An Enzyme Cascade Synthesis of ε-Caprolactone and its Oligomers
Poly‐ε‐caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer–Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε‐caprolactone (ε‐CL) directly from cyclohexanone with mole...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 54; no. 9; pp. 2784 - 2787 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
23.02.2015
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Poly‐ε‐caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer–Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε‐caprolactone (ε‐CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε‐CL. Key to success was a subsequent direct ring‐opening oligomerization of in situ formed ε‐CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo‐ε‐CL at more than 20 g L−1 when starting from 200 mM cyclohexanol. This oligomer is easily chemically polymerized to PCL.
Let's polymerize! Oligo‐ε‐caprolactone was produced in a one‐pot enzymatic cascade synthesis starting from cyclohexanol. In the first step, cyclohexanol is oxidized by an alcohol dehydrogenase (ADH) in combination with the cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus, followed by direct ring‐opening oligomerization of ε‐caprolactone in an exclusively aqueous phase by lipase A from Candida antarctica (CAL‐A). |
---|---|
AbstractList | Poly‐ε‐caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer–Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε‐caprolactone (ε‐CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε‐CL. Key to success was a subsequent direct ring‐opening oligomerization of in situ formed ε‐CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo‐ε‐CL at more than 20 g
L
−1
when starting from 200 m
M
cyclohexanol. This oligomer is easily chemically polymerized to PCL. Poly‐ε‐caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer–Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε‐caprolactone (ε‐CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε‐CL. Key to success was a subsequent direct ring‐opening oligomerization of in situ formed ε‐CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo‐ε‐CL at more than 20 g L−1 when starting from 200 mM cyclohexanol. This oligomer is easily chemically polymerized to PCL. Let's polymerize! Oligo‐ε‐caprolactone was produced in a one‐pot enzymatic cascade synthesis starting from cyclohexanol. In the first step, cyclohexanol is oxidized by an alcohol dehydrogenase (ADH) in combination with the cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus, followed by direct ring‐opening oligomerization of ε‐caprolactone in an exclusively aqueous phase by lipase A from Candida antarctica (CAL‐A). Poly- epsilon -caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer-Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of epsilon -caprolactone ( epsilon -CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to epsilon -CL. Key to success was a subsequent direct ring-opening oligomerization of in situ formed epsilon -CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo- epsilon -CL at more than 20gL super(-1) when starting from 200mM cyclohexanol. This oligomer is easily chemically polymerized to PCL. Let's polymerize! Oligo- epsilon -caprolactone was produced in a one-pot enzymatic cascade synthesis starting from cyclohexanol. In the first step, cyclohexanol is oxidized by an alcohol dehydrogenase (ADH) in combination with the cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus, followed by direct ring-opening oligomerization of epsilon -caprolactone in an exclusively aqueous phase by lipaseA from Candida antarctica (CAL-A). Poly-ε-caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer-Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε-caprolactone (ε-CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε-CL. Key to success was a subsequent direct ring-opening oligomerization of in situ formed ε-CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo-ε-CL at more than 20 g L(-1) when starting from 200 mM cyclohexanol. This oligomer is easily chemically polymerized to PCL. Poly-ε-caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer-Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε-caprolactone (ε-CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε-CL. Key to success was a subsequent direct ring-opening oligomerization of in situ formed ε-CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo-ε-CL at more than 20 g L(-1) when starting from 200 mM cyclohexanol. This oligomer is easily chemically polymerized to PCL.Poly-ε-caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer-Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε-caprolactone (ε-CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε-CL. Key to success was a subsequent direct ring-opening oligomerization of in situ formed ε-CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo-ε-CL at more than 20 g L(-1) when starting from 200 mM cyclohexanol. This oligomer is easily chemically polymerized to PCL. |
Author | Herz, Hans-Georg Muschiol, Jan Schmidt, Sandy Winkler, Till Liese, Andreas Bornscheuer, Uwe T. Gröger, Harald Hummel, Werner Scherkus, Christian Menyes, Ulf |
Author_xml | – sequence: 1 givenname: Sandy surname: Schmidt fullname: Schmidt, Sandy organization: Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald (Germany) – sequence: 2 givenname: Christian surname: Scherkus fullname: Scherkus, Christian organization: Institute of Technical Biocatalysis, Hamburg University of Technology TUHH, Denickestrasse 15, 21073 Hamburg (Germany) – sequence: 3 givenname: Jan surname: Muschiol fullname: Muschiol, Jan organization: Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald (Germany) – sequence: 4 givenname: Ulf surname: Menyes fullname: Menyes, Ulf organization: Enzymicals AG, Walther-Rathenau-Strasse 49a, 17489 Greifswald (Germany) – sequence: 5 givenname: Till surname: Winkler fullname: Winkler, Till organization: Organic Chemistry I, Faculty of Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld (Germany) – sequence: 6 givenname: Werner surname: Hummel fullname: Hummel, Werner organization: Organic Chemistry I, Faculty of Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld (Germany) – sequence: 7 givenname: Harald surname: Gröger fullname: Gröger, Harald organization: Organic Chemistry I, Faculty of Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld (Germany) – sequence: 8 givenname: Andreas surname: Liese fullname: Liese, Andreas organization: Institute of Technical Biocatalysis, Hamburg University of Technology TUHH, Denickestrasse 15, 21073 Hamburg (Germany) – sequence: 9 givenname: Hans-Georg surname: Herz fullname: Herz, Hans-Georg organization: Polymaterials AG, Innovapark 20, 87600 Kaufbeuren (Germany) – sequence: 10 givenname: Uwe T. surname: Bornscheuer fullname: Bornscheuer, Uwe T. email: uwe.bornscheuer@uni-greifswald.de organization: Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald (Germany) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25597635$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctO20AUhkcViHDbdll52Y3DjOe-a2SlEBQFIehlNxqPT9pp7XHwOCrhvXgNngmjXIQqIVZzFt_3n9H5j9BeaAIg9JHgIcE4O7PBwzDDhBEsKP2ADgnPSEqlpHv9zChNpeJkgI5i_NPzSmFxgAYZ51oKyg_Rl1FIxuFhVUOS2-hsCcnNKnS_IfqYNPPk6THN7aJtKuu6fnNiQ5n4LiZXlf_V1NDGE7Q_t1WE0817jL59Hd_mF-n06nySj6apY0rQVDsqWQFac6xBFlIpRyy3XDGnLShVKIZBqFI7i4nQnHEOEpwsygwEEYQeo8_r3P4zd0uInal9dFBVNkCzjIZIjLXs8_D7qOCSZoxnokc_bdBlUUNpFq2vbbsy2wP1AFsDrm1ibGFunO9s55vQtdZXhmDz0oN56cHseui14X_aNvlNQa-Ff76C1Tu0Gc0m49duunZ97OB-59r2rxGSSm5-zM7N7OflNb0luflOnwE_WqhA |
CitedBy_id | crossref_primary_10_1016_j_jbiotec_2015_09_026 crossref_primary_10_1002_cbic_202200794 crossref_primary_10_1016_j_jbiotec_2018_06_338 crossref_primary_10_3389_fctls_2022_900554 crossref_primary_10_1002_ejoc_201901682 crossref_primary_10_1016_j_catcom_2018_10_022 crossref_primary_10_1021_acscatal_1c04543 crossref_primary_10_1021_acscatal_6b03061 crossref_primary_10_1002_cbic_202400443 crossref_primary_10_1080_07388551_2022_2039590 crossref_primary_10_1007_s12257_015_0607_x crossref_primary_10_1002_adsc_201600468 crossref_primary_10_1002_adsc_201701282 crossref_primary_10_1007_s12010_019_03091_1 crossref_primary_10_1515_znc_2018_0216 crossref_primary_10_1002_anie_202003635 crossref_primary_10_1002_cctc_201701669 crossref_primary_10_1111_1751_7915_12309 crossref_primary_10_3390_molecules28217249 crossref_primary_10_1016_j_mattod_2015_04_002 crossref_primary_10_1002_anie_202216962 crossref_primary_10_1002_anie_202309012 crossref_primary_10_1038_srep44599 crossref_primary_10_1002_open_202400064 crossref_primary_10_1128_AEM_00239_19 crossref_primary_10_1186_s40643_021_00370_w crossref_primary_10_1002_cssc_202400644 crossref_primary_10_1016_j_biomaterials_2021_120705 crossref_primary_10_1021_acscatal_7b03440 crossref_primary_10_1039_D0GC01454K crossref_primary_10_1002_bit_25564 crossref_primary_10_3390_catal9010064 crossref_primary_10_1021_acscatal_1c04555 crossref_primary_10_1002_bit_26258 crossref_primary_10_1016_j_procbio_2019_10_009 crossref_primary_10_1002_cbic_201700526 crossref_primary_10_1186_s40643_021_00362_w crossref_primary_10_1002_adsc_201600216 crossref_primary_10_1016_j_mcat_2020_110875 crossref_primary_10_1021_acscatal_8b03360 crossref_primary_10_1039_D0GC02600J crossref_primary_10_1016_j_jcat_2023_04_009 crossref_primary_10_1007_s41981_023_00301_0 crossref_primary_10_1002_ange_202006648 crossref_primary_10_1007_s10965_019_1991_2 crossref_primary_10_1002_adsc_201700585 crossref_primary_10_1002_biot_202300210 crossref_primary_10_1002_cbic_201800533 crossref_primary_10_1016_j_biotechadv_2017_11_007 crossref_primary_10_1021_acs_chemrev_2c00213 crossref_primary_10_1039_C8CS00903A crossref_primary_10_3390_catal11050605 crossref_primary_10_1002_biot_202000091 crossref_primary_10_3390_ma15196608 crossref_primary_10_3390_fermentation8020047 crossref_primary_10_1016_j_mcat_2019_02_006 crossref_primary_10_1039_D1GC03056F crossref_primary_10_1002_app_48949 crossref_primary_10_1039_D3GC01400B crossref_primary_10_1021_acssynbio_0c00380 crossref_primary_10_1002_cctc_201900976 crossref_primary_10_1016_j_chembiol_2015_08_014 crossref_primary_10_1016_j_tibtech_2020_12_009 crossref_primary_10_3390_polym8100372 crossref_primary_10_1016_j_procbio_2015_12_012 crossref_primary_10_1007_s00253_017_8501_4 crossref_primary_10_1002_cctc_202101625 crossref_primary_10_1002_cctc_202400835 crossref_primary_10_1021_acscatal_0c01767 crossref_primary_10_1021_acssuschemeng_3c01495 crossref_primary_10_1021_acssuschemeng_4c02236 crossref_primary_10_1002_cbic_201900737 crossref_primary_10_1039_D3RA03112H crossref_primary_10_1002_cctc_201500823 crossref_primary_10_3390_molecules21060796 crossref_primary_10_1002_adsc_201801501 crossref_primary_10_3390_catal6060090 crossref_primary_10_1016_j_bej_2016_03_015 crossref_primary_10_1021_acs_oprd_0c00372 crossref_primary_10_1002_cbic_202200746 crossref_primary_10_1002_chem_201703353 crossref_primary_10_3390_catal8050205 crossref_primary_10_1021_acs_chemrev_7b00033 crossref_primary_10_1021_acsmacrolett_9b00639 crossref_primary_10_1002_ange_202003635 crossref_primary_10_1002_ange_202216962 crossref_primary_10_1016_j_enzmictec_2017_09_003 crossref_primary_10_1016_j_tet_2015_11_054 crossref_primary_10_1039_C8RA04402C crossref_primary_10_1002_elsc_201600107 crossref_primary_10_1002_cbic_202000035 crossref_primary_10_1021_acssuschemeng_4c08560 crossref_primary_10_1039_D1CS00100K crossref_primary_10_1002_biot_201700629 crossref_primary_10_1039_C8NP00054A crossref_primary_10_1002_bit_27133 crossref_primary_10_1021_acscatal_6b00030 crossref_primary_10_1002_pro_3525 crossref_primary_10_1038_s41467_020_18833_7 crossref_primary_10_1186_s13568_017_0390_5 crossref_primary_10_1021_acssynbio_7b00365 crossref_primary_10_1039_C6CY00435K crossref_primary_10_1002_asia_201801180 crossref_primary_10_1039_C6PY02033J crossref_primary_10_3390_catal7080240 crossref_primary_10_3389_fctls_2021_683248 crossref_primary_10_1021_acs_iecr_1c04407 crossref_primary_10_1002_cssc_202401811 crossref_primary_10_1039_D3CC02114A crossref_primary_10_1039_C6GC02529C crossref_primary_10_1039_D2GC03392E crossref_primary_10_1002_anie_201800343 crossref_primary_10_1039_C5CY02067K crossref_primary_10_1002_cite_202200077 crossref_primary_10_1021_acssuschemeng_8b02107 crossref_primary_10_1039_D0RA07138B crossref_primary_10_1002_jhet_2595 crossref_primary_10_1007_s12257_024_00011_x crossref_primary_10_1016_j_indcrop_2018_12_088 crossref_primary_10_1021_acscatal_9b03396 crossref_primary_10_1039_D1NP00027F crossref_primary_10_1016_j_cbpa_2017_02_013 crossref_primary_10_1021_acscatal_0c01892 crossref_primary_10_1016_j_biotechadv_2020_107520 crossref_primary_10_1002_cctc_201500511 crossref_primary_10_1002_cctc_201600806 crossref_primary_10_1002_ange_201800343 crossref_primary_10_1016_j_polymer_2020_122906 crossref_primary_10_1002_anie_202012658 crossref_primary_10_1002_ange_202309012 crossref_primary_10_1002_adsc_201700416 crossref_primary_10_1111_1751_7915_14062 crossref_primary_10_1007_s10529_021_03137_7 crossref_primary_10_1021_acscatal_1c00048 crossref_primary_10_1002_bit_26469 crossref_primary_10_1021_acscatal_0c01958 crossref_primary_10_1021_jacs_5b04328 crossref_primary_10_1002_cctc_201500182 crossref_primary_10_1002_bit_25925 crossref_primary_10_1016_j_indcrop_2021_113590 crossref_primary_10_1038_s41467_024_54064_w crossref_primary_10_1016_j_copbio_2016_05_005 crossref_primary_10_3389_fbioe_2022_944226 crossref_primary_10_1039_D2GC00288D crossref_primary_10_1002_cctc_202401792 crossref_primary_10_1002_ange_202012658 crossref_primary_10_1021_acscatal_7b00513 crossref_primary_10_1002_anie_202006648 crossref_primary_10_1038_s42004_018_0070_7 crossref_primary_10_1038_ncomms11917 crossref_primary_10_1039_D3RE00536D crossref_primary_10_1002_cbic_201600484 crossref_primary_10_1007_s00253_016_7670_x crossref_primary_10_1039_C9CY01802F crossref_primary_10_1016_j_apcata_2018_12_036 crossref_primary_10_3390_molecules26164791 crossref_primary_10_1016_j_enzmictec_2017_06_017 |
Cites_doi | 10.1016/S0734-9750(02)00019-8 10.1111/j.1432-1033.1976.tb10220.x 10.1016/0167-7799(92)90283-2 10.1246/bcsj.74.613 10.1039/b820162p 10.1021/bm0344405 10.1002/ange.201302195 10.1038/35051736 10.1007/s10529-012-0928-1 10.1002/cbic.201000464 10.1039/P19960000755 10.1016/j.enzmictec.2013.03.011 10.1295/polymj.30.269 10.1002/(SICI)1099-0518(19990501)37:9<1265::AID-POLA6>3.0.CO;2-I 10.1038/nature11117 10.1021/cr1003437 10.1002/ange.200300599 10.1002/(SICI)1099-0518(19990815)37:16<3041::AID-POLA1>3.0.CO;2-V 10.1016/j.copbio.2003.08.005 10.1007/BF02546213 10.1039/c2ob25704a 10.1002/(SICI)1521-3935(19980801)199:8<1729::AID-MACP1729>3.0.CO;2-V 10.1002/9783527619191 10.1246/cl.1993.1149 10.1038/nchembio.580 10.1016/j.progpolymsci.2005.06.010 10.1016/j.enzmictec.2013.01.007 10.1002/ejlt.201300226 10.1126/science.1079237 10.1021/ma00105a008 10.1002/anie.201302195 10.1111/j.1432-1033.1995.0169o.x 10.1002/anie.200300599 10.1385/ABAB:123:1-3:0827 10.1021/ma951774g |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 8BQ 8FD JG9 |
DOI | 10.1002/anie.201410633 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
EndPage | 2787 |
ExternalDocumentID | 25597635 10_1002_anie_201410633 ANIE201410633 ark_67375_WNG_NXJQ3T1C_V |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Deutsche Bundesstiftung Umwelt funderid: AZ 13268‐32 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ AAYXX ABDBF ABJNI AETEA AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c4863-9c374be99509e7b788c1a5a584c9ae88b840e68d9ca01695455e7ec7bd2e61613 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 01:20:30 EDT 2025 Fri Jul 11 00:29:20 EDT 2025 Thu Apr 03 06:59:20 EDT 2025 Thu Apr 24 23:03:40 EDT 2025 Tue Jul 01 03:26:46 EDT 2025 Wed Jan 22 16:20:49 EST 2025 Wed Oct 30 09:53:54 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | cascade reactions enzyme catalysis polymer synthesis Baeyer-Villiger monooxygenases ε-caprolactone |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4863-9c374be99509e7b788c1a5a584c9ae88b840e68d9ca01695455e7ec7bd2e61613 |
Notes | istex:6EFF1865610D24F0D66FD962E8017B172BF9E454 ArticleID:ANIE201410633 Deutsche Bundesstiftung Umwelt - No. AZ 13268-32 ark:/67375/WNG-NXJQ3T1C-V We thank the "Deutsche Bundesstiftung Umwelt" for financial support (AZ 13268-32). We thank the “Deutsche Bundesstiftung Umwelt” for financial support (AZ 13268‐32). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25597635 |
PQID | 1657324526 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1700975840 proquest_miscellaneous_1657324526 pubmed_primary_25597635 crossref_citationtrail_10_1002_anie_201410633 crossref_primary_10_1002_anie_201410633 wiley_primary_10_1002_anie_201410633_ANIE201410633 istex_primary_ark_67375_WNG_NXJQ3T1C_V |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 23, 2015 |
PublicationDateYYYYMMDD | 2015-02-23 |
PublicationDate_xml | – month: 02 year: 2015 text: February 23, 2015 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | I. K. Varma, A.-C. Albertsson, R. Rajkhowa, R. K. Srivastava, Prog. Polym. Sci. 2005, 30, 949-981 S. Kobayashi, H. Uyama, M. Ohmae, Bull. Chem. Soc. Jpn. 2001, 74, 613-635 K. Weissermel, H. J. Arpe, Industrial Organic Chemistry, 4th ed., Wiley-VCH, Weinheim, 2003. D. Briand, E. Dubreucq, P. Galzy, J. Am. Oil Chem. Soc. 1995, 72, 1367-1373 W.-H. Lee, Y.-C. Park, D.-H. Lee, K. Park, J.-H. Seo, Appl. Biochem. Biotechnol. 2005, 123, 827-836. S. Kobayashi, J. Polym. Sci. Part A 1999, 37, 3041-3056 D. Briand, E. Dubreucq, P. Galzy, Eur. J. Biochem. 1995, 228, 169-175. M. Kobayashi, T. Nagasawa, H. Yamada, Trends Biotechnol. 1992, 10, 402-408 Angew. Chem. 2004, 116, 806-843 S. Hari Krishna, Biotechnol. Adv. 2002, 20, 239-267 R. T. MacDonald, S. K. Pulapura, Y. Y. Svirkin, R. A. Gross, D. L. Kaplan, J. Akkara, G. Swift, S. Wolk, Macromolecules 1995, 28, 73-78 H. Leisch, K. Morley, P. C. K. Lau, Chem. Rev. 2011, 111, 4165-4222. S. Kobayashi, K. Takeya, S. Suda, H. Uyama, Macromol. Chem. Phys. 1998, 199, 1729-1736 G. M. Sivalingam, G. Madras, Biomacromolecules 2004, 5, 603-609 A. Schmid, J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, B. Witholt, Nature 2001, 409, 258-268. D. J. Opperman, M. T. Reetz, ChemBioChem 2010, 11, 2589-2596. H. Wulf, H. Mallin, U. T. Bornscheuer, Enzyme Microb. Technol. 2013, 53, 283-287. Angew. Chem. 2014, 126, 3132-3158 K. Balke, M. Kadow, H. Mallin, S. Sass, U. T. Bornscheuer, Org. Biomol. Chem. 2012, 10, 6249-6265 M. Labet, W. Thielemans, Chem. Soc. Rev. 2009, 38, 3484-3504 H. Dong, S. G. Cao, Z. Q. Li, S. P. Han, D. L. You, J. C. Shen, J. Polym. Sci. Part A 1999, 37, 1265-1275 B. M. Nestl, S. C. Hammer, B. A. Nebel, B. Hauer, Angew. Chem. Int. Ed. 2014, 53, 3070-3095 N. A. Donoghue, D. B. Norris, P. W. Trudgill, Eur. J. Biochem. 1976, 63, 175-192. M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer, T. Zelinski, Angew. Chem. Int. Ed. 2004, 43, 788-824 H. Uyama, S. Kobayashi, Chem. Lett. 1993, 22, 1149-1150. J. Müller, B. Fredrich, C. Kohlmann, L. Maksym, U. T. Bornscheuer, Eur. J. Lipid Sci. Technol. 2014, 116, 232-236 H. Yim, R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, J. Boldt, J. Khandurina, J. D. Trawick, R. E. Osterhout, R. Stephen, J. Estadilla, S. Teisan, H. B. Schreyer, S. Andrae, T. H. Yang, S. Y. Lee, M. J. Burk, S. Van Dien, Nat. Chem. Biol. 2011, 7, 445-452. G. A. R. Nobes, R. J. Kazlauskas, R. H. Marchessault, Macromolecules 1996, 29, 4829-4833 U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, K. Robins, Nature 2012, 485, 185-194 H. E. Schoemaker, D. Mink, M. G. Wubbolts, Science 2003, 299, 1694-1697 C. E. Nakamura, G. M. Whited, Curr. Opin. Biotechnol. 2003, 14, 454-459 S. Staudt, U. T. Bornscheuer, U. Menyes, W. Hummel, H. Gröger, Enzyme Microb. Technol. 2013, 53, 288-292 R. Brenneis, B. Baeck, Biotechnol. Lett. 2012, 34, 1459-1463 J. D. Stewart, K. W. Reed, M. M. Kayser, J. Chem. Soc. Perkin Trans. 1 1996, 755-757. S. Namekawa, H. Uyama, S. Kobayashi, Polym. J. 1998, 30, 269-271. 2014 2014; 53 126 2010; 11 1976; 63 2014; 116 1995; 72 2004 2004; 43 116 2012; 485 1993; 22 2003; 14 1996 2004; 5 2001; 409 2003 1998; 199 1992; 10 2012; 34 2003; 299 2012; 10 2011; 7 2011; 111 1996; 29 1995; 28 2002; 20 2005; 123 2013; 53 1999; 37 2005; 30 1995; 228 2014 1998; 30 2009; 38 2001; 74 e_1_2_2_2_3 e_1_2_2_3_2 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_23_2 e_1_2_2_4_3 e_1_2_2_5_2 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_21_2 e_1_2_2_20_2 e_1_2_2_1_2 e_1_2_2_2_2 e_1_2_2_40_2 e_1_2_2_41_2 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_27_2 e_1_2_2_26_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_14_2 e_1_2_2_35_2 |
References_xml | – reference: H. Leisch, K. Morley, P. C. K. Lau, Chem. Rev. 2011, 111, 4165-4222. – reference: S. Hari Krishna, Biotechnol. Adv. 2002, 20, 239-267; – reference: M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer, T. Zelinski, Angew. Chem. Int. Ed. 2004, 43, 788-824; – reference: W.-H. Lee, Y.-C. Park, D.-H. Lee, K. Park, J.-H. Seo, Appl. Biochem. Biotechnol. 2005, 123, 827-836. – reference: M. Labet, W. Thielemans, Chem. Soc. Rev. 2009, 38, 3484-3504; – reference: K. Weissermel, H. J. Arpe, Industrial Organic Chemistry, 4th ed., Wiley-VCH, Weinheim, 2003. – reference: S. Kobayashi, K. Takeya, S. Suda, H. Uyama, Macromol. Chem. Phys. 1998, 199, 1729-1736; – reference: G. A. R. Nobes, R. J. Kazlauskas, R. H. Marchessault, Macromolecules 1996, 29, 4829-4833; – reference: S. Kobayashi, J. Polym. Sci. Part A 1999, 37, 3041-3056; – reference: M. Kobayashi, T. Nagasawa, H. Yamada, Trends Biotechnol. 1992, 10, 402-408; – reference: Angew. Chem. 2014, 126, 3132-3158; – reference: S. Staudt, U. T. Bornscheuer, U. Menyes, W. Hummel, H. Gröger, Enzyme Microb. Technol. 2013, 53, 288-292; – reference: Angew. Chem. 2004, 116, 806-843; – reference: N. A. Donoghue, D. B. Norris, P. W. Trudgill, Eur. J. Biochem. 1976, 63, 175-192. – reference: H. Wulf, H. Mallin, U. T. Bornscheuer, Enzyme Microb. Technol. 2013, 53, 283-287. – reference: R. Brenneis, B. Baeck, Biotechnol. Lett. 2012, 34, 1459-1463; – reference: J. D. Stewart, K. W. Reed, M. M. Kayser, J. Chem. Soc. Perkin Trans. 1 1996, 755-757. – reference: R. T. MacDonald, S. K. Pulapura, Y. Y. Svirkin, R. A. Gross, D. L. Kaplan, J. Akkara, G. Swift, S. Wolk, Macromolecules 1995, 28, 73-78; – reference: J. Müller, B. Fredrich, C. Kohlmann, L. Maksym, U. T. Bornscheuer, Eur. J. Lipid Sci. Technol. 2014, 116, 232-236; – reference: H. Dong, S. G. Cao, Z. Q. Li, S. P. Han, D. L. You, J. C. Shen, J. Polym. Sci. Part A 1999, 37, 1265-1275; – reference: A. Schmid, J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, B. Witholt, Nature 2001, 409, 258-268. – reference: U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, K. Robins, Nature 2012, 485, 185-194; – reference: B. M. Nestl, S. C. Hammer, B. A. Nebel, B. Hauer, Angew. Chem. Int. Ed. 2014, 53, 3070-3095; – reference: G. M. Sivalingam, G. Madras, Biomacromolecules 2004, 5, 603-609; – reference: H. Yim, R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, J. Boldt, J. Khandurina, J. D. Trawick, R. E. Osterhout, R. Stephen, J. Estadilla, S. Teisan, H. B. Schreyer, S. Andrae, T. H. Yang, S. Y. Lee, M. J. Burk, S. Van Dien, Nat. Chem. Biol. 2011, 7, 445-452. – reference: C. E. Nakamura, G. M. Whited, Curr. Opin. Biotechnol. 2003, 14, 454-459; – reference: K. Balke, M. Kadow, H. Mallin, S. Sass, U. T. Bornscheuer, Org. Biomol. Chem. 2012, 10, 6249-6265; – reference: H. E. Schoemaker, D. Mink, M. G. Wubbolts, Science 2003, 299, 1694-1697; – reference: S. Namekawa, H. Uyama, S. Kobayashi, Polym. J. 1998, 30, 269-271. – reference: H. Uyama, S. Kobayashi, Chem. Lett. 1993, 22, 1149-1150. – reference: I. K. Varma, A.-C. Albertsson, R. Rajkhowa, R. K. Srivastava, Prog. Polym. Sci. 2005, 30, 949-981; – reference: D. Briand, E. Dubreucq, P. Galzy, J. Am. Oil Chem. Soc. 1995, 72, 1367-1373; – reference: S. Kobayashi, H. Uyama, M. Ohmae, Bull. Chem. Soc. Jpn. 2001, 74, 613-635; – reference: D. Briand, E. Dubreucq, P. Galzy, Eur. J. Biochem. 1995, 228, 169-175. – reference: D. J. Opperman, M. T. Reetz, ChemBioChem 2010, 11, 2589-2596. – volume: 409 start-page: 258 year: 2001 end-page: 268 publication-title: Nature – volume: 53 start-page: 283 year: 2013 end-page: 287 publication-title: Enzyme Microb. Technol. – volume: 20 start-page: 239 year: 2002 end-page: 267 publication-title: Biotechnol. Adv. – volume: 5 start-page: 603 year: 2004 end-page: 609 publication-title: Biomacromolecules – volume: 37 start-page: 1265 year: 1999 end-page: 1275 publication-title: J. Polym. Sci. Part A – volume: 53 126 start-page: 3070 3132 year: 2014 2014 end-page: 3095 3158 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2003 – volume: 34 start-page: 1459 year: 2012 end-page: 1463 publication-title: Biotechnol. Lett. – volume: 7 start-page: 445 year: 2011 end-page: 452 publication-title: Nat. Chem. Biol. – volume: 10 start-page: 402 year: 1992 end-page: 408 publication-title: Trends Biotechnol. – volume: 37 start-page: 3041 year: 1999 end-page: 3056 publication-title: J. Polym. Sci. Part A – volume: 123 start-page: 827 year: 2005 end-page: 836 publication-title: Appl. Biochem. Biotechnol. – volume: 10 start-page: 6249 year: 2012 end-page: 6265 publication-title: Org. Biomol. Chem. – volume: 30 start-page: 269 year: 1998 end-page: 271 publication-title: Polym. J. – year: 2014 – volume: 72 start-page: 1367 year: 1995 end-page: 1373 publication-title: J. Am. Oil Chem. Soc. – volume: 38 start-page: 3484 year: 2009 end-page: 3504 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 2589 year: 2010 end-page: 2596 publication-title: ChemBioChem – volume: 63 start-page: 175 year: 1976 end-page: 192 publication-title: Eur. J. Biochem. – volume: 22 start-page: 1149 year: 1993 end-page: 1150 publication-title: Chem. Lett. – volume: 228 start-page: 169 year: 1995 end-page: 175 publication-title: Eur. J. Biochem. – volume: 14 start-page: 454 year: 2003 end-page: 459 publication-title: Curr. Opin. Biotechnol. – volume: 28 start-page: 73 year: 1995 end-page: 78 publication-title: Macromolecules – volume: 299 start-page: 1694 year: 2003 end-page: 1697 publication-title: Science – volume: 199 start-page: 1729 year: 1998 end-page: 1736 publication-title: Macromol. Chem. Phys. – volume: 485 start-page: 185 year: 2012 end-page: 194 publication-title: Nature – volume: 29 start-page: 4829 year: 1996 end-page: 4833 publication-title: Macromolecules – start-page: 755 year: 1996 end-page: 757 publication-title: J. Chem. Soc. Perkin Trans. 1 – volume: 116 start-page: 232 year: 2014 end-page: 236 publication-title: Eur. J. Lipid Sci. Technol. – volume: 43 116 start-page: 788 806 year: 2004 2004 end-page: 824 843 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 start-page: 288 year: 2013 end-page: 292 publication-title: Enzyme Microb. Technol. – volume: 111 start-page: 4165 year: 2011 end-page: 4222 publication-title: Chem. Rev. – volume: 74 start-page: 613 year: 2001 end-page: 635 publication-title: Bull. Chem. Soc. Jpn. – volume: 30 start-page: 949 year: 2005 end-page: 981 publication-title: Prog. Polym. Sci. – ident: e_1_2_2_32_2 doi: 10.1016/S0734-9750(02)00019-8 – ident: e_1_2_2_15_2 doi: 10.1111/j.1432-1033.1976.tb10220.x – ident: e_1_2_2_8_2 doi: 10.1016/0167-7799(92)90283-2 – ident: e_1_2_2_25_2 doi: 10.1246/bcsj.74.613 – ident: e_1_2_2_23_2 doi: 10.1039/b820162p – ident: e_1_2_2_28_2 doi: 10.1021/bm0344405 – ident: e_1_2_2_2_3 doi: 10.1002/ange.201302195 – ident: e_1_2_2_6_2 doi: 10.1038/35051736 – ident: e_1_2_2_37_2 doi: 10.1007/s10529-012-0928-1 – ident: e_1_2_2_40_2 doi: 10.1002/cbic.201000464 – ident: e_1_2_2_16_2 doi: 10.1039/P19960000755 – ident: e_1_2_2_18_2 doi: 10.1016/j.enzmictec.2013.03.011 – ident: e_1_2_2_34_2 doi: 10.1295/polymj.30.269 – ident: e_1_2_2_41_2 – ident: e_1_2_2_29_2 doi: 10.1002/(SICI)1099-0518(19990501)37:9<1265::AID-POLA6>3.0.CO;2-I – ident: e_1_2_2_3_2 doi: 10.1038/nature11117 – ident: e_1_2_2_14_2 doi: 10.1021/cr1003437 – ident: e_1_2_2_4_3 doi: 10.1002/ange.200300599 – ident: e_1_2_2_21_2 – ident: e_1_2_2_24_2 doi: 10.1002/(SICI)1099-0518(19990815)37:16<3041::AID-POLA1>3.0.CO;2-V – ident: e_1_2_2_1_2 – ident: e_1_2_2_7_2 – ident: e_1_2_2_9_2 doi: 10.1016/j.copbio.2003.08.005 – ident: e_1_2_2_38_2 doi: 10.1007/BF02546213 – ident: e_1_2_2_12_2 – ident: e_1_2_2_13_2 doi: 10.1039/c2ob25704a – ident: e_1_2_2_22_2 doi: 10.1002/(SICI)1521-3935(19980801)199:8<1729::AID-MACP1729>3.0.CO;2-V – ident: e_1_2_2_35_2 – ident: e_1_2_2_11_2 doi: 10.1002/9783527619191 – ident: e_1_2_2_30_2 doi: 10.1246/cl.1993.1149 – ident: e_1_2_2_10_2 doi: 10.1038/nchembio.580 – ident: e_1_2_2_33_2 doi: 10.1016/j.progpolymsci.2005.06.010 – ident: e_1_2_2_19_2 doi: 10.1016/j.enzmictec.2013.01.007 – ident: e_1_2_2_31_2 – ident: e_1_2_2_36_2 doi: 10.1002/ejlt.201300226 – ident: e_1_2_2_5_2 doi: 10.1126/science.1079237 – ident: e_1_2_2_26_2 doi: 10.1021/ma00105a008 – ident: e_1_2_2_2_2 doi: 10.1002/anie.201302195 – ident: e_1_2_2_20_2 – ident: e_1_2_2_39_2 doi: 10.1111/j.1432-1033.1995.0169o.x – ident: e_1_2_2_4_2 doi: 10.1002/anie.200300599 – ident: e_1_2_2_17_2 doi: 10.1385/ABAB:123:1-3:0827 – ident: e_1_2_2_27_2 doi: 10.1021/ma951774g |
SSID | ssj0028806 |
Score | 2.548493 |
Snippet | Poly‐ε‐caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although... Poly-ε-caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although... Poly- epsilon -caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent.... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2784 |
SubjectTerms | Alcohol dehydrogenase Alcohol Dehydrogenase - chemistry Alcohol Dehydrogenase - metabolism Baeyer-Villiger monooxygenases Candida antarctica cascade reactions Cascades enzyme catalysis Mixed Function Oxygenases - chemistry Mixed Function Oxygenases - metabolism Molecular Structure Oligomers Oxidation Polyesters - chemistry Polyesters - metabolism polymer synthesis Polymerization Product inhibition Synthesis ε-caprolactone |
Title | An Enzyme Cascade Synthesis of ε-Caprolactone and its Oligomers |
URI | https://api.istex.fr/ark:/67375/WNG-NXJQ3T1C-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201410633 https://www.ncbi.nlm.nih.gov/pubmed/25597635 https://www.proquest.com/docview/1657324526 https://www.proquest.com/docview/1700975840 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hcoALLf-hgIyE4OR2E8dxclyiLaUSi4AW9mbZjoNW3WZRsyvRnngEXobX4CF4EmaSTWARPxLcEmksOzN2_I098w3AQ5mmRoZFyEUpLI_L1PEscQNuEZoOStzSVXOm-3yc7B_FBxM5-SGLv-WH6A_caGU0_2ta4MbWu99JQykDm0KzYnRqBNF9UsAWoaJXPX9UhJOzTS8SglMV-o61cRDtrjdf25UukoI__ApyriPYZgva2wTTDb6NPDneWS7sjjv_idfxf75uC66s8CkbthPqKlzw1TW4lHdl4a7Dk2HFRtX52Ylnuakpup69PqsQRtbTms1L9uXz14-fcoODnFEpn8ozUxVsuqjZi9n03ZyOyW_A0d7oMN_nq0IM3MVpInjmhIqtzzJEF15Z9JpdaKRB7OIy49PUopfok7TInCFyFwRl0ivvlC0inyCkFDdho8IObwMzhYyscoUUSRHbTFqTWh9LXzp0lYyRAfDOENqtWMqpWMZMt_zKkSbN6F4zATzu5d-3_By_lXzU2LUXM6fHFNWmpH47fqrHk4OX4jDM9ZsAHnSG16hbukAxlZ8vax0mUgm6qk7-IKMoNQZVMwjgVjtr-h4b9w0RXgBRY_u_jFgPx89G_dudf2m0DZfxuc3BF3dhY3G69PcQRS3s_WalfAOInhJO |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1B-1BeuF_C1UgIntJu4jiXx23Ysi1tELClfbNsx0GrLlnU7Eq0T_2E_kx_g4_gS5hJNkGLuEjwmMiWnRk7PjOeOQPwTMSxEl7uubzg2g2K2LhJaHquRmjaK_BIj2qf7l4WDveDnUPRRhNSLkzDD9E53Ghn1P9r2uDkkN74wRpKKdgUmxWgVcP5ZVilst5En__yXccg5ePybBKMOHepDn3L29jzN5b7L51LqyTiL78CncsYtj6Etq6BbqffxJ4crc9net2c_sTs-F_fdx2uLiAq6zdr6gZcsuVNWEvbynC3YLNfskF5evLJslRVFGDP3p-UiCSrccWmBft68e3sPFU4ywlV8yktU2XOxrOKvZmMP07JU34b9rcGo3ToLmoxuCaIQ-4mhkeBtkmCAMNGGg1n4ymhEL6YRNk41mgo2jDOE6OI3wVxmbCRNZHOfRsiquR3YKXEAe8BU7nwdWRywcM80InQKtY2ELYwaC0pJRxwW01IsyAqp3oZE9lQLPuSJCM7yTjwomv_uaHo-G3L57Viu2bq-IgC2yIhD7JXMjvcectHXio_OPC01bxE2dIdiirtdF5JLxQRp9vq8A9tIsqOQdH0HLjbLJtuxNqCQ5DngF8r_y8zlv1se9A93f-XTk9gbTja25W729nrB3AF3zcp-fwhrMyO5_YRgqqZflxvm--s4hZq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BK0Ffyr2Eq5EQPKVN4thJHpd0l7ZAuLVl3yzbcdCq22zV7Eq0T3wCP8Nv8BH9ko6TTWARFwkeE41lZ8aOz9gzZwAesziWzM99lxZUuWERazfh2nMVQlOvwC09qs90X2V8ay_cGbLhD1n8DT9Ed-BmV0b9v7YL_CgvNr6ThtoMbBuaFaJTQ-lFWA65l9jiDZvvOgKpAGdnk19EqWvL0Le0jV6wsdh-YVtathr-9CvMuQhh6z1ocAVkO_om9ORgfTZV6_r0J2LH__m8q7A6B6ik18yoa3DBlNfhctrWhbsBz3ol6ZenJ4eGpLKy4fXk_UmJOLIaVWRSkG9fzz5_SSUOcmxr-ZSGyDIno2lFXo9HHyf2nPwm7A36u-mWO6_E4Oow5tRNNI1CZZIE4YWJFLrN2pdMInjRiTRxrNBNNDzOEy0tuwuiMmYioyOVB4YjpqS3YKnEDm8DkTkLVKRzRnkeqoQpGSsTMlNo9JWkZA64rSGEntOU22oZY9EQLAfCakZ0mnHgaSd_1BB0_FbySW3XTkweH9iwtoiJD9lzkQ133tJdPxX7DjxqDS9Qt_YGRZZmMquEz1lE7V01_4NMZHNjUDWeA2vNrOl6rP03hHgOBLXt_zJi0cu2-93TnX9p9BAuvdkciJfb2Yu7sIKvm3x8eg-Wpsczcx8R1VQ9qBfNOVAnFRk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Enzyme+Cascade+Synthesis+of+epsilon+-Caprolactone+and+its+Oligomers&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Schmidt%2C+Sandy&rft.au=Scherkus%2C+Christian&rft.au=Muschiol%2C+Jan&rft.au=Menyes%2C+Ulf&rft.date=2015-02-23&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=54&rft.issue=9&rft.spage=2784&rft.epage=2787&rft_id=info:doi/10.1002%2Fanie.201410633&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |