_019_00492_4 crossref_primary_10_1016_j_hpj_2023_12_004 crossref_primary_10_1016_j_jgg_2024_03_007 crossref_primary_10_1016_j_plaphy_2021_01_014 crossref_primary_10_1007_s44154_022_00069_8 crossref_primary_10_1073_pnas_1901431116 crossref_primary_10_1038_s41576_021_00413_0 crossref_primary_10_1111_nph_20092 crossref_primary_10_1111_jipb_12780 crossref_primary_10_1111_mpp_13440 crossref_primary_10_1007_s00299_024_03196_w crossref_primary_10_1007_s10142_022_00833_z crossref_primary_10_3390_ijms25126355 crossref_primary_10_1093_treephys_tpaf012 crossref_primary_10_1038_s41438_021_00500_7 crossref_primary_10_1111_pce_15155 crossref_primary_10_3389_fpls_2022_891626 crossref_primary_10_1007_s12042_020_09254_3 crossref_primary_10_1016_j_envexpbot_2022_104884 crossref_primary_10_1590_s1678_3921_pab2023_v58_03181 crossref_primary_10_1186_s12864_024_10114_7 crossref_primary_10_2139_ssrn_4074218 crossref_primary_10_1093_jxb_erac215 crossref_primary_10_1111_tpj_16368 crossref_primary_10_3390_genes15070935 crossref_primary_10_1007_s11104_022_05369_6 crossref_primary_10_1016_j_indcrop_2023_116843 crossref_primary_10_3390_horticulturae7060132 crossref_primary_10_1007_s00344_021_10490_4 crossref_primary_10_1007_s00425_023_04136_w crossref_primary_10_1016_j_plaphy_2024_108635 crossref_primary_10_1093_jxb_erad308 crossref_primary_10_1016_j_molp_2019_08_005 crossref_primary_10_1016_j_plaphy_2023_03_004 crossref_primary_10_1016_j_micpath_2023_106053 crossref_primary_10_1111_tpj_15271 crossref_primary_10_1177_1176934320911055 crossref_primary_10_3389_fpls_2024_1464828 crossref_primary_10_1093_plcell_koad310 crossref_primary_10_1111_pbi_14007 crossref_primary_10_3389_fpls_2022_1019505 crossref_primary_10_1111_jipb_12714 crossref_primary_10_1093_plcell_koac106 crossref_primary_10_1139_cjss_2022_0022 crossref_primary_10_1007_s00344_024_11469_7 crossref_primary_10_1007_s00425_021_03726_w crossref_primary_10_1016_j_jplph_2020_153361 crossref_primary_10_3389_fpls_2022_1031891 crossref_primary_10_1016_j_algal_2019_101775 crossref_primary_10_1002_bies_202400097 crossref_primary_10_1038_s41598_024_71847_9 crossref_primary_10_1071_CP23183 crossref_primary_10_3389_fpls_2020_584167 crossref_primary_10_1038_s41467_021_22812_x crossref_primary_10_3389_fpls_2022_854937 crossref_primary_10_1093_plcell_koab221 crossref_primary_10_1111_nph_15543 crossref_primary_10_3390_plants12091807 crossref_primary_10_1007_s13738_021_02451_1 crossref_primary_10_1093_hr_uhad221 crossref_primary_10_3390_ijms23105666 crossref_primary_10_1016_j_plaphy_2023_108259 crossref_primary_10_1016_j_plaphy_2022_01_016 crossref_primary_10_3390_plants13040469 crossref_primary_10_1039_D4EN00963K crossref_primary_10_3390_ijms21020670 crossref_primary_10_1111_jipb_13829 crossref_primary_10_1016_j_apsb_2023_08_011 crossref_primary_10_3390_plants12051129 crossref_primary_10_1128_spectrum_01445_22 crossref_primary_10_1186_s12864_021_07470_z crossref_primary_10_1002_ece3_6206 crossref_primary_10_1186_s12870_022_03883_4 crossref_primary_10_3390_antiox12010057 crossref_primary_10_3390_plants13121665 crossref_primary_10_1111_pce_14020 crossref_primary_10_1016_j_plaphy_2023_108129 crossref_primary_10_1007_s12042_024_09362_4 crossref_primary_10_1016_j_jgg_2022_05_007 crossref_primary_10_1007_s10142_023_01065_5 crossref_primary_10_1111_tpj_15350 crossref_primary_10_3390_ijms221910304 crossref_primary_10_1007_s10409_020_00980_1 crossref_primary_10_3389_fpls_2025_1525336 crossref_primary_10_1111_jipb_12800 crossref_primary_10_3390_ijms24043884 crossref_primary_10_1093_plcell_koab282 crossref_primary_10_1016_j_plantsci_2021_110824 crossref_primary_10_3390_agronomy14040694 crossref_primary_10_3390_ijms22158327 crossref_primary_10_1007_s11032_021_01267_4 crossref_primary_10_1007_s11240_023_02504_8 crossref_primary_10_1016_j_plaphy_2023_02_009 crossref_primary_10_1016_j_chom_2024_12_003 crossref_primary_10_1016_j_micpath_2024_106772 crossref_primary_10_1111_tpj_15481 crossref_primary_10_1007_s11738_024_03666_4 crossref_primary_10_1016_j_plaphy_2023_107692 crossref_primary_10_1111_nph_16324 crossref_primary_10_1007_s42452_020_2246_x crossref_primary_10_1016_j_plaphy_2021_08_010 crossref_primary_10_1186_s12870_020_02450_z crossref_primary_10_1016_j_scienta_2024_113102 crossref_primary_10_1093_hr_uhac181 crossref_primary_10_1093_jxb_erab271 crossref_primary_10_1038_s41438_021_00651_7 crossref_primary_10_1016_j_gene_2024_149176 crossref_primary_10_1111_ppl_14059 crossref_primary_10_1111_jipb_12707 crossref_primary_10_1093_plcell_koab264 crossref_primary_10_1007_s11104_022_05466_6 crossref_primary_10_1186_s13065_019_0647_y crossref_primary_10_1002_advs_201901455 crossref_primary_10_3390_ijms24032401 crossref_primary_10_3390_agronomy13051320 crossref_primary_10_1016_j_jplph_2022_153892 crossref_primary_10_1016_j_molp_2023_11_011 crossref_primary_10_3389_fendo_2022_1038171 crossref_primary_10_3390_genes14061199 crossref_primary_10_1134_S0003683823050186 crossref_primary_10_3389_fpls_2022_1033915 crossref_primary_10_3389_fpls_2024_1371895 crossref_primary_10_36899_JAPS_2021_6_0369 crossref_primary_10_1111_nph_19703 crossref_primary_10_3389_fpls_2023_1104874 crossref_primary_10_1016_j_gene_2022_146335 crossref_primary_10_1080_17429145_2024_2393803 crossref_primary_10_1093_plcell_koac244 crossref_primary_10_1016_j_jplph_2020_153184 crossref_primary_10_1111_nph_16786 crossref_primary_10_1016_j_jplph_2020_153183 crossref_primary_10_1111_nph_15696 crossref_primary_10_1093_jxb_erac381 crossref_primary_10_1016_j_indcrop_2025_120676 crossref_primary_10_1080_15592324_2019_1704528 crossref_primary_10_48130_frures_0024_0033 crossref_primary_10_1007_s11104_020_04814_8 crossref_primary_10_1111_pbi_14112 crossref_primary_10_1093_plphys_kiad567 crossref_primary_10_1093_plphys_kiae414 crossref_primary_10_1111_nph_19934 crossref_primary_10_3389_fpls_2022_840360 |
Cites_doi | 10.1371/journal.pgen.1005373 10.1038/nature06608 10.1105/tpc.111.091033 10.1105/tpc.112.100107 10.1073/pnas.0602225103 10.1016/j.chom.2012.09.003 10.7554/eLife.13568 10.1073/pnas.1115982109 10.1038/nature10427 10.1126/scisignal.2001346 10.1016/j.chom.2014.02.009 10.1038/ncomms9630 10.1104/pp.16.00328 10.1105/tpc.15.00637 10.3389/fpls.2015.00069 10.1104/pp.126.4.1449 10.1007/s00425-006-0450-6 10.1073/pnas.1308974110 10.1038/ncb1387 10.1105/tpc.112.107904 10.7554/eLife.23361 10.1007/s00425-012-1696-9 10.1093/aob/mcv074 10.1371/journal.pbio.2000322 10.1126/science.1173041 10.1016/j.celrep.2016.11.015 10.1038/emboj.2011.68 10.1111/j.1365-313X.2006.02837.x 10.1111/j.1365-3040.2009.02041.x 10.1038/nplants.2015.74 10.1093/mp/sst009 10.1126/science.1103178 10.1104/pp.106.079129 10.1111/j.1462-5822.2012.01749.x 10.1105/tpc.16.00131 10.1186/s13059-015-0715-0 10.1104/pp.107.099226 10.4161/viru.29755 10.1016/j.stem.2010.11.028 10.1042/BJ20091221 10.1016/j.tplants.2009.03.006 10.1105/tpc.113.118687 10.1111/jipb.12523 10.1371/journal.pgen.1004791 10.1016/j.plaphy.2016.02.035 10.1105/tpc.108.061507 10.1111/j.1365-313X.2010.04302.x 10.1073/pnas.0912021106 10.1016/j.molp.2014.10.012 10.1073/pnas.012452499 10.1146/annurev-phyto-082712-102314 10.1105/tpc.113.114595 10.1073/pnas.0402112101 10.1080/15592324.2016.1161879 10.1111/j.1744-7909.2012.01177.x 10.1105/tpc.112.098707 10.1016/j.stem.2014.05.009 10.1038/35021067 10.1073/pnas.1319955111 10.1105/tpc.15.00583 10.1038/nature06720 10.1016/j.cell.2016.08.029 10.1074/jbc.M309529200 10.1007/s11356-016-7947-8 10.1016/j.cub.2015.01.067 10.1073/pnas.1215543110 10.1093/jxb/ert375 10.1093/emboj/cdg277 10.1093/jxb/erq424 10.1016/j.pbi.2011.07.014 10.1038/nature13593 10.1105/tpc.15.00144 10.1105/tpc.109.072959 10.1074/jbc.M509820200 10.1073/pnas.221252798 10.1073/pnas.0907205106 10.1105/tpc.010210 10.1038/nature08794 10.1038/sj.emboj.7601575 10.1016/j.tplants.2016.08.002 10.1016/j.molcel.2014.02.021 10.1046/j.1365-313X.2001.01138.x 10.1093/pcp/pcv063 10.1105/tpc.010433 10.1105/tpc.106.044230 10.1104/pp.15.01546 10.1146/annurev-phyto-081211-172902 10.1104/pp.15.01237 10.3389/fpls.2015.00420 10.1105/tpc.12.3.405 10.1093/pcp/pcq156 10.1016/j.cell.2010.10.020 10.1073/pnas.231178298 10.1016/j.tplants.2011.03.007 10.1104/pp.16.00434 10.1016/S1369-5266(02)00282-0 10.1105/tpc.113.121061 10.1038/nature20166 10.1126/scisignal.2000448 10.1016/j.cub.2015.09.013 10.1038/nature12478 10.1016/j.stem.2013.04.001 10.1105/tpc.16.00583 10.1093/mp/ssu070 10.1016/j.chom.2010.03.007 10.1073/pnas.1604936113 10.1073/pnas.0909705107 10.1038/nature02353 10.1146/annurev.phyto.121107.104959 10.1016/j.chom.2014.10.007 10.1126/science.1156973 10.1016/j.tplants.2009.01.008 10.1073/pnas.0609063103 10.1104/pp.114.255216 10.1093/jxb/erp219 10.1105/tpc.15.00421 10.1046/j.1469-8137.2001.00028.x 10.1016/j.tplants.2004.08.009 10.1016/j.plantsci.2013.07.004 10.1111/nph.13435 10.1016/S0014-5793(01)03106-4 10.1126/stke.2001.113.re22 10.1016/j.pbi.2013.06.013 10.1038/ncb2009 10.1016/j.cell.2006.06.054 10.1111/j.1365-3040.2007.01651.x 10.1105/tpc.007906 10.1111/tpj.13299 10.1073/pnas.1704754114 10.1007/s00425-001-0675-3 10.1016/j.febslet.2009.08.033 10.3389/fpls.2015.00701 10.1073/pnas.0702061104 10.3389/fpls.2016.01299 10.1104/pp.15.00026 10.1111/nph.13621 10.1126/science.1172408 10.1105/tpc.111.093039 10.1111/j.1744-7909.2008.00759.x 10.1104/pp.112.210724 10.1104/pp.114.4.1557 10.1371/journal.pgen.1006175 10.1111/tpj.12133 10.1146/annurev.arplant.52.1.561 10.1146/annurev-arplant-042809-112226 10.1016/j.molp.2015.12.014 10.1111/j.1365-313X.2005.02615.x 10.1038/35066500 10.1038/cr.2015.46 10.1073/pnas.1423481112 10.1094/MPMI-20-4-0335 10.1104/pp.110.169797 10.1104/pp.113.220608 10.1016/j.tplants.2015.08.014 10.1105/tpc.113.109827 10.1016/j.pbi.2013.07.002 10.1073/pnas.0912030107 10.1105/tpc.112.109074 10.1104/pp.16.00375 10.3389/fpls.2012.00292 10.1073/pnas.1221294110 10.1105/tpc.010441 10.1101/gad.1812409 10.1105/tpc.108.062992 10.1104/pp.109.141770 10.1016/j.pbi.2017.04.022 10.1111/j.1365-3040.2011.02336.x 10.1016/j.bbrc.2014.02.013 10.1111/j.1365-313X.2010.04280.x 10.1105/tpc.113.122358 10.1038/ncomms1926 |
ContentType | Journal Article |
Copyright | 2018 Institute of Botany, Chinese Academy of Sciences 2018 Institute of Botany, Chinese Academy of Sciences. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2018 Institute of Botany, Chinese Academy of Sciences – notice: 2018 Institute of Botany, Chinese Academy of Sciences. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7T7 8FD C1K FR3 P64 RC3 7X8 7S9 L.6 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1111/jipb.12654 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1744-7909 |
EndPage | 826 |
ExternalDocumentID | zwxb201809006 29660240 10_1111_jipb_12654 JIPB12654 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31730007 – fundername: National Key Scientific Research Project funderid: 2011CB915400 – fundername: National Key Scientific Research Project grantid: 2011CB915400 – fundername: National Natural Science Foundation of China grantid: 31730007 – fundername: J.Z.and Z.G.are supported by the National Key Scientific Research Project (2011CB915400).Z.G.is supported by the National Natural Science Foundation of China funderid: (31730007) |
GroupedDBID | --- -SA -S~ .3N .GA .Y3 05W 0R~ 10A 1OC 29K 2B. 2C. 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VR 5VS 5XA 5XB 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 92E 92I 92Q 930 93N A03 A8Z AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXDM AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFUIB AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CAJEA CCEZO CCVFK CHBEP CHDYS COF CS3 CW9 D-E D-F D-I DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FA0 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q-- Q.N Q11 QB0 R.K ROL RX1 SJN SUPJJ SV3 TCJ TGP TUS U1G U5K UB1 W8V W99 WBKPD WFFXF WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 7X8 7S9 L.6 4A8 PSX |
ID | FETCH-LOGICAL-c4864-3bbe3dc1eafb9bf2d2a636db1969dc1c3c316ec5fa1d417f729cad60c46d7c843 |
IEDL.DBID | DR2 |
ISSN | 1672-9072 1744-7909 |
IngestDate | Thu May 29 04:01:05 EDT 2025 Fri Jul 11 18:35:53 EDT 2025 Fri Jul 11 02:47:06 EDT 2025 Fri Jul 25 21:07:35 EDT 2025 Wed Feb 19 02:42:40 EST 2025 Tue Jul 01 03:06:08 EDT 2025 Thu Apr 24 23:07:03 EDT 2025 Wed Jan 22 16:59:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | 2018 Institute of Botany, Chinese Academy of Sciences. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4864-3bbe3dc1eafb9bf2d2a636db1969dc1c3c316ec5fa1d417f729cad60c46d7c843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 29660240 |
PQID | 2099810239 |
PQPubID | 2045135 |
PageCount | 22 |
ParticipantIDs | wanfang_journals_zwxb201809006 proquest_miscellaneous_2153611362 proquest_miscellaneous_2026411189 proquest_journals_2099810239 pubmed_primary_29660240 crossref_citationtrail_10_1111_jipb_12654 crossref_primary_10_1111_jipb_12654 wiley_primary_10_1111_jipb_12654_JIPB12654 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2018 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
PublicationDecade | 2010 |
PublicationPlace | China (Republic : 1949- ) |
PublicationPlace_xml | – name: China (Republic : 1949- ) – name: Hoboken |
PublicationTitle | Journal of integrative plant biology |
PublicationTitleAlternate | J Integr Plant Biol |
PublicationTitle_FL | Journal of Integrative Plant Biology |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China%Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng 475001,China%Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan 250000, China%State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101,China%Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland%Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China%Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng 475001,China%Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan 250000, China%State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101,China%Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland%Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China – name: Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA |
References | 2010; 12 2007; 225 2007; 104 2011; 478 2002; 14 2010; 107 2010; 464 2011; 62 2004; 9 2002; 99 2014; 26 2012; 14 2012; 12 2013; 6 2001; 149 2010; 22 2001; 410 2009; 14 2000; 12 2013; 51 2000; 406 2014; 16 2014; 15 2013; 110 2006; 281 2012; 24 2010; 7 2001; 52 2014; 10 2015; 56 2010; 33 2009; 60 2002; 5 2013; 500 2016; 167 2011; 4 2008; 50 2016; 17 2004; 427 2012; 35 2004; 306 2016; 14 2011; 8 2012; 109 2016; 12 2016; 11 2016; 5 2016; 7 2004; 279 2006; 45 2017; 59 2015; 116 2006; 47 2013; 74 2016; 21 2013; 211 2009; 583 2015b; 16 2008; 46 2016; 171 2016; 28 2012; 236 2016; 170 2016; 9 2010; 51 2003; 22 2006; 103 2009; 106 2017; 6 1997; 114 2013; 25 2015a; 112 2007; 144 2001b; 28 2010; 143 2001; 508 2013; 162 2009; 151 2016; 103 2007; 30 2011; 14 2011; 16 2017; 114 2012; 54 2010; 63 2011; 156 2014; 65 2010; 61 2013a; 161 2014; 5 2013; 16 2013; 12 2017; 38 2016; 113 2011; 23 2014; 52 2007; 20 2006; 126 2001; 13 2014; 7 2014; 445 2009; 324 2007; 26 2014; 54 2001; 98 2009; 23 2014; 514 2004; 101 2015; 1 2015; 6 2013b; 110 2001a; 126 2015; 4 2009; 21 2000; 26 2017; 22 2015; 167 2017; 24 2015; 11 2006; 8 2011; 30 2002; 214 2006; 18 2015; 208 2017; 29 2008; 321 2014; 111 2015; 8 2015; 25 2017; 90 2015; 27 2012; 3 2016; 539 2006; 141 2009; 2 2008; 452 2001; 2001 2009; 424 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_158_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_154_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_147_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 Shumbe L (e_1_2_10_128_1) 2016; 170 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 Brandt B (e_1_2_10_11_1) 2015; 4 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_148_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_171_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_8_1 e_1_2_10_57_1 Miao YC (e_1_2_10_83_1) 2000; 26 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_160_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_164_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_130_1 e_1_2_10_157_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_153_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 62 start-page: 2371 year: 2011 end-page: 2379 article-title: Heterotrimeric G‐protein regulation of ROS signalling and calcium currents in guard cells publication-title: J Exp Bot – volume: 208 start-page: 162 year: 2015 end-page: 173 article-title: Guard cell SLAC1‐type anion channels mediate flagellin‐induced stomatal closure publication-title: New Phytol – volume: 52 start-page: 517 year: 2014 end-page: 549 article-title: Predisposition in plant disease: Exploiting the nexus in abiotic and biotic stress perception and response publication-title: Annu Rev Phytopathol – volume: 2001 start-page: re22 year: 2001 article-title: Plant receptor‐like kinase gene family: Diversity, function, and signaling publication-title: Sci STKE – volume: 14 start-page: 691 year: 2011 end-page: 699 article-title: Respiratory burst oxidases: The engines of ROS signaling publication-title: Curr Opin Plant Biol – volume: 18 start-page: 2749 year: 2006 end-page: 2766 article-title: An glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses publication-title: Plant Cell – volume: 14 start-page: 669 year: 2012 end-page: 681 article-title: A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses publication-title: Cell Microbiol – volume: 452 start-page: 483 year: 2008 end-page: 486 article-title: CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells publication-title: Nature – volume: 22 start-page: 2623 year: 2003 end-page: 2633 article-title: NADPH oxidase and genes function in ROS‐dependent ABA signaling in publication-title: EMBO J – volume: 63 start-page: 749 year: 2010 end-page: 765 article-title: ABA overly‐sensitive 5 (ABO5), encoding a pentatricopeptide repeat protein required for cis‐splicing of mitochondrial nad2 intron 3, is involved in the abscisic acid response in publication-title: Plant J – volume: 3 start-page: 926 year: 2012 article-title: Chloroplast‐mediated activation of plant immune signalling in publication-title: Nat Commun – volume: 22 start-page: 2981 year: 2010 end-page: 2998 article-title: Hydrogen peroxide‐mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in publication-title: Plant Cell – volume: 1 start-page: 15074 year: 2015 article-title: Chloroplasts play a central role in plant defence and are targeted by pathogen effectors publication-title: Nat Plants – volume: 161 start-page: 1392 year: 2013a end-page: 1408 article-title: The MPK6‐ERF6‐ROS‐responsive cis‐acting element7/GCC box complex modulates oxidative gene transcription and the oxidative response in publication-title: Plant Physiol – volume: 583 start-page: 2982 year: 2009 end-page: 2986 article-title: Phosphorylation of the AtrbohF NADPH oxidase by OST1 protein kinase publication-title: FEBS Lett – volume: 321 start-page: 557 year: 2008 end-page: 560 article-title: BSKs mediate signal transduction from the receptor kinase BRI1 in publication-title: Science – volume: 156 start-page: 185 year: 2011 end-page: 201 article-title: Organelles contribute differentially to reactive oxygen species‐related events during extended darkness publication-title: Plant Physiol – volume: 126 start-page: 969 year: 2006 end-page: 980 article-title: Plant stomata function in innate immunity against bacterial invasion publication-title: Cell – volume: 47 start-page: 851 year: 2006 end-page: 863 article-title: Peroxidase‐dependent apoplastic oxidative burst in required for pathogen resistance publication-title: Plant J – volume: 113 start-page: E4567 year: 2016 end-page: E4576 article-title: Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase publication-title: Proc Natl Acad Sci USA – volume: 171 start-page: 1606 year: 2016 end-page: 1615 article-title: ROS, calcium, and electric signals: Key mediators of rapid systemic signaling in plants publication-title: Plant Physiol – volume: 21 start-page: 2143 year: 2009 end-page: 2162 article-title: The high light response in involves ABA signaling between vascular and bundle sheath cells publication-title: Plant Cell – volume: 214 start-page: 775 year: 2002 end-page: 782 article-title: The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid‐response regulator to redox signalling publication-title: Planta – volume: 98 start-page: 13454 year: 2001 end-page: 13459 article-title: Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response publication-title: Proc Natl Acad Sci USA – volume: 14 start-page: S15 year: 2002 end-page: S45 article-title: Abscisic acid signaling in seeds and seedlings publication-title: Plant Cell – volume: 7 start-page: 290 year: 2010 end-page: 301 article-title: Receptor‐like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a effector publication-title: Cell Host Microbe – volume: 24 start-page: 2273 year: 2017 end-page: 2285 article-title: Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress publication-title: Environ Sci Pollut Res – volume: 107 start-page: 8023 year: 2010 end-page: 8028 article-title: Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca affinities publication-title: Proc Natl Acad Sci USA – volume: 452 start-page: 487 year: 2008 end-page: U415 article-title: SLAC1 is required for plant guard cell S‐type anion channel function in stomatal signalling publication-title: Nature – volume: 16 start-page: 575 year: 2013 end-page: 582 article-title: ROS signaling loops ‐ production, perception, regulation publication-title: Curr Opin Plant Biol – volume: 424 start-page: 439 year: 2009 end-page: 448 article-title: Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA‐activated SnRK2/OST1/SnRK2.6 protein kinase publication-title: Biochem J – volume: 110 start-page: 6205 year: 2013 end-page: 6210 article-title: BIK1 interacts with PEPRs to mediate ethylene‐induced immunity publication-title: Proc Natl Acad Sci USA – volume: 56 start-page: 1472 year: 2015 end-page: 1480 article-title: Regulation of the NADPH Oxidase RBOHD during plant immunity publication-title: Plant Cell Physiol – volume: 26 start-page: 53 year: 2000 end-page: 58 article-title: ABA‐induced hydrogen peroxide generation in guard cells of publication-title: Acta Phytophysiol Sin – volume: 21 start-page: 16 year: 2016 end-page: 30 article-title: CO Sensing and CO regulation of stomatal conductance: Advances and open questions publication-title: Trends Plant Sci – volume: 24 start-page: 2546 year: 2012 end-page: 2561 article-title: A plasma membrane receptor kinase, GHR1, mediates abscisic acid‐ and hydrogen peroxide‐regulated stomatal movement in publication-title: Plant Cell – volume: 25 start-page: 1126 year: 2013 end-page: 1142 article-title: Phosphorylation of an ERF transcription factor by MPK3/MPK6 regulates plant defense gene induction and fungal resistance publication-title: Plant Cell – volume: 51 start-page: 1821 year: 2010 end-page: 1839 article-title: Molecular basis of the core regulatory network in ABA responses: Sensing, signaling and transport publication-title: Plant Cell Physiol – volume: 112 start-page: 613 year: 2015a end-page: 618 article-title: Nitric oxide negatively regulates abscisic acid signaling in guard cells by S‐nitrosylation of OST1 publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 701 year: 2015 article-title: Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO with environmental stress in plants publication-title: Front Plant Sci – volume: 236 start-page: 765 year: 2012 end-page: 779 article-title: Reactive oxygen species and their role in plant defence and cell wall metabolism publication-title: Planta – volume: 114 start-page: 9200 year: 2017 end-page: 9205 article-title: Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA‐ and pathogen‐triggered stomatal closure publication-title: Proc Natl Acad Sci USA – volume: 11 start-page: e1005373 year: 2015 article-title: Large‐scale phenomics identifies primary and fine‐tuning roles for CRKs in responses related to oxidative stress publication-title: PLoS Genet – volume: 25 start-page: 1445 year: 2013 end-page: 1462 article-title: Light‐induced acclimation of the chlorina1 mutant to singlet oxygen publication-title: Plant Cell – volume: 24 start-page: 1815 year: 2012 end-page: 1833 article-title: DEXH box RNA helicase‐mediated mitochondrial reactive oxygen species production in mediates crosstalk between abscisic acid and auxin signaling publication-title: Plant Cell – volume: 141 start-page: 357 year: 2006 end-page: 366 article-title: Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling publication-title: Plant Physiol – volume: 478 start-page: 264 year: 2011 end-page: 268 article-title: S‐nitrosylation of NADPH oxidase regulates cell death in plant immunity publication-title: Nature – volume: 106 start-page: 20520 year: 2009 end-page: 20525 article-title: MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS‐mediated ABA signaling publication-title: Proc Natl Acad Sci USA – volume: 25 start-page: 3553 year: 2013 end-page: 3569 article-title: Temporal‐spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants publication-title: Plant Cell – volume: 427 start-page: 858 year: 2004 end-page: 861 article-title: OXI1 kinase is necessary for oxidative burst‐mediated signalling in publication-title: Nature – volume: 52 start-page: 561 year: 2001 end-page: 591 article-title: PLANT MITOCHONDRIA AND OXIDATIVE STRESS: Electron transport, NADPH turnover, and metabolism of reactive oxygen species publication-title: Annu Rev Plant Physiol Plant Mol Biol – volume: 60 start-page: 3727 year: 2009 end-page: 3735 article-title: OXI1 protein kinase is required for plant immunity against Pseudomonas syringae in publication-title: J Exp Bot – volume: 279 start-page: 1794 year: 2004 end-page: 1800 article-title: phospholipase D alpha 1 interacts with the heterotrimeric G‐protein alpha‐subunit through a motif analogous to the DRY motif in G‐protein‐coupled receptors publication-title: J Biol Chem – volume: 8 start-page: 59 year: 2011 end-page: 71 article-title: Proliferative neural stem cells have high endogenous ROS levels that regulate self‐renewal and neurogenesis in a PI3K/Akt‐dependant manner publication-title: Cell Stem Cell – volume: 14 start-page: 1235 year: 2002 end-page: 1251 article-title: A mitochondrial complex I defect impairs cold‐regulated nuclear gene expression publication-title: Plant Cell – volume: 24 start-page: 275 year: 2012 end-page: 287 article-title: The apoplastic oxidative burst peroxidase in is a major component of pattern‐triggered immunity publication-title: Plant Cell – volume: 74 start-page: 372 year: 2013 end-page: 382 article-title: Open stomata 1 (OST1) kinase controls R‐type anion channel QUAC1 in guard cells publication-title: Plant J – volume: 38 start-page: 92 year: 2017 end-page: 100 article-title: Apoplastic ROS signaling in plant immunity publication-title: Curr Opin Plant Biol – volume: 170 start-page: 1757 year: 2016 end-page: 1771 article-title: Singlet oxygen‐induced cell death in under high‐light stress is controlled by OXI1 kinase publication-title: Plant Physiol – volume: 114 start-page: 1557 year: 1997 end-page: 1560 article-title: Convergence of the abscisic acid, CO2, and extracellular calcium signal transduction pathways in stomatal guard cells publication-title: Plant Physiol – volume: 16 start-page: 300 year: 2011 end-page: 309 article-title: ROS signaling: The new wave publication-title: Trends Plant Sci – volume: 324 start-page: 1068 year: 2009 end-page: 1071 article-title: Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins publication-title: Science – volume: 116 start-page: 475 year: 2015 end-page: 485 article-title: Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks publication-title: Ann Bot – volume: 208 start-page: 342 year: 2015 end-page: 353 article-title: Guard cell hydrogen peroxide and nitric oxide mediate elevated CO ‐induced stomatal movement in tomato publication-title: New Phytol – volume: 14 start-page: 310 year: 2009 end-page: 317 article-title: The multifaceted role of ABA in disease resistance publication-title: Trends Plant Sci – volume: 110 start-page: 8744 year: 2013 end-page: 8749 article-title: Calcium‐dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation publication-title: Proc Natl Acad Sci USA – volume: 29 start-page: 543 year: 2017 end-page: 559 article-title: Cytokinin‐mediated regulation of reactive oxygen species homeostasis modulates stomatal immunity in publication-title: Plant Cell – volume: 27 start-page: 1445 year: 2015 end-page: 1460 article-title: CALCIUM‐DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid‐mediated signaling and H O homeostasis in stomatal guard cells under drought stress publication-title: Plant Cell – volume: 406 start-page: 731 year: 2000 end-page: 734 article-title: Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells publication-title: Nature – volume: 171 start-page: 1569 year: 2016 end-page: 1580 article-title: Reactive oxygen species in the regulation of stomatal movements publication-title: Plant Physiol – volume: 211 start-page: 77 year: 2013 end-page: 91 article-title: Redox control of plant growth and development publication-title: Plant Sci – volume: 30 start-page: 617 year: 2007 end-page: 629 article-title: Characterization and expression analysis of genes encoding alpha and beta carbonic anhydrases in publication-title: Plant Cell Environ – volume: 6 start-page: e23361 year: 2017 article-title: A chloroplast retrograde signal, 3′‐phosphoadenosine 5′‐phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination publication-title: eLife – volume: 514 start-page: 367 year: 2014 article-title: OSCA1 mediates osmotic‐stress‐evoked Ca increases vital for osmosensing in publication-title: Nature – volume: 28 start-page: 2493 year: 2016 end-page: 2509 article-title: A dominant mutation in the HT1 kinase uncovers roles of MAP kinases and GHR1 in CO ‐induced stomatal closure publication-title: Plant Cell – volume: 162 start-page: 1652 year: 2013 end-page: 1668 article-title: PYR/RCAR receptors contribute to ozone‐, reduced air humidity‐, darkness‐, and CO ‐induced stomatal regulation publication-title: Plant Physiol – volume: 12 start-page: 87 year: 2010 end-page: U234 article-title: Carbonic anhydrases are upstream regulators of CO ‐controlled stomatal movements in guard cells publication-title: Nat Cell Biol – volume: 25 start-page: 928 year: 2015 end-page: 935 article-title: Stomatal guard cells co‐opted an ancient ABA‐dependent desiccation survival system to regulate stomatal closure publication-title: Curr Biol – volume: 16 start-page: 638 year: 2013 end-page: 646 article-title: Early evolutionary acquisition of stomatal control and development gene signalling networks publication-title: Curr Opin Plant Biol – volume: 35 start-page: 259 year: 2012 end-page: 270 article-title: ROS and redox signalling in the response of plants to abiotic stress publication-title: Plant Cell Environ – volume: 500 start-page: 422 year: 2013 end-page: 426 article-title: GLUTAMATE RECEPTOR‐LIKE genes mediate leaf‐to‐leaf wound signalling publication-title: Nature – volume: 13 start-page: 2513 year: 2001 end-page: 2523 article-title: Abscisic acid activation of plasma membrane Ca channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1‐1 and abi2‐1 protein phosphatase 2C mutants publication-title: Plant Cell – volume: 149 start-page: 247 year: 2001 end-page: 264 article-title: Stomatal conductance of forest species after long‐term exposure to elevated CO concentration: A synthesis publication-title: New Phytol – volume: 167 start-page: 1731 year: 2015 end-page: 1746 article-title: Site‐specific nitrosoproteomic identification of endogenously S‐nitrosylated proteins in publication-title: Plant Physiol – volume: 54 start-page: 887 year: 2012 end-page: 906 article-title: Mitochondrial composition, function and stress response in plants publication-title: J Integr Plant Biol – volume: 61 start-page: 561 year: 2010 end-page: 591 article-title: Guard cell signal transduction network: Advances in understanding abscisic acid, CO , and Ca signaling publication-title: Annu Rev Plant Biol – volume: 225 start-page: 1421 year: 2007 end-page: 1429 article-title: Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of publication-title: Planta – volume: 143 start-page: 606 year: 2010 end-page: 616 article-title: Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root publication-title: Cell – volume: 51 start-page: 245 year: 2013 end-page: 266 article-title: MAPK cascades in plant disease resistance signaling publication-title: Annu Rev Phytopathol – volume: 14 start-page: 219 year: 2009 end-page: 228 article-title: Singlet oxygen in plants: Production, detoxification and signaling publication-title: Trends Plant Sci – volume: 4 year: 2015 article-title: Calcium specificity signaling mechanisms in abscisic acid signal transduction in guard cells publication-title: eLife – volume: 15 start-page: 199 year: 2014 end-page: 214 article-title: Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2‐dependent notch signaling publication-title: Cell Stem Cell – volume: 11 start-page: e1161879 year: 2016 article-title: New roles for the GLUTAMATE RECEPTOR‐LIKE 3.3, 3.5, and 3.6 genes as on/off switches of wound‐induced systemic electrical signals publication-title: Plant Signal Behav – volume: 104 start-page: 10270 year: 2007 end-page: 10275 article-title: EXECUTER1‐ and EXECUTER2‐dependent transfer of stress‐related signals from the plastid to the nucleus of publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 69 year: 2015 article-title: ROS‐mediated abiotic stress‐induced programmed cell death in plants publication-title: Front Plant Sci – volume: 8 start-page: 566 year: 2015 end-page: 581 article-title: A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens publication-title: Mol Plant – volume: 126 start-page: 1449 year: 2001a end-page: 1458 article-title: Phospholipase D and phosphatidic acid‐mediated generation of superoxide in publication-title: Plant Physiol – volume: 26 start-page: 1729 year: 2014 end-page: 1745 article-title: Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in publication-title: Plant Cell – volume: 99 start-page: 517 year: 2002 end-page: 522 article-title: gp91(phox) homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response publication-title: Proc Natl Acad Sci USA – volume: 50 start-page: 1238 year: 2008 end-page: 1246 article-title: Nitric oxide signaling in plant responses to abiotic stresses publication-title: J Integr Plant Biol – volume: 26 start-page: 164 year: 2014 end-page: 180 article-title: A wheat SIMILAR TO RCD‐ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity publication-title: Plant Cell – volume: 12 start-page: 774 year: 2013 end-page: 786 article-title: ROS are required for mouse spermatogonial stem cell self‐renewal publication-title: Cell Stem Cell – volume: 28 start-page: 135 year: 2001b end-page: 144 article-title: Regulation of plant water loss by manipulating the expression of phospholipase D alpha publication-title: Plant J – volume: 508 start-page: 443 year: 2001 end-page: 446 article-title: Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from publication-title: FEBS Lett – volume: 46 start-page: 101 year: 2008 end-page: 122 article-title: Role of stomata in plant innate immunity and foliar bacterial diseases publication-title: Annu Rev Phytopathol – volume: 45 start-page: 113 year: 2006 end-page: 122 article-title: ABA‐induced NO generation and stomatal closure in are dependent on H O synthesis publication-title: Plant J – volume: 539 start-page: 524 year: 2016 end-page: 529 article-title: Bacteria establish an aqueous living space in plants crucial for virulence publication-title: Nature – volume: 25 start-page: 2709 year: 2015 end-page: 2716 article-title: Elevated CO ‐induced responses in stomata require ABA and ABA signaling publication-title: Curr Biol – volume: 7 start-page: 1191 year: 2014 end-page: 1210 article-title: Spatial H O signaling specificity: H O from chloroplasts and peroxisomes modulates the plant transcriptome differentially publication-title: Mol Plant – volume: 5 start-page: 710 year: 2014 end-page: 721 article-title: Go in for the kill how plants deploy effector‐triggered immunity to combat pathogens publication-title: Virulence – volume: 14 start-page: 3089 year: 2002 end-page: 3099 article-title: OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production publication-title: Plant Cell – volume: 151 start-page: 603 year: 2009 end-page: 619 article-title: Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses germination and growth and alters control of metabolism at night publication-title: Plant Physiol – volume: 3 start-page: 292 year: 2012 article-title: ROS‐talk ‐ how the apoplast, the chloroplast, and the nucleus get the message through publication-title: Front Plant Sci – volume: 30 start-page: 1645 year: 2011 end-page: 1658 article-title: Central functions of bicarbonate in S‐type anion channel activation and OST1 protein kinase in CO signal transduction in guard cell publication-title: EMBO J – volume: 28 start-page: 568 year: 2016 end-page: 582 article-title: Reconstitution of CO2 regulation of SLAC1 anion channel and function of CO ‐permeable PIP2;1 aquaporin as CARBONIC ANHYDRASE4 interactor publication-title: Plant Cell – volume: 109 start-page: 5535 year: 2012 end-page: 5540 article-title: Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants publication-title: Proc Natl Acad Sci USA – volume: 25 start-page: 1143 year: 2013 end-page: 1157 article-title: BR‐SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in publication-title: Plant Cell – volume: 110 start-page: 11205 year: 2013b end-page: 11210 article-title: Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action publication-title: Proc Natl Acad Sci USA – volume: 281 start-page: 5310 year: 2006 end-page: 5318 article-title: The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in publication-title: J Biol Chem – volume: 59 start-page: 240 year: 2017 end-page: 260 article-title: What are the evolutionary origins of stomatal responses to abscisic acid in land plants publication-title: J Integr Plant Biol – volume: 464 start-page: 418 year: 2010 end-page: U116 article-title: Differential innate immune signalling via Ca sensor protein kinases publication-title: Nature – volume: 16 start-page: 605 year: 2014 end-page: 615 article-title: The calcium‐dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover publication-title: Cell Host Microbe – volume: 2 start-page: ra45 year: 2009 article-title: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli publication-title: Sci Signal – volume: 107 start-page: 496 year: 2010 end-page: 501 article-title: A receptor‐like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity publication-title: Proc Natl Acad Sci USA – volume: 144 start-page: 1863 year: 2007 end-page: 1877 article-title: Resistance to Botrytis cinerea in sitiens, an absci acid‐deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis publication-title: Plant Physiol – volume: 25 start-page: 621 year: 2015 end-page: 633 article-title: Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species publication-title: Cell Res – volume: 8 start-page: 391 year: 2006 end-page: U352 article-title: HT1 kinase controls stomatal movements in response to CO publication-title: Nat Cell Biol – volume: 17 start-page: 2553 year: 2016 end-page: 2561 article-title: L‐met activates GLR Ca channels upstream of ROS production and regulates stomatal movement publication-title: Cell Rep – volume: 33 start-page: 453 year: 2010 end-page: 467 article-title: Reactive oxygen species homeostasis and signalling during drought and salinity stresses publication-title: Plant Cell Environ – volume: 5 start-page: 388 year: 2002 end-page: 395 article-title: Hydrogen peroxide signalling publication-title: Curr Opin Plant Biol – volume: 12 start-page: e1006175 year: 2016 article-title: A P‐loop NTPase regulates quiescent center cell division and distal stem cell identity through the regulation of ROS homeostasis in root publication-title: PLoS Genet – volume: 9 start-page: 447 year: 2016 end-page: 460 article-title: BRI1‐associated receptor kinase 1 regulates guard cell ABA signaling mediated by open stomata 1 in publication-title: Mol Plant – volume: 12 start-page: 484 year: 2012 end-page: 495 article-title: Phytopathogen effectors subverting host immunity: Different foes, similar battleground publication-title: Cell Host Microbe – volume: 111 start-page: 6497 year: 2014 end-page: 6502 article-title: Salt stress‐induced Ca waves are associated with rapid, long‐distance root‐to‐shoot signaling in plants publication-title: Proc Natl Acad Sci USA – volume: 103 start-page: 7506 year: 2006 end-page: 7511 article-title: CO2 signaling in guard cells: Calcium sensitivity response modulation, a Ca ‐independent phase, and CO insensitivity of the gca2 mutant publication-title: Proc Natl Acad Sci USA – volume: 103 start-page: 10 year: 2016 end-page: 23 article-title: Reactive oxygen species, essential molecules, during plant‐pathogen interactions publication-title: Plant Physiol Biochem – volume: 90 start-page: 856 year: 2017 end-page: 867 article-title: Reactive oxygen species, abiotic stress and stress combination publication-title: Plant J – volume: 26 start-page: 1151 year: 2014 end-page: 1165 article-title: Fast retrograde signaling in response to high light involves metabolite export, MITOGEN‐ACTIVATED PROTEIN KINASE6, and AP2/ERF transcription factors in publication-title: Plant Cell – volume: 4 start-page: ra32 year: 2011 article-title: Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1 publication-title: Sci Signal – volume: 6 start-page: 8630 year: 2015 article-title: Degradation of the ABA co‐receptor ABI1 by PUB12/13 U‐box E3 ligases publication-title: Nat Commun – volume: 6 start-page: 559 year: 2013 end-page: 569 article-title: The calcineurin B‐like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the NADPH oxidase RBOHF publication-title: Mol Plant – volume: 20 start-page: 335 year: 2007 end-page: 345 article-title: ABA is required for Leptosphaeria maculans resistance via ABI1‐ and ABI4‐dependent signaling publication-title: Mol Plant Microbe Interact – volume: 15 start-page: 329 year: 2014 end-page: 338 article-title: The FLS2‐associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity publication-title: Cell Host Microbe – volume: 22 start-page: 11 year: 2017 end-page: 19 article-title: ROS are good publication-title: Trends Plant Sci – volume: 28 start-page: 557 year: 2016 end-page: 567 article-title: The transmembrane region of guard cell SLAC1 channels perceives CO signals via an ABA‐independent pathway in publication-title: Plant Cell – volume: 27 start-page: 1945 year: 2015 end-page: 1954 article-title: Aquaporins contribute to ABA‐triggered stomatal closure through OST1‐mediated phosphorylation publication-title: Plant Cell – volume: 23 start-page: 1805 year: 2009 end-page: 1817 article-title: A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control publication-title: Genes Dev – volume: 12 start-page: 405 year: 2000 end-page: 417 article-title: Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology publication-title: Plant Cell – volume: 171 start-page: 1635 year: 2016 end-page: 1650 article-title: Plant aquaporin AtPIP1;4 links apoplastic H O induction to disease immunity pathways publication-title: Plant Physiol – volume: 106 start-page: 21425 year: 2009 end-page: 21430 article-title: Activity of guard cell anion channel SLAC1 is controlled by drought‐stress signaling kinase‐phosphatase pair publication-title: Proc Natl Acad Sci USA – volume: 104 start-page: 672 year: 2007 end-page: 677 article-title: Cross‐talk between singlet oxygen‐ and hydrogen peroxide‐dependent signaling of stress responses in publication-title: Proc Natl Acad Sci USA – volume: 21 start-page: 2357 year: 2009 end-page: 2377 article-title: Phospholipase D alpha 1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA‐mediated stomatal closure in publication-title: Plant Cell – volume: 445 start-page: 457 year: 2014 end-page: 462 article-title: The cysteine‐rich receptor‐like kinases CRK6 and CRK7 protect against apoplastic oxidative stress publication-title: Biochem Biophys Res Commun – volume: 7 start-page: 1 year: 2016 end-page: 19 article-title: Reactive oxygen species (ROS): Beneficial companions of plants’ developmental processes publication-title: Front Plant Sci – volume: 10 start-page: e1004791 year: 2014 article-title: ABA‐mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in publication-title: PLoS Genet – volume: 5 start-page: e13568 year: 2016 article-title: heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor publication-title: eLife – volume: 9 start-page: 490 year: 2004 end-page: 498 article-title: Reactive oxygen gene network of plants publication-title: Trends Plant Sci – volume: 167 start-page: 313 year: 2016 end-page: 324 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 26 start-page: 1434 year: 2007 end-page: 1443 article-title: pv. tomato hijacks the abscisic acid signalling pathway to cause disease publication-title: EMBO J – volume: 410 start-page: 327 year: 2001 end-page: 330 article-title: Guard cell abscisic acid signalling and engineering drought hardiness in plants publication-title: Nature – volume: 63 start-page: 1054 year: 2010 end-page: 1062 article-title: AtALMT12 represents an R‐type anion channel required for stomatal movement in guard cells publication-title: Plant J – volume: 324 start-page: 1064 year: 2009 end-page: 1068 article-title: Regulators of PP2C phosphatase activity function as abscisic acid sensors publication-title: Science – volume: 98 start-page: 12826 year: 2001 end-page: 12831 article-title: FLU: A negative regulator of chlorophyll biosynthesis in publication-title: Proc Natl Acad Sci USA – volume: 101 start-page: 9508 year: 2004 end-page: 9513 article-title: Phospholipase D alpha 1‐derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 3992 year: 2011 end-page: 4012 article-title: Evidence for a SAL1‐PAP Chloroplast retrograde pathway that functions in drought and high light signaling in publication-title: Plant Cell – volume: 306 start-page: 1183 year: 2004 end-page: 1185 article-title: The genetic basis of singlet oxygen‐induced stress responses of publication-title: Science – volume: 54 start-page: 43 year: 2014 end-page: 55 article-title: Direct Regulation of the NADPH Oxidase RBOHD by the PRR‐associated kinase BIK1 during plant immunity publication-title: Mol Cell – volume: 14 start-page: e2000322 year: 2016 article-title: Natural variation in Cvi‐0 accession reveals an important role of MPK12 in guard cell CO signaling publication-title: PLoS Biol – volume: 16 start-page: 144 year: 2015b article-title: Egg cell‐specific promoter‐controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in in a single generation publication-title: Genome Biol – volume: 6 start-page: 420 year: 2015 article-title: Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging publication-title: Front Plant Sci – volume: 167 start-page: 1604 year: 2015 end-page: U1753 article-title: S‐nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses publication-title: Plant Physiol – volume: 171 start-page: 1541 year: 2016 end-page: 1550 article-title: Redox‐ and reactive oxygen species‐dependent signaling into and out of the photosynthesizing chloroplast publication-title: Plant Physiol – volume: 65 start-page: 1229 year: 2014 end-page: 1240 article-title: ROS as key players in plant stress signalling publication-title: J Exp Bot – ident: e_1_2_10_10_1 doi: 10.1371/journal.pgen.1005373 – ident: e_1_2_10_143_1 doi: 10.1038/nature06608 – ident: e_1_2_10_28_1 doi: 10.1105/tpc.111.091033 – ident: e_1_2_10_44_1 doi: 10.1105/tpc.112.100107 – ident: e_1_2_10_163_1 doi: 10.1073/pnas.0602225103 – ident: e_1_2_10_24_1 doi: 10.1016/j.chom.2012.09.003 – ident: e_1_2_10_65_1 doi: 10.7554/eLife.13568 – ident: e_1_2_10_109_1 doi: 10.1073/pnas.1115982109 – ident: e_1_2_10_166_1 doi: 10.1038/nature10427 – ident: e_1_2_10_32_1 doi: 10.1126/scisignal.2001346 – ident: e_1_2_10_64_1 doi: 10.1016/j.chom.2014.02.009 – ident: e_1_2_10_58_1 doi: 10.1038/ncomms9630 – ident: e_1_2_10_129_1 doi: 10.1104/pp.16.00328 – ident: e_1_2_10_146_1 doi: 10.1105/tpc.15.00637 – ident: e_1_2_10_105_1 doi: 10.3389/fpls.2015.00069 – ident: e_1_2_10_118_1 doi: 10.1104/pp.126.4.1449 – ident: e_1_2_10_56_1 doi: 10.1007/s00425-006-0450-6 – ident: e_1_2_10_150_1 doi: 10.1073/pnas.1308974110 – ident: e_1_2_10_38_1 doi: 10.1038/ncb1387 – ident: e_1_2_10_125_1 doi: 10.1105/tpc.112.107904 – ident: e_1_2_10_106_1 doi: 10.7554/eLife.23361 – ident: e_1_2_10_100_1 doi: 10.1007/s00425-012-1696-9 – ident: e_1_2_10_117_1 doi: 10.1093/aob/mcv074 – volume: 26 start-page: 53 year: 2000 ident: e_1_2_10_83_1 article-title: ABA‐induced hydrogen peroxide generation in guard cells of Vicia faba publication-title: Acta Phytophysiol Sin – ident: e_1_2_10_49_1 doi: 10.1371/journal.pbio.2000322 – ident: e_1_2_10_101_1 doi: 10.1126/science.1173041 – ident: e_1_2_10_57_1 doi: 10.1016/j.celrep.2016.11.015 – ident: e_1_2_10_158_1 doi: 10.1038/emboj.2011.68 – ident: e_1_2_10_7_1 doi: 10.1111/j.1365-313X.2006.02837.x – ident: e_1_2_10_86_1 doi: 10.1111/j.1365-3040.2009.02041.x – ident: e_1_2_10_167_1 doi: 10.1038/nplants.2015.74 – ident: e_1_2_10_25_1 doi: 10.1093/mp/sst009 – ident: e_1_2_10_145_1 doi: 10.1126/science.1103178 – ident: e_1_2_10_112_1 doi: 10.1104/pp.106.079129 – ident: e_1_2_10_114_1 doi: 10.1111/j.1462-5822.2012.01749.x – ident: e_1_2_10_40_1 doi: 10.1105/tpc.16.00131 – ident: e_1_2_10_151_1 doi: 10.1186/s13059-015-0715-0 – ident: e_1_2_10_5_1 doi: 10.1104/pp.107.099226 – ident: e_1_2_10_155_1 doi: 10.4161/viru.29755 – ident: e_1_2_10_61_1 doi: 10.1016/j.stem.2010.11.028 – ident: e_1_2_10_120_1 doi: 10.1042/BJ20091221 – ident: e_1_2_10_138_1 doi: 10.1016/j.tplants.2009.03.006 – ident: e_1_2_10_67_1 doi: 10.1105/tpc.113.118687 – ident: e_1_2_10_132_1 doi: 10.1111/jipb.12523 – ident: e_1_2_10_161_1 doi: 10.1371/journal.pgen.1004791 – ident: e_1_2_10_13_1 doi: 10.1016/j.plaphy.2016.02.035 – ident: e_1_2_10_31_1 doi: 10.1105/tpc.108.061507 – ident: e_1_2_10_82_1 doi: 10.1111/j.1365-313X.2010.04302.x – ident: e_1_2_10_34_1 doi: 10.1073/pnas.0912021106 – ident: e_1_2_10_2_1 doi: 10.1016/j.molp.2014.10.012 – ident: e_1_2_10_139_1 doi: 10.1073/pnas.012452499 – ident: e_1_2_10_78_1 doi: 10.1146/annurev-phyto-082712-102314 – ident: e_1_2_10_135_1 doi: 10.1105/tpc.113.114595 – ident: e_1_2_10_170_1 doi: 10.1073/pnas.0402112101 – ident: e_1_2_10_116_1 doi: 10.1080/15592324.2016.1161879 – ident: e_1_2_10_48_1 doi: 10.1111/j.1744-7909.2012.01177.x – ident: e_1_2_10_39_1 doi: 10.1105/tpc.112.098707 – ident: e_1_2_10_102_1 doi: 10.1016/j.stem.2014.05.009 – ident: e_1_2_10_103_1 doi: 10.1038/35021067 – ident: e_1_2_10_17_1 doi: 10.1073/pnas.1319955111 – ident: e_1_2_10_159_1 doi: 10.1105/tpc.15.00583 – ident: e_1_2_10_97_1 doi: 10.1038/nature06720 – ident: e_1_2_10_173_1 doi: 10.1016/j.cell.2016.08.029 – ident: e_1_2_10_172_1 doi: 10.1074/jbc.M309529200 – ident: e_1_2_10_4_1 doi: 10.1007/s11356-016-7947-8 – ident: e_1_2_10_66_1 doi: 10.1016/j.cub.2015.01.067 – ident: e_1_2_10_69_1 doi: 10.1073/pnas.1215543110 – ident: e_1_2_10_6_1 doi: 10.1093/jxb/ert375 – ident: e_1_2_10_59_1 doi: 10.1093/emboj/cdg277 – ident: e_1_2_10_169_1 doi: 10.1093/jxb/erq424 – ident: e_1_2_10_134_1 doi: 10.1016/j.pbi.2011.07.014 – ident: e_1_2_10_165_1 doi: 10.1038/nature13593 – ident: e_1_2_10_174_1 doi: 10.1105/tpc.15.00144 – ident: e_1_2_10_147_1 doi: 10.1105/tpc.109.072959 – ident: e_1_2_10_162_1 doi: 10.1074/jbc.M509820200 – ident: e_1_2_10_80_1 doi: 10.1073/pnas.221252798 – ident: e_1_2_10_50_1 doi: 10.1073/pnas.0907205106 – ident: e_1_2_10_95_1 doi: 10.1105/tpc.010210 – ident: e_1_2_10_9_1 doi: 10.1038/nature08794 – ident: e_1_2_10_20_1 doi: 10.1038/sj.emboj.7601575 – ident: e_1_2_10_87_1 doi: 10.1016/j.tplants.2016.08.002 – ident: e_1_2_10_52_1 doi: 10.1016/j.molcel.2014.02.021 – ident: e_1_2_10_119_1 doi: 10.1046/j.1365-313X.2001.01138.x – ident: e_1_2_10_51_1 doi: 10.1093/pcp/pcv063 – ident: e_1_2_10_62_1 doi: 10.1105/tpc.010433 – ident: e_1_2_10_84_1 doi: 10.1105/tpc.106.044230 – volume: 170 start-page: 1757 year: 2016 ident: e_1_2_10_128_1 article-title: Singlet oxygen‐induced cell death in Arabidopsis under high‐light stress is controlled by OXI1 kinase publication-title: Plant Physiol doi: 10.1104/pp.15.01546 – ident: e_1_2_10_8_1 doi: 10.1146/annurev-phyto-081211-172902 – ident: e_1_2_10_137_1 doi: 10.1104/pp.15.01237 – ident: e_1_2_10_41_1 doi: 10.3389/fpls.2015.00420 – ident: e_1_2_10_93_1 doi: 10.1105/tpc.12.3.405 – ident: e_1_2_10_142_1 doi: 10.1093/pcp/pcq156 – ident: e_1_2_10_141_1 doi: 10.1016/j.cell.2010.10.020 – ident: e_1_2_10_22_1 doi: 10.1073/pnas.231178298 – ident: e_1_2_10_89_1 doi: 10.1016/j.tplants.2011.03.007 – ident: e_1_2_10_35_1 doi: 10.1104/pp.16.00434 – ident: e_1_2_10_98_1 doi: 10.1016/S1369-5266(02)00282-0 – ident: e_1_2_10_144_1 doi: 10.1105/tpc.113.121061 – ident: e_1_2_10_156_1 doi: 10.1038/nature20166 – ident: e_1_2_10_85_1 doi: 10.1126/scisignal.2000448 – ident: e_1_2_10_16_1 doi: 10.1016/j.cub.2015.09.013 – ident: e_1_2_10_94_1 doi: 10.1038/nature12478 – ident: e_1_2_10_92_1 doi: 10.1016/j.stem.2013.04.001 – ident: e_1_2_10_3_1 doi: 10.1105/tpc.16.00583 – ident: e_1_2_10_122_1 doi: 10.1093/mp/ssu070 – ident: e_1_2_10_168_1 doi: 10.1016/j.chom.2010.03.007 – ident: e_1_2_10_14_1 doi: 10.1073/pnas.1604936113 – ident: e_1_2_10_70_1 doi: 10.1073/pnas.0909705107 – ident: e_1_2_10_111_1 doi: 10.1038/nature02353 – ident: e_1_2_10_75_1 doi: 10.1146/annurev.phyto.121107.104959 – ident: e_1_2_10_91_1 doi: 10.1016/j.chom.2014.10.007 – ident: e_1_2_10_136_1 doi: 10.1126/science.1156973 – ident: e_1_2_10_140_1 doi: 10.1016/j.tplants.2009.01.008 – ident: e_1_2_10_60_1 doi: 10.1073/pnas.0609063103 – volume: 4 year: 2015 ident: e_1_2_10_11_1 article-title: Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells publication-title: eLife – ident: e_1_2_10_160_1 doi: 10.1104/pp.114.255216 – ident: e_1_2_10_104_1 doi: 10.1093/jxb/erp219 – ident: e_1_2_10_36_1 doi: 10.1105/tpc.15.00421 – ident: e_1_2_10_72_1 doi: 10.1046/j.1469-8137.2001.00028.x – ident: e_1_2_10_88_1 doi: 10.1016/j.tplants.2004.08.009 – ident: e_1_2_10_55_1 doi: 10.1016/j.plantsci.2013.07.004 – ident: e_1_2_10_21_1 doi: 10.1111/nph.13435 – ident: e_1_2_10_73_1 doi: 10.1016/S0014-5793(01)03106-4 – ident: e_1_2_10_127_1 doi: 10.1126/stke.2001.113.re22 – ident: e_1_2_10_15_1 doi: 10.1016/j.pbi.2013.06.013 – ident: e_1_2_10_42_1 doi: 10.1038/ncb2009 – ident: e_1_2_10_76_1 doi: 10.1016/j.cell.2006.06.054 – ident: e_1_2_10_29_1 doi: 10.1111/j.1365-3040.2007.01651.x – ident: e_1_2_10_96_1 doi: 10.1105/tpc.007906 – ident: e_1_2_10_18_1 doi: 10.1111/tpj.13299 – ident: e_1_2_10_113_1 doi: 10.1073/pnas.1704754114 – ident: e_1_2_10_74_1 doi: 10.1007/s00425-001-0675-3 – ident: e_1_2_10_131_1 doi: 10.1016/j.febslet.2009.08.033 – ident: e_1_2_10_157_1 doi: 10.3389/fpls.2015.00701 – ident: e_1_2_10_63_1 doi: 10.1073/pnas.0702061104 – ident: e_1_2_10_130_1 doi: 10.3389/fpls.2016.01299 – ident: e_1_2_10_43_1 doi: 10.1104/pp.15.00026 – ident: e_1_2_10_126_1 doi: 10.1111/nph.13621 – ident: e_1_2_10_71_1 doi: 10.1126/science.1172408 – ident: e_1_2_10_19_1 doi: 10.1105/tpc.111.093039 – ident: e_1_2_10_108_1 doi: 10.1111/j.1744-7909.2008.00759.x – ident: e_1_2_10_148_1 doi: 10.1104/pp.112.210724 – ident: e_1_2_10_152_1 doi: 10.1104/pp.114.4.1557 – ident: e_1_2_10_164_1 doi: 10.1371/journal.pgen.1006175 – ident: e_1_2_10_47_1 doi: 10.1111/tpj.12133 – ident: e_1_2_10_90_1 doi: 10.1146/annurev.arplant.52.1.561 – ident: e_1_2_10_54_1 doi: 10.1146/annurev-arplant-042809-112226 – ident: e_1_2_10_123_1 doi: 10.1016/j.molp.2015.12.014 – ident: e_1_2_10_12_1 doi: 10.1111/j.1365-313X.2005.02615.x – ident: e_1_2_10_121_1 doi: 10.1038/35066500 – ident: e_1_2_10_154_1 doi: 10.1038/cr.2015.46 – ident: e_1_2_10_149_1 doi: 10.1073/pnas.1423481112 – ident: e_1_2_10_53_1 doi: 10.1094/MPMI-20-4-0335 – ident: e_1_2_10_115_1 doi: 10.1104/pp.110.169797 – ident: e_1_2_10_79_1 doi: 10.1104/pp.113.220608 – ident: e_1_2_10_27_1 doi: 10.1016/j.tplants.2015.08.014 – ident: e_1_2_10_110_1 doi: 10.1105/tpc.113.109827 – ident: e_1_2_10_153_1 doi: 10.1016/j.pbi.2013.07.002 – ident: e_1_2_10_33_1 doi: 10.1073/pnas.0912030107 – ident: e_1_2_10_77_1 doi: 10.1105/tpc.112.109074 – ident: e_1_2_10_23_1 doi: 10.1104/pp.16.00375 – ident: e_1_2_10_124_1 doi: 10.3389/fpls.2012.00292 – ident: e_1_2_10_26_1 doi: 10.1073/pnas.1221294110 – ident: e_1_2_10_30_1 doi: 10.1105/tpc.010441 – ident: e_1_2_10_45_1 doi: 10.1101/gad.1812409 – ident: e_1_2_10_171_1 doi: 10.1105/tpc.108.062992 – ident: e_1_2_10_81_1 doi: 10.1104/pp.109.141770 – ident: e_1_2_10_107_1 doi: 10.1016/j.pbi.2017.04.022 – ident: e_1_2_10_133_1 doi: 10.1111/j.1365-3040.2011.02336.x – ident: e_1_2_10_46_1 doi: 10.1016/j.bbrc.2014.02.013 – ident: e_1_2_10_68_1 doi: 10.1111/j.1365-313X.2010.04280.x – ident: e_1_2_10_37_1 doi: 10.1105/tpc.113.122358 – ident: e_1_2_10_99_1 doi: 10.1038/ncomms1926 |
SSID | ssj0038062 |
Score | 2.639827 |
SecondaryResourceType | review_article |
Snippet | Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion... Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO exchange, as well as pathogen invasion... Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO₂ exchange, as well as pathogen invasion... Stomata,the pores formed by a pair of guard cells,are the main gateways for water transpiration and photosynthetic CO2 exchange,as well as pathogen invasion in... |
SourceID | wanfang proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 805 |
SubjectTerms | Abscisic acid Accumulation biotic stress Carbon dioxide Cell Membrane - metabolism cell movement Cellular communication Drought Droughts embryophytes Environmental factors Guard cells immune response Immunity Light levels Molecular modelling NAD(P)H oxidase NAD(P)H oxidase (H2O2-forming) Organelles Pathogens Photosynthesis plant response Plant Stomata - metabolism Plants - metabolism Reactive oxygen species Reactive Oxygen Species - metabolism signal transduction Signal Transduction - physiology Signaling Stomata stomatal movement Stresses Transpiration water stress |
Title | Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12654 https://www.ncbi.nlm.nih.gov/pubmed/29660240 https://www.proquest.com/docview/2099810239 https://www.proquest.com/docview/2026411189 https://www.proquest.com/docview/2153611362 https://d.wanfangdata.com.cn/periodical/zwxb201809006 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-Oow--tFptm_rBSn1RyHHJJpsE-lKlogctRSr4UsJ-FlGTQ3O0-td3ZvPR2hZB30Iym91kZnZ_m8z8BmAnp01BakWonTFh4kQS5jqNwtRprnOT8cJXb_j0WRydJrOz9GwE7_tcmJYfYvjgRp7h52tycKlu_nTy87maRLFIiQyUgrUIEZ0M3FE8n_pqopHI4hB3gHHHTerDeIam91ejfyCmz-SpnKy-38eufvE5fAHf-mG3MScXk0WjJvruL0bHpz7XMjzvUCn70JrRCoxs9RKe7deIHG9XYX5ipZ8WGXaPBscoPRN32IyCPyTlszNZGYYw8oo-BrGr2pOQN-y8YvNLVB27biNxsUlTM-MrAzWsTVPxTakuck13lk0j9cUanB5-_HpwFHaVGkKd5KherpTlRkdWOlUoF5tYCi6MIu4dPI1q55GwOnUyMkmUOUT0Whox1Ykwmc4T_grGVV3ZN8AE52nBnbFGFYmWUtGcwa2UhaC_1iqA3V5jpe5ozKmaxmU5bGfwBZb-BQbwbpCdt-Qd_5Xa6BVfdg58U1JGcU60FkUA28NldD36nyIrWy9IBtEk3it_SAZXFEF1c-IAXrdGNQwlJmZURFQBbHVW9rv_ux8_VezJ1XBaDGDPW8wDD1HOjr_s-6O3jxFehyXqpQ2a24Bxc72wm4iyGrXlvekX-ykkjg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQX3tBAKUbAAaSsGjvxJgcOlFLt9iVUtVJvqV-pVm2TVTer0v4n_gq_iRknGyigShx64LbKThw7nhl_dma-AXiT0qYgcTI0hbVhXMg4TE0ShUlhhEltX2S-esPWthzsxev7yf4cfJvlwjT8EN2BG1mG99dk4HQg_auVj8a6F3GZxG1M5YY7P8Md2-TDcBWn9y3na593Pw3CtqhAaOIUeyK0dsKayKlCZ7rglisppNVEE4OXsYciks4khYpsHPULBJ9GWblsYmn7Jo0FtnsDblIJcaLqX93p2KpEuuzrl0ayz0Pcc_KWDdUHDnV9vbz-_QFqfe5QWajy8DJa9svd2j34PntRTZTLUW9a6565-I1D8r95k_fhbgu82cfGUh7AnCsfwq2VCsHx-SMY7zjlPT_D8aJNMcpAHbkJo_gWRSn7TJWWIVI-ofMudlJ5nvWajUo2PkbtZKdNsDHeUlfM-uJHNWsycfytVPq5opZVXStz9Bj2rmW0T2C-rEq3AEwKkWSisM7qLDZKaXKLwimVSfowrwN4N1OR3LRM7VQw5Djvdmw4YbmfsABed7Ljhp_kr1KLM03LWx81ySlpOiXmjiyAV93f6F3ok5EqXTUlGQTM2FZ6lQwumpJKA_EAnjZa3HWFE_krgsYAllq1_vn8i7Ovmnv-OPT8Abz3KnrFIPL14ZcV_-vZvwi_hNuD3a3NfHO4vfEc7tATmxjBRZivT6fuBYLKWi95U2ZwcN0a_wMdboWs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAX3o9AKUbAAaSsNrHjTQ4cKMuq20JVVVTqLfUraNU2WXWzKu1v4q_wn5hxsoECqsShB25RMnHseGb8OZn5BuBlSpuCxMnQFNaGopAiTE0ShUlhuEntgGe-esOnLbm-Kzb2kr0l-LbIhWn4IboPbmQZ3l-TgU9t8auRT6a6F8UyEW1I5aY7PcEN2-zteIiz-yqORx8-v18P25oCoREpdoRr7bg1kVOFznQR21hJLq0mlhg8jR3kkXQmKVRkRTQoEHsaZWXfCGkHJhUc270CV4XsZ1QoYrjTkVXxtO_Ll0ZyEIe45YxbMlQfN9T19fzy9wem9alDZaHKL-fBsl_tRrfg--I9NUEuB715rXvm7DcKyf_lRd6Gmy3sZu8aO7kDS668C9fWKoTGp_dguuOU9_sMh4sWxSj_dOJmjKJbFCXsM1Vahjj5iL52saPKs6zXbFKy6SHqJjtuQo3xlrpi1pc-qlmTh-NvpcLPFbWs6lqZg_uweymjfQDLZVW6R8Ak50nGC-uszoRRSpNT5E6pTNJveR3A64WG5KblaadyIYd5t1_DCcv9hAXwopOdNuwkf5VaWSha3nqoWU4p0ynxdmQBPO8uo2-hH0aqdNWcZBAuY1vpRTK4ZEoqDBQH8LBR4q4rMVG_ImQMYLXV6p_PPzv5qmPPHod-P4A3XkMvGES-Md5e80eP_0X4GVzfHo7yj-OtzSdwgx7YBAiuwHJ9PHdPEVHWetUbMoP9y1b4HwXchFs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactive+oxygen+species+signaling+and+stomatal+movement+in+plant+responses+to+drought+stress+and+pathogen+attack&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=Qi%2C+Junsheng&rft.au=Song%2C+Chun%E2%80%90Peng&rft.au=Wang%2C+Baoshan&rft.au=Zhou%2C+Jianmin&rft.date=2018-09-01&rft.issn=1672-9072&rft.eissn=1744-7909&rft.volume=60&rft.issue=9&rft.spage=805&rft.epage=826&rft_id=info:doi/10.1111%2Fjipb.12654&rft.externalDBID=10.1111%252Fjipb.12654&rft.externalDocID=JIPB12654 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwxb%2Fzwxb.jpg |