Syngas chemical looping gasification process: Bench-scale studies and reactor simulations

The syngas chemical looping process co-produces hydrogen and electricity from syngas through the cyclic reduction and regeneration of an iron oxide based oxygen carrier. In this article, the reducer, which reduces the oxygen carrier with syngas, is investigated through thermodynamic analysis, experi...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 56; no. 8; pp. 2186 - 2199
Main Authors Li, Fanxing, Zeng, Liang, Velazquez-Vargas, Luis G, Yoscovits, Zachary, Fan, Liang-Shih
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2010
Wiley
American Institute of Chemical Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The syngas chemical looping process co-produces hydrogen and electricity from syngas through the cyclic reduction and regeneration of an iron oxide based oxygen carrier. In this article, the reducer, which reduces the oxygen carrier with syngas, is investigated through thermodynamic analysis, experiments, and ASPEN Plus® simulation. The thermodynamic analysis indicates that the countercurrent moving-bed reducer offers better gas and solids conversions when compared to the fluidized-bed reducer. The reducer is continuously operated for 15 h in a bench scale moving-bed reactor. A syngas conversion in excess of 99.5% and an oxygen carrier conversion of nearly 50% are obtained. An ASPEN Plus® model is developed which simulates the reducer performance. The results of simulation are consistent with those obtained from both the thermodynamic analysis and experiments. Both the experiments and simulation indicate that the proposed SCL reducer concept is feasible. © 2009 American Institute of Chemical Engineers AIChE J, 2010
AbstractList The syngas chemical looping process co-produces hydrogen and electricity from syngas through the cyclic reduction and regeneration of an iron oxide based oxygen carrier. In this article, the reducer, which reduces the oxygen carrier with syngas, is investigated through thermodynamic analysis, experiments, and ASPEN Plus.
Abstract The syngas chemical looping process co‐produces hydrogen and electricity from syngas through the cyclic reduction and regeneration of an iron oxide based oxygen carrier. In this article, the reducer, which reduces the oxygen carrier with syngas, is investigated through thermodynamic analysis, experiments, and ASPEN Plus® simulation. The thermodynamic analysis indicates that the countercurrent moving‐bed reducer offers better gas and solids conversions when compared to the fluidized‐bed reducer. The reducer is continuously operated for 15 h in a bench scale moving‐bed reactor. A syngas conversion in excess of 99.5% and an oxygen carrier conversion of nearly 50% are obtained. An ASPEN Plus® model is developed which simulates the reducer performance. The results of simulation are consistent with those obtained from both the thermodynamic analysis and experiments. Both the experiments and simulation indicate that the proposed SCL reducer concept is feasible. © 2009 American Institute of Chemical Engineers AIChE J, 2010
The syngas chemical looping process co-produces hydrogen and electricity from syngas through the cyclic reduction and regeneration of an iron oxide based oxygen carrier. In this article, the reducer, which reduces the oxygen carrier with syngas, is investigated through thermodynamic analysis, experiments, and ASPEN Plus® simulation. The thermodynamic analysis indicates that the countercurrent moving-bed reducer offers better gas and solids conversions when compared to the fluidized-bed reducer. The reducer is continuously operated for 15 h in a bench scale moving-bed reactor. A syngas conversion in excess of 99.5% and an oxygen carrier conversion of nearly 50% are obtained. An ASPEN Plus® model is developed which simulates the reducer performance. The results of simulation are consistent with those obtained from both the thermodynamic analysis and experiments. Both the experiments and simulation indicate that the proposed SCL reducer concept is feasible. © 2009 American Institute of Chemical Engineers AIChE J, 2010
The syngas chemical looping process co-produces hydrogen and electricity from syngas through the cyclic reduction and regeneration of an iron oxide based oxygen carrier. In this article, the reducer, which reduces the oxygen carrier with syngas, is investigated through thermodynamic analysis, experiments, and ASPEN Plus... simulation. The thermodynamic analysis indicates that the countercurrent moving-bed reducer offers better gas and solids conversions when compared to the fluidized-bed reducer. The reducer is continuously operated for 15 h in a bench scale moving-bed reactor. A syngas conversion in excess of 99.5% and an oxygen carrier conversion of nearly 50% are obtained. An ASPEN Plus... model is developed which simulates the reducer performance. The results of simulation are consistent with those obtained from both the thermodynamic analysis and experiments. Both the experiments and simulation indicate that the proposed SCL reducer concept is feasible. (ProQuest: ... denotes formulae/symbols omitted.)
Author Li, Fanxing
Yoscovits, Zachary
Zeng, Liang
Fan, Liang-Shih
Velazquez-Vargas, Luis G
Author_xml – sequence: 1
  fullname: Li, Fanxing
– sequence: 2
  fullname: Zeng, Liang
– sequence: 3
  fullname: Velazquez-Vargas, Luis G
– sequence: 4
  fullname: Yoscovits, Zachary
– sequence: 5
  fullname: Fan, Liang-Shih
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23075605$$DView record in Pascal Francis
BookMark eNp1kF1rFDEYhYNUcLt64S9wEKR4MW2-Z8a7unRrYanQWkRvQiaTbFNnkzXvDLr_3myn9qLQq-Q9POdwOIfoIMRgEXpL8DHBmJ5ob44JxQ17gWZE8KoUDRYHaIYxJmUWyCt0CHCXL1rVdIZ-XO_CWkNhbu3GG90XfYxbH9ZFFr3LyuBjKLYpGgvwqfhsg7ktIYO2gGHsvIVCh65IVpshpgL8ZuzvPfAavXS6B_vm4Z2jm-XZt8WXcvX1_GJxuioNryUrG9lyK3nbtZJbmo-2lRVvWkdN5zhlGAuOqXG1zB8juakJE5Z3jLbOWU7YHB1Nubnk79HCoDYejO17HWwcQdWyEVWNa5bJ90_IuzimkMspiRnmdL_bHH2cIJMiQLJObZPf6LRTBKv9xCpPrO4nzuyHh0C9n8QlHYyHR0MuX4lcO3MnE_fH93b3fKA6vVj8Ty4nh4fB_n106PRLyYpVQn2_PFfVz6ury5VYqmXm302801Hpdcotbq4pJgyTWgrRNOwff4Cj3w
CODEN AICEAC
CitedBy_id crossref_primary_10_1002_slct_201601138
crossref_primary_10_1016_j_apenergy_2013_11_068
crossref_primary_10_1016_j_energy_2020_118846
crossref_primary_10_1098_rsos_180150
crossref_primary_10_1016_j_ijggc_2015_07_023
crossref_primary_10_1016_j_scitotenv_2021_147850
crossref_primary_10_1016_j_apenergy_2017_03_106
crossref_primary_10_1016_j_ceramint_2013_08_138
crossref_primary_10_1016_j_ijhydene_2017_09_156
crossref_primary_10_1016_j_jece_2024_112613
crossref_primary_10_1039_C7RA10808G
crossref_primary_10_1007_s10163_014_0260_z
crossref_primary_10_1021_ef4024299
crossref_primary_10_1021_ie1005542
crossref_primary_10_1039_C8RA07863G
crossref_primary_10_1016_j_jes_2014_09_044
crossref_primary_10_1021_ef400010s
crossref_primary_10_1039_c2ee03470k
crossref_primary_10_1021_acs_energyfuels_9b03728
crossref_primary_10_1016_j_ijhydene_2011_12_037
crossref_primary_10_1016_j_ijhydene_2024_02_054
crossref_primary_10_1146_annurev_chembioeng_060713_040334
crossref_primary_10_1016_j_ces_2015_03_009
crossref_primary_10_1016_j_ijggc_2015_01_013
crossref_primary_10_1051_e3sconf_201911802035
crossref_primary_10_1021_ef5025998
crossref_primary_10_1007_s11144_021_02090_w
crossref_primary_10_1016_j_jece_2015_07_018
crossref_primary_10_1016_j_jtice_2018_11_010
crossref_primary_10_1021_acs_iecr_3c02871
crossref_primary_10_1016_j_energy_2020_119117
crossref_primary_10_3390_ma16010315
crossref_primary_10_3390_catal13020279
crossref_primary_10_1016_j_applthermaleng_2024_123844
crossref_primary_10_1016_j_fuel_2023_129024
crossref_primary_10_1155_2024_9252190
crossref_primary_10_1002_aic_14181
crossref_primary_10_1016_j_ijhydene_2023_06_216
crossref_primary_10_1021_ef3014103
crossref_primary_10_1016_j_ijhydene_2013_05_078
crossref_primary_10_1016_j_enconman_2017_09_053
crossref_primary_10_1021_acssuschemeng_8b05546
crossref_primary_10_3390_en16083385
crossref_primary_10_1016_j_apenergy_2017_12_095
crossref_primary_10_1016_j_seppur_2024_127153
crossref_primary_10_1002_aic_14695
crossref_primary_10_1016_j_fuel_2012_06_088
crossref_primary_10_1016_j_fuel_2014_06_040
crossref_primary_10_1021_acs_energyfuels_2c00910
crossref_primary_10_1515_ijcre_2024_0001
crossref_primary_10_1016_j_cej_2020_127695
crossref_primary_10_1016_j_apenergy_2013_06_014
crossref_primary_10_1016_S1004_9541_14_60066_5
crossref_primary_10_1016_j_ijhydene_2022_02_110
crossref_primary_10_1016_j_ijggc_2018_03_004
crossref_primary_10_1016_j_apenergy_2018_09_104
crossref_primary_10_1039_C4CS00453A
crossref_primary_10_1016_j_fuel_2010_07_018
crossref_primary_10_1021_ie504468a
crossref_primary_10_1002_ente_201600039
crossref_primary_10_1007_s43938_022_00012_3
crossref_primary_10_1021_ie201052r
crossref_primary_10_1021_ef3020475
crossref_primary_10_1021_ie4020952
crossref_primary_10_1016_j_combustflame_2019_05_012
crossref_primary_10_1016_j_fuel_2013_11_056
crossref_primary_10_1016_j_cej_2017_11_156
crossref_primary_10_1016_j_ces_2020_115530
crossref_primary_10_1016_j_coche_2012_05_001
crossref_primary_10_1016_j_apenergy_2016_12_072
crossref_primary_10_1002_aic_14551
crossref_primary_10_1007_s10163_023_01674_z
crossref_primary_10_1016_j_cej_2017_12_121
crossref_primary_10_1016_j_ijggc_2017_12_009
crossref_primary_10_1021_cr400202m
crossref_primary_10_1016_j_powtec_2020_03_038
crossref_primary_10_1515_ijcre_2018_0270
crossref_primary_10_1021_ef301411g
crossref_primary_10_1016_j_ijhydene_2019_02_081
crossref_primary_10_1021_ef4012438
crossref_primary_10_1016_j_apenergy_2018_02_078
crossref_primary_10_1002_aic_15402
crossref_primary_10_1016_j_apenergy_2013_05_045
crossref_primary_10_1021_sc300177j
crossref_primary_10_1016_j_energy_2020_117564
crossref_primary_10_1016_j_ijhydene_2023_03_075
crossref_primary_10_1016_j_apenergy_2018_09_201
crossref_primary_10_1021_acs_iecr_0c03062
crossref_primary_10_1016_j_ijhydene_2016_12_005
crossref_primary_10_1039_D0RA08610J
crossref_primary_10_1016_j_ijhydene_2018_01_035
crossref_primary_10_1002_wene_173
crossref_primary_10_1021_acs_iecr_9b02520
crossref_primary_10_1016_j_apenergy_2020_116065
crossref_primary_10_1002_ente_201900655
crossref_primary_10_1016_j_cjche_2020_09_007
crossref_primary_10_1016_j_fuproc_2020_106684
crossref_primary_10_1016_j_apenergy_2015_11_047
crossref_primary_10_1021_ef202039y
crossref_primary_10_1016_j_enconman_2023_117389
crossref_primary_10_1016_j_apenergy_2017_01_036
crossref_primary_10_1016_j_jcou_2023_102588
crossref_primary_10_1021_acs_iecr_9b06130
crossref_primary_10_1016_j_jclepro_2023_138657
crossref_primary_10_1021_ef3003685
crossref_primary_10_1021_acs_iecr_2c02677
crossref_primary_10_1088_1755_1315_237_3_032089
crossref_primary_10_1007_s10098_016_1231_y
crossref_primary_10_1016_j_apenergy_2013_05_024
crossref_primary_10_1016_j_ces_2014_08_010
crossref_primary_10_1007_s11783_015_0821_y
crossref_primary_10_1021_ie400766b
crossref_primary_10_1051_matecconf_202337701017
crossref_primary_10_1016_j_apenergy_2015_06_029
crossref_primary_10_1016_S1872_5813_20_30063_3
crossref_primary_10_1016_j_fuel_2014_06_017
Cites_doi 10.1016/j.enconman.2007.06.036
10.1016/0360-5442(87)90119-8
10.1016/j.fuel.2006.01.010
10.1039/b809218b
10.1016/j.fuel.2006.11.037
10.1016/j.fuel.2004.06.033
10.1021/ef049818m
10.1016/B978-0-12-373611-6.00011-2
10.1021/ef060517h
10.1021/ie060232s
10.1021/ef060512k
10.1021/ef900236x
10.1088/2058-7058/20/7/32
10.1144/GSL.SP.2004.233.01.15
10.1016/S1750-5836(07)00023-0
10.1063/1.2760746
10.1021/es071719a
10.1016/j.partic.2008.03.005
10.1016/S0196-8904(98)00052-1
10.1016/j.enconman.2007.05.019
10.1205/cherd05024
ContentType Journal Article
Copyright Copyright © 2009 American Institute of Chemical Engineers (AIChE)
2015 INIST-CNRS
Copyright American Institute of Chemical Engineers Aug 2010
Copyright_xml – notice: Copyright © 2009 American Institute of Chemical Engineers (AIChE)
– notice: 2015 INIST-CNRS
– notice: Copyright American Institute of Chemical Engineers Aug 2010
DBID FBQ
BSCLL
IQODW
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.12093
DatabaseName AGRIS
Istex
Pascal-Francis
CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database
CrossRef


Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1547-5905
EndPage 2199
ExternalDocumentID 2075392951
10_1002_aic_12093
23075605
AIC12093
ark_67375_WNG_7ZRRNL5F_F
US201301865599
Genre article
GrantInformation_xml – fundername: The Ohio State University and an industrial consortium
– fundername: Ohio Dept. of Development
  funderid: Project TECH 08‐062
– fundername: Ohio Coal Development Office of the Ohio Air Quality Development Authority
  funderid: Project CDO/D‐08‐02
– fundername: U. S. Dept. of Energy
  funderid: Project DE‐FC26‐07NT43059
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAIHA
AAIKC
AAJUZ
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABDEX
ABDMP
ABEML
ABHUG
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FBQ
FEDTE
G-S
G.N
G8K
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AHBTC
BSCLL
AITYG
HGLYW
OIG
08R
AAPBV
IQODW
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c4863-96b4e64bdb64e26b4bb6749bf2cdf423005402cf86054c64c8135e4d32bffe413
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Sat Aug 17 01:45:26 EDT 2024
Fri Sep 13 05:16:18 EDT 2024
Fri Aug 23 00:47:40 EDT 2024
Sun Oct 29 17:06:49 EDT 2023
Sat Aug 24 00:44:37 EDT 2024
Wed Jan 17 05:01:25 EST 2024
Wed Dec 27 18:56:37 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Moving bed
chemical looping
electricity
Fluidization
hydrogen
Countercurrent flow
Synthesis gas
Modeling
Coal
Moving bed reactor
Thermodynamic analysis
Gasification
Fluidized bed
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4863-96b4e64bdb64e26b4bb6749bf2cdf423005402cf86054c64c8135e4d32bffe413
Notes http://dx.doi.org/10.1002/aic.12093
Ohio Coal Development Office of the Ohio Air Quality Development Authority - No. Project CDO/D-08-02
U. S. Dept. of Energy - No. Project DE-FC26-07NT43059
The Ohio State University and an industrial consortium
istex:873474E1D1DE17FE914DEB824186B2FF3BAF114A
ArticleID:AIC12093
Ohio Dept. of Development - No. Project TECH 08-062
ark:/67375/WNG-7ZRRNL5F-F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 603042209
PQPubID 7879
PageCount 14
ParticipantIDs proquest_miscellaneous_869578083
proquest_journals_603042209
crossref_primary_10_1002_aic_12093
pascalfrancis_primary_23075605
wiley_primary_10_1002_aic_12093_AIC12093
istex_primary_ark_67375_WNG_7ZRRNL5F_F
fao_agris_US201301865599
PublicationCentury 2000
PublicationDate August 2010
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: August 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
American Institute of Chemical Engineers
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: American Institute of Chemical Engineers
References Leion H, Mattisson T, Lyngfelt A. The use of petroleum coke as fuel in chemical-looping combustion. Fuel. 2007; 86(12-13): 1947-1958.
Barin I. Thermochemical Data of Pure Substances. New York: Wiley-VCH; 1989.
Gupta P, Velazquez-Vargas LG, Fan L.-S. Syngas redox (SGR) process to produce hydrogen from coal derived syngas. Energy Fuel. 2007; 21(5): 2900-2908.
AspenTech. Aspen Physical Property System: Physical Property Methods and Models. ASPEN Tech, Inc.; 2006.
Ishida M, Zheng D, Akehata T. Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis. Energy. 1987; 2(2): 147-154.
Hurst S. Production of hydrogen by the steam-iron method. J Am Oil Chem Soc. 1939; 16(2): 29-36.
Fan, L.-S., Li F, Ramkumar S. Utilization of chemical looping strategy in coal gasification processes. Particuology. 2008; 6(3): 131-142.
Alcock CB. Principles of Pyrometallurgy. New York: Academic Press, Inc.; 1976.
Svoboda K, Slowinski G, Rogut J, Baxter D. Thermodynamic possibilities and constraints for pure hydrogen production by iron based chemical looping process at lower temperatures. Energy Convers Manage. 2007; 48(12): 3063-3073.
Johansson M, Mattisson T, Lyngfelt A. Use of NiO/NiAl2O4 particles in a 10 kW chemical-looping combustor. Ind Eng Chem Res. 2006; 45(17): 5911-5919.
Anheden M, Svedberg G. Exergy analysis of chemical-looping combustion systems. Energ Convers Manage. 1998; 39(16-18): 1967-1980.
Xiang W, Chen Y. Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors. Energy Fuel. 2007; 21(4): 2272-2277.
Johansson E, Mattisson T, Lyngfelt A, Thunman H. A 300 W laboratory reactor system for chemical-looping combustion with particle circulation. Fuel. 2006; 85(10-11): 1428-1438.
Jin HG, Ishida M. A new type of coal gas fueled chemical-looping combustion. Fuel. 2004; 83(17-18): 2411-2417.
Li F, Fan L.-S. Clean coal conversion processes - progress and challenges. Energy Environ Sci. 2008; 1: 248-267.
Fan L.-S., Li F. Clean coal. Phys World. 2007; 20(7): 37-41.
Fan L.-S., Iyer M. Coal cleans up its act. Chem Eng. 2006: 36-38.
Wu S, Uddin MA, Sasaoka E. Effect of pore size distribution of calcium oxide high-temperature desulfurization sorbent on its sulfurization and consecutive oxidative decomposition. Energy Fuel. 2005; 19(3): 864-868.
Elliott JF, Ralph RM, Stephenson RL. Direct Reduced Iron: Technology and Economics of Production and Use. Warrendale, PA: Iron & Steel Society of AIME; 1980.
Perry RH, Green DW. Perry's Chemical Engineers' Handbook. 8th ed. New York: McGraw-Hill; 2008.
Gaskell DR. Introduction to Metallurgical Thermodynamics. 2nd ed. New York: McGraw-Hill; 1981.
Udengaard NR. Hydrogen Production by Steam Reforming of Hydrocarbons. Preprints of Symposia - American Chemical Society, Division of Fuel Chemistry. 2004; 49(2): 906-907.
Cachu S, Gunter WD. Acid gas injection in the Alberta Basin, Canada: a CO2 storage experience. Geo Soc S P. 2004; 233: 225-234.
Johansson E, Mattisson T, Lyngfelt A, Thunman H. Combustion of syngas and natural gas in a 300 w chemical-looping combustor. Chem Eng Res Des. 2006; 84(A9): 819-827.
Mattisson, T, Garcia-Labiano F, Kronberger B, Lyngfelt A, Adanez J, Hofbauer H. Chemical-looping combustion using syngas as fuel. Int J Greenhouse Gas Control. 2007; 1(2): 158-169.
Gupta P, Velazquez-Vargas LG, Valentine C, Fan L.-S.. Moving bed reactor setup to study complex gas-solid reactions. Rev Sci Instrum. 2007; 78(8): 058106-1-085106-7.
Chase MW. NIST-JANAF Thermochemical Tables. 4th ed. Washington, DC: American Chemical Society; 1998.
Li F, Kim HR, Sridhar D, Wang F, Zeng L, Chen J, Fan L.-S. Syngas chemical looping gasification process: oxygen carrier particle selection and performance. Energy Fuel. 2008; 23(8): 4182-4189.
Higman C. Gasification. 2nd ed. Boston: Gulf Professional; 2008.
Svoboda K, Siewiorek A, Baxter D, Rogut J, Pohorely M. Thermodynamic possibilities and constraints for pure hydrogen production by a nickel and cobalt-based chemical looping process at lower temperatures. Energy Convers Manage. 2008; 49(2): 221-231.
Dewulf J, Van Langenhove H, Muys B, Bruers S, Bakshi BR, Grubb GF, Paulus DD, Sciubba E. Exergy: Its potential and limitations in environmental science and technology. Environ Sci Technol. 2008; 42(7): 2221-2232.
1987; 2
2004; 83
2004; 49
1976
1998
2008
2006
2005
2008; 6
2004
2008; 1
1939; 16
2007; 78
1913
2004; 233
1998; 39
2006; 85
2005; 19
2006; 84
2006; 45
2008; 49
2008; 23
1981
2008; 42
1980
2007; 20
2007; 86
1991; 129
2007; 21
2007; 1
2007; 48
1989
e_1_2_13_24_2
e_1_2_13_23_2
e_1_2_13_26_2
Perry RH (e_1_2_13_35_2) 2008
e_1_2_13_25_2
e_1_2_13_20_2
e_1_2_13_22_2
e_1_2_13_41_2
e_1_2_13_21_2
e_1_2_13_8_2
Hurst S (e_1_2_13_5_2) 1939; 16
e_1_2_13_7_2
e_1_2_13_40_2
e_1_2_13_6_2
Alcock CB (e_1_2_13_31_2) 1976
Elliott JF (e_1_2_13_30_2) 1980
Udengaard NR (e_1_2_13_2_2) 2004; 49
e_1_2_13_9_2
Gaskell DR (e_1_2_13_32_2) 1981
Knacke O (e_1_2_13_38_2) 1991
e_1_2_13_16_2
e_1_2_13_39_2
e_1_2_13_17_2
e_1_2_13_18_2
AspenTech (e_1_2_13_34_2) 2006
e_1_2_13_19_2
e_1_2_13_13_2
e_1_2_13_14_2
e_1_2_13_15_2
e_1_2_13_10_2
e_1_2_13_33_2
e_1_2_13_11_2
Chase MW (e_1_2_13_37_2) 1998
Fan L.‐S. (e_1_2_13_12_2) 2006
e_1_2_13_4_2
e_1_2_13_3_2
Barin I (e_1_2_13_36_2) 1989
e_1_2_13_28_2
e_1_2_13_27_2
e_1_2_13_29_2
References_xml – year: 1981
– volume: 19
  start-page: 864
  issue: 3
  year: 2005
  end-page: 868
  article-title: Effect of pore size distribution of calcium oxide high‐temperature desulfurization sorbent on its sulfurization and consecutive oxidative decomposition
  publication-title: Energy Fuel
– volume: 2
  start-page: 147
  issue: 2
  year: 1987
  end-page: 154
  article-title: Evaluation of a chemical‐looping‐combustion power‐generation system by graphic exergy analysis
  publication-title: Energy
– year: 2005
– volume: 129
  start-page: 2412
  year: 1991
– volume: 45
  start-page: 5911
  issue: 17
  year: 2006
  end-page: 5919
  article-title: Use of NiO/NiAl O particles in a 10 kW chemical‐looping combustor
  publication-title: Ind Eng Chem Res
– year: 1989
– volume: 86
  start-page: 1947
  issue: 12–13
  year: 2007
  end-page: 1958
  article-title: The use of petroleum coke as fuel in chemical‐looping combustion
  publication-title: Fuel
– volume: 39
  start-page: 1967
  issue: 16–18
  year: 1998
  end-page: 1980
  article-title: Exergy analysis of chemical‐looping combustion systems
  publication-title: Energ Convers Manage
– volume: 78
  start-page: 058106–1
  issue: 8
  year: 2007
  end-page: 085106–7
  article-title: Moving bed reactor setup to study complex gas‐solid reactions
  publication-title: Rev Sci Instrum
– year: 1998
– volume: 20
  start-page: 37
  issue: 7
  year: 2007
  end-page: 41
  article-title: Clean coal
  publication-title: Phys World
– year: 1913
– volume: 49
  start-page: 906
  issue: 2
  year: 2004
  end-page: 907
  article-title: Hydrogen Production by Steam Reforming of Hydrocarbons
  publication-title: Preprints of Symposia ‐ American Chemical Society, Division of Fuel Chemistry
– volume: 6
  start-page: 131
  issue: 3
  year: 2008
  end-page: 142
  article-title: Utilization of chemical looping strategy in coal gasification processes
  publication-title: Particuology
– volume: 49
  start-page: 221
  issue: 2
  year: 2008
  end-page: 231
  article-title: Thermodynamic possibilities and constraints for pure hydrogen production by a nickel and cobalt‐based chemical looping process at lower temperatures
  publication-title: Energy Convers Manage
– volume: 85
  start-page: 1428
  issue: 10–11
  year: 2006
  end-page: 1438
  article-title: A 300 W laboratory reactor system for chemical‐looping combustion with particle circulation
  publication-title: Fuel
– volume: 1
  start-page: 158
  issue: 2
  year: 2007
  end-page: 169
  article-title: Chemical‐looping combustion using syngas as fuel
  publication-title: Int J Greenhouse Gas Control
– year: 1980
– year: 2008
– volume: 21
  start-page: 2900
  issue: 5
  year: 2007
  end-page: 2908
  article-title: Syngas redox (SGR) process to produce hydrogen from coal derived syngas
  publication-title: Energy Fuel
– year: 2006
– start-page: 36
  year: 2006
  end-page: 38
  article-title: Coal cleans up its act
  publication-title: Chem Eng
– year: 2004
– volume: 1
  start-page: 248
  year: 2008
  end-page: 267
  article-title: Clean coal conversion processes ‐ progress and challenges
  publication-title: Energy Environ Sci
– volume: 83
  start-page: 2411
  issue: 17–18
  year: 2004
  end-page: 2417
  article-title: A new type of coal gas fueled chemical‐looping combustion
  publication-title: Fuel
– volume: 23
  start-page: 4182
  issue: 8
  year: 2008
  end-page: 4189
  article-title: Syngas chemical looping gasification process: oxygen carrier particle selection and performance
  publication-title: Energy Fuel
– volume: 84
  start-page: 819
  issue: A9
  year: 2006
  end-page: 827
  article-title: Combustion of syngas and natural gas in a 300 w chemical‐looping combustor
  publication-title: Chem Eng Res Des
– volume: 48
  start-page: 3063
  issue: 12
  year: 2007
  end-page: 3073
  article-title: Thermodynamic possibilities and constraints for pure hydrogen production by iron based chemical looping process at lower temperatures
  publication-title: Energy Convers Manage
– volume: 42
  start-page: 2221
  issue: 7
  year: 2008
  end-page: 2232
  article-title: Exergy: Its potential and limitations in environmental science and technology
  publication-title: Environ Sci Technol
– volume: 233
  start-page: 225
  year: 2004
  end-page: 234
  article-title: Acid gas injection in the Alberta Basin, Canada: a CO storage experience
  publication-title: Geo Soc S P
– volume: 16
  start-page: 29
  issue: 2
  year: 1939
  end-page: 36
  article-title: Production of hydrogen by the steam‐iron method
  publication-title: J Am Oil Chem Soc
– year: 1976
– volume: 21
  start-page: 2272
  issue: 4
  year: 2007
  end-page: 2277
  article-title: Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors
  publication-title: Energy Fuel
– ident: e_1_2_13_22_2
  doi: 10.1016/j.enconman.2007.06.036
– volume: 49
  start-page: 906
  issue: 2
  year: 2004
  ident: e_1_2_13_2_2
  article-title: Hydrogen Production by Steam Reforming of Hydrocarbons
  publication-title: Preprints of Symposia ‐ American Chemical Society, Division of Fuel Chemistry
  contributor:
    fullname: Udengaard NR
– volume-title: Perry's Chemical Engineers' Handbook
  year: 2008
  ident: e_1_2_13_35_2
  contributor:
    fullname: Perry RH
– ident: e_1_2_13_8_2
  doi: 10.1016/0360-5442(87)90119-8
– ident: e_1_2_13_17_2
  doi: 10.1016/j.fuel.2006.01.010
– ident: e_1_2_13_26_2
  doi: 10.1039/b809218b
– ident: e_1_2_13_14_2
  doi: 10.1016/j.fuel.2006.11.037
– ident: e_1_2_13_9_2
  doi: 10.1016/j.fuel.2004.06.033
– ident: e_1_2_13_40_2
  doi: 10.1021/ef049818m
– ident: e_1_2_13_28_2
– ident: e_1_2_13_25_2
– volume-title: NIST‐JANAF Thermochemical Tables
  year: 1998
  ident: e_1_2_13_37_2
  contributor:
    fullname: Chase MW
– ident: e_1_2_13_3_2
  doi: 10.1016/B978-0-12-373611-6.00011-2
– ident: e_1_2_13_24_2
  doi: 10.1021/ef060517h
– volume-title: Thermochemical Data of Pure Substances
  year: 1989
  ident: e_1_2_13_36_2
  contributor:
    fullname: Barin I
– ident: e_1_2_13_10_2
  doi: 10.1021/ie060232s
– ident: e_1_2_13_11_2
  doi: 10.1021/ef060512k
– ident: e_1_2_13_21_2
– start-page: 2412
  year: 1991
  ident: e_1_2_13_38_2
  contributor:
    fullname: Knacke O
– volume-title: Principles of Pyrometallurgy
  year: 1976
  ident: e_1_2_13_31_2
  contributor:
    fullname: Alcock CB
– ident: e_1_2_13_39_2
  doi: 10.1021/ef900236x
– ident: e_1_2_13_13_2
  doi: 10.1088/2058-7058/20/7/32
– volume: 16
  start-page: 29
  issue: 2
  year: 1939
  ident: e_1_2_13_5_2
  article-title: Production of hydrogen by the steam‐iron method
  publication-title: J Am Oil Chem Soc
  contributor:
    fullname: Hurst S
– ident: e_1_2_13_41_2
  doi: 10.1144/GSL.SP.2004.233.01.15
– ident: e_1_2_13_19_2
  doi: 10.1016/S1750-5836(07)00023-0
– volume-title: Aspen Physical Property System: Physical Property Methods and Models
  year: 2006
  ident: e_1_2_13_34_2
  contributor:
    fullname: AspenTech
– ident: e_1_2_13_27_2
– ident: e_1_2_13_4_2
– ident: e_1_2_13_33_2
  doi: 10.1063/1.2760746
– ident: e_1_2_13_29_2
– ident: e_1_2_13_7_2
  doi: 10.1021/es071719a
– ident: e_1_2_13_16_2
  doi: 10.1016/j.partic.2008.03.005
– volume-title: Introduction to Metallurgical Thermodynamics
  year: 1981
  ident: e_1_2_13_32_2
  contributor:
    fullname: Gaskell DR
– ident: e_1_2_13_6_2
  doi: 10.1016/S0196-8904(98)00052-1
– start-page: 36
  year: 2006
  ident: e_1_2_13_12_2
  article-title: Coal cleans up its act
  publication-title: Chem Eng
  contributor:
    fullname: Fan L.‐S.
– ident: e_1_2_13_20_2
– ident: e_1_2_13_23_2
  doi: 10.1016/j.enconman.2007.05.019
– ident: e_1_2_13_18_2
  doi: 10.1205/cherd05024
– volume-title: Direct Reduced Iron: Technology and Economics of Production and Use
  year: 1980
  ident: e_1_2_13_30_2
  contributor:
    fullname: Elliott JF
– ident: e_1_2_13_15_2
SSID ssj0012782
Score 2.396605
Snippet The syngas chemical looping process co-produces hydrogen and electricity from syngas through the cyclic reduction and regeneration of an iron oxide based...
The syngas chemical looping process co‐produces hydrogen and electricity from syngas through the cyclic reduction and regeneration of an iron oxide based...
Abstract The syngas chemical looping process co‐produces hydrogen and electricity from syngas through the cyclic reduction and regeneration of an iron oxide...
SourceID proquest
crossref
pascalfrancis
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 2186
SubjectTerms Applied sciences
Carriers
Chemical engineering
chemical looping
Chemical reactors
coal
Computer simulation
Conversion
electricity
Exact sciences and technology
Fluidization
Fluidizing
Gasification
hydrogen
Hydrogen reduction
Iron oxides
moving bed
Oxygen
Reactors
Simulation
Synthesis gas
Thermodynamics
Title Syngas chemical looping gasification process: Bench-scale studies and reactor simulations
URI https://api.istex.fr/ark:/67375/WNG-7ZRRNL5F-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.12093
https://www.proquest.com/docview/603042209/abstract/
https://search.proquest.com/docview/869578083
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VnuDAN2ooVBZCiEu2jddxEjiViqUg2MOWFRUgWbZjt1UhWzW7EnDiJ_Ab-SXM2NnQRUJC3PJlyePx2M_xm2eAhztOS8kDD6cQqdCZTY3TeVoanlvuXMYdLRTfjOX-VLw6zA_X4OkyFybqQ_Q_3CgywnhNAa5Nu_1bNFSf2AElfpLSJwnpESCa9NJRGS_KqBSOy2WECdlSVWiHb_clV-aiS17PEKFS434hhqRusZF8PN1iBX5eBLFhFhpdg4_L-kfyyelgMTcD--0Pacf_NPA6XO3QKduN3ekGrLnmJly5oFl4Cz4cfG2OdMtspzTAPs1CzhXDh0Q7Cp5mZzH_4Al7hlFw_PP7DzLTsTayFpluaoZolTYMWHvyuTtCrL0N09Hzt3v7aXdCQ2pFKYdpJY1wUpjaSOE43hgjC1EZz23tEagFQMitL3HRJKwUtsyGuRP1kBvvHc6fd2C9mTVuA5it61IjmvK-RpCk68qLTBQOzcc1almLBB4sfaXOohCHipLLXGFLqdBSCWygF5U-wgFSTQ84bctmlHpbVQk8Cq7tC-vzUyK1Fbl6N36hiveTyfh1PlKjBLZWfN8XIMo84sM8gc1lZ1BdwLdK0hYzxzokwPq3GKm0_aIbN1u0qpQVDo8IeRN4HPz-dzvU7su9cHH33z_dhMuR2UDkxHuwPj9fuPsImOZmK0TGL3avD2c
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB215QAc-EYNhWIhhLhk23gdJ0FcSsWyhe0etl1RgZBlO3apCtmq2ZWAEz-B38gvYWwnoYuEhLjly1LGk7HfxG-eAR5vG8k59TycjMVMJjpWRqZxrmiqqTEJNS5R3B_z4ZS9PkqPVuB5WwsT9CG6H24uMvx47QLc_ZDe-q0aKk90z1V-9lfhEoZ76hOqSSceldAsD1rhmDAjUEhaXaFtutU1XZqNVq2cIUZ13fvFcSRljd1kw_4WSwD0Ioz189DgOnxoLQj0k9PeYq56-tsf4o7_a-INuNYAVLITvqibsGKqW3D1gmzhbXh_8LU6ljXRjdgA-TTzZVcELzrmkXc2OQslCM_ICwyEjz-__3B2GlIH4iKRVUkQsLo1A1KffG52EavvwHTw8nB3GDebNMSa5bwfF1wxw5kqFWeG4olSPGOFslSXFrGax4RU2xzzJqY503nSTw0r-1RZa3AKvQtr1awy60B0WeYSAZW1JeIkWRaWJSwzaD6mqXnJInjUOkucBS0OEVSXqcCeEr6nIlhHNwp5jGOkmB5QtzKbuOrboojgifdt11ienzpeW5aKt-NXIns3mYxH6UAMIthccn7XwLHmESKmEWy0X4NoYr4W3K0yU3yHCEh3F4PVrcDIyswWtch5gSMkot4InnrH_90OsbO36w_u_fujD-Hy8HB_JEZ74zcbcCUQHRxX8T6szc8X5gHip7na9GHyC3NpE4k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB21RULwwB01FIqFEOIl28ZxnASeSktooazQllUrQLJsxy5VIbtqdiXgiU_gG_kSxs6FLhIS4m2ziaWMx2Ofic8cAzzcNJJz6nk4KQuZjHSojEzCTNFEU2Mialyi-HrId8fs5VFytARPu1qYRh-i_-DmIsPP1y7Ap6Xd-C0aKk_0wBV-xstwgfGYuiG9M-q1oyKaZo1UOObLiBOiTlZok270TRcWo2UrJwhRXe9-cRRJWWMv2eZ4iwX8eR7F-mWouAofOgMa9snpYD5TA_3tD23H_7TwGlxp4SnZasbTdVgy1Q24fE608Ca8P_haHcua6FZqgHya-KIrgn863pF3NZk2BQhPyDMMg48_v_9wZhpSN7RFIquSIFx1OwakPvncniFW34Jx8fzt9m7YHtEQapbxOMy5YoYzVSrODMULpXjKcmWpLi0iNY8IqbYZZk1Mc6azKE4MK2OqrDW4gN6GlWpSmVUguiwziXDK2hJRkixzyyKWGjQfk9SsZAE86Hwlpo0Sh2g0l6nAnhK-pwJYRS8KeYwzpBgfULcvG7na2zwP4JF3bd9Ynp06VluaiMPhC5G-G42G-0khigDWF3zfN3CceQSISQBr3WAQbcTXgrs9ZorvEADp72Kouv0XWZnJvBYZz3F-RMwbwGPv97_bIbb2tv2PO__-6H24-GanEPt7w1drcKlhOTii4l1YmZ3NzT0ETzO17oPkFyycEjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Syngas+chemical+looping+gasification+process%3A+Bench%E2%80%90scale+studies+and+reactor+simulations&rft.jtitle=AIChE+journal&rft.au=Li%2C+Fanxing&rft.au=Zeng%2C+Liang&rft.au=Velazquez%E2%80%90Vargas%2C+Luis+G.&rft.au=Yoscovits%2C+Zachary&rft.date=2010-08-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=56&rft.issue=8&rft.spage=2186&rft.epage=2199&rft_id=info:doi/10.1002%2Faic.12093&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aic_12093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon