An Enzyme Cascade Synthesis of ε-Caprolactone and its Oligomers

Poly‐ε‐caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer–Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε‐caprolactone (ε‐CL) directly from cyclohexanone with mole...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 54; no. 9; pp. 2784 - 2787
Main Authors Schmidt, Sandy, Scherkus, Christian, Muschiol, Jan, Menyes, Ulf, Winkler, Till, Hummel, Werner, Gröger, Harald, Liese, Andreas, Herz, Hans-Georg, Bornscheuer, Uwe T.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 23.02.2015
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Poly‐ε‐caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer–Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε‐caprolactone (ε‐CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε‐CL. Key to success was a subsequent direct ring‐opening oligomerization of in situ formed ε‐CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo‐ε‐CL at more than 20 g L−1 when starting from 200 mM cyclohexanol. This oligomer is easily chemically polymerized to PCL. Let's polymerize! Oligo‐ε‐caprolactone was produced in a one‐pot enzymatic cascade synthesis starting from cyclohexanol. In the first step, cyclohexanol is oxidized by an alcohol dehydrogenase (ADH) in combination with the cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus, followed by direct ring‐opening oligomerization of ε‐caprolactone in an exclusively aqueous phase by lipase A from Candida antarctica (CAL‐A).
AbstractList Poly‐ε‐caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer–Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε‐caprolactone (ε‐CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε‐CL. Key to success was a subsequent direct ring‐opening oligomerization of in situ formed ε‐CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo‐ε‐CL at more than 20 g  L −1 when starting from 200 m M cyclohexanol. This oligomer is easily chemically polymerized to PCL.
Poly‐ε‐caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer–Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε‐caprolactone (ε‐CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε‐CL. Key to success was a subsequent direct ring‐opening oligomerization of in situ formed ε‐CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo‐ε‐CL at more than 20 g L−1 when starting from 200 mM cyclohexanol. This oligomer is easily chemically polymerized to PCL. Let's polymerize! Oligo‐ε‐caprolactone was produced in a one‐pot enzymatic cascade synthesis starting from cyclohexanol. In the first step, cyclohexanol is oxidized by an alcohol dehydrogenase (ADH) in combination with the cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus, followed by direct ring‐opening oligomerization of ε‐caprolactone in an exclusively aqueous phase by lipase A from Candida antarctica (CAL‐A).
Poly- epsilon -caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer-Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of epsilon -caprolactone ( epsilon -CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to epsilon -CL. Key to success was a subsequent direct ring-opening oligomerization of in situ formed epsilon -CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo- epsilon -CL at more than 20gL super(-1) when starting from 200mM cyclohexanol. This oligomer is easily chemically polymerized to PCL. Let's polymerize! Oligo- epsilon -caprolactone was produced in a one-pot enzymatic cascade synthesis starting from cyclohexanol. In the first step, cyclohexanol is oxidized by an alcohol dehydrogenase (ADH) in combination with the cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus, followed by direct ring-opening oligomerization of epsilon -caprolactone in an exclusively aqueous phase by lipaseA from Candida antarctica (CAL-A).
Poly-ε-caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer-Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε-caprolactone (ε-CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε-CL. Key to success was a subsequent direct ring-opening oligomerization of in situ formed ε-CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo-ε-CL at more than 20 g L(-1) when starting from 200 mM cyclohexanol. This oligomer is easily chemically polymerized to PCL.
Poly-ε-caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer-Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε-caprolactone (ε-CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε-CL. Key to success was a subsequent direct ring-opening oligomerization of in situ formed ε-CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo-ε-CL at more than 20 g L(-1) when starting from 200 mM cyclohexanol. This oligomer is easily chemically polymerized to PCL.Poly-ε-caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer-Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε-caprolactone (ε-CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε-CL. Key to success was a subsequent direct ring-opening oligomerization of in situ formed ε-CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo-ε-CL at more than 20 g L(-1) when starting from 200 mM cyclohexanol. This oligomer is easily chemically polymerized to PCL.
Author Herz, Hans-Georg
Muschiol, Jan
Schmidt, Sandy
Winkler, Till
Liese, Andreas
Bornscheuer, Uwe T.
Gröger, Harald
Hummel, Werner
Scherkus, Christian
Menyes, Ulf
Author_xml – sequence: 1
  givenname: Sandy
  surname: Schmidt
  fullname: Schmidt, Sandy
  organization: Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald (Germany)
– sequence: 2
  givenname: Christian
  surname: Scherkus
  fullname: Scherkus, Christian
  organization: Institute of Technical Biocatalysis, Hamburg University of Technology TUHH, Denickestrasse 15, 21073 Hamburg (Germany)
– sequence: 3
  givenname: Jan
  surname: Muschiol
  fullname: Muschiol, Jan
  organization: Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald (Germany)
– sequence: 4
  givenname: Ulf
  surname: Menyes
  fullname: Menyes, Ulf
  organization: Enzymicals AG, Walther-Rathenau-Strasse 49a, 17489 Greifswald (Germany)
– sequence: 5
  givenname: Till
  surname: Winkler
  fullname: Winkler, Till
  organization: Organic Chemistry I, Faculty of Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld (Germany)
– sequence: 6
  givenname: Werner
  surname: Hummel
  fullname: Hummel, Werner
  organization: Organic Chemistry I, Faculty of Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld (Germany)
– sequence: 7
  givenname: Harald
  surname: Gröger
  fullname: Gröger, Harald
  organization: Organic Chemistry I, Faculty of Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld (Germany)
– sequence: 8
  givenname: Andreas
  surname: Liese
  fullname: Liese, Andreas
  organization: Institute of Technical Biocatalysis, Hamburg University of Technology TUHH, Denickestrasse 15, 21073 Hamburg (Germany)
– sequence: 9
  givenname: Hans-Georg
  surname: Herz
  fullname: Herz, Hans-Georg
  organization: Polymaterials AG, Innovapark 20, 87600 Kaufbeuren (Germany)
– sequence: 10
  givenname: Uwe T.
  surname: Bornscheuer
  fullname: Bornscheuer, Uwe T.
  email: uwe.bornscheuer@uni-greifswald.de
  organization: Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald (Germany)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25597635$$D View this record in MEDLINE/PubMed
BookMark eNqFkctO20AUhkcViHDbdll52Y3DjOe-a2SlEBQFIehlNxqPT9pp7XHwOCrhvXgNngmjXIQqIVZzFt_3n9H5j9BeaAIg9JHgIcE4O7PBwzDDhBEsKP2ADgnPSEqlpHv9zChNpeJkgI5i_NPzSmFxgAYZ51oKyg_Rl1FIxuFhVUOS2-hsCcnNKnS_IfqYNPPk6THN7aJtKuu6fnNiQ5n4LiZXlf_V1NDGE7Q_t1WE0817jL59Hd_mF-n06nySj6apY0rQVDsqWQFac6xBFlIpRyy3XDGnLShVKIZBqFI7i4nQnHEOEpwsygwEEYQeo8_r3P4zd0uInal9dFBVNkCzjIZIjLXs8_D7qOCSZoxnokc_bdBlUUNpFq2vbbsy2wP1AFsDrm1ibGFunO9s55vQtdZXhmDz0oN56cHseui14X_aNvlNQa-Ff76C1Tu0Gc0m49duunZ97OB-59r2rxGSSm5-zM7N7OflNb0luflOnwE_WqhA
CitedBy_id crossref_primary_10_1016_j_jbiotec_2015_09_026
crossref_primary_10_1002_cbic_202200794
crossref_primary_10_1016_j_jbiotec_2018_06_338
crossref_primary_10_3389_fctls_2022_900554
crossref_primary_10_1002_ejoc_201901682
crossref_primary_10_1016_j_catcom_2018_10_022
crossref_primary_10_1021_acscatal_1c04543
crossref_primary_10_1021_acscatal_6b03061
crossref_primary_10_1002_cbic_202400443
crossref_primary_10_1080_07388551_2022_2039590
crossref_primary_10_1007_s12257_015_0607_x
crossref_primary_10_1002_adsc_201600468
crossref_primary_10_1002_adsc_201701282
crossref_primary_10_1007_s12010_019_03091_1
crossref_primary_10_1515_znc_2018_0216
crossref_primary_10_1002_anie_202003635
crossref_primary_10_1002_cctc_201701669
crossref_primary_10_1111_1751_7915_12309
crossref_primary_10_3390_molecules28217249
crossref_primary_10_1016_j_mattod_2015_04_002
crossref_primary_10_1002_anie_202216962
crossref_primary_10_1002_anie_202309012
crossref_primary_10_1038_srep44599
crossref_primary_10_1002_open_202400064
crossref_primary_10_1128_AEM_00239_19
crossref_primary_10_1186_s40643_021_00370_w
crossref_primary_10_1002_cssc_202400644
crossref_primary_10_1016_j_biomaterials_2021_120705
crossref_primary_10_1021_acscatal_7b03440
crossref_primary_10_1039_D0GC01454K
crossref_primary_10_1002_bit_25564
crossref_primary_10_3390_catal9010064
crossref_primary_10_1021_acscatal_1c04555
crossref_primary_10_1002_bit_26258
crossref_primary_10_1016_j_procbio_2019_10_009
crossref_primary_10_1002_cbic_201700526
crossref_primary_10_1186_s40643_021_00362_w
crossref_primary_10_1002_adsc_201600216
crossref_primary_10_1016_j_mcat_2020_110875
crossref_primary_10_1021_acscatal_8b03360
crossref_primary_10_1039_D0GC02600J
crossref_primary_10_1016_j_jcat_2023_04_009
crossref_primary_10_1007_s41981_023_00301_0
crossref_primary_10_1002_ange_202006648
crossref_primary_10_1007_s10965_019_1991_2
crossref_primary_10_1002_adsc_201700585
crossref_primary_10_1002_biot_202300210
crossref_primary_10_1002_cbic_201800533
crossref_primary_10_1016_j_biotechadv_2017_11_007
crossref_primary_10_1021_acs_chemrev_2c00213
crossref_primary_10_1039_C8CS00903A
crossref_primary_10_3390_catal11050605
crossref_primary_10_1002_biot_202000091
crossref_primary_10_3390_ma15196608
crossref_primary_10_3390_fermentation8020047
crossref_primary_10_1016_j_mcat_2019_02_006
crossref_primary_10_1039_D1GC03056F
crossref_primary_10_1002_app_48949
crossref_primary_10_1039_D3GC01400B
crossref_primary_10_1021_acssynbio_0c00380
crossref_primary_10_1002_cctc_201900976
crossref_primary_10_1016_j_chembiol_2015_08_014
crossref_primary_10_1016_j_tibtech_2020_12_009
crossref_primary_10_3390_polym8100372
crossref_primary_10_1016_j_procbio_2015_12_012
crossref_primary_10_1007_s00253_017_8501_4
crossref_primary_10_1002_cctc_202101625
crossref_primary_10_1002_cctc_202400835
crossref_primary_10_1021_acscatal_0c01767
crossref_primary_10_1021_acssuschemeng_3c01495
crossref_primary_10_1021_acssuschemeng_4c02236
crossref_primary_10_1002_cbic_201900737
crossref_primary_10_1039_D3RA03112H
crossref_primary_10_1002_cctc_201500823
crossref_primary_10_3390_molecules21060796
crossref_primary_10_1002_adsc_201801501
crossref_primary_10_3390_catal6060090
crossref_primary_10_1016_j_bej_2016_03_015
crossref_primary_10_1021_acs_oprd_0c00372
crossref_primary_10_1002_cbic_202200746
crossref_primary_10_1002_chem_201703353
crossref_primary_10_3390_catal8050205
crossref_primary_10_1021_acs_chemrev_7b00033
crossref_primary_10_1021_acsmacrolett_9b00639
crossref_primary_10_1002_ange_202003635
crossref_primary_10_1002_ange_202216962
crossref_primary_10_1016_j_enzmictec_2017_09_003
crossref_primary_10_1016_j_tet_2015_11_054
crossref_primary_10_1039_C8RA04402C
crossref_primary_10_1002_elsc_201600107
crossref_primary_10_1002_cbic_202000035
crossref_primary_10_1021_acssuschemeng_4c08560
crossref_primary_10_1039_D1CS00100K
crossref_primary_10_1002_biot_201700629
crossref_primary_10_1039_C8NP00054A
crossref_primary_10_1002_bit_27133
crossref_primary_10_1021_acscatal_6b00030
crossref_primary_10_1002_pro_3525
crossref_primary_10_1038_s41467_020_18833_7
crossref_primary_10_1186_s13568_017_0390_5
crossref_primary_10_1021_acssynbio_7b00365
crossref_primary_10_1039_C6CY00435K
crossref_primary_10_1002_asia_201801180
crossref_primary_10_1039_C6PY02033J
crossref_primary_10_3390_catal7080240
crossref_primary_10_3389_fctls_2021_683248
crossref_primary_10_1021_acs_iecr_1c04407
crossref_primary_10_1002_cssc_202401811
crossref_primary_10_1039_D3CC02114A
crossref_primary_10_1039_C6GC02529C
crossref_primary_10_1039_D2GC03392E
crossref_primary_10_1002_anie_201800343
crossref_primary_10_1039_C5CY02067K
crossref_primary_10_1002_cite_202200077
crossref_primary_10_1021_acssuschemeng_8b02107
crossref_primary_10_1039_D0RA07138B
crossref_primary_10_1002_jhet_2595
crossref_primary_10_1007_s12257_024_00011_x
crossref_primary_10_1016_j_indcrop_2018_12_088
crossref_primary_10_1021_acscatal_9b03396
crossref_primary_10_1039_D1NP00027F
crossref_primary_10_1016_j_cbpa_2017_02_013
crossref_primary_10_1021_acscatal_0c01892
crossref_primary_10_1016_j_biotechadv_2020_107520
crossref_primary_10_1002_cctc_201500511
crossref_primary_10_1002_cctc_201600806
crossref_primary_10_1002_ange_201800343
crossref_primary_10_1016_j_polymer_2020_122906
crossref_primary_10_1002_anie_202012658
crossref_primary_10_1002_ange_202309012
crossref_primary_10_1002_adsc_201700416
crossref_primary_10_1111_1751_7915_14062
crossref_primary_10_1007_s10529_021_03137_7
crossref_primary_10_1021_acscatal_1c00048
crossref_primary_10_1002_bit_26469
crossref_primary_10_1021_acscatal_0c01958
crossref_primary_10_1021_jacs_5b04328
crossref_primary_10_1002_cctc_201500182
crossref_primary_10_1002_bit_25925
crossref_primary_10_1016_j_indcrop_2021_113590
crossref_primary_10_1038_s41467_024_54064_w
crossref_primary_10_1016_j_copbio_2016_05_005
crossref_primary_10_3389_fbioe_2022_944226
crossref_primary_10_1039_D2GC00288D
crossref_primary_10_1002_cctc_202401792
crossref_primary_10_1002_ange_202012658
crossref_primary_10_1021_acscatal_7b00513
crossref_primary_10_1002_anie_202006648
crossref_primary_10_1038_s42004_018_0070_7
crossref_primary_10_1038_ncomms11917
crossref_primary_10_1039_D3RE00536D
crossref_primary_10_1002_cbic_201600484
crossref_primary_10_1007_s00253_016_7670_x
crossref_primary_10_1039_C9CY01802F
crossref_primary_10_1016_j_apcata_2018_12_036
crossref_primary_10_3390_molecules26164791
crossref_primary_10_1016_j_enzmictec_2017_06_017
Cites_doi 10.1016/S0734-9750(02)00019-8
10.1111/j.1432-1033.1976.tb10220.x
10.1016/0167-7799(92)90283-2
10.1246/bcsj.74.613
10.1039/b820162p
10.1021/bm0344405
10.1002/ange.201302195
10.1038/35051736
10.1007/s10529-012-0928-1
10.1002/cbic.201000464
10.1039/P19960000755
10.1016/j.enzmictec.2013.03.011
10.1295/polymj.30.269
10.1002/(SICI)1099-0518(19990501)37:9<1265::AID-POLA6>3.0.CO;2-I
10.1038/nature11117
10.1021/cr1003437
10.1002/ange.200300599
10.1002/(SICI)1099-0518(19990815)37:16<3041::AID-POLA1>3.0.CO;2-V
10.1016/j.copbio.2003.08.005
10.1007/BF02546213
10.1039/c2ob25704a
10.1002/(SICI)1521-3935(19980801)199:8<1729::AID-MACP1729>3.0.CO;2-V
10.1002/9783527619191
10.1246/cl.1993.1149
10.1038/nchembio.580
10.1016/j.progpolymsci.2005.06.010
10.1016/j.enzmictec.2013.01.007
10.1002/ejlt.201300226
10.1126/science.1079237
10.1021/ma00105a008
10.1002/anie.201302195
10.1111/j.1432-1033.1995.0169o.x
10.1002/anie.200300599
10.1385/ABAB:123:1-3:0827
10.1021/ma951774g
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
8BQ
8FD
JG9
DOI 10.1002/anie.201410633
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
EndPage 2787
ExternalDocumentID 25597635
10_1002_anie_201410633
ANIE201410633
ark_67375_WNG_NXJQ3T1C_V
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Deutsche Bundesstiftung Umwelt
  funderid: AZ 13268‐32
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c4863-9c374be99509e7b788c1a5a584c9ae88b840e68d9ca01695455e7ec7bd2e61613
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 01:20:30 EDT 2025
Fri Jul 11 00:29:20 EDT 2025
Thu Apr 03 06:59:20 EDT 2025
Thu Apr 24 23:03:40 EDT 2025
Tue Jul 01 03:26:46 EDT 2025
Wed Jan 22 16:20:49 EST 2025
Wed Oct 30 09:53:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords cascade reactions
enzyme catalysis
polymer synthesis
Baeyer-Villiger monooxygenases
ε-caprolactone
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4863-9c374be99509e7b788c1a5a584c9ae88b840e68d9ca01695455e7ec7bd2e61613
Notes istex:6EFF1865610D24F0D66FD962E8017B172BF9E454
ArticleID:ANIE201410633
Deutsche Bundesstiftung Umwelt - No. AZ 13268-32
ark:/67375/WNG-NXJQ3T1C-V
We thank the "Deutsche Bundesstiftung Umwelt" for financial support (AZ 13268-32).
We thank the “Deutsche Bundesstiftung Umwelt” for financial support (AZ 13268‐32).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25597635
PQID 1657324526
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_1700975840
proquest_miscellaneous_1657324526
pubmed_primary_25597635
crossref_citationtrail_10_1002_anie_201410633
crossref_primary_10_1002_anie_201410633
wiley_primary_10_1002_anie_201410633_ANIE201410633
istex_primary_ark_67375_WNG_NXJQ3T1C_V
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 23, 2015
PublicationDateYYYYMMDD 2015-02-23
PublicationDate_xml – month: 02
  year: 2015
  text: February 23, 2015
  day: 23
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References I. K. Varma, A.-C. Albertsson, R. Rajkhowa, R. K. Srivastava, Prog. Polym. Sci. 2005, 30, 949-981
S. Kobayashi, H. Uyama, M. Ohmae, Bull. Chem. Soc. Jpn. 2001, 74, 613-635
K. Weissermel, H. J. Arpe, Industrial Organic Chemistry, 4th ed., Wiley-VCH, Weinheim, 2003.
D. Briand, E. Dubreucq, P. Galzy, J. Am. Oil Chem. Soc. 1995, 72, 1367-1373
W.-H. Lee, Y.-C. Park, D.-H. Lee, K. Park, J.-H. Seo, Appl. Biochem. Biotechnol. 2005, 123, 827-836.
S. Kobayashi, J. Polym. Sci. Part A 1999, 37, 3041-3056
D. Briand, E. Dubreucq, P. Galzy, Eur. J. Biochem. 1995, 228, 169-175.
M. Kobayashi, T. Nagasawa, H. Yamada, Trends Biotechnol. 1992, 10, 402-408
Angew. Chem. 2004, 116, 806-843
S. Hari Krishna, Biotechnol. Adv. 2002, 20, 239-267
R. T. MacDonald, S. K. Pulapura, Y. Y. Svirkin, R. A. Gross, D. L. Kaplan, J. Akkara, G. Swift, S. Wolk, Macromolecules 1995, 28, 73-78
H. Leisch, K. Morley, P. C. K. Lau, Chem. Rev. 2011, 111, 4165-4222.
S. Kobayashi, K. Takeya, S. Suda, H. Uyama, Macromol. Chem. Phys. 1998, 199, 1729-1736
G. M. Sivalingam, G. Madras, Biomacromolecules 2004, 5, 603-609
A. Schmid, J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, B. Witholt, Nature 2001, 409, 258-268.
D. J. Opperman, M. T. Reetz, ChemBioChem 2010, 11, 2589-2596.
H. Wulf, H. Mallin, U. T. Bornscheuer, Enzyme Microb. Technol. 2013, 53, 283-287.
Angew. Chem. 2014, 126, 3132-3158
K. Balke, M. Kadow, H. Mallin, S. Sass, U. T. Bornscheuer, Org. Biomol. Chem. 2012, 10, 6249-6265
M. Labet, W. Thielemans, Chem. Soc. Rev. 2009, 38, 3484-3504
H. Dong, S. G. Cao, Z. Q. Li, S. P. Han, D. L. You, J. C. Shen, J. Polym. Sci. Part A 1999, 37, 1265-1275
B. M. Nestl, S. C. Hammer, B. A. Nebel, B. Hauer, Angew. Chem. Int. Ed. 2014, 53, 3070-3095
N. A. Donoghue, D. B. Norris, P. W. Trudgill, Eur. J. Biochem. 1976, 63, 175-192.
M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer, T. Zelinski, Angew. Chem. Int. Ed. 2004, 43, 788-824
H. Uyama, S. Kobayashi, Chem. Lett. 1993, 22, 1149-1150.
J. Müller, B. Fredrich, C. Kohlmann, L. Maksym, U. T. Bornscheuer, Eur. J. Lipid Sci. Technol. 2014, 116, 232-236
H. Yim, R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, J. Boldt, J. Khandurina, J. D. Trawick, R. E. Osterhout, R. Stephen, J. Estadilla, S. Teisan, H. B. Schreyer, S. Andrae, T. H. Yang, S. Y. Lee, M. J. Burk, S. Van Dien, Nat. Chem. Biol. 2011, 7, 445-452.
G. A. R. Nobes, R. J. Kazlauskas, R. H. Marchessault, Macromolecules 1996, 29, 4829-4833
U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, K. Robins, Nature 2012, 485, 185-194
H. E. Schoemaker, D. Mink, M. G. Wubbolts, Science 2003, 299, 1694-1697
C. E. Nakamura, G. M. Whited, Curr. Opin. Biotechnol. 2003, 14, 454-459
S. Staudt, U. T. Bornscheuer, U. Menyes, W. Hummel, H. Gröger, Enzyme Microb. Technol. 2013, 53, 288-292
R. Brenneis, B. Baeck, Biotechnol. Lett. 2012, 34, 1459-1463
J. D. Stewart, K. W. Reed, M. M. Kayser, J. Chem. Soc. Perkin Trans. 1 1996, 755-757.
S. Namekawa, H. Uyama, S. Kobayashi, Polym. J. 1998, 30, 269-271.
2014 2014; 53 126
2010; 11
1976; 63
2014; 116
1995; 72
2004 2004; 43 116
2012; 485
1993; 22
2003; 14
1996
2004; 5
2001; 409
2003
1998; 199
1992; 10
2012; 34
2003; 299
2012; 10
2011; 7
2011; 111
1996; 29
1995; 28
2002; 20
2005; 123
2013; 53
1999; 37
2005; 30
1995; 228
2014
1998; 30
2009; 38
2001; 74
e_1_2_2_2_3
e_1_2_2_3_2
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_23_2
e_1_2_2_4_3
e_1_2_2_5_2
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_21_2
e_1_2_2_20_2
e_1_2_2_1_2
e_1_2_2_2_2
e_1_2_2_40_2
e_1_2_2_41_2
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_27_2
e_1_2_2_26_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_14_2
e_1_2_2_35_2
References_xml – reference: H. Leisch, K. Morley, P. C. K. Lau, Chem. Rev. 2011, 111, 4165-4222.
– reference: S. Hari Krishna, Biotechnol. Adv. 2002, 20, 239-267;
– reference: M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer, T. Zelinski, Angew. Chem. Int. Ed. 2004, 43, 788-824;
– reference: W.-H. Lee, Y.-C. Park, D.-H. Lee, K. Park, J.-H. Seo, Appl. Biochem. Biotechnol. 2005, 123, 827-836.
– reference: M. Labet, W. Thielemans, Chem. Soc. Rev. 2009, 38, 3484-3504;
– reference: K. Weissermel, H. J. Arpe, Industrial Organic Chemistry, 4th ed., Wiley-VCH, Weinheim, 2003.
– reference: S. Kobayashi, K. Takeya, S. Suda, H. Uyama, Macromol. Chem. Phys. 1998, 199, 1729-1736;
– reference: G. A. R. Nobes, R. J. Kazlauskas, R. H. Marchessault, Macromolecules 1996, 29, 4829-4833;
– reference: S. Kobayashi, J. Polym. Sci. Part A 1999, 37, 3041-3056;
– reference: M. Kobayashi, T. Nagasawa, H. Yamada, Trends Biotechnol. 1992, 10, 402-408;
– reference: Angew. Chem. 2014, 126, 3132-3158;
– reference: S. Staudt, U. T. Bornscheuer, U. Menyes, W. Hummel, H. Gröger, Enzyme Microb. Technol. 2013, 53, 288-292;
– reference: Angew. Chem. 2004, 116, 806-843;
– reference: N. A. Donoghue, D. B. Norris, P. W. Trudgill, Eur. J. Biochem. 1976, 63, 175-192.
– reference: H. Wulf, H. Mallin, U. T. Bornscheuer, Enzyme Microb. Technol. 2013, 53, 283-287.
– reference: R. Brenneis, B. Baeck, Biotechnol. Lett. 2012, 34, 1459-1463;
– reference: J. D. Stewart, K. W. Reed, M. M. Kayser, J. Chem. Soc. Perkin Trans. 1 1996, 755-757.
– reference: R. T. MacDonald, S. K. Pulapura, Y. Y. Svirkin, R. A. Gross, D. L. Kaplan, J. Akkara, G. Swift, S. Wolk, Macromolecules 1995, 28, 73-78;
– reference: J. Müller, B. Fredrich, C. Kohlmann, L. Maksym, U. T. Bornscheuer, Eur. J. Lipid Sci. Technol. 2014, 116, 232-236;
– reference: H. Dong, S. G. Cao, Z. Q. Li, S. P. Han, D. L. You, J. C. Shen, J. Polym. Sci. Part A 1999, 37, 1265-1275;
– reference: A. Schmid, J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, B. Witholt, Nature 2001, 409, 258-268.
– reference: U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, K. Robins, Nature 2012, 485, 185-194;
– reference: B. M. Nestl, S. C. Hammer, B. A. Nebel, B. Hauer, Angew. Chem. Int. Ed. 2014, 53, 3070-3095;
– reference: G. M. Sivalingam, G. Madras, Biomacromolecules 2004, 5, 603-609;
– reference: H. Yim, R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, J. Boldt, J. Khandurina, J. D. Trawick, R. E. Osterhout, R. Stephen, J. Estadilla, S. Teisan, H. B. Schreyer, S. Andrae, T. H. Yang, S. Y. Lee, M. J. Burk, S. Van Dien, Nat. Chem. Biol. 2011, 7, 445-452.
– reference: C. E. Nakamura, G. M. Whited, Curr. Opin. Biotechnol. 2003, 14, 454-459;
– reference: K. Balke, M. Kadow, H. Mallin, S. Sass, U. T. Bornscheuer, Org. Biomol. Chem. 2012, 10, 6249-6265;
– reference: H. E. Schoemaker, D. Mink, M. G. Wubbolts, Science 2003, 299, 1694-1697;
– reference: S. Namekawa, H. Uyama, S. Kobayashi, Polym. J. 1998, 30, 269-271.
– reference: H. Uyama, S. Kobayashi, Chem. Lett. 1993, 22, 1149-1150.
– reference: I. K. Varma, A.-C. Albertsson, R. Rajkhowa, R. K. Srivastava, Prog. Polym. Sci. 2005, 30, 949-981;
– reference: D. Briand, E. Dubreucq, P. Galzy, J. Am. Oil Chem. Soc. 1995, 72, 1367-1373;
– reference: S. Kobayashi, H. Uyama, M. Ohmae, Bull. Chem. Soc. Jpn. 2001, 74, 613-635;
– reference: D. Briand, E. Dubreucq, P. Galzy, Eur. J. Biochem. 1995, 228, 169-175.
– reference: D. J. Opperman, M. T. Reetz, ChemBioChem 2010, 11, 2589-2596.
– volume: 409
  start-page: 258
  year: 2001
  end-page: 268
  publication-title: Nature
– volume: 53
  start-page: 283
  year: 2013
  end-page: 287
  publication-title: Enzyme Microb. Technol.
– volume: 20
  start-page: 239
  year: 2002
  end-page: 267
  publication-title: Biotechnol. Adv.
– volume: 5
  start-page: 603
  year: 2004
  end-page: 609
  publication-title: Biomacromolecules
– volume: 37
  start-page: 1265
  year: 1999
  end-page: 1275
  publication-title: J. Polym. Sci. Part A
– volume: 53 126
  start-page: 3070 3132
  year: 2014 2014
  end-page: 3095 3158
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2003
– volume: 34
  start-page: 1459
  year: 2012
  end-page: 1463
  publication-title: Biotechnol. Lett.
– volume: 7
  start-page: 445
  year: 2011
  end-page: 452
  publication-title: Nat. Chem. Biol.
– volume: 10
  start-page: 402
  year: 1992
  end-page: 408
  publication-title: Trends Biotechnol.
– volume: 37
  start-page: 3041
  year: 1999
  end-page: 3056
  publication-title: J. Polym. Sci. Part A
– volume: 123
  start-page: 827
  year: 2005
  end-page: 836
  publication-title: Appl. Biochem. Biotechnol.
– volume: 10
  start-page: 6249
  year: 2012
  end-page: 6265
  publication-title: Org. Biomol. Chem.
– volume: 30
  start-page: 269
  year: 1998
  end-page: 271
  publication-title: Polym. J.
– year: 2014
– volume: 72
  start-page: 1367
  year: 1995
  end-page: 1373
  publication-title: J. Am. Oil Chem. Soc.
– volume: 38
  start-page: 3484
  year: 2009
  end-page: 3504
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 2589
  year: 2010
  end-page: 2596
  publication-title: ChemBioChem
– volume: 63
  start-page: 175
  year: 1976
  end-page: 192
  publication-title: Eur. J. Biochem.
– volume: 22
  start-page: 1149
  year: 1993
  end-page: 1150
  publication-title: Chem. Lett.
– volume: 228
  start-page: 169
  year: 1995
  end-page: 175
  publication-title: Eur. J. Biochem.
– volume: 14
  start-page: 454
  year: 2003
  end-page: 459
  publication-title: Curr. Opin. Biotechnol.
– volume: 28
  start-page: 73
  year: 1995
  end-page: 78
  publication-title: Macromolecules
– volume: 299
  start-page: 1694
  year: 2003
  end-page: 1697
  publication-title: Science
– volume: 199
  start-page: 1729
  year: 1998
  end-page: 1736
  publication-title: Macromol. Chem. Phys.
– volume: 485
  start-page: 185
  year: 2012
  end-page: 194
  publication-title: Nature
– volume: 29
  start-page: 4829
  year: 1996
  end-page: 4833
  publication-title: Macromolecules
– start-page: 755
  year: 1996
  end-page: 757
  publication-title: J. Chem. Soc. Perkin Trans. 1
– volume: 116
  start-page: 232
  year: 2014
  end-page: 236
  publication-title: Eur. J. Lipid Sci. Technol.
– volume: 43 116
  start-page: 788 806
  year: 2004 2004
  end-page: 824 843
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53
  start-page: 288
  year: 2013
  end-page: 292
  publication-title: Enzyme Microb. Technol.
– volume: 111
  start-page: 4165
  year: 2011
  end-page: 4222
  publication-title: Chem. Rev.
– volume: 74
  start-page: 613
  year: 2001
  end-page: 635
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 30
  start-page: 949
  year: 2005
  end-page: 981
  publication-title: Prog. Polym. Sci.
– ident: e_1_2_2_32_2
  doi: 10.1016/S0734-9750(02)00019-8
– ident: e_1_2_2_15_2
  doi: 10.1111/j.1432-1033.1976.tb10220.x
– ident: e_1_2_2_8_2
  doi: 10.1016/0167-7799(92)90283-2
– ident: e_1_2_2_25_2
  doi: 10.1246/bcsj.74.613
– ident: e_1_2_2_23_2
  doi: 10.1039/b820162p
– ident: e_1_2_2_28_2
  doi: 10.1021/bm0344405
– ident: e_1_2_2_2_3
  doi: 10.1002/ange.201302195
– ident: e_1_2_2_6_2
  doi: 10.1038/35051736
– ident: e_1_2_2_37_2
  doi: 10.1007/s10529-012-0928-1
– ident: e_1_2_2_40_2
  doi: 10.1002/cbic.201000464
– ident: e_1_2_2_16_2
  doi: 10.1039/P19960000755
– ident: e_1_2_2_18_2
  doi: 10.1016/j.enzmictec.2013.03.011
– ident: e_1_2_2_34_2
  doi: 10.1295/polymj.30.269
– ident: e_1_2_2_41_2
– ident: e_1_2_2_29_2
  doi: 10.1002/(SICI)1099-0518(19990501)37:9<1265::AID-POLA6>3.0.CO;2-I
– ident: e_1_2_2_3_2
  doi: 10.1038/nature11117
– ident: e_1_2_2_14_2
  doi: 10.1021/cr1003437
– ident: e_1_2_2_4_3
  doi: 10.1002/ange.200300599
– ident: e_1_2_2_21_2
– ident: e_1_2_2_24_2
  doi: 10.1002/(SICI)1099-0518(19990815)37:16<3041::AID-POLA1>3.0.CO;2-V
– ident: e_1_2_2_1_2
– ident: e_1_2_2_7_2
– ident: e_1_2_2_9_2
  doi: 10.1016/j.copbio.2003.08.005
– ident: e_1_2_2_38_2
  doi: 10.1007/BF02546213
– ident: e_1_2_2_12_2
– ident: e_1_2_2_13_2
  doi: 10.1039/c2ob25704a
– ident: e_1_2_2_22_2
  doi: 10.1002/(SICI)1521-3935(19980801)199:8<1729::AID-MACP1729>3.0.CO;2-V
– ident: e_1_2_2_35_2
– ident: e_1_2_2_11_2
  doi: 10.1002/9783527619191
– ident: e_1_2_2_30_2
  doi: 10.1246/cl.1993.1149
– ident: e_1_2_2_10_2
  doi: 10.1038/nchembio.580
– ident: e_1_2_2_33_2
  doi: 10.1016/j.progpolymsci.2005.06.010
– ident: e_1_2_2_19_2
  doi: 10.1016/j.enzmictec.2013.01.007
– ident: e_1_2_2_31_2
– ident: e_1_2_2_36_2
  doi: 10.1002/ejlt.201300226
– ident: e_1_2_2_5_2
  doi: 10.1126/science.1079237
– ident: e_1_2_2_26_2
  doi: 10.1021/ma00105a008
– ident: e_1_2_2_2_2
  doi: 10.1002/anie.201302195
– ident: e_1_2_2_20_2
– ident: e_1_2_2_39_2
  doi: 10.1111/j.1432-1033.1995.0169o.x
– ident: e_1_2_2_4_2
  doi: 10.1002/anie.200300599
– ident: e_1_2_2_17_2
  doi: 10.1385/ABAB:123:1-3:0827
– ident: e_1_2_2_27_2
  doi: 10.1021/ma951774g
SSID ssj0028806
Score 2.548493
Snippet Poly‐ε‐caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although...
Poly-ε-caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although...
Poly- epsilon -caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent....
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2784
SubjectTerms Alcohol dehydrogenase
Alcohol Dehydrogenase - chemistry
Alcohol Dehydrogenase - metabolism
Baeyer-Villiger monooxygenases
Candida antarctica
cascade reactions
Cascades
enzyme catalysis
Mixed Function Oxygenases - chemistry
Mixed Function Oxygenases - metabolism
Molecular Structure
Oligomers
Oxidation
Polyesters - chemistry
Polyesters - metabolism
polymer synthesis
Polymerization
Product inhibition
Synthesis
ε-caprolactone
Title An Enzyme Cascade Synthesis of ε-Caprolactone and its Oligomers
URI https://api.istex.fr/ark:/67375/WNG-NXJQ3T1C-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201410633
https://www.ncbi.nlm.nih.gov/pubmed/25597635
https://www.proquest.com/docview/1657324526
https://www.proquest.com/docview/1700975840
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hcoALLf-hgIyE4OR2E8dxclyiLaUSi4AW9mbZjoNW3WZRsyvRnngEXobX4CF4EmaSTWARPxLcEmksOzN2_I098w3AQ5mmRoZFyEUpLI_L1PEscQNuEZoOStzSVXOm-3yc7B_FBxM5-SGLv-WH6A_caGU0_2ta4MbWu99JQykDm0KzYnRqBNF9UsAWoaJXPX9UhJOzTS8SglMV-o61cRDtrjdf25UukoI__ApyriPYZgva2wTTDb6NPDneWS7sjjv_idfxf75uC66s8CkbthPqKlzw1TW4lHdl4a7Dk2HFRtX52Ylnuakpup69PqsQRtbTms1L9uXz14-fcoODnFEpn8ozUxVsuqjZi9n03ZyOyW_A0d7oMN_nq0IM3MVpInjmhIqtzzJEF15Z9JpdaKRB7OIy49PUopfok7TInCFyFwRl0ivvlC0inyCkFDdho8IObwMzhYyscoUUSRHbTFqTWh9LXzp0lYyRAfDOENqtWMqpWMZMt_zKkSbN6F4zATzu5d-3_By_lXzU2LUXM6fHFNWmpH47fqrHk4OX4jDM9ZsAHnSG16hbukAxlZ8vax0mUgm6qk7-IKMoNQZVMwjgVjtr-h4b9w0RXgBRY_u_jFgPx89G_dudf2m0DZfxuc3BF3dhY3G69PcQRS3s_WalfAOInhJO
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1B-1BeuF_C1UgIntJu4jiXx23Ysi1tELClfbNsx0GrLlnU7Eq0T_2E_kx_g4_gS5hJNkGLuEjwmMiWnRk7PjOeOQPwTMSxEl7uubzg2g2K2LhJaHquRmjaK_BIj2qf7l4WDveDnUPRRhNSLkzDD9E53Ghn1P9r2uDkkN74wRpKKdgUmxWgVcP5ZVilst5En__yXccg5ePybBKMOHepDn3L29jzN5b7L51LqyTiL78CncsYtj6Etq6BbqffxJ4crc9net2c_sTs-F_fdx2uLiAq6zdr6gZcsuVNWEvbynC3YLNfskF5evLJslRVFGDP3p-UiCSrccWmBft68e3sPFU4ywlV8yktU2XOxrOKvZmMP07JU34b9rcGo3ToLmoxuCaIQ-4mhkeBtkmCAMNGGg1n4ymhEL6YRNk41mgo2jDOE6OI3wVxmbCRNZHOfRsiquR3YKXEAe8BU7nwdWRywcM80InQKtY2ELYwaC0pJRxwW01IsyAqp3oZE9lQLPuSJCM7yTjwomv_uaHo-G3L57Viu2bq-IgC2yIhD7JXMjvcectHXio_OPC01bxE2dIdiirtdF5JLxQRp9vq8A9tIsqOQdH0HLjbLJtuxNqCQ5DngF8r_y8zlv1se9A93f-XTk9gbTja25W729nrB3AF3zcp-fwhrMyO5_YRgqqZflxvm--s4hZq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BK0Ffyr2Eq5EQPKVN4thJHpd0l7ZAuLVl3yzbcdCq22zV7Eq0T3wCP8Nv8BH9ko6TTWARFwkeE41lZ8aOz9gzZwAesziWzM99lxZUuWERazfh2nMVQlOvwC09qs90X2V8ay_cGbLhD1n8DT9Ed-BmV0b9v7YL_CgvNr6ThtoMbBuaFaJTQ-lFWA65l9jiDZvvOgKpAGdnk19EqWvL0Le0jV6wsdh-YVtathr-9CvMuQhh6z1ocAVkO_om9ORgfTZV6_r0J2LH__m8q7A6B6ik18yoa3DBlNfhctrWhbsBz3ol6ZenJ4eGpLKy4fXk_UmJOLIaVWRSkG9fzz5_SSUOcmxr-ZSGyDIno2lFXo9HHyf2nPwm7A36u-mWO6_E4Oow5tRNNI1CZZIE4YWJFLrN2pdMInjRiTRxrNBNNDzOEy0tuwuiMmYioyOVB4YjpqS3YKnEDm8DkTkLVKRzRnkeqoQpGSsTMlNo9JWkZA64rSGEntOU22oZY9EQLAfCakZ0mnHgaSd_1BB0_FbySW3XTkweH9iwtoiJD9lzkQ133tJdPxX7DjxqDS9Qt_YGRZZmMquEz1lE7V01_4NMZHNjUDWeA2vNrOl6rP03hHgOBLXt_zJi0cu2-93TnX9p9BAuvdkciJfb2Yu7sIKvm3x8eg-Wpsczcx8R1VQ9qBfNOVAnFRk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Enzyme+Cascade+Synthesis+of+epsilon+-Caprolactone+and+its+Oligomers&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Schmidt%2C+Sandy&rft.au=Scherkus%2C+Christian&rft.au=Muschiol%2C+Jan&rft.au=Menyes%2C+Ulf&rft.date=2015-02-23&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=54&rft.issue=9&rft.spage=2784&rft.epage=2787&rft_id=info:doi/10.1002%2Fanie.201410633&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon