Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack

Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pa...

Full description

Saved in:
Bibliographic Details
Published inJournal of integrative plant biology Vol. 60; no. 9; pp. 805 - 826
Main Authors Qi, Junsheng, Song, Chun‐Peng, Wang, Baoshan, Zhou, Jianmin, Kangasjärvi, Jaakko, Zhu, Jian‐Kang, Gong, Zhizhong
Format Journal Article
LanguageEnglish
Published China (Republic : 1949- ) Wiley Subscription Services, Inc 01.09.2018
Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China%Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng 475001,China%Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan 250000, China%State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101,China%Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland%Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane‐localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. Stomata are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Stomatal movement is regulated by a combination of environmental factors including water status, light, CO2 levels and pathogen attack, as well as abscisic acid and apoplastic reactive oxygen species (ROS).
AbstractList Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.
Stomata,the pores formed by a pair of guard cells,are the main gateways for water transpiration and photosynthetic CO2 exchange,as well as pathogen invasion in land plants.Guard cell movement is regulated by a combination of environmental factors,including water status,light,CO2 levels and pathogen attack,as well as endogenous signals,such as abscisic acid and apoplastic reactive oxygen species (ROS).Under abiotic and biotic stress conditions,extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases,whereas intracellular ROS are produced in multiple organelles.These ROS form a sophisticated cellular signaling network,with the accumulation of apoplastic ROS an early hallmark of stomatal movement.Here,we review recent progress in understanding the molecular mechanisms of the ROS signaling network,primarily during drought stress and pathogen attack.We summarize the roles of apoplastic ROS in regulating stomatal movement,ABA and CO2 signaling,and immunity responses.Finally,we discuss ROS accumulation and communication between organelles and cells.This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO₂ exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO₂ levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane‐localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO₂ signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane‐localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. Stomata are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Stomatal movement is regulated by a combination of environmental factors including water status, light, CO2 levels and pathogen attack, as well as abscisic acid and apoplastic reactive oxygen species (ROS).
Author Zhu, Jian‐Kang
Kangasjärvi, Jaakko
Qi, Junsheng
Gong, Zhizhong
Zhou, Jianmin
Song, Chun‐Peng
Wang, Baoshan
AuthorAffiliation State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China%Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng 475001,China%Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan 250000, China%State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101,China%Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland%Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
AuthorAffiliation_xml – name: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China%Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng 475001,China%Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan 250000, China%State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101,China%Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland%Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
Author_xml – sequence: 1
  givenname: Junsheng
  surname: Qi
  fullname: Qi, Junsheng
  organization: China Agricultural University
– sequence: 2
  givenname: Chun‐Peng
  surname: Song
  fullname: Song, Chun‐Peng
  organization: Henan University
– sequence: 3
  givenname: Baoshan
  surname: Wang
  fullname: Wang, Baoshan
  organization: Shandong Normal University
– sequence: 4
  givenname: Jianmin
  surname: Zhou
  fullname: Zhou, Jianmin
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Jaakko
  surname: Kangasjärvi
  fullname: Kangasjärvi, Jaakko
  organization: University of Helsinki
– sequence: 6
  givenname: Jian‐Kang
  surname: Zhu
  fullname: Zhu, Jian‐Kang
  organization: Purdue University
– sequence: 7
  givenname: Zhizhong
  surname: Gong
  fullname: Gong, Zhizhong
  email: gongzz@cau.edu.cn
  organization: China Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29660240$$D View this record in MEDLINE/PubMed
BookMark eNqFkltv1DAQhS1URC_wwg9AkRASQkrxbZ34ESouRZVACJ6tiTNJvSR2iJ22y6_H293yUCHwi0ej7xxrPOeYHPjgkZCnjJ6yfF6v3dScMq5W8gE5YpWUZaWpPsi1qnipacUPyXGMa0pFTRV_RA65VopySY_I9BXBJneFRbjZ9OiLOKF1GIvoeg-D830Bvi1iCiMkGIoxXOGIPhXOF9MAuZgxTsHHLEmhaOew9Jcp87kdb6UTpMuwdYaUwP54TB52MER8sr9PyPf3776dfSwvPn84P3tzUVpZK1mKpkHRWobQNbrpeMtBCdU2TCud21ZYwRTaVQeslazqKq4ttIpaqdrK1lKckBc732vwHfjerMMy54mi-XV903DKaqopVZl7ueOmOfxcMCYzumhxyLNhWKLhbCUUY0Lx_6OUK5kXUuuMPr-H_nmeU61rRrnYUs_21NKM2JppdiPMG3O3ngzQHWDnEOOMnbEuQXLBpxncYBg12wSYbQLMbQKy5NU9yZ3rX2G2_yQ34OYfpPl0_uXtTvMbEWbBvQ
CitedBy_id crossref_primary_10_7717_peerj_17537
crossref_primary_10_1016_j_resconrec_2024_107732
crossref_primary_10_1371_journal_ppat_1011796
crossref_primary_10_1016_j_stress_2024_100551
crossref_primary_10_1098_rsfs_2020_0036
crossref_primary_10_3389_fpls_2020_00164
crossref_primary_10_1080_07060661_2024_2364212
crossref_primary_10_1111_pce_14797
crossref_primary_10_3390_agronomy14061190
crossref_primary_10_3390_ijms22073347
crossref_primary_10_3389_fpls_2022_928897
crossref_primary_10_3390_ijms20133326
crossref_primary_10_1093_pcp_pcz120
crossref_primary_10_1111_nph_17211
crossref_primary_10_17221_53_2023_HORTSCI
crossref_primary_10_1016_j_envexpbot_2019_103807
crossref_primary_10_1016_j_molp_2020_02_004
crossref_primary_10_1093_femsre_fuab002
crossref_primary_10_3390_f11090970
crossref_primary_10_1016_j_envexpbot_2023_105291
crossref_primary_10_1080_13102818_2020_1745688
crossref_primary_10_1134_S1021443724603720
crossref_primary_10_3390_agronomy13122918
crossref_primary_10_3390_plants13020302
crossref_primary_10_3389_fpls_2021_614909
crossref_primary_10_1007_s00468_020_01991_y
crossref_primary_10_3390_ijms22168865
crossref_primary_10_3390_ijms24108985
crossref_primary_10_3390_plants13213104
crossref_primary_10_1016_j_plantsci_2018_05_017
crossref_primary_10_1007_s10725_024_01266_3
crossref_primary_10_3390_genes14061273
crossref_primary_10_1186_s12870_020_02355_x
crossref_primary_10_1111_tpj_15409
crossref_primary_10_32615_ps_2022_022
crossref_primary_10_1094_PHYTO_01_23_0014_R
crossref_primary_10_1186_s40529_024_00441_z
crossref_primary_10_1021_acsomega_0c02735
crossref_primary_10_1111_oik_09352
crossref_primary_10_3390_ijms232314824
crossref_primary_10_3390_ijms241210044
crossref_primary_10_1111_tpj_70078
crossref_primary_10_1016_S2095_3119_21_63657_2
crossref_primary_10_3390_antiox12030605
crossref_primary_10_1111_rda_13748
crossref_primary_10_3390_jof9121155
crossref_primary_10_1093_plcell_koad019
crossref_primary_10_1111_tpj_16634
crossref_primary_10_1016_j_bcab_2021_102035
crossref_primary_10_1016_j_plantsci_2022_111305
crossref_primary_10_1093_plcell_koab071
crossref_primary_10_1016_j_postharvbio_2024_112888
crossref_primary_10_3390_ijms20051176
crossref_primary_10_3390_plants11091246
crossref_primary_10_1016_j_plgene_2020_100264
crossref_primary_10_3390_biology13060421
crossref_primary_10_3390_ijms23010343
crossref_primary_10_3390_ijms241713297
crossref_primary_10_1016_j_envexpbot_2020_104125
crossref_primary_10_3389_fpls_2022_1029997
crossref_primary_10_1007_s00299_022_02969_5
crossref_primary_10_3390_plants14050826
crossref_primary_10_1111_tpj_15631
crossref_primary_10_1093_hr_uhae090
crossref_primary_10_3389_fpls_2022_1050995
crossref_primary_10_3390_plants13223133
crossref_primary_10_3390_agronomy13092241
crossref_primary_10_3390_plants11192480
crossref_primary_10_1016_j_jare_2024_09_004
crossref_primary_10_1093_jxb_erac418
crossref_primary_10_1016_j_cj_2024_12_013
crossref_primary_10_1111_jac_12748
crossref_primary_10_1111_jipb_13058
crossref_primary_10_1111_nph_18348
crossref_primary_10_1186_s12870_020_02476_3
crossref_primary_10_3390_ijms242216388
crossref_primary_10_3390_plants13101345
crossref_primary_10_1111_tpj_16736
crossref_primary_10_3390_ijms21082738
crossref_primary_10_1111_nph_17019
crossref_primary_10_1098_rsob_180162
crossref_primary_10_31857_S0555109923050185
crossref_primary_10_1016_j_stress_2022_100092
crossref_primary_10_1021_acs_chemrestox_9b00028
crossref_primary_10_1007_s11356_024_33449_w
crossref_primary_10_1007_s12038_023_00418_3
crossref_primary_10_3390_ijms22020522
crossref_primary_10_1016_j_sajb_2024_11_039
crossref_primary_10_1016_j_plantsci_2023_111892
crossref_primary_10_1093_plphys_kiae389
crossref_primary_10_1111_nph_17593
crossref_primary_10_3389_fpls_2022_850441
crossref_primary_10_1093_pcp_pcac158
crossref_primary_10_1002_npp2_22
crossref_primary_10_1093_aob_mcad006
crossref_primary_10_3389_fpls_2022_833326
crossref_primary_10_1016_j_envexpbot_2018_11_013
crossref_primary_10_3389_fpls_2021_778270
crossref_primary_10_1016_j_devcel_2022_03_010
crossref_primary_10_1111_tpj_15749
crossref_primary_10_1007_s00344_021_10460_w
crossref_primary_10_1111_jipb_13061
crossref_primary_10_1111_ppa_13119
crossref_primary_10_1016_j_envexpbot_2023_105232
crossref_primary_10_1016_j_envexpbot_2024_105656
crossref_primary_10_1111_pbi_13701
crossref_primary_10_1016_j_envexpbot_2022_104865
crossref_primary_10_1016_j_plaphy_2021_03_007
crossref_primary_10_3390_jof7040253
crossref_primary_10_1128_spectrum_00264_22
crossref_primary_10_1111_jipb_13019
crossref_primary_10_3390_plants9030311
crossref_primary_10_1007_s00299_024_03264_1
crossref_primary_10_1111_pce_14707
crossref_primary_10_3390_plants12010148
crossref_primary_10_3390_agronomy13123034
crossref_primary_10_1016_j_hpj_2022_07_001
crossref_primary_10_3390_plants12102019
crossref_primary_10_3390_plants12233955
crossref_primary_10_1016_j_ncrops_2024_100012
crossref_primary_10_3389_fpls_2023_1154431
crossref_primary_10_1016_j_postharvbio_2023_112738
crossref_primary_10_3390_microbiolres15030102
crossref_primary_10_1111_jipb_13257
crossref_primary_10_1080_15592324_2019_1657343
crossref_primary_10_1016_j_envexpbot_2024_106015
crossref_primary_10_1007_s10142_023_00967_8
crossref_primary_10_1111_nph_17290
crossref_primary_10_1007_s00299_021_02813_2
crossref_primary_10_1007_s11427_020_1683_x
crossref_primary_10_3389_fpls_2019_00549
crossref_primary_10_1007_s40502_023_00743_7
crossref_primary_10_1080_13102818_2020_1749529
crossref_primary_10_1007_s11427_020_1910_1
crossref_primary_10_3390_plants11010055
crossref_primary_10_1111_jipb_13247
crossref_primary_10_1038_s41396_022_01288_7
crossref_primary_10_1007_s13258_022_01335_9
crossref_primary_10_3389_fpls_2021_643403
crossref_primary_10_1080_13102818_2020_1824618
crossref_primary_10_1111_jipb_13363
crossref_primary_10_1080_15592324_2020_1868131
crossref_primary_10_1016_j_plaphy_2024_109183
crossref_primary_10_1016_j_chemosphere_2020_126486
crossref_primary_10_1016_j_tplants_2024_09_007
crossref_primary_10_1007_s44154_022_00040_7
crossref_primary_10_3389_fpls_2019_00319
crossref_primary_10_1002_pei3_10060
crossref_primary_10_1007_s11356_024_33762_4
crossref_primary_10_1016_j_jhazmat_2022_129323
crossref_primary_10_3390_ijms241310915
crossref_primary_10_20289_zfdergi_1418307
crossref_primary_10_1016_j_plantsci_2019_110186
crossref_primary_10_3390_ijms222010943
crossref_primary_10_1186_s42483_022_00139_9
crossref_primary_10_1016_j_ijbiomac_2022_06_099
crossref_primary_10_1016_j_plaphy_2023_107717
crossref_primary_10_3390_ijms232012075
crossref_primary_10_1007_s12229_021_09267_x
crossref_primary_10_1016_j_hpj_2021_06_005
crossref_primary_10_3389_fpls_2021_795919
crossref_primary_10_3390_horticulturae8080723
crossref_primary_10_3390_plants12040925
crossref_primary_10_1111_jipb_13022
crossref_primary_10_3389_fpls_2021_615114
crossref_primary_10_3390_plants11020188
crossref_primary_10_3390_plants11243472
crossref_primary_10_1111_jipb_13571
crossref_primary_10_3389_fpls_2022_1005710
crossref_primary_10_3390_plants13141990
crossref_primary_10_3390_ijms232315058
crossref_primary_10_3390_plants13162210
crossref_primary_10_1111_jpi_12570
crossref_primary_10_1111_jipb_13210
crossref_primary_10_1186_s12870_024_05875_y
crossref_primary_10_1016_j_envexpbot_2022_104933
crossref_primary_10_3389_fpls_2023_1100838
crossref_primary_10_3389_fpls_2022_1025969
crossref_primary_10_1021_acs_jafc_3c03881
crossref_primary_10_3390_ijms23168909
crossref_primary_10_15252_embj_2021107660
crossref_primary_10_3390_ijms25189845
crossref_primary_10_1016_j_plaphy_2022_10_008
crossref_primary_10_1007_s10265_021_01259_7
crossref_primary_10_15835_nbha50112600
crossref_primary_10_1111_jipb_13324
crossref_primary_10_1007_s11783_021_1432_4
crossref_primary_10_1007_s10343_023_00912_6
crossref_primary_10_1016_j_algal_2022_102909
crossref_primary_10_1016_j_plantsci_2024_112292
crossref_primary_10_1016_j_plantsci_2024_112293
crossref_primary_10_1186_s12870_023_04332_6
crossref_primary_10_3389_fpls_2019_00228
crossref_primary_10_12677_BP_2023_131005
crossref_primary_10_3390_life13061359
crossref_primary_10_1016_j_ecolind_2024_112037
crossref_primary_10_3389_fpls_2019_01453
crossref_primary_10_3390_plants10010180
crossref_primary_10_1016_j_envexpbot_2021_104519
crossref_primary_10_1080_09168451_2020_1740970
crossref_primary_10_1016_j_chemosphere_2024_143438
crossref_primary_10_1016_j_sajb_2024_06_018
crossref_primary_10_3390_ijms25137196
crossref_primary_10_1016_j_indcrop_2023_117228
crossref_primary_10_3390_ijms23073741
crossref_primary_10_3389_fpls_2022_904037
crossref_primary_10_1007_s11103_020_01074_z
crossref_primary_10_7717_peerj_8404
crossref_primary_10_1016_j_ijbiomac_2024_135518
crossref_primary_10_1016_j_molp_2023_04_003
crossref_primary_10_1111_ppa_13827
crossref_primary_10_1093_plphys_kiab419
crossref_primary_10_3389_fpls_2020_00968
crossref_primary_10_1186_s12864_022_08311_3
crossref_primary_10_1080_15592324_2019_1649569
crossref_primary_10_1007_s11033_022_07548_1
crossref_primary_10_1007_s11816_025_00960_6
crossref_primary_10_1094_PHYTO_04_24_0125_R
crossref_primary_10_3390_ijms21041419
crossref_primary_10_1016_j_jplph_2021_153585
crossref_primary_10_1111_plb_13360
crossref_primary_10_1016_j_bbrc_2020_04_082
crossref_primary_10_1016_j_stress_2021_100026
crossref_primary_10_3390_polym12112486
crossref_primary_10_1080_15592324_2020_1748283
crossref_primary_10_3390_stresses2010006
crossref_primary_10_1111_plb_13245
crossref_primary_10_1111_nph_16921
crossref_primary_10_1007_s00344_024_11586_3
crossref_primary_10_3390_life13010204
crossref_primary_10_1186_s12870_024_05422_9
crossref_primary_10_3390_cells11244105
crossref_primary_10_3390_plants11121615
crossref_primary_10_1016_j_jplph_2021_153574
crossref_primary_10_1093_jxb_erad161
crossref_primary_10_3390_ijms24032325
crossref_primary_10_1071_FP24246
crossref_primary_10_1093_jxb_erad280
crossref_primary_10_3390_biom9120763
crossref_primary_10_3389_fpls_2023_1068296
crossref_primary_10_1007_s12298_024_01417_w
crossref_primary_10_3390_antiox11061168
crossref_primary_10_3390_plants12010210
crossref_primary_10_3390_microorganisms11081993
crossref_primary_10_1111_nph_20171
crossref_primary_10_1016_j_cj_2023_05_002
crossref_primary_10_1093_plphys_kiac601
crossref_primary_10_1007_s00122_023_04451_6
crossref_primary_10_1111_pce_15181
crossref_primary_10_1016_j_ccr_2024_215953
crossref_primary_10_3390_ijms222112036
crossref_primary_10_1186_s12864_024_10665_9
crossref_primary_10_1016_j_tplants_2021_10_002
crossref_primary_10_3389_fpls_2023_1118941
crossref_primary_10_1093_jxb_erae249
crossref_primary_10_3390_ijms21155208
crossref_primary_10_1016_j_plaphy_2021_10_003
crossref_primary_10_3389_fpls_2020_485932
crossref_primary_10_3390_nano9121777
crossref_primary_10_1016_j_plaphy_2019_12_019
crossref_primary_10_1146_annurev_arplant_070623_091552
crossref_primary_10_1016_j_cj_2022_03_009
crossref_primary_10_1016_j_postharvbio_2025_113514
crossref_primary_10_1016_j_plaphy_2024_109236
crossref_primary_10_1080_13102818_2020_1787863
crossref_primary_10_1111_ppl_14277
crossref_primary_10_3389_fpls_2023_1138494
crossref_primary_10_1093_jxb_erae037
crossref_primary_10_1016_j_jplph_2023_154082
crossref_primary_10_3389_fpls_2022_910408
crossref_primary_10_1007_s00299_024_03281_0
crossref_primary_10_1016_j_plantsci_2020_110420
crossref_primary_10_3390_life12111757
crossref_primary_10_1111_jipb_13611
crossref_primary_10_1016_j_scienta_2023_111827
crossref_primary_10_1016_j_indcrop_2024_118547
crossref_primary_10_1093_plphys_kiad516
crossref_primary_10_3390_agronomy14102225
crossref_primary_10_3390_agronomy14081698
crossref_primary_10_1186_s12284_021_00453_4
crossref_primary_10_1016_j_marenvres_2025_106997
crossref_primary_10_3390_air1010004
crossref_primary_10_3389_fpls_2022_1027071
crossref_primary_10_1111_plb_13284
crossref_primary_10_3390_agriculture15050522
crossref_primary_10_1016_j_plaphy_2025_109518
crossref_primary_10_1111_jipb_13601
crossref_primary_10_1111_nph_17933
crossref_primary_10_1111_ppl_14452
crossref_primary_10_20935_AcadBiol6265
crossref_primary_10_1111_jipb_12993
crossref_primary_10_1016_j_tiv_2024_105974
crossref_primary_10_1007_s00344_022_10804_0
crossref_primary_10_1007_s11427_021_2024_0
crossref_primary_10_1111_mpp_13317
crossref_primary_10_1016_j_indcrop_2025_120601
crossref_primary_10_1080_26895293_2023_2224936
crossref_primary_10_3389_fpls_2024_1342814
crossref_primary_10_4103_pm_pm_127_20
crossref_primary_10_1016_j_pmpp_2021_101687
crossref_primary_10_3389_fpls_2024_1476126
crossref_primary_10_1007_s10725_019_00492_4
crossref_primary_10_1016_j_hpj_2023_12_004
crossref_primary_10_1016_j_jgg_2024_03_007
crossref_primary_10_1016_j_plaphy_2021_01_014
crossref_primary_10_1007_s44154_022_00069_8
crossref_primary_10_1073_pnas_1901431116
crossref_primary_10_1038_s41576_021_00413_0
crossref_primary_10_1111_nph_20092
crossref_primary_10_1111_jipb_12780
crossref_primary_10_1111_mpp_13440
crossref_primary_10_1007_s00299_024_03196_w
crossref_primary_10_1007_s10142_022_00833_z
crossref_primary_10_3390_ijms25126355
crossref_primary_10_1093_treephys_tpaf012
crossref_primary_10_1038_s41438_021_00500_7
crossref_primary_10_1111_pce_15155
crossref_primary_10_3389_fpls_2022_891626
crossref_primary_10_1007_s12042_020_09254_3
crossref_primary_10_1016_j_envexpbot_2022_104884
crossref_primary_10_1590_s1678_3921_pab2023_v58_03181
crossref_primary_10_1186_s12864_024_10114_7
crossref_primary_10_2139_ssrn_4074218
crossref_primary_10_1093_jxb_erac215
crossref_primary_10_1111_tpj_16368
crossref_primary_10_3390_genes15070935
crossref_primary_10_1007_s11104_022_05369_6
crossref_primary_10_1016_j_indcrop_2023_116843
crossref_primary_10_3390_horticulturae7060132
crossref_primary_10_1007_s00344_021_10490_4
crossref_primary_10_1007_s00425_023_04136_w
crossref_primary_10_1016_j_plaphy_2024_108635
crossref_primary_10_1093_jxb_erad308
crossref_primary_10_1016_j_molp_2019_08_005
crossref_primary_10_1016_j_plaphy_2023_03_004
crossref_primary_10_1016_j_micpath_2023_106053
crossref_primary_10_1111_tpj_15271
crossref_primary_10_1177_1176934320911055
crossref_primary_10_3389_fpls_2024_1464828
crossref_primary_10_1093_plcell_koad310
crossref_primary_10_1111_pbi_14007
crossref_primary_10_3389_fpls_2022_1019505
crossref_primary_10_1111_jipb_12714
crossref_primary_10_1093_plcell_koac106
crossref_primary_10_1139_cjss_2022_0022
crossref_primary_10_1007_s00344_024_11469_7
crossref_primary_10_1007_s00425_021_03726_w
crossref_primary_10_1016_j_jplph_2020_153361
crossref_primary_10_3389_fpls_2022_1031891
crossref_primary_10_1016_j_algal_2019_101775
crossref_primary_10_1002_bies_202400097
crossref_primary_10_1038_s41598_024_71847_9
crossref_primary_10_1071_CP23183
crossref_primary_10_3389_fpls_2020_584167
crossref_primary_10_1038_s41467_021_22812_x
crossref_primary_10_3389_fpls_2022_854937
crossref_primary_10_1093_plcell_koab221
crossref_primary_10_1111_nph_15543
crossref_primary_10_3390_plants12091807
crossref_primary_10_1007_s13738_021_02451_1
crossref_primary_10_1093_hr_uhad221
crossref_primary_10_3390_ijms23105666
crossref_primary_10_1016_j_plaphy_2023_108259
crossref_primary_10_1016_j_plaphy_2022_01_016
crossref_primary_10_3390_plants13040469
crossref_primary_10_1039_D4EN00963K
crossref_primary_10_3390_ijms21020670
crossref_primary_10_1111_jipb_13829
crossref_primary_10_1016_j_apsb_2023_08_011
crossref_primary_10_3390_plants12051129
crossref_primary_10_1128_spectrum_01445_22
crossref_primary_10_1186_s12864_021_07470_z
crossref_primary_10_1002_ece3_6206
crossref_primary_10_1186_s12870_022_03883_4
crossref_primary_10_3390_antiox12010057
crossref_primary_10_3390_plants13121665
crossref_primary_10_1111_pce_14020
crossref_primary_10_1016_j_plaphy_2023_108129
crossref_primary_10_1007_s12042_024_09362_4
crossref_primary_10_1016_j_jgg_2022_05_007
crossref_primary_10_1007_s10142_023_01065_5
crossref_primary_10_1111_tpj_15350
crossref_primary_10_3390_ijms221910304
crossref_primary_10_1007_s10409_020_00980_1
crossref_primary_10_3389_fpls_2025_1525336
crossref_primary_10_1111_jipb_12800
crossref_primary_10_3390_ijms24043884
crossref_primary_10_1093_plcell_koab282
crossref_primary_10_1016_j_plantsci_2021_110824
crossref_primary_10_3390_agronomy14040694
crossref_primary_10_3390_ijms22158327
crossref_primary_10_1007_s11032_021_01267_4
crossref_primary_10_1007_s11240_023_02504_8
crossref_primary_10_1016_j_plaphy_2023_02_009
crossref_primary_10_1016_j_chom_2024_12_003
crossref_primary_10_1016_j_micpath_2024_106772
crossref_primary_10_1111_tpj_15481
crossref_primary_10_1007_s11738_024_03666_4
crossref_primary_10_1016_j_plaphy_2023_107692
crossref_primary_10_1111_nph_16324
crossref_primary_10_1007_s42452_020_2246_x
crossref_primary_10_1016_j_plaphy_2021_08_010
crossref_primary_10_1186_s12870_020_02450_z
crossref_primary_10_1016_j_scienta_2024_113102
crossref_primary_10_1093_hr_uhac181
crossref_primary_10_1093_jxb_erab271
crossref_primary_10_1038_s41438_021_00651_7
crossref_primary_10_1016_j_gene_2024_149176
crossref_primary_10_1111_ppl_14059
crossref_primary_10_1111_jipb_12707
crossref_primary_10_1093_plcell_koab264
crossref_primary_10_1007_s11104_022_05466_6
crossref_primary_10_1186_s13065_019_0647_y
crossref_primary_10_1002_advs_201901455
crossref_primary_10_3390_ijms24032401
crossref_primary_10_3390_agronomy13051320
crossref_primary_10_1016_j_jplph_2022_153892
crossref_primary_10_1016_j_molp_2023_11_011
crossref_primary_10_3389_fendo_2022_1038171
crossref_primary_10_3390_genes14061199
crossref_primary_10_1134_S0003683823050186
crossref_primary_10_3389_fpls_2022_1033915
crossref_primary_10_3389_fpls_2024_1371895
crossref_primary_10_36899_JAPS_2021_6_0369
crossref_primary_10_1111_nph_19703
crossref_primary_10_3389_fpls_2023_1104874
crossref_primary_10_1016_j_gene_2022_146335
crossref_primary_10_1080_17429145_2024_2393803
crossref_primary_10_1093_plcell_koac244
crossref_primary_10_1016_j_jplph_2020_153184
crossref_primary_10_1111_nph_16786
crossref_primary_10_1016_j_jplph_2020_153183
crossref_primary_10_1111_nph_15696
crossref_primary_10_1093_jxb_erac381
crossref_primary_10_1016_j_indcrop_2025_120676
crossref_primary_10_1080_15592324_2019_1704528
crossref_primary_10_48130_frures_0024_0033
crossref_primary_10_1007_s11104_020_04814_8
crossref_primary_10_1111_pbi_14112
crossref_primary_10_1093_plphys_kiad567
crossref_primary_10_1093_plphys_kiae414
crossref_primary_10_1111_nph_19934
crossref_primary_10_3389_fpls_2022_840360
Cites_doi 10.1371/journal.pgen.1005373
10.1038/nature06608
10.1105/tpc.111.091033
10.1105/tpc.112.100107
10.1073/pnas.0602225103
10.1016/j.chom.2012.09.003
10.7554/eLife.13568
10.1073/pnas.1115982109
10.1038/nature10427
10.1126/scisignal.2001346
10.1016/j.chom.2014.02.009
10.1038/ncomms9630
10.1104/pp.16.00328
10.1105/tpc.15.00637
10.3389/fpls.2015.00069
10.1104/pp.126.4.1449
10.1007/s00425-006-0450-6
10.1073/pnas.1308974110
10.1038/ncb1387
10.1105/tpc.112.107904
10.7554/eLife.23361
10.1007/s00425-012-1696-9
10.1093/aob/mcv074
10.1371/journal.pbio.2000322
10.1126/science.1173041
10.1016/j.celrep.2016.11.015
10.1038/emboj.2011.68
10.1111/j.1365-313X.2006.02837.x
10.1111/j.1365-3040.2009.02041.x
10.1038/nplants.2015.74
10.1093/mp/sst009
10.1126/science.1103178
10.1104/pp.106.079129
10.1111/j.1462-5822.2012.01749.x
10.1105/tpc.16.00131
10.1186/s13059-015-0715-0
10.1104/pp.107.099226
10.4161/viru.29755
10.1016/j.stem.2010.11.028
10.1042/BJ20091221
10.1016/j.tplants.2009.03.006
10.1105/tpc.113.118687
10.1111/jipb.12523
10.1371/journal.pgen.1004791
10.1016/j.plaphy.2016.02.035
10.1105/tpc.108.061507
10.1111/j.1365-313X.2010.04302.x
10.1073/pnas.0912021106
10.1016/j.molp.2014.10.012
10.1073/pnas.012452499
10.1146/annurev-phyto-082712-102314
10.1105/tpc.113.114595
10.1073/pnas.0402112101
10.1080/15592324.2016.1161879
10.1111/j.1744-7909.2012.01177.x
10.1105/tpc.112.098707
10.1016/j.stem.2014.05.009
10.1038/35021067
10.1073/pnas.1319955111
10.1105/tpc.15.00583
10.1038/nature06720
10.1016/j.cell.2016.08.029
10.1074/jbc.M309529200
10.1007/s11356-016-7947-8
10.1016/j.cub.2015.01.067
10.1073/pnas.1215543110
10.1093/jxb/ert375
10.1093/emboj/cdg277
10.1093/jxb/erq424
10.1016/j.pbi.2011.07.014
10.1038/nature13593
10.1105/tpc.15.00144
10.1105/tpc.109.072959
10.1074/jbc.M509820200
10.1073/pnas.221252798
10.1073/pnas.0907205106
10.1105/tpc.010210
10.1038/nature08794
10.1038/sj.emboj.7601575
10.1016/j.tplants.2016.08.002
10.1016/j.molcel.2014.02.021
10.1046/j.1365-313X.2001.01138.x
10.1093/pcp/pcv063
10.1105/tpc.010433
10.1105/tpc.106.044230
10.1104/pp.15.01546
10.1146/annurev-phyto-081211-172902
10.1104/pp.15.01237
10.3389/fpls.2015.00420
10.1105/tpc.12.3.405
10.1093/pcp/pcq156
10.1016/j.cell.2010.10.020
10.1073/pnas.231178298
10.1016/j.tplants.2011.03.007
10.1104/pp.16.00434
10.1016/S1369-5266(02)00282-0
10.1105/tpc.113.121061
10.1038/nature20166
10.1126/scisignal.2000448
10.1016/j.cub.2015.09.013
10.1038/nature12478
10.1016/j.stem.2013.04.001
10.1105/tpc.16.00583
10.1093/mp/ssu070
10.1016/j.chom.2010.03.007
10.1073/pnas.1604936113
10.1073/pnas.0909705107
10.1038/nature02353
10.1146/annurev.phyto.121107.104959
10.1016/j.chom.2014.10.007
10.1126/science.1156973
10.1016/j.tplants.2009.01.008
10.1073/pnas.0609063103
10.1104/pp.114.255216
10.1093/jxb/erp219
10.1105/tpc.15.00421
10.1046/j.1469-8137.2001.00028.x
10.1016/j.tplants.2004.08.009
10.1016/j.plantsci.2013.07.004
10.1111/nph.13435
10.1016/S0014-5793(01)03106-4
10.1126/stke.2001.113.re22
10.1016/j.pbi.2013.06.013
10.1038/ncb2009
10.1016/j.cell.2006.06.054
10.1111/j.1365-3040.2007.01651.x
10.1105/tpc.007906
10.1111/tpj.13299
10.1073/pnas.1704754114
10.1007/s00425-001-0675-3
10.1016/j.febslet.2009.08.033
10.3389/fpls.2015.00701
10.1073/pnas.0702061104
10.3389/fpls.2016.01299
10.1104/pp.15.00026
10.1111/nph.13621
10.1126/science.1172408
10.1105/tpc.111.093039
10.1111/j.1744-7909.2008.00759.x
10.1104/pp.112.210724
10.1104/pp.114.4.1557
10.1371/journal.pgen.1006175
10.1111/tpj.12133
10.1146/annurev.arplant.52.1.561
10.1146/annurev-arplant-042809-112226
10.1016/j.molp.2015.12.014
10.1111/j.1365-313X.2005.02615.x
10.1038/35066500
10.1038/cr.2015.46
10.1073/pnas.1423481112
10.1094/MPMI-20-4-0335
10.1104/pp.110.169797
10.1104/pp.113.220608
10.1016/j.tplants.2015.08.014
10.1105/tpc.113.109827
10.1016/j.pbi.2013.07.002
10.1073/pnas.0912030107
10.1105/tpc.112.109074
10.1104/pp.16.00375
10.3389/fpls.2012.00292
10.1073/pnas.1221294110
10.1105/tpc.010441
10.1101/gad.1812409
10.1105/tpc.108.062992
10.1104/pp.109.141770
10.1016/j.pbi.2017.04.022
10.1111/j.1365-3040.2011.02336.x
10.1016/j.bbrc.2014.02.013
10.1111/j.1365-313X.2010.04280.x
10.1105/tpc.113.122358
10.1038/ncomms1926
ContentType Journal Article
Copyright 2018 Institute of Botany, Chinese Academy of Sciences
2018 Institute of Botany, Chinese Academy of Sciences.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2018 Institute of Botany, Chinese Academy of Sciences
– notice: 2018 Institute of Botany, Chinese Academy of Sciences.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T7
8FD
C1K
FR3
P64
RC3
7X8
7S9
L.6
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1111/jipb.12654
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AGRICOLA

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1744-7909
EndPage 826
ExternalDocumentID zwxb201809006
29660240
10_1111_jipb_12654
JIPB12654
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31730007
– fundername: National Key Scientific Research Project
  funderid: 2011CB915400
– fundername: National Key Scientific Research Project
  grantid: 2011CB915400
– fundername: National Natural Science Foundation of China
  grantid: 31730007
– fundername: J.Z.and Z.G.are supported by the National Key Scientific Research Project (2011CB915400).Z.G.is supported by the National Natural Science Foundation of China
  funderid: (31730007)
GroupedDBID ---
-SA
-S~
.3N
.GA
.Y3
05W
0R~
10A
1OC
29K
2B.
2C.
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VR
5VS
5XA
5XB
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
92E
92I
92Q
930
93N
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXDM
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFUIB
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CAJEA
CCEZO
CCVFK
CHBEP
CHDYS
COF
CS3
CW9
D-E
D-F
D-I
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FA0
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q--
Q.N
Q11
QB0
R.K
ROL
RX1
SJN
SUPJJ
SV3
TCJ
TGP
TUS
U1G
U5K
UB1
W8V
W99
WBKPD
WFFXF
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
7X8
7S9
L.6
4A8
PSX
ID FETCH-LOGICAL-c4864-3bbe3dc1eafb9bf2d2a636db1969dc1c3c316ec5fa1d417f729cad60c46d7c843
IEDL.DBID DR2
ISSN 1672-9072
1744-7909
IngestDate Thu May 29 04:01:05 EDT 2025
Fri Jul 11 18:35:53 EDT 2025
Fri Jul 11 02:47:06 EDT 2025
Fri Jul 25 21:07:35 EDT 2025
Wed Feb 19 02:42:40 EST 2025
Tue Jul 01 03:06:08 EDT 2025
Thu Apr 24 23:07:03 EDT 2025
Wed Jan 22 16:59:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License 2018 Institute of Botany, Chinese Academy of Sciences.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4864-3bbe3dc1eafb9bf2d2a636db1969dc1c3c316ec5fa1d417f729cad60c46d7c843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 29660240
PQID 2099810239
PQPubID 2045135
PageCount 22
ParticipantIDs wanfang_journals_zwxb201809006
proquest_miscellaneous_2153611362
proquest_miscellaneous_2026411189
proquest_journals_2099810239
pubmed_primary_29660240
crossref_citationtrail_10_1111_jipb_12654
crossref_primary_10_1111_jipb_12654
wiley_primary_10_1111_jipb_12654_JIPB12654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2018
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace China (Republic : 1949- )
PublicationPlace_xml – name: China (Republic : 1949- )
– name: Hoboken
PublicationTitle Journal of integrative plant biology
PublicationTitleAlternate J Integr Plant Biol
PublicationTitle_FL Journal of Integrative Plant Biology
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China%Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng 475001,China%Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan 250000, China%State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101,China%Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland%Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
Publisher_xml – name: Wiley Subscription Services, Inc
– name: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China%Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng 475001,China%Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan 250000, China%State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101,China%Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland%Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
– name: Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
References 2010; 12
2007; 225
2007; 104
2011; 478
2002; 14
2010; 107
2010; 464
2011; 62
2004; 9
2002; 99
2014; 26
2012; 14
2012; 12
2013; 6
2001; 149
2010; 22
2001; 410
2009; 14
2000; 12
2013; 51
2000; 406
2014; 16
2014; 15
2013; 110
2006; 281
2012; 24
2010; 7
2001; 52
2014; 10
2015; 56
2010; 33
2009; 60
2002; 5
2013; 500
2016; 167
2011; 4
2008; 50
2016; 17
2004; 427
2012; 35
2004; 306
2016; 14
2011; 8
2012; 109
2016; 12
2016; 11
2016; 5
2016; 7
2004; 279
2006; 45
2017; 59
2015; 116
2006; 47
2013; 74
2016; 21
2013; 211
2009; 583
2015b; 16
2008; 46
2016; 171
2016; 28
2012; 236
2016; 170
2016; 9
2010; 51
2003; 22
2006; 103
2009; 106
2017; 6
1997; 114
2013; 25
2015a; 112
2007; 144
2001b; 28
2010; 143
2001; 508
2013; 162
2009; 151
2016; 103
2007; 30
2011; 14
2011; 16
2017; 114
2012; 54
2010; 63
2011; 156
2014; 65
2010; 61
2013a; 161
2014; 5
2013; 16
2013; 12
2017; 38
2016; 113
2011; 23
2014; 52
2007; 20
2006; 126
2001; 13
2014; 7
2014; 445
2009; 324
2007; 26
2014; 54
2001; 98
2009; 23
2014; 514
2004; 101
2015; 1
2015; 6
2013b; 110
2001a; 126
2015; 4
2009; 21
2000; 26
2017; 22
2015; 167
2017; 24
2015; 11
2006; 8
2011; 30
2002; 214
2006; 18
2015; 208
2017; 29
2008; 321
2014; 111
2015; 8
2015; 25
2017; 90
2015; 27
2012; 3
2016; 539
2006; 141
2009; 2
2008; 452
2001; 2001
2009; 424
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_131_1
e_1_2_10_158_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_154_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_147_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
Shumbe L (e_1_2_10_128_1) 2016; 170
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
Brandt B (e_1_2_10_11_1) 2015; 4
e_1_2_10_41_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_148_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_171_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_8_1
e_1_2_10_57_1
Miao YC (e_1_2_10_83_1) 2000; 26
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_160_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_122_1
e_1_2_10_164_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_130_1
e_1_2_10_157_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_153_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 62
  start-page: 2371
  year: 2011
  end-page: 2379
  article-title: Heterotrimeric G‐protein regulation of ROS signalling and calcium currents in guard cells
  publication-title: J Exp Bot
– volume: 208
  start-page: 162
  year: 2015
  end-page: 173
  article-title: Guard cell SLAC1‐type anion channels mediate flagellin‐induced stomatal closure
  publication-title: New Phytol
– volume: 52
  start-page: 517
  year: 2014
  end-page: 549
  article-title: Predisposition in plant disease: Exploiting the nexus in abiotic and biotic stress perception and response
  publication-title: Annu Rev Phytopathol
– volume: 2001
  start-page: re22
  year: 2001
  article-title: Plant receptor‐like kinase gene family: Diversity, function, and signaling
  publication-title: Sci STKE
– volume: 14
  start-page: 691
  year: 2011
  end-page: 699
  article-title: Respiratory burst oxidases: The engines of ROS signaling
  publication-title: Curr Opin Plant Biol
– volume: 18
  start-page: 2749
  year: 2006
  end-page: 2766
  article-title: An glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses
  publication-title: Plant Cell
– volume: 14
  start-page: 669
  year: 2012
  end-page: 681
  article-title: A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses
  publication-title: Cell Microbiol
– volume: 452
  start-page: 483
  year: 2008
  end-page: 486
  article-title: CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells
  publication-title: Nature
– volume: 22
  start-page: 2623
  year: 2003
  end-page: 2633
  article-title: NADPH oxidase and genes function in ROS‐dependent ABA signaling in
  publication-title: EMBO J
– volume: 63
  start-page: 749
  year: 2010
  end-page: 765
  article-title: ABA overly‐sensitive 5 (ABO5), encoding a pentatricopeptide repeat protein required for cis‐splicing of mitochondrial nad2 intron 3, is involved in the abscisic acid response in
  publication-title: Plant J
– volume: 3
  start-page: 926
  year: 2012
  article-title: Chloroplast‐mediated activation of plant immune signalling in
  publication-title: Nat Commun
– volume: 22
  start-page: 2981
  year: 2010
  end-page: 2998
  article-title: Hydrogen peroxide‐mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in
  publication-title: Plant Cell
– volume: 1
  start-page: 15074
  year: 2015
  article-title: Chloroplasts play a central role in plant defence and are targeted by pathogen effectors
  publication-title: Nat Plants
– volume: 161
  start-page: 1392
  year: 2013a
  end-page: 1408
  article-title: The MPK6‐ERF6‐ROS‐responsive cis‐acting element7/GCC box complex modulates oxidative gene transcription and the oxidative response in
  publication-title: Plant Physiol
– volume: 583
  start-page: 2982
  year: 2009
  end-page: 2986
  article-title: Phosphorylation of the AtrbohF NADPH oxidase by OST1 protein kinase
  publication-title: FEBS Lett
– volume: 321
  start-page: 557
  year: 2008
  end-page: 560
  article-title: BSKs mediate signal transduction from the receptor kinase BRI1 in
  publication-title: Science
– volume: 156
  start-page: 185
  year: 2011
  end-page: 201
  article-title: Organelles contribute differentially to reactive oxygen species‐related events during extended darkness
  publication-title: Plant Physiol
– volume: 126
  start-page: 969
  year: 2006
  end-page: 980
  article-title: Plant stomata function in innate immunity against bacterial invasion
  publication-title: Cell
– volume: 47
  start-page: 851
  year: 2006
  end-page: 863
  article-title: Peroxidase‐dependent apoplastic oxidative burst in required for pathogen resistance
  publication-title: Plant J
– volume: 113
  start-page: E4567
  year: 2016
  end-page: E4576
  article-title: Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase
  publication-title: Proc Natl Acad Sci USA
– volume: 171
  start-page: 1606
  year: 2016
  end-page: 1615
  article-title: ROS, calcium, and electric signals: Key mediators of rapid systemic signaling in plants
  publication-title: Plant Physiol
– volume: 21
  start-page: 2143
  year: 2009
  end-page: 2162
  article-title: The high light response in involves ABA signaling between vascular and bundle sheath cells
  publication-title: Plant Cell
– volume: 214
  start-page: 775
  year: 2002
  end-page: 782
  article-title: The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid‐response regulator to redox signalling
  publication-title: Planta
– volume: 98
  start-page: 13454
  year: 2001
  end-page: 13459
  article-title: Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: S15
  year: 2002
  end-page: S45
  article-title: Abscisic acid signaling in seeds and seedlings
  publication-title: Plant Cell
– volume: 7
  start-page: 290
  year: 2010
  end-page: 301
  article-title: Receptor‐like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a effector
  publication-title: Cell Host Microbe
– volume: 24
  start-page: 2273
  year: 2017
  end-page: 2285
  article-title: Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress
  publication-title: Environ Sci Pollut Res
– volume: 107
  start-page: 8023
  year: 2010
  end-page: 8028
  article-title: Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca affinities
  publication-title: Proc Natl Acad Sci USA
– volume: 452
  start-page: 487
  year: 2008
  end-page: U415
  article-title: SLAC1 is required for plant guard cell S‐type anion channel function in stomatal signalling
  publication-title: Nature
– volume: 16
  start-page: 575
  year: 2013
  end-page: 582
  article-title: ROS signaling loops ‐ production, perception, regulation
  publication-title: Curr Opin Plant Biol
– volume: 424
  start-page: 439
  year: 2009
  end-page: 448
  article-title: Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA‐activated SnRK2/OST1/SnRK2.6 protein kinase
  publication-title: Biochem J
– volume: 110
  start-page: 6205
  year: 2013
  end-page: 6210
  article-title: BIK1 interacts with PEPRs to mediate ethylene‐induced immunity
  publication-title: Proc Natl Acad Sci USA
– volume: 56
  start-page: 1472
  year: 2015
  end-page: 1480
  article-title: Regulation of the NADPH Oxidase RBOHD during plant immunity
  publication-title: Plant Cell Physiol
– volume: 26
  start-page: 53
  year: 2000
  end-page: 58
  article-title: ABA‐induced hydrogen peroxide generation in guard cells of
  publication-title: Acta Phytophysiol Sin
– volume: 21
  start-page: 16
  year: 2016
  end-page: 30
  article-title: CO Sensing and CO regulation of stomatal conductance: Advances and open questions
  publication-title: Trends Plant Sci
– volume: 24
  start-page: 2546
  year: 2012
  end-page: 2561
  article-title: A plasma membrane receptor kinase, GHR1, mediates abscisic acid‐ and hydrogen peroxide‐regulated stomatal movement in
  publication-title: Plant Cell
– volume: 25
  start-page: 1126
  year: 2013
  end-page: 1142
  article-title: Phosphorylation of an ERF transcription factor by MPK3/MPK6 regulates plant defense gene induction and fungal resistance
  publication-title: Plant Cell
– volume: 51
  start-page: 1821
  year: 2010
  end-page: 1839
  article-title: Molecular basis of the core regulatory network in ABA responses: Sensing, signaling and transport
  publication-title: Plant Cell Physiol
– volume: 112
  start-page: 613
  year: 2015a
  end-page: 618
  article-title: Nitric oxide negatively regulates abscisic acid signaling in guard cells by S‐nitrosylation of OST1
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 701
  year: 2015
  article-title: Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO with environmental stress in plants
  publication-title: Front Plant Sci
– volume: 236
  start-page: 765
  year: 2012
  end-page: 779
  article-title: Reactive oxygen species and their role in plant defence and cell wall metabolism
  publication-title: Planta
– volume: 114
  start-page: 9200
  year: 2017
  end-page: 9205
  article-title: Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA‐ and pathogen‐triggered stomatal closure
  publication-title: Proc Natl Acad Sci USA
– volume: 11
  start-page: e1005373
  year: 2015
  article-title: Large‐scale phenomics identifies primary and fine‐tuning roles for CRKs in responses related to oxidative stress
  publication-title: PLoS Genet
– volume: 25
  start-page: 1445
  year: 2013
  end-page: 1462
  article-title: Light‐induced acclimation of the chlorina1 mutant to singlet oxygen
  publication-title: Plant Cell
– volume: 24
  start-page: 1815
  year: 2012
  end-page: 1833
  article-title: DEXH box RNA helicase‐mediated mitochondrial reactive oxygen species production in mediates crosstalk between abscisic acid and auxin signaling
  publication-title: Plant Cell
– volume: 141
  start-page: 357
  year: 2006
  end-page: 366
  article-title: Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling
  publication-title: Plant Physiol
– volume: 478
  start-page: 264
  year: 2011
  end-page: 268
  article-title: S‐nitrosylation of NADPH oxidase regulates cell death in plant immunity
  publication-title: Nature
– volume: 106
  start-page: 20520
  year: 2009
  end-page: 20525
  article-title: MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS‐mediated ABA signaling
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 3553
  year: 2013
  end-page: 3569
  article-title: Temporal‐spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants
  publication-title: Plant Cell
– volume: 427
  start-page: 858
  year: 2004
  end-page: 861
  article-title: OXI1 kinase is necessary for oxidative burst‐mediated signalling in
  publication-title: Nature
– volume: 52
  start-page: 561
  year: 2001
  end-page: 591
  article-title: PLANT MITOCHONDRIA AND OXIDATIVE STRESS: Electron transport, NADPH turnover, and metabolism of reactive oxygen species
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
– volume: 60
  start-page: 3727
  year: 2009
  end-page: 3735
  article-title: OXI1 protein kinase is required for plant immunity against Pseudomonas syringae in
  publication-title: J Exp Bot
– volume: 279
  start-page: 1794
  year: 2004
  end-page: 1800
  article-title: phospholipase D alpha 1 interacts with the heterotrimeric G‐protein alpha‐subunit through a motif analogous to the DRY motif in G‐protein‐coupled receptors
  publication-title: J Biol Chem
– volume: 8
  start-page: 59
  year: 2011
  end-page: 71
  article-title: Proliferative neural stem cells have high endogenous ROS levels that regulate self‐renewal and neurogenesis in a PI3K/Akt‐dependant manner
  publication-title: Cell Stem Cell
– volume: 14
  start-page: 1235
  year: 2002
  end-page: 1251
  article-title: A mitochondrial complex I defect impairs cold‐regulated nuclear gene expression
  publication-title: Plant Cell
– volume: 24
  start-page: 275
  year: 2012
  end-page: 287
  article-title: The apoplastic oxidative burst peroxidase in is a major component of pattern‐triggered immunity
  publication-title: Plant Cell
– volume: 74
  start-page: 372
  year: 2013
  end-page: 382
  article-title: Open stomata 1 (OST1) kinase controls R‐type anion channel QUAC1 in guard cells
  publication-title: Plant J
– volume: 38
  start-page: 92
  year: 2017
  end-page: 100
  article-title: Apoplastic ROS signaling in plant immunity
  publication-title: Curr Opin Plant Biol
– volume: 170
  start-page: 1757
  year: 2016
  end-page: 1771
  article-title: Singlet oxygen‐induced cell death in under high‐light stress is controlled by OXI1 kinase
  publication-title: Plant Physiol
– volume: 114
  start-page: 1557
  year: 1997
  end-page: 1560
  article-title: Convergence of the abscisic acid, CO2, and extracellular calcium signal transduction pathways in stomatal guard cells
  publication-title: Plant Physiol
– volume: 16
  start-page: 300
  year: 2011
  end-page: 309
  article-title: ROS signaling: The new wave
  publication-title: Trends Plant Sci
– volume: 324
  start-page: 1068
  year: 2009
  end-page: 1071
  article-title: Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins
  publication-title: Science
– volume: 116
  start-page: 475
  year: 2015
  end-page: 485
  article-title: Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks
  publication-title: Ann Bot
– volume: 208
  start-page: 342
  year: 2015
  end-page: 353
  article-title: Guard cell hydrogen peroxide and nitric oxide mediate elevated CO ‐induced stomatal movement in tomato
  publication-title: New Phytol
– volume: 14
  start-page: 310
  year: 2009
  end-page: 317
  article-title: The multifaceted role of ABA in disease resistance
  publication-title: Trends Plant Sci
– volume: 110
  start-page: 8744
  year: 2013
  end-page: 8749
  article-title: Calcium‐dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation
  publication-title: Proc Natl Acad Sci USA
– volume: 29
  start-page: 543
  year: 2017
  end-page: 559
  article-title: Cytokinin‐mediated regulation of reactive oxygen species homeostasis modulates stomatal immunity in
  publication-title: Plant Cell
– volume: 27
  start-page: 1445
  year: 2015
  end-page: 1460
  article-title: CALCIUM‐DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid‐mediated signaling and H O homeostasis in stomatal guard cells under drought stress
  publication-title: Plant Cell
– volume: 406
  start-page: 731
  year: 2000
  end-page: 734
  article-title: Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells
  publication-title: Nature
– volume: 171
  start-page: 1569
  year: 2016
  end-page: 1580
  article-title: Reactive oxygen species in the regulation of stomatal movements
  publication-title: Plant Physiol
– volume: 211
  start-page: 77
  year: 2013
  end-page: 91
  article-title: Redox control of plant growth and development
  publication-title: Plant Sci
– volume: 30
  start-page: 617
  year: 2007
  end-page: 629
  article-title: Characterization and expression analysis of genes encoding alpha and beta carbonic anhydrases in
  publication-title: Plant Cell Environ
– volume: 6
  start-page: e23361
  year: 2017
  article-title: A chloroplast retrograde signal, 3′‐phosphoadenosine 5′‐phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination
  publication-title: eLife
– volume: 514
  start-page: 367
  year: 2014
  article-title: OSCA1 mediates osmotic‐stress‐evoked Ca increases vital for osmosensing in
  publication-title: Nature
– volume: 28
  start-page: 2493
  year: 2016
  end-page: 2509
  article-title: A dominant mutation in the HT1 kinase uncovers roles of MAP kinases and GHR1 in CO ‐induced stomatal closure
  publication-title: Plant Cell
– volume: 162
  start-page: 1652
  year: 2013
  end-page: 1668
  article-title: PYR/RCAR receptors contribute to ozone‐, reduced air humidity‐, darkness‐, and CO ‐induced stomatal regulation
  publication-title: Plant Physiol
– volume: 12
  start-page: 87
  year: 2010
  end-page: U234
  article-title: Carbonic anhydrases are upstream regulators of CO ‐controlled stomatal movements in guard cells
  publication-title: Nat Cell Biol
– volume: 25
  start-page: 928
  year: 2015
  end-page: 935
  article-title: Stomatal guard cells co‐opted an ancient ABA‐dependent desiccation survival system to regulate stomatal closure
  publication-title: Curr Biol
– volume: 16
  start-page: 638
  year: 2013
  end-page: 646
  article-title: Early evolutionary acquisition of stomatal control and development gene signalling networks
  publication-title: Curr Opin Plant Biol
– volume: 35
  start-page: 259
  year: 2012
  end-page: 270
  article-title: ROS and redox signalling in the response of plants to abiotic stress
  publication-title: Plant Cell Environ
– volume: 500
  start-page: 422
  year: 2013
  end-page: 426
  article-title: GLUTAMATE RECEPTOR‐LIKE genes mediate leaf‐to‐leaf wound signalling
  publication-title: Nature
– volume: 13
  start-page: 2513
  year: 2001
  end-page: 2523
  article-title: Abscisic acid activation of plasma membrane Ca channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1‐1 and abi2‐1 protein phosphatase 2C mutants
  publication-title: Plant Cell
– volume: 149
  start-page: 247
  year: 2001
  end-page: 264
  article-title: Stomatal conductance of forest species after long‐term exposure to elevated CO concentration: A synthesis
  publication-title: New Phytol
– volume: 167
  start-page: 1731
  year: 2015
  end-page: 1746
  article-title: Site‐specific nitrosoproteomic identification of endogenously S‐nitrosylated proteins in
  publication-title: Plant Physiol
– volume: 54
  start-page: 887
  year: 2012
  end-page: 906
  article-title: Mitochondrial composition, function and stress response in plants
  publication-title: J Integr Plant Biol
– volume: 61
  start-page: 561
  year: 2010
  end-page: 591
  article-title: Guard cell signal transduction network: Advances in understanding abscisic acid, CO , and Ca signaling
  publication-title: Annu Rev Plant Biol
– volume: 225
  start-page: 1421
  year: 2007
  end-page: 1429
  article-title: Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of
  publication-title: Planta
– volume: 143
  start-page: 606
  year: 2010
  end-page: 616
  article-title: Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root
  publication-title: Cell
– volume: 51
  start-page: 245
  year: 2013
  end-page: 266
  article-title: MAPK cascades in plant disease resistance signaling
  publication-title: Annu Rev Phytopathol
– volume: 14
  start-page: 219
  year: 2009
  end-page: 228
  article-title: Singlet oxygen in plants: Production, detoxification and signaling
  publication-title: Trends Plant Sci
– volume: 4
  year: 2015
  article-title: Calcium specificity signaling mechanisms in abscisic acid signal transduction in guard cells
  publication-title: eLife
– volume: 15
  start-page: 199
  year: 2014
  end-page: 214
  article-title: Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2‐dependent notch signaling
  publication-title: Cell Stem Cell
– volume: 11
  start-page: e1161879
  year: 2016
  article-title: New roles for the GLUTAMATE RECEPTOR‐LIKE 3.3, 3.5, and 3.6 genes as on/off switches of wound‐induced systemic electrical signals
  publication-title: Plant Signal Behav
– volume: 104
  start-page: 10270
  year: 2007
  end-page: 10275
  article-title: EXECUTER1‐ and EXECUTER2‐dependent transfer of stress‐related signals from the plastid to the nucleus of
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 69
  year: 2015
  article-title: ROS‐mediated abiotic stress‐induced programmed cell death in plants
  publication-title: Front Plant Sci
– volume: 8
  start-page: 566
  year: 2015
  end-page: 581
  article-title: A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens
  publication-title: Mol Plant
– volume: 126
  start-page: 1449
  year: 2001a
  end-page: 1458
  article-title: Phospholipase D and phosphatidic acid‐mediated generation of superoxide in
  publication-title: Plant Physiol
– volume: 26
  start-page: 1729
  year: 2014
  end-page: 1745
  article-title: Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in
  publication-title: Plant Cell
– volume: 99
  start-page: 517
  year: 2002
  end-page: 522
  article-title: gp91(phox) homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response
  publication-title: Proc Natl Acad Sci USA
– volume: 50
  start-page: 1238
  year: 2008
  end-page: 1246
  article-title: Nitric oxide signaling in plant responses to abiotic stresses
  publication-title: J Integr Plant Biol
– volume: 26
  start-page: 164
  year: 2014
  end-page: 180
  article-title: A wheat SIMILAR TO RCD‐ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity
  publication-title: Plant Cell
– volume: 12
  start-page: 774
  year: 2013
  end-page: 786
  article-title: ROS are required for mouse spermatogonial stem cell self‐renewal
  publication-title: Cell Stem Cell
– volume: 28
  start-page: 135
  year: 2001b
  end-page: 144
  article-title: Regulation of plant water loss by manipulating the expression of phospholipase D alpha
  publication-title: Plant J
– volume: 508
  start-page: 443
  year: 2001
  end-page: 446
  article-title: Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from
  publication-title: FEBS Lett
– volume: 46
  start-page: 101
  year: 2008
  end-page: 122
  article-title: Role of stomata in plant innate immunity and foliar bacterial diseases
  publication-title: Annu Rev Phytopathol
– volume: 45
  start-page: 113
  year: 2006
  end-page: 122
  article-title: ABA‐induced NO generation and stomatal closure in are dependent on H O synthesis
  publication-title: Plant J
– volume: 539
  start-page: 524
  year: 2016
  end-page: 529
  article-title: Bacteria establish an aqueous living space in plants crucial for virulence
  publication-title: Nature
– volume: 25
  start-page: 2709
  year: 2015
  end-page: 2716
  article-title: Elevated CO ‐induced responses in stomata require ABA and ABA signaling
  publication-title: Curr Biol
– volume: 7
  start-page: 1191
  year: 2014
  end-page: 1210
  article-title: Spatial H O signaling specificity: H O from chloroplasts and peroxisomes modulates the plant transcriptome differentially
  publication-title: Mol Plant
– volume: 5
  start-page: 710
  year: 2014
  end-page: 721
  article-title: Go in for the kill how plants deploy effector‐triggered immunity to combat pathogens
  publication-title: Virulence
– volume: 14
  start-page: 3089
  year: 2002
  end-page: 3099
  article-title: OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production
  publication-title: Plant Cell
– volume: 151
  start-page: 603
  year: 2009
  end-page: 619
  article-title: Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses germination and growth and alters control of metabolism at night
  publication-title: Plant Physiol
– volume: 3
  start-page: 292
  year: 2012
  article-title: ROS‐talk ‐ how the apoplast, the chloroplast, and the nucleus get the message through
  publication-title: Front Plant Sci
– volume: 30
  start-page: 1645
  year: 2011
  end-page: 1658
  article-title: Central functions of bicarbonate in S‐type anion channel activation and OST1 protein kinase in CO signal transduction in guard cell
  publication-title: EMBO J
– volume: 28
  start-page: 568
  year: 2016
  end-page: 582
  article-title: Reconstitution of CO2 regulation of SLAC1 anion channel and function of CO ‐permeable PIP2;1 aquaporin as CARBONIC ANHYDRASE4 interactor
  publication-title: Plant Cell
– volume: 109
  start-page: 5535
  year: 2012
  end-page: 5540
  article-title: Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 1143
  year: 2013
  end-page: 1157
  article-title: BR‐SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in
  publication-title: Plant Cell
– volume: 110
  start-page: 11205
  year: 2013b
  end-page: 11210
  article-title: Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action
  publication-title: Proc Natl Acad Sci USA
– volume: 281
  start-page: 5310
  year: 2006
  end-page: 5318
  article-title: The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in
  publication-title: J Biol Chem
– volume: 59
  start-page: 240
  year: 2017
  end-page: 260
  article-title: What are the evolutionary origins of stomatal responses to abscisic acid in land plants
  publication-title: J Integr Plant Biol
– volume: 464
  start-page: 418
  year: 2010
  end-page: U116
  article-title: Differential innate immune signalling via Ca sensor protein kinases
  publication-title: Nature
– volume: 16
  start-page: 605
  year: 2014
  end-page: 615
  article-title: The calcium‐dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover
  publication-title: Cell Host Microbe
– volume: 2
  start-page: ra45
  year: 2009
  article-title: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli
  publication-title: Sci Signal
– volume: 107
  start-page: 496
  year: 2010
  end-page: 501
  article-title: A receptor‐like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity
  publication-title: Proc Natl Acad Sci USA
– volume: 144
  start-page: 1863
  year: 2007
  end-page: 1877
  article-title: Resistance to Botrytis cinerea in sitiens, an absci acid‐deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis
  publication-title: Plant Physiol
– volume: 25
  start-page: 621
  year: 2015
  end-page: 633
  article-title: Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species
  publication-title: Cell Res
– volume: 8
  start-page: 391
  year: 2006
  end-page: U352
  article-title: HT1 kinase controls stomatal movements in response to CO
  publication-title: Nat Cell Biol
– volume: 17
  start-page: 2553
  year: 2016
  end-page: 2561
  article-title: L‐met activates GLR Ca channels upstream of ROS production and regulates stomatal movement
  publication-title: Cell Rep
– volume: 33
  start-page: 453
  year: 2010
  end-page: 467
  article-title: Reactive oxygen species homeostasis and signalling during drought and salinity stresses
  publication-title: Plant Cell Environ
– volume: 5
  start-page: 388
  year: 2002
  end-page: 395
  article-title: Hydrogen peroxide signalling
  publication-title: Curr Opin Plant Biol
– volume: 12
  start-page: e1006175
  year: 2016
  article-title: A P‐loop NTPase regulates quiescent center cell division and distal stem cell identity through the regulation of ROS homeostasis in root
  publication-title: PLoS Genet
– volume: 9
  start-page: 447
  year: 2016
  end-page: 460
  article-title: BRI1‐associated receptor kinase 1 regulates guard cell ABA signaling mediated by open stomata 1 in
  publication-title: Mol Plant
– volume: 12
  start-page: 484
  year: 2012
  end-page: 495
  article-title: Phytopathogen effectors subverting host immunity: Different foes, similar battleground
  publication-title: Cell Host Microbe
– volume: 111
  start-page: 6497
  year: 2014
  end-page: 6502
  article-title: Salt stress‐induced Ca waves are associated with rapid, long‐distance root‐to‐shoot signaling in plants
  publication-title: Proc Natl Acad Sci USA
– volume: 103
  start-page: 7506
  year: 2006
  end-page: 7511
  article-title: CO2 signaling in guard cells: Calcium sensitivity response modulation, a Ca ‐independent phase, and CO insensitivity of the gca2 mutant
  publication-title: Proc Natl Acad Sci USA
– volume: 103
  start-page: 10
  year: 2016
  end-page: 23
  article-title: Reactive oxygen species, essential molecules, during plant‐pathogen interactions
  publication-title: Plant Physiol Biochem
– volume: 90
  start-page: 856
  year: 2017
  end-page: 867
  article-title: Reactive oxygen species, abiotic stress and stress combination
  publication-title: Plant J
– volume: 26
  start-page: 1151
  year: 2014
  end-page: 1165
  article-title: Fast retrograde signaling in response to high light involves metabolite export, MITOGEN‐ACTIVATED PROTEIN KINASE6, and AP2/ERF transcription factors in
  publication-title: Plant Cell
– volume: 4
  start-page: ra32
  year: 2011
  article-title: Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1
  publication-title: Sci Signal
– volume: 6
  start-page: 8630
  year: 2015
  article-title: Degradation of the ABA co‐receptor ABI1 by PUB12/13 U‐box E3 ligases
  publication-title: Nat Commun
– volume: 6
  start-page: 559
  year: 2013
  end-page: 569
  article-title: The calcineurin B‐like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the NADPH oxidase RBOHF
  publication-title: Mol Plant
– volume: 20
  start-page: 335
  year: 2007
  end-page: 345
  article-title: ABA is required for Leptosphaeria maculans resistance via ABI1‐ and ABI4‐dependent signaling
  publication-title: Mol Plant Microbe Interact
– volume: 15
  start-page: 329
  year: 2014
  end-page: 338
  article-title: The FLS2‐associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity
  publication-title: Cell Host Microbe
– volume: 22
  start-page: 11
  year: 2017
  end-page: 19
  article-title: ROS are good
  publication-title: Trends Plant Sci
– volume: 28
  start-page: 557
  year: 2016
  end-page: 567
  article-title: The transmembrane region of guard cell SLAC1 channels perceives CO signals via an ABA‐independent pathway in
  publication-title: Plant Cell
– volume: 27
  start-page: 1945
  year: 2015
  end-page: 1954
  article-title: Aquaporins contribute to ABA‐triggered stomatal closure through OST1‐mediated phosphorylation
  publication-title: Plant Cell
– volume: 23
  start-page: 1805
  year: 2009
  end-page: 1817
  article-title: A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control
  publication-title: Genes Dev
– volume: 12
  start-page: 405
  year: 2000
  end-page: 417
  article-title: Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology
  publication-title: Plant Cell
– volume: 171
  start-page: 1635
  year: 2016
  end-page: 1650
  article-title: Plant aquaporin AtPIP1;4 links apoplastic H O induction to disease immunity pathways
  publication-title: Plant Physiol
– volume: 106
  start-page: 21425
  year: 2009
  end-page: 21430
  article-title: Activity of guard cell anion channel SLAC1 is controlled by drought‐stress signaling kinase‐phosphatase pair
  publication-title: Proc Natl Acad Sci USA
– volume: 104
  start-page: 672
  year: 2007
  end-page: 677
  article-title: Cross‐talk between singlet oxygen‐ and hydrogen peroxide‐dependent signaling of stress responses in
  publication-title: Proc Natl Acad Sci USA
– volume: 21
  start-page: 2357
  year: 2009
  end-page: 2377
  article-title: Phospholipase D alpha 1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA‐mediated stomatal closure in
  publication-title: Plant Cell
– volume: 445
  start-page: 457
  year: 2014
  end-page: 462
  article-title: The cysteine‐rich receptor‐like kinases CRK6 and CRK7 protect against apoplastic oxidative stress
  publication-title: Biochem Biophys Res Commun
– volume: 7
  start-page: 1
  year: 2016
  end-page: 19
  article-title: Reactive oxygen species (ROS): Beneficial companions of plants’ developmental processes
  publication-title: Front Plant Sci
– volume: 10
  start-page: e1004791
  year: 2014
  article-title: ABA‐mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in
  publication-title: PLoS Genet
– volume: 5
  start-page: e13568
  year: 2016
  article-title: heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor
  publication-title: eLife
– volume: 9
  start-page: 490
  year: 2004
  end-page: 498
  article-title: Reactive oxygen gene network of plants
  publication-title: Trends Plant Sci
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 26
  start-page: 1434
  year: 2007
  end-page: 1443
  article-title: pv. tomato hijacks the abscisic acid signalling pathway to cause disease
  publication-title: EMBO J
– volume: 410
  start-page: 327
  year: 2001
  end-page: 330
  article-title: Guard cell abscisic acid signalling and engineering drought hardiness in plants
  publication-title: Nature
– volume: 63
  start-page: 1054
  year: 2010
  end-page: 1062
  article-title: AtALMT12 represents an R‐type anion channel required for stomatal movement in guard cells
  publication-title: Plant J
– volume: 324
  start-page: 1064
  year: 2009
  end-page: 1068
  article-title: Regulators of PP2C phosphatase activity function as abscisic acid sensors
  publication-title: Science
– volume: 98
  start-page: 12826
  year: 2001
  end-page: 12831
  article-title: FLU: A negative regulator of chlorophyll biosynthesis in
  publication-title: Proc Natl Acad Sci USA
– volume: 101
  start-page: 9508
  year: 2004
  end-page: 9513
  article-title: Phospholipase D alpha 1‐derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 3992
  year: 2011
  end-page: 4012
  article-title: Evidence for a SAL1‐PAP Chloroplast retrograde pathway that functions in drought and high light signaling in
  publication-title: Plant Cell
– volume: 306
  start-page: 1183
  year: 2004
  end-page: 1185
  article-title: The genetic basis of singlet oxygen‐induced stress responses of
  publication-title: Science
– volume: 54
  start-page: 43
  year: 2014
  end-page: 55
  article-title: Direct Regulation of the NADPH Oxidase RBOHD by the PRR‐associated kinase BIK1 during plant immunity
  publication-title: Mol Cell
– volume: 14
  start-page: e2000322
  year: 2016
  article-title: Natural variation in Cvi‐0 accession reveals an important role of MPK12 in guard cell CO signaling
  publication-title: PLoS Biol
– volume: 16
  start-page: 144
  year: 2015b
  article-title: Egg cell‐specific promoter‐controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in in a single generation
  publication-title: Genome Biol
– volume: 6
  start-page: 420
  year: 2015
  article-title: Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging
  publication-title: Front Plant Sci
– volume: 167
  start-page: 1604
  year: 2015
  end-page: U1753
  article-title: S‐nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses
  publication-title: Plant Physiol
– volume: 171
  start-page: 1541
  year: 2016
  end-page: 1550
  article-title: Redox‐ and reactive oxygen species‐dependent signaling into and out of the photosynthesizing chloroplast
  publication-title: Plant Physiol
– volume: 65
  start-page: 1229
  year: 2014
  end-page: 1240
  article-title: ROS as key players in plant stress signalling
  publication-title: J Exp Bot
– ident: e_1_2_10_10_1
  doi: 10.1371/journal.pgen.1005373
– ident: e_1_2_10_143_1
  doi: 10.1038/nature06608
– ident: e_1_2_10_28_1
  doi: 10.1105/tpc.111.091033
– ident: e_1_2_10_44_1
  doi: 10.1105/tpc.112.100107
– ident: e_1_2_10_163_1
  doi: 10.1073/pnas.0602225103
– ident: e_1_2_10_24_1
  doi: 10.1016/j.chom.2012.09.003
– ident: e_1_2_10_65_1
  doi: 10.7554/eLife.13568
– ident: e_1_2_10_109_1
  doi: 10.1073/pnas.1115982109
– ident: e_1_2_10_166_1
  doi: 10.1038/nature10427
– ident: e_1_2_10_32_1
  doi: 10.1126/scisignal.2001346
– ident: e_1_2_10_64_1
  doi: 10.1016/j.chom.2014.02.009
– ident: e_1_2_10_58_1
  doi: 10.1038/ncomms9630
– ident: e_1_2_10_129_1
  doi: 10.1104/pp.16.00328
– ident: e_1_2_10_146_1
  doi: 10.1105/tpc.15.00637
– ident: e_1_2_10_105_1
  doi: 10.3389/fpls.2015.00069
– ident: e_1_2_10_118_1
  doi: 10.1104/pp.126.4.1449
– ident: e_1_2_10_56_1
  doi: 10.1007/s00425-006-0450-6
– ident: e_1_2_10_150_1
  doi: 10.1073/pnas.1308974110
– ident: e_1_2_10_38_1
  doi: 10.1038/ncb1387
– ident: e_1_2_10_125_1
  doi: 10.1105/tpc.112.107904
– ident: e_1_2_10_106_1
  doi: 10.7554/eLife.23361
– ident: e_1_2_10_100_1
  doi: 10.1007/s00425-012-1696-9
– ident: e_1_2_10_117_1
  doi: 10.1093/aob/mcv074
– volume: 26
  start-page: 53
  year: 2000
  ident: e_1_2_10_83_1
  article-title: ABA‐induced hydrogen peroxide generation in guard cells of Vicia faba
  publication-title: Acta Phytophysiol Sin
– ident: e_1_2_10_49_1
  doi: 10.1371/journal.pbio.2000322
– ident: e_1_2_10_101_1
  doi: 10.1126/science.1173041
– ident: e_1_2_10_57_1
  doi: 10.1016/j.celrep.2016.11.015
– ident: e_1_2_10_158_1
  doi: 10.1038/emboj.2011.68
– ident: e_1_2_10_7_1
  doi: 10.1111/j.1365-313X.2006.02837.x
– ident: e_1_2_10_86_1
  doi: 10.1111/j.1365-3040.2009.02041.x
– ident: e_1_2_10_167_1
  doi: 10.1038/nplants.2015.74
– ident: e_1_2_10_25_1
  doi: 10.1093/mp/sst009
– ident: e_1_2_10_145_1
  doi: 10.1126/science.1103178
– ident: e_1_2_10_112_1
  doi: 10.1104/pp.106.079129
– ident: e_1_2_10_114_1
  doi: 10.1111/j.1462-5822.2012.01749.x
– ident: e_1_2_10_40_1
  doi: 10.1105/tpc.16.00131
– ident: e_1_2_10_151_1
  doi: 10.1186/s13059-015-0715-0
– ident: e_1_2_10_5_1
  doi: 10.1104/pp.107.099226
– ident: e_1_2_10_155_1
  doi: 10.4161/viru.29755
– ident: e_1_2_10_61_1
  doi: 10.1016/j.stem.2010.11.028
– ident: e_1_2_10_120_1
  doi: 10.1042/BJ20091221
– ident: e_1_2_10_138_1
  doi: 10.1016/j.tplants.2009.03.006
– ident: e_1_2_10_67_1
  doi: 10.1105/tpc.113.118687
– ident: e_1_2_10_132_1
  doi: 10.1111/jipb.12523
– ident: e_1_2_10_161_1
  doi: 10.1371/journal.pgen.1004791
– ident: e_1_2_10_13_1
  doi: 10.1016/j.plaphy.2016.02.035
– ident: e_1_2_10_31_1
  doi: 10.1105/tpc.108.061507
– ident: e_1_2_10_82_1
  doi: 10.1111/j.1365-313X.2010.04302.x
– ident: e_1_2_10_34_1
  doi: 10.1073/pnas.0912021106
– ident: e_1_2_10_2_1
  doi: 10.1016/j.molp.2014.10.012
– ident: e_1_2_10_139_1
  doi: 10.1073/pnas.012452499
– ident: e_1_2_10_78_1
  doi: 10.1146/annurev-phyto-082712-102314
– ident: e_1_2_10_135_1
  doi: 10.1105/tpc.113.114595
– ident: e_1_2_10_170_1
  doi: 10.1073/pnas.0402112101
– ident: e_1_2_10_116_1
  doi: 10.1080/15592324.2016.1161879
– ident: e_1_2_10_48_1
  doi: 10.1111/j.1744-7909.2012.01177.x
– ident: e_1_2_10_39_1
  doi: 10.1105/tpc.112.098707
– ident: e_1_2_10_102_1
  doi: 10.1016/j.stem.2014.05.009
– ident: e_1_2_10_103_1
  doi: 10.1038/35021067
– ident: e_1_2_10_17_1
  doi: 10.1073/pnas.1319955111
– ident: e_1_2_10_159_1
  doi: 10.1105/tpc.15.00583
– ident: e_1_2_10_97_1
  doi: 10.1038/nature06720
– ident: e_1_2_10_173_1
  doi: 10.1016/j.cell.2016.08.029
– ident: e_1_2_10_172_1
  doi: 10.1074/jbc.M309529200
– ident: e_1_2_10_4_1
  doi: 10.1007/s11356-016-7947-8
– ident: e_1_2_10_66_1
  doi: 10.1016/j.cub.2015.01.067
– ident: e_1_2_10_69_1
  doi: 10.1073/pnas.1215543110
– ident: e_1_2_10_6_1
  doi: 10.1093/jxb/ert375
– ident: e_1_2_10_59_1
  doi: 10.1093/emboj/cdg277
– ident: e_1_2_10_169_1
  doi: 10.1093/jxb/erq424
– ident: e_1_2_10_134_1
  doi: 10.1016/j.pbi.2011.07.014
– ident: e_1_2_10_165_1
  doi: 10.1038/nature13593
– ident: e_1_2_10_174_1
  doi: 10.1105/tpc.15.00144
– ident: e_1_2_10_147_1
  doi: 10.1105/tpc.109.072959
– ident: e_1_2_10_162_1
  doi: 10.1074/jbc.M509820200
– ident: e_1_2_10_80_1
  doi: 10.1073/pnas.221252798
– ident: e_1_2_10_50_1
  doi: 10.1073/pnas.0907205106
– ident: e_1_2_10_95_1
  doi: 10.1105/tpc.010210
– ident: e_1_2_10_9_1
  doi: 10.1038/nature08794
– ident: e_1_2_10_20_1
  doi: 10.1038/sj.emboj.7601575
– ident: e_1_2_10_87_1
  doi: 10.1016/j.tplants.2016.08.002
– ident: e_1_2_10_52_1
  doi: 10.1016/j.molcel.2014.02.021
– ident: e_1_2_10_119_1
  doi: 10.1046/j.1365-313X.2001.01138.x
– ident: e_1_2_10_51_1
  doi: 10.1093/pcp/pcv063
– ident: e_1_2_10_62_1
  doi: 10.1105/tpc.010433
– ident: e_1_2_10_84_1
  doi: 10.1105/tpc.106.044230
– volume: 170
  start-page: 1757
  year: 2016
  ident: e_1_2_10_128_1
  article-title: Singlet oxygen‐induced cell death in Arabidopsis under high‐light stress is controlled by OXI1 kinase
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.01546
– ident: e_1_2_10_8_1
  doi: 10.1146/annurev-phyto-081211-172902
– ident: e_1_2_10_137_1
  doi: 10.1104/pp.15.01237
– ident: e_1_2_10_41_1
  doi: 10.3389/fpls.2015.00420
– ident: e_1_2_10_93_1
  doi: 10.1105/tpc.12.3.405
– ident: e_1_2_10_142_1
  doi: 10.1093/pcp/pcq156
– ident: e_1_2_10_141_1
  doi: 10.1016/j.cell.2010.10.020
– ident: e_1_2_10_22_1
  doi: 10.1073/pnas.231178298
– ident: e_1_2_10_89_1
  doi: 10.1016/j.tplants.2011.03.007
– ident: e_1_2_10_35_1
  doi: 10.1104/pp.16.00434
– ident: e_1_2_10_98_1
  doi: 10.1016/S1369-5266(02)00282-0
– ident: e_1_2_10_144_1
  doi: 10.1105/tpc.113.121061
– ident: e_1_2_10_156_1
  doi: 10.1038/nature20166
– ident: e_1_2_10_85_1
  doi: 10.1126/scisignal.2000448
– ident: e_1_2_10_16_1
  doi: 10.1016/j.cub.2015.09.013
– ident: e_1_2_10_94_1
  doi: 10.1038/nature12478
– ident: e_1_2_10_92_1
  doi: 10.1016/j.stem.2013.04.001
– ident: e_1_2_10_3_1
  doi: 10.1105/tpc.16.00583
– ident: e_1_2_10_122_1
  doi: 10.1093/mp/ssu070
– ident: e_1_2_10_168_1
  doi: 10.1016/j.chom.2010.03.007
– ident: e_1_2_10_14_1
  doi: 10.1073/pnas.1604936113
– ident: e_1_2_10_70_1
  doi: 10.1073/pnas.0909705107
– ident: e_1_2_10_111_1
  doi: 10.1038/nature02353
– ident: e_1_2_10_75_1
  doi: 10.1146/annurev.phyto.121107.104959
– ident: e_1_2_10_91_1
  doi: 10.1016/j.chom.2014.10.007
– ident: e_1_2_10_136_1
  doi: 10.1126/science.1156973
– ident: e_1_2_10_140_1
  doi: 10.1016/j.tplants.2009.01.008
– ident: e_1_2_10_60_1
  doi: 10.1073/pnas.0609063103
– volume: 4
  year: 2015
  ident: e_1_2_10_11_1
  article-title: Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells
  publication-title: eLife
– ident: e_1_2_10_160_1
  doi: 10.1104/pp.114.255216
– ident: e_1_2_10_104_1
  doi: 10.1093/jxb/erp219
– ident: e_1_2_10_36_1
  doi: 10.1105/tpc.15.00421
– ident: e_1_2_10_72_1
  doi: 10.1046/j.1469-8137.2001.00028.x
– ident: e_1_2_10_88_1
  doi: 10.1016/j.tplants.2004.08.009
– ident: e_1_2_10_55_1
  doi: 10.1016/j.plantsci.2013.07.004
– ident: e_1_2_10_21_1
  doi: 10.1111/nph.13435
– ident: e_1_2_10_73_1
  doi: 10.1016/S0014-5793(01)03106-4
– ident: e_1_2_10_127_1
  doi: 10.1126/stke.2001.113.re22
– ident: e_1_2_10_15_1
  doi: 10.1016/j.pbi.2013.06.013
– ident: e_1_2_10_42_1
  doi: 10.1038/ncb2009
– ident: e_1_2_10_76_1
  doi: 10.1016/j.cell.2006.06.054
– ident: e_1_2_10_29_1
  doi: 10.1111/j.1365-3040.2007.01651.x
– ident: e_1_2_10_96_1
  doi: 10.1105/tpc.007906
– ident: e_1_2_10_18_1
  doi: 10.1111/tpj.13299
– ident: e_1_2_10_113_1
  doi: 10.1073/pnas.1704754114
– ident: e_1_2_10_74_1
  doi: 10.1007/s00425-001-0675-3
– ident: e_1_2_10_131_1
  doi: 10.1016/j.febslet.2009.08.033
– ident: e_1_2_10_157_1
  doi: 10.3389/fpls.2015.00701
– ident: e_1_2_10_63_1
  doi: 10.1073/pnas.0702061104
– ident: e_1_2_10_130_1
  doi: 10.3389/fpls.2016.01299
– ident: e_1_2_10_43_1
  doi: 10.1104/pp.15.00026
– ident: e_1_2_10_126_1
  doi: 10.1111/nph.13621
– ident: e_1_2_10_71_1
  doi: 10.1126/science.1172408
– ident: e_1_2_10_19_1
  doi: 10.1105/tpc.111.093039
– ident: e_1_2_10_108_1
  doi: 10.1111/j.1744-7909.2008.00759.x
– ident: e_1_2_10_148_1
  doi: 10.1104/pp.112.210724
– ident: e_1_2_10_152_1
  doi: 10.1104/pp.114.4.1557
– ident: e_1_2_10_164_1
  doi: 10.1371/journal.pgen.1006175
– ident: e_1_2_10_47_1
  doi: 10.1111/tpj.12133
– ident: e_1_2_10_90_1
  doi: 10.1146/annurev.arplant.52.1.561
– ident: e_1_2_10_54_1
  doi: 10.1146/annurev-arplant-042809-112226
– ident: e_1_2_10_123_1
  doi: 10.1016/j.molp.2015.12.014
– ident: e_1_2_10_12_1
  doi: 10.1111/j.1365-313X.2005.02615.x
– ident: e_1_2_10_121_1
  doi: 10.1038/35066500
– ident: e_1_2_10_154_1
  doi: 10.1038/cr.2015.46
– ident: e_1_2_10_149_1
  doi: 10.1073/pnas.1423481112
– ident: e_1_2_10_53_1
  doi: 10.1094/MPMI-20-4-0335
– ident: e_1_2_10_115_1
  doi: 10.1104/pp.110.169797
– ident: e_1_2_10_79_1
  doi: 10.1104/pp.113.220608
– ident: e_1_2_10_27_1
  doi: 10.1016/j.tplants.2015.08.014
– ident: e_1_2_10_110_1
  doi: 10.1105/tpc.113.109827
– ident: e_1_2_10_153_1
  doi: 10.1016/j.pbi.2013.07.002
– ident: e_1_2_10_33_1
  doi: 10.1073/pnas.0912030107
– ident: e_1_2_10_77_1
  doi: 10.1105/tpc.112.109074
– ident: e_1_2_10_23_1
  doi: 10.1104/pp.16.00375
– ident: e_1_2_10_124_1
  doi: 10.3389/fpls.2012.00292
– ident: e_1_2_10_26_1
  doi: 10.1073/pnas.1221294110
– ident: e_1_2_10_30_1
  doi: 10.1105/tpc.010441
– ident: e_1_2_10_45_1
  doi: 10.1101/gad.1812409
– ident: e_1_2_10_171_1
  doi: 10.1105/tpc.108.062992
– ident: e_1_2_10_81_1
  doi: 10.1104/pp.109.141770
– ident: e_1_2_10_107_1
  doi: 10.1016/j.pbi.2017.04.022
– ident: e_1_2_10_133_1
  doi: 10.1111/j.1365-3040.2011.02336.x
– ident: e_1_2_10_46_1
  doi: 10.1016/j.bbrc.2014.02.013
– ident: e_1_2_10_68_1
  doi: 10.1111/j.1365-313X.2010.04280.x
– ident: e_1_2_10_37_1
  doi: 10.1105/tpc.113.122358
– ident: e_1_2_10_99_1
  doi: 10.1038/ncomms1926
SSID ssj0038062
Score 2.639827
SecondaryResourceType review_article
Snippet Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion...
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO exchange, as well as pathogen invasion...
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO₂ exchange, as well as pathogen invasion...
Stomata,the pores formed by a pair of guard cells,are the main gateways for water transpiration and photosynthetic CO2 exchange,as well as pathogen invasion in...
SourceID wanfang
proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 805
SubjectTerms Abscisic acid
Accumulation
biotic stress
Carbon dioxide
Cell Membrane - metabolism
cell movement
Cellular communication
Drought
Droughts
embryophytes
Environmental factors
Guard cells
immune response
Immunity
Light levels
Molecular modelling
NAD(P)H oxidase
NAD(P)H oxidase (H2O2-forming)
Organelles
Pathogens
Photosynthesis
plant response
Plant Stomata - metabolism
Plants - metabolism
Reactive oxygen species
Reactive Oxygen Species - metabolism
signal transduction
Signal Transduction - physiology
Signaling
Stomata
stomatal movement
Stresses
Transpiration
water stress
Title Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12654
https://www.ncbi.nlm.nih.gov/pubmed/29660240
https://www.proquest.com/docview/2099810239
https://www.proquest.com/docview/2026411189
https://www.proquest.com/docview/2153611362
https://d.wanfangdata.com.cn/periodical/zwxb201809006
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-Oow--tFptm_rBSn1RyHHJJpsE-lKlogctRSr4UsJ-FlGTQ3O0-td3ZvPR2hZB30Iym91kZnZ_m8z8BmAnp01BakWonTFh4kQS5jqNwtRprnOT8cJXb_j0WRydJrOz9GwE7_tcmJYfYvjgRp7h52tycKlu_nTy87maRLFIiQyUgrUIEZ0M3FE8n_pqopHI4hB3gHHHTerDeIam91ejfyCmz-SpnKy-38eufvE5fAHf-mG3MScXk0WjJvruL0bHpz7XMjzvUCn70JrRCoxs9RKe7deIHG9XYX5ipZ8WGXaPBscoPRN32IyCPyTlszNZGYYw8oo-BrGr2pOQN-y8YvNLVB27biNxsUlTM-MrAzWsTVPxTakuck13lk0j9cUanB5-_HpwFHaVGkKd5KherpTlRkdWOlUoF5tYCi6MIu4dPI1q55GwOnUyMkmUOUT0Whox1Ykwmc4T_grGVV3ZN8AE52nBnbFGFYmWUtGcwa2UhaC_1iqA3V5jpe5ozKmaxmU5bGfwBZb-BQbwbpCdt-Qd_5Xa6BVfdg58U1JGcU60FkUA28NldD36nyIrWy9IBtEk3it_SAZXFEF1c-IAXrdGNQwlJmZURFQBbHVW9rv_ux8_VezJ1XBaDGDPW8wDD1HOjr_s-6O3jxFehyXqpQ2a24Bxc72wm4iyGrXlvekX-ykkjg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQX3tBAKUbAAaSsGjvxJgcOlFLt9iVUtVJvqV-pVm2TVTer0v4n_gq_iRknGyigShx64LbKThw7nhl_dma-AXiT0qYgcTI0hbVhXMg4TE0ShUlhhEltX2S-esPWthzsxev7yf4cfJvlwjT8EN2BG1mG99dk4HQg_auVj8a6F3GZxG1M5YY7P8Md2-TDcBWn9y3na593Pw3CtqhAaOIUeyK0dsKayKlCZ7rglisppNVEE4OXsYciks4khYpsHPULBJ9GWblsYmn7Jo0FtnsDblIJcaLqX93p2KpEuuzrl0ayz0Pcc_KWDdUHDnV9vbz-_QFqfe5QWajy8DJa9svd2j34PntRTZTLUW9a6565-I1D8r95k_fhbgu82cfGUh7AnCsfwq2VCsHx-SMY7zjlPT_D8aJNMcpAHbkJo_gWRSn7TJWWIVI-ofMudlJ5nvWajUo2PkbtZKdNsDHeUlfM-uJHNWsycfytVPq5opZVXStz9Bj2rmW0T2C-rEq3AEwKkWSisM7qLDZKaXKLwimVSfowrwN4N1OR3LRM7VQw5Djvdmw4YbmfsABed7Ljhp_kr1KLM03LWx81ySlpOiXmjiyAV93f6F3ok5EqXTUlGQTM2FZ6lQwumpJKA_EAnjZa3HWFE_krgsYAllq1_vn8i7Ovmnv-OPT8Abz3KnrFIPL14ZcV_-vZvwi_hNuD3a3NfHO4vfEc7tATmxjBRZivT6fuBYLKWi95U2ZwcN0a_wMdboWs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAX3o9AKUbAAaSsNrHjTQ4cKMuq20JVVVTqLfUraNU2WXWzKu1v4q_wn5hxsoECqsShB25RMnHseGb8OZn5BuBlSpuCxMnQFNaGopAiTE0ShUlhuEntgGe-esOnLbm-Kzb2kr0l-LbIhWn4IboPbmQZ3l-TgU9t8auRT6a6F8UyEW1I5aY7PcEN2-zteIiz-yqORx8-v18P25oCoREpdoRr7bg1kVOFznQR21hJLq0mlhg8jR3kkXQmKVRkRTQoEHsaZWXfCGkHJhUc270CV4XsZ1QoYrjTkVXxtO_Ll0ZyEIe45YxbMlQfN9T19fzy9wem9alDZaHKL-fBsl_tRrfg--I9NUEuB715rXvm7DcKyf_lRd6Gmy3sZu8aO7kDS668C9fWKoTGp_dguuOU9_sMh4sWxSj_dOJmjKJbFCXsM1Vahjj5iL52saPKs6zXbFKy6SHqJjtuQo3xlrpi1pc-qlmTh-NvpcLPFbWs6lqZg_uweymjfQDLZVW6R8Ak50nGC-uszoRRSpNT5E6pTNJveR3A64WG5KblaadyIYd5t1_DCcv9hAXwopOdNuwkf5VaWSha3nqoWU4p0ynxdmQBPO8uo2-hH0aqdNWcZBAuY1vpRTK4ZEoqDBQH8LBR4q4rMVG_ImQMYLXV6p_PPzv5qmPPHod-P4A3XkMvGES-Md5e80eP_0X4GVzfHo7yj-OtzSdwgx7YBAiuwHJ9PHdPEVHWetUbMoP9y1b4HwXchFs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactive+oxygen+species+signaling+and+stomatal+movement+in+plant+responses+to+drought+stress+and+pathogen+attack&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=Qi%2C+Junsheng&rft.au=Song%2C+Chun%E2%80%90Peng&rft.au=Wang%2C+Baoshan&rft.au=Zhou%2C+Jianmin&rft.date=2018-09-01&rft.issn=1672-9072&rft.eissn=1744-7909&rft.volume=60&rft.issue=9&rft.spage=805&rft.epage=826&rft_id=info:doi/10.1111%2Fjipb.12654&rft.externalDBID=10.1111%252Fjipb.12654&rft.externalDocID=JIPB12654
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwxb%2Fzwxb.jpg