Do Programmers Prefer Predictable Expressions in Code?

Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are...

Full description

Saved in:
Bibliographic Details
Published inCognitive science Vol. 44; no. 12; pp. e12921 - n/a
Main Authors Casalnuovo, Casey, Lee, Kevin, Wang, Hulin, Devanbu, Prem, Morgan, Emily
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2020
Wiley, Cognitive Science Society
Subjects
Online AccessGet full text
ISSN0364-0213
1551-6709
1551-6709
DOI10.1111/cogs.12921

Cover

Loading…
Abstract Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are also very expressive, allowing a great many different ways to express even very simple computations. Still, code written by developers is highly predictable, and many programming tools have taken advantage of this phenomenon, relying on language model surprisal as a guiding mechanism. While surprisal has been validated as a measure of cognitive load in natural language, its relation to human cognitive processes in code is still poorly understood. In this paper, we explore the relationship between surprisal and programmer preference at a small granularity—do programmers prefer more predictable expressions in code? Using meaning‐preserving transformations, we produce equivalent alternatives to developer‐written code expressions and run a corpus study on Java and Python projects. In general, language models rate the code expressions developers choose to write as more predictable than these transformed alternatives. Then, we perform two human subject studies asking participants to choose between two equivalent snippets of Java code with different surprisal scores (one original and transformed). We find that programmers do prefer more predictable variants, and that stronger language models like the transformer align more often and more consistently with these preferences.
AbstractList Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are also very expressive, allowing a great many different ways to express even very simple computations. Still, code written by developers is highly predictable, and many programming tools have taken advantage of this phenomenon, relying on language model surprisal as a guiding mechanism. While surprisal has been validated as a measure of cognitive load in natural language, its relation to human cognitive processes in code is still poorly understood. In this paper, we explore the relationship between surprisal and programmer preference at a small granularity-do programmers prefer more predictable expressions in code? Using meaning-preserving transformations, we produce equivalent alternatives to developer-written code expressions and run a corpus study on Java and Python projects. In general, language models rate the code expressions developers choose to write as more predictable than these transformed alternatives. Then, we perform two human subject studies asking participants to choose between two equivalent snippets of Java code with different surprisal scores (one original and transformed). We find that programmers do prefer more predictable variants, and that stronger language models like the transformer align more often and more consistently with these preferences.
Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are also very expressive, allowing a great many different ways to express even very simple computations. Still, code written by developers is highly predictable, and many programming tools have taken advantage of this phenomenon, relying on language model surprisal as a guiding mechanism. While surprisal has been validated as a measure of cognitive load in natural language, its relation to human cognitive processes in code is still poorly understood. In this paper, we explore the relationship between surprisal and programmer preference at a small granularity—do programmers prefer more predictable expressions in code? Using meaning‐preserving transformations , we produce equivalent alternatives to developer‐written code expressions and run a corpus study on Java and Python projects. In general, language models rate the code expressions developers choose to write as more predictable than these transformed alternatives. Then, we perform two human subject studies asking participants to choose between two equivalent snippets of Java code with different surprisal scores (one original and transformed). We find that programmers do prefer more predictable variants, and that stronger language models like the transformer align more often and more consistently with these preferences.
Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are also very expressive, allowing a great many different ways to express even very simple computations. Still, code written by developers is highly predictable, and many programming tools have taken advantage of this phenomenon, relying on language model surprisal as a guiding mechanism. While surprisal has been validated as a measure of cognitive load in natural language, its relation to human cognitive processes in code is still poorly understood. In this paper, we explore the relationship between surprisal and programmer preference at a small granularity-do programmers prefer more predictable expressions in code? Using meaning-preserving transformations, we produce equivalent alternatives to developer-written code expressions and run a corpus study on Java and Python projects. In general, language models rate the code expressions developers choose to write as more predictable than these transformed alternatives. Then, we perform two human subject studies asking participants to choose between two equivalent snippets of Java code with different surprisal scores (one original and transformed). We find that programmers do prefer more predictable variants, and that stronger language models like the transformer align more often and more consistently with these preferences.Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are also very expressive, allowing a great many different ways to express even very simple computations. Still, code written by developers is highly predictable, and many programming tools have taken advantage of this phenomenon, relying on language model surprisal as a guiding mechanism. While surprisal has been validated as a measure of cognitive load in natural language, its relation to human cognitive processes in code is still poorly understood. In this paper, we explore the relationship between surprisal and programmer preference at a small granularity-do programmers prefer more predictable expressions in code? Using meaning-preserving transformations, we produce equivalent alternatives to developer-written code expressions and run a corpus study on Java and Python projects. In general, language models rate the code expressions developers choose to write as more predictable than these transformed alternatives. Then, we perform two human subject studies asking participants to choose between two equivalent snippets of Java code with different surprisal scores (one original and transformed). We find that programmers do prefer more predictable variants, and that stronger language models like the transformer align more often and more consistently with these preferences.
Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are also very expressive, allowing a great many different ways to express even very simple computations. Still, code written by developers is highly predictable, and many programming tools have taken advantage of this phenomenon, relying on language model surprisal as a guiding mechanism. Additionally, while surprisal has been validated as a measure of cognitive load in natural language, its relation to human cognitive processes in code is still poorly understood. In this paper, we explore the relationship between surprisal and programmer preference at a small granularity—do programmers prefer more predictable expressions in code? Using meaning-preserving transformations, we produce equivalent alternatives to developer-written code expressions and run a corpus study on Java and Python projects. In general, language models rate the code expressions developers choose to write as more predictable than these transformed alternatives. Then, we perform two human subject studies asking participants to choose between two equivalent snippets of Java code with different surprisal scores (one original and transformed). We find that programmers do prefer more predictable variants, and that stronger language models like the transformer align more often and more consistently with these preferences.
Author Lee, Kevin
Morgan, Emily
Casalnuovo, Casey
Wang, Hulin
Devanbu, Prem
Author_xml – sequence: 1
  givenname: Casey
  surname: Casalnuovo
  fullname: Casalnuovo, Casey
  email: ccasal@ucdavis.edu
  organization: University of California, Davis
– sequence: 2
  givenname: Kevin
  surname: Lee
  fullname: Lee, Kevin
  organization: University of California, Davis
– sequence: 3
  givenname: Hulin
  surname: Wang
  fullname: Wang, Hulin
  organization: University of California, Davis
– sequence: 4
  givenname: Prem
  surname: Devanbu
  fullname: Devanbu, Prem
  organization: University of California, Davis
– sequence: 5
  givenname: Emily
  surname: Morgan
  fullname: Morgan, Emily
  organization: University of California, Davis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33314282$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1760357$$D View this record in Osti.gov
BookMark eNp90UFLHTEQAOAgFn1aL_4AedhLKaydSbLJ5lTKq7UFwULbc8hm52lkd_NM9tH675vX1YuU5pDJ4ZthMnPE9sc4EmOnCBdYznsfb_MFcsNxjy2wrrFSGsw-W4BQsgKO4pAd5XwPAEoJc8AOhRAoecMXTH2Ky28p3iY3DJRyedOa0i50wU-u7Wl5-XuTKOcQx7wM43IVO_rwmr1auz7TyVM8Zj8_X_5Yfamub66-rj5eV142CiutO3DKe3LSNaaVLbZr2UC5ZGuMEk1nWg1yXQtqUDnfGDAgnEbpHWAN4pidz3VjnoLNPkzk73wcR_KTRa1A1LqgtzPapPiwpTzZIWRPfe9GittsudQAXHIpCn3zgt7HbRrLF3YKDdeNxKLOntS2HaizmxQGlx7t89gKgBn4FHMuI7OlMzeVEU3Jhd4i2N1m7G4z9u9mSsq7FynPVf-Jcca_Qk-P_5F2dXP1fc75Az_4mqU
CitedBy_id crossref_primary_10_2197_ipsjjip_31_679
crossref_primary_10_1080_20445911_2024_2447117
crossref_primary_10_1073_pnas_2313473122
crossref_primary_10_1109_MS_2021_3086338
Cites_doi 10.1145/2568225.2568252
10.1007/s10664-016-9477-x
10.1007/s10664-018-9669-7
10.1145/3377811.3380342
10.1109/MSR.2019.00057
10.1016/j.cognition.2008.07.008
10.1016/S0749-596X(02)00519-3
10.1145/163359.163375
10.1109/TSE.2009.70
10.7551/mitpress/10655.001.0001
10.1109/ISSRE.2016.53
10.1145/3145904
10.1109/TSE.1976.233837
10.1109/ICSE.2012.6227135
10.1109/WPC.1993.263903
10.1145/1390630.1390647
10.1145/3236024.3236042
10.18637/jss.v080.i01
10.1016/j.cognition.2013.02.013
10.1007/978-3-642-03013-0_15
10.1016/0749-596X(87)90120-3
10.1145/3359591.3359735
10.1037/h0031619
10.1109/ICSE.2017.28
10.1109/ICSE.2013.6606617
10.18653/v1/P16-1162
10.1515/TLR.2006.013
10.1109/ASE.2017.8115654
10.1016/j.jml.2012.11.001
10.1016/0010-0285(87)90007-7
10.1049/iet-sen.2008.0038
10.1145/3196398.3196432
10.1016/S0020-7373(83)80031-5
10.3115/1613715.1613749
10.1145/2635868.2635875
10.1007/s10664-018-9660-3
10.1145/3106237.3106268
10.1016/0010-0285(73)90004-2
10.1006/cogp.1999.0730
10.1287/isre.6.3.286
10.1201/9781315372495
10.1016/j.cognition.2016.09.011
10.1145/1774088.1774303
10.1016/j.tics.2019.04.010
10.1145/3106237.3106264
10.1111/j.1749-818X.2007.00007.x
10.1145/3196398.3196441
10.1037/met0000065
10.1109/ICPC.2015.36
10.1038/307161a0
10.1109/ICPC.2016.7503707
10.1109/SANER.2016.35
10.1145/3106237.3106289
10.1017/S0305000918000041
10.1007/s11682-018-9885-1
10.1093/comjnl/27.2.97
10.1007/978-1-4612-4444-8_1
10.1145/3106237.3106290
10.1007/BF00977789
10.1145/3212695
10.1177/001316446002000104
10.1016/j.cognition.2007.05.006
10.1145/2597073.2597085
10.1145/268946.268962
10.1353/lan.2006.0077
10.1109/ICSE.2017.24
10.1080/15475441.2005.9684215
10.1145/3239235.3240500
10.1109/ICPC.2019.00037
10.1145/1985441.1985454
10.1145/2635868.2635901
10.1109/MSR.2015.22
10.1145/2597008.2597140
10.1073/pnas.0907664106
10.1016/S1364-6613(03)00080-9
10.1075/lllt.9.02sch
10.1145/2610384.2628053
ContentType Journal Article
Copyright 2020 Cognitive Science Society (CSS)
2020 Cognitive Science Society (CSS).
Copyright © 2020 Cognitive Science Society, Inc.
Copyright_xml – notice: 2020 Cognitive Science Society (CSS)
– notice: 2020 Cognitive Science Society (CSS).
– notice: Copyright © 2020 Cognitive Science Society, Inc.
CorporateAuthor Sandia National Lab. (SNL-CA), Livermore, CA (United States)
CorporateAuthor_xml – name: Sandia National Lab. (SNL-CA), Livermore, CA (United States)
DBID AAYXX
CITATION
NPM
7TK
AHOVV
7X8
OIOZB
OTOTI
DOI 10.1111/cogs.12921
DatabaseName CrossRef
PubMed
Neurosciences Abstracts
Education Research Index
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

Neurosciences Abstracts
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Psychology
EISSN 1551-6709
EndPage n/a
ExternalDocumentID 1760357
33314282
10_1111_cogs_12921
COGS12921
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: NSF
  funderid: 1414172
GroupedDBID ---
--K
--Z
-DZ
-W8
-~X
.3N
.DC
.GA
.GO
.Y3
05W
0R~
10A
1B1
1OC
1RT
1~5
24P
29F
31~
33P
3EH
3R3
3WU
4.4
4G.
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
53G
5GY
5HH
5LA
5VS
66C
6J9
6TJ
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
9M8
A04
AABNI
AACTN
AAEDT
AAESR
AAHHS
AAHQN
AAHSB
AALRI
AAMNL
AAONW
AAOUF
AAQFI
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIVO
ABLJU
ABMAC
ABPVW
ABSOO
ABWVN
ABZLS
ACAHQ
ACBKW
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACHQT
ACIUM
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ADBBV
ADEMA
ADEOM
ADIYS
ADIZJ
ADJOM
ADKYN
ADMGS
ADMHG
ADMUD
ADNMO
ADVLN
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKFF
AFPWT
AFWVQ
AFYRF
AHBTC
AHHHB
AIAGR
AIFKG
AITUG
AIURR
AIWBW
AJBDE
AJWEG
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASTYK
AZBYB
AZVAB
BAFTC
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
C1A
CAG
COF
CS3
D-C
D-D
DCZOG
DPXWK
DR2
DRFUL
DRSSH
DU5
EBD
EBS
EDJ
EJD
EMOBN
F00
F01
F5P
FDB
FEDTE
FGOYB
FIRID
FRP
G-2
G-S
G.N
G50
GODZA
HF~
HGLYW
HHY
HLZ
HMQ
HMW
HVGLF
HZ~
H~9
IHE
IX1
J0M
LATKE
LC2
LC4
LEEKS
LG9
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2V
M3V
M41
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MS~
MVM
MXFUL
MXSSH
N04
N06
N9A
NF~
NQ-
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2Y
P4C
PQQKQ
Q.N
Q11
QB0
QRW
R.K
R2-
RIG
ROL
RPZ
RWI
RWL
RX1
RXW
SBC
SEW
SNS
SPS
SSZ
SUPJJ
SV3
TAE
TAF
TEORI
TN5
TWZ
U5U
UB1
UQL
VAE
W8V
W99
WBKPD
WH7
WHDPE
WHG
WIH
WII
WIN
WOHZO
WQZ
WRC
WSUWO
WUQ
WXSBR
XG1
XJT
XPP
XV2
YYP
ZCG
ZMT
ZZTAW
~IA
~WP
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AETEA
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AIGII
CITATION
NPM
PKN
7TK
AAMMB
AEFGJ
AGXDD
AHOVV
AIDQK
AIDYY
7X8
ABPTK
ABWRO
ACXME
ADDAD
AFVGU
AGJLS
AJYWA
AKALU
OIOZB
OTOTI
PQEST
ZA5
ID FETCH-LOGICAL-c4861-77d0a6ccea4a89b4b1bf480bf44b99638d9b704f53e816ac890903a714ca01503
IEDL.DBID DR2
ISSN 0364-0213
1551-6709
IngestDate Fri May 19 00:37:11 EDT 2023
Fri Jul 11 03:47:37 EDT 2025
Fri Aug 29 17:20:53 EDT 2025
Wed Feb 19 02:28:44 EST 2025
Tue Jul 01 04:19:46 EDT 2025
Thu Apr 24 23:00:24 EDT 2025
Wed Jan 22 16:31:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Dual channel constraints
Surprisal
Meaning-preserving transformations
Human preference
Language models
Source code expressions
Language English
License 2020 Cognitive Science Society (CSS).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4861-77d0a6ccea4a89b4b1bf480bf44b99638d9b704f53e816ac890903a714ca01503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
National Science Foundation (NSF)
AC04-94AL85000; 1414172
SAND-2020-11603J
USDOE National Nuclear Security Administration (NNSA)
OpenAccessLink https://www.osti.gov/servlets/purl/1760357
PMID 33314282
PQID 2471927841
PQPubID 30149
PageCount 47
ParticipantIDs osti_scitechconnect_1760357
proquest_miscellaneous_2470024243
proquest_journals_2471927841
pubmed_primary_33314282
crossref_citationtrail_10_1111_cogs_12921
crossref_primary_10_1111_cogs_12921
wiley_primary_10_1111_cogs_12921_COGS12921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Cognitive science
PublicationTitleAlternate Cogn Sci
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Wiley, Cognitive Science Society
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley, Cognitive Science Society
References 2008a; 106
2010; 11
2017; 80
2013; 68
1984; 27
2008b
2019; 13
2013; 128
2008; 109
2018; 45
1983; 18
1978
1977
1993; 36
2001
2006; 23
2019; 24
2019; 23
2003; 7
2016; 157
2020b
2020a
2003; 48
1982
2007; 1
2010; 4
1979; 8
2012
2011
2010
2017; 22
1998
2009
2008
1997
1984; 307
1995
2005
2004
1993
2003
1976; SE‐2
1987; 19
1995; 6
1981; 20
2006; 82
2009; 36
1971; 76
1960; 20
2020
1994; 12
2019
2000; 40
2018
2013; 136
2017
2016
2005; 1
2018; 51
2015
2014
2013
1987; 26
1973; 4
2009; 106
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_103_1
Kim M. (e_1_2_9_73_1) 2004
e_1_2_9_107_1
e_1_2_9_37_1
e_1_2_9_18_1
Ehrlich S. F. (e_1_2_9_42_1) 1981; 20
Python Software Foundation (e_1_2_9_96_1) 2020
e_1_2_9_41_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
Mol M. (e_1_2_9_86_1) 2020
Watanabe S. (e_1_2_9_118_1) 2010; 11
e_1_2_9_6_1
Casalnuovo C. (e_1_2_9_22_1) 2020
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
Gage P. (e_1_2_9_48_1) 1994; 12
Kasto N. (e_1_2_9_72_1) 2013; 136
e_1_2_9_53_1
e_1_2_9_99_1
Ott M. (e_1_2_9_90_1) 2019
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_95_1
e_1_2_9_76_1
Hale J. (e_1_2_9_56_1) 2001
e_1_2_9_102_1
e_1_2_9_106_1
Bybee J. (e_1_2_9_21_1) 2003
Papadakis M. (e_1_2_9_91_1) 2019
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
Hollander M. (e_1_2_9_64_1) 2013
e_1_2_9_114_1
Miele J. (e_1_2_9_85_1) 2018
e_1_2_9_9_1
Mateas M. (e_1_2_9_82_1) 2005
e_1_2_9_27_1
e_1_2_9_69_1
Vaswani A. (e_1_2_9_115_1) 2017
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_109_1
Hellendoorn V. J. (e_1_2_9_62_1) 2020
Halstead M. H. (e_1_2_9_57_1) 1977
e_1_2_9_101_1
e_1_2_9_105_1
Brooks R. (e_1_2_9_14_1) 1978
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_81_1
Gamma E. (e_1_2_9_49_1) 1995
Svyatkovskiy A. (e_1_2_9_110_1) 2020
Zhan M. (e_1_2_9_120_1) 2018
e_1_2_9_113_1
Weisstein E. W. (e_1_2_9_119_1) 2004
e_1_2_9_117_1
Clark H. H. (e_1_2_9_28_1) 1982
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
Tiarks R. (e_1_2_9_111_1) 2011
Ivanova A. A. (e_1_2_9_66_1) 2020
e_1_2_9_100_1
Morgan E. (e_1_2_9_87_1) 2015
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
Allamanis M. (e_1_2_9_4_1) 2017
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_3_1
Cohen J. (e_1_2_9_30_1) 2003
Peksag B. (e_1_2_9_92_1) 2019
Casalnuovo C. (e_1_2_9_23_1) 2020
e_1_2_9_112_1
e_1_2_9_116_1
e_1_2_9_25_1
e_1_2_9_29_1
References_xml – start-page: 144
  year: 2005
  end-page: 153
– start-page: 310
  year: 2019
  end-page: 320
– year: 2017
  article-title: Learning to represent programs with graphs
  publication-title: arXiv Preprint
– volume: 23
  start-page: 321
  year: 2006
  end-page: 349
  article-title: Spoken syntax: The phonetics of giving a hand in New Zealand English
  publication-title: The Linguistic Review
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educational and Psychological Measurement
– volume: 307
  start-page: 161
  year: 1984
  end-page: 163
  article-title: Brain potentials during reading reflect word expectancy and semantic association
  publication-title: Nature
– volume: 18
  start-page: 543
  year: 1983
  end-page: 554
  article-title: Towards a theory of the comprehension of computer programs
  publication-title: International Journal of Man‐Machine Studies
– volume: 36
  start-page: 546
  year: 2009
  end-page: 558
  article-title: Learning a metric for code readability
  publication-title: IEEE Transactions on Software Engineering
– volume: 4
  start-page: 32
  year: 2010
  end-page: 42
  article-title: Judy–a mutation testing tool for Java
  publication-title: IET Software
– volume: 24
  start-page: 1823
  year: 2019
  end-page: 1868
  article-title: Studying the difference between natural and programming language corpora
  publication-title: Empirical Software Engineering
– volume: 1
  start-page: 71
  year: 2007
  end-page: 83
  article-title: The “good enough” approach to language comprehension
  publication-title: Language and Linguistics Compass
– start-page: 683
  year: 2017
  end-page: 693
– start-page: 83
  year: 2004
  end-page: 92
– volume: 23
  start-page: 525
  issue: 7
  year: 2019
  end-page: 528
  article-title: The language of programming: A cognitive perspective
  publication-title: Trends in Cognitive Sciences
– volume: 22
  start-page: 1440
  year: 2017
  end-page: 1477
  article-title: How programmers read regular code: A controlled experiment using eye tracking
  publication-title: Empirical Software Engineering
– start-page: 318
  year: 2009
  end-page: 343
– start-page: 837
  year: 2012
  end-page: 847
– volume: 1
  start-page: 151
  year: 2005
  end-page: 195
  article-title: Regularizing unpredictable variation: The roles of adult and child learners in language formation and change
  publication-title: Language Learning and Development
– start-page: 1020
  year: 2010
  end-page: 1025
– year: 2019
– start-page: 157
  year: 2015
  end-page: 167
– volume: 106
  start-page: 1126
  year: 2008a
  end-page: 1177
  article-title: Expectation‐based syntactic comprehension
  publication-title: Cognition
– start-page: 78
  year: 1993
  end-page: 86
– volume: 68
  start-page: 255
  issue: 3
  year: 2013
  end-page: 278
  article-title: Random effects structure for confirmatory hypothesis testing: Keep it maximal
  publication-title: Journal of Memory and Language
– start-page: 1
  year: 2018
  end-page: 10
– volume: 128
  start-page: 302
  year: 2013
  end-page: 319
  article-title: The effect of word predictability on reading time is logarithmic
  publication-title: Cognition
– start-page: 1
  year: 2004
  end-page: 22
– volume: 82
  start-page: 233
  year: 2006
  end-page: 278
  article-title: The chicken or the egg? A probabilistic analysis of English binomials
  publication-title: Language
– volume: 6
  start-page: 286
  year: 1995
  end-page: 299
  article-title: The relevance of application domain knowledge: The case of computer program comprehension
  publication-title: Information Systems Research
– start-page: 255
  year: 2015
  end-page: 265
– start-page: 189
  year: 2014
  end-page: 200
– start-page: 121
  year: 2008
  end-page: 130
– volume: 80
  start-page: 1
  year: 2017
  end-page: 28
  article-title: brms: An R package for Bayesian multilevel models using Stan
  publication-title: Journal of Statistical Software
– start-page: 36
  year: 2011
  end-page: 37
– volume: 26
  start-page: 119
  year: 1987
  end-page: 137
  article-title: An effect of the accessibility of word forms on sentence structures
  publication-title: Journal of Memory and Language
– year: 1995
– year: 2020b
– volume: 20
  start-page: 641
  year: 1981
  article-title: Contextual effects on word perception and eye movements during reading
  publication-title: Journal of Memory and Language
– volume: 51
  start-page: 5
  year: 2018
  article-title: A survey on the usage of eye‐tracking in computer programming
  publication-title: ACM Computing Surveys (CSUR)
– start-page: 143
  year: 2019
  end-page: 153
– start-page: 712
  year: 2013
  end-page: 721
– year: 2013
– volume: 7
  start-page: 219
  year: 2003
  end-page: 224
  article-title: Constructions: A new theoretical approach to language
  publication-title: Trends in Cognitive Sciences
– start-page: 13
  year: 2016
  end-page: 20
– start-page: 73
  year: 2011
  end-page: 82
– volume: 36
  start-page: 81
  year: 1993
  end-page: 95
  article-title: Software complexity and maintenance costs
  publication-title: Communications of the ACM
– start-page: 378
  year: 2014
  end-page: 389
– volume: 136
  start-page: 59
  year: 2013
  end-page: 65
  article-title: Measuring the difficulty of code comprehension tasks using software metrics
  publication-title: Proceedings of the Fifteenth Australasian Computing Education Conference
– start-page: 2
  year: 2014
  end-page: 11
– start-page: 5998
  year: 2017
  end-page: 6008
– year: 2018
  article-title: Comparing theories of speaker choice using a model of classifier production in mandarin Chinese
  publication-title: Association for Computational Linguistics
– volume: 4
  start-page: 55
  year: 1973
  end-page: 81
  article-title: Perception in chess
  publication-title: Cognitive Psychology
– year: 2018
– start-page: 129
  year: 2017
  end-page: 139
– start-page: 196
  year: 1978
  end-page: 201
– volume: 157
  start-page: 384
  year: 2016
  end-page: 402
  article-title: Abstract knowledge versus direct experience in processing of binomial expressions
  publication-title: Cognition
– year: 1982
– volume: 40
  start-page: 296
  year: 2000
  end-page: 340
  article-title: Effect of ambiguity and lexical availability on syntactic and lexical production
  publication-title: Cognitive Psychology
– volume: 24
  start-page: 1296
  year: 2019
  end-page: 1327
  article-title: Categorizing the content of github readme files
  publication-title: Empirical Software Engineering
– start-page: 433
  year: 2014
  end-page: 436
– year: 2004
– year: 1997
– year: 2020
  article-title: Comprehension of computer code relies primarily on domain‐general executive resources
  publication-title: BioRxiv
– volume: 76
  start-page: 378
  year: 1971
  article-title: Measuring nominal scale agreement among many raters
  publication-title: Psychological Bulletin
– start-page: 314
  year: 2018
  end-page: 318
– year: 2015
– volume: 8
  start-page: 219
  year: 1979
  end-page: 238
  article-title: Syntactic/semantic interactions in programmer behavior: A model and experimental results
  publication-title: International Journal of Computer & Information Sciences
– start-page: 417
  year: 2017
  end-page: 427
– volume: 27
  start-page: 97
  year: 1984
  end-page: 111
  article-title: Literate programming
  publication-title: The Computer Journal
– volume: 48
  start-page: 103
  year: 2003
  end-page: 130
  article-title: Using prosody to avoid ambiguity: Effects of speaker awareness and referential context
  publication-title: Journal of Memory and Language
– start-page: 107
  year: 2018
  end-page: 117
– start-page: 87
  year: 2016
  end-page: 92
– year: 2003
– start-page: 184
  year: 1998
  end-page: 196
– start-page: 1715
  year: 2016
  end-page: 1725
– volume: 11
  start-page: 3571
  year: 2010
  end-page: 3594
  article-title: Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory
  publication-title: Journal of Machine Learning Research
– start-page: arXiv:2005.08025
  year: 2020
  article-title: Intellicode compose: Code generation using transformer
  publication-title: arXiv Preprint
– start-page: 269
  year: 2014
  end-page: 280
– year: 2020a
– volume: 51
  start-page: 1
  issue: 4
  year: 2018
  end-page: 37
  article-title: A survey of machine learning for big code and naturalness
  publication-title: ACM Computing Surveys
– year: 1977
– start-page: 234
  year: 2008b
  end-page: 243
– volume: 106
  start-page: 21086
  year: 2009
  end-page: 21090
  article-title: Eye movement evidence that readers maintain and act on uncertainty about past linguistic input
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 179
  year: 2019
  end-page: 190
– volume: 13
  start-page: 623
  year: 2019
  end-page: 637
  article-title: The role of the insula in intuitive expert bug detection in computer code: an fmri study
  publication-title: Brain Imaging and Behavior
– year: 2012
– volume: 12
  start-page: 23
  year: 1994
  end-page: 38
  article-title: A new algorithm for data compression
  publication-title: C Users Journal
– start-page: 140
  year: 2017
  end-page: 150
– volume: 19
  start-page: 295
  year: 1987
  end-page: 341
  article-title: Stimulus structures and mental representations in expert comprehension of computer programs
  publication-title: Cognitive Psychology
– start-page: 175
  year: 2017
  end-page: 186
– start-page: 1
  year: 2001
  end-page: 8
  article-title: A probabilistic Earley parser as a psycholinguistic model
– volume: 22
  start-page: 240
  year: 2017
  article-title: Improving transparency and replication in Bayesian statistics: The WAMBS‐checklist
  publication-title: Psychological Methods
– volume: SE‐2
  start-page: 308
  issue: 4
  year: 1976
  end-page: 320
  article-title: A complexity measure
  publication-title: IEEE Transactions on Software Engineering
– volume: 45
  start-page: 1054
  year: 2018
  end-page: 1072
  article-title: When regularization gets it wrong: Children over‐simplify language input only in production
  publication-title: Journal of Child Language
– start-page: 472
  year: 2014
  end-page: 483
– start-page: 275
  year: 2019
  end-page: 378
– year: 2020
– start-page: 763
  year: 2017
  end-page: 773
– start-page: 221
  year: 2017
  end-page: 231
– start-page: 1
  year: 2016
  end-page: 10
– year: 2017
– volume: 109
  start-page: 193
  year: 2008
  end-page: 210
  article-title: Data from eye‐tracking corpora as evidence for theories of syntactic processing complexity
  publication-title: Cognition
– volume: 136
  start-page: 59
  year: 2013
  ident: e_1_2_9_72_1
  article-title: Measuring the difficulty of code comprehension tasks using software metrics
  publication-title: Proceedings of the Fifteenth Australasian Computing Education Conference
– ident: e_1_2_9_106_1
  doi: 10.1145/2568225.2568252
– ident: e_1_2_9_68_1
  doi: 10.1007/s10664-016-9477-x
– ident: e_1_2_9_24_1
  doi: 10.1007/s10664-018-9669-7
– ident: e_1_2_9_71_1
  doi: 10.1145/3377811.3380342
– ident: e_1_2_9_6_1
  doi: 10.1109/MSR.2019.00057
– ident: e_1_2_9_35_1
  doi: 10.1016/j.cognition.2008.07.008
– ident: e_1_2_9_109_1
  doi: 10.1016/S0749-596X(02)00519-3
– ident: e_1_2_9_9_1
  doi: 10.1145/163359.163375
– ident: e_1_2_9_16_1
– volume-title: Elements of software science
  year: 1977
  ident: e_1_2_9_57_1
– ident: e_1_2_9_52_1
– volume: 12
  start-page: 23
  year: 1994
  ident: e_1_2_9_48_1
  article-title: A new algorithm for data compression
  publication-title: C Users Journal
– ident: e_1_2_9_19_1
  doi: 10.1109/TSE.2009.70
– start-page: 83
  volume-title: Proceedings. 2004 International Symposium on Empirical Software Engineering, 2004. ISESE '04
  year: 2004
  ident: e_1_2_9_73_1
– ident: e_1_2_9_116_1
  doi: 10.7551/mitpress/10655.001.0001
– start-page: arXiv:1711.0074
  year: 2017
  ident: e_1_2_9_4_1
  article-title: Learning to represent programs with graphs
  publication-title: arXiv Preprint
– volume-title: Audience design in meaning and reference, vol. 9 of Language and comprehension
  year: 1982
  ident: e_1_2_9_28_1
– volume-title: Applied multiple correlation/regression analysis for the behavioral sciences
  year: 2003
  ident: e_1_2_9_30_1
– volume-title: The bot problem on mturk
  year: 2018
  ident: e_1_2_9_85_1
– ident: e_1_2_9_39_1
  doi: 10.1109/ISSRE.2016.53
– ident: e_1_2_9_89_1
  doi: 10.1145/3145904
– ident: e_1_2_9_83_1
  doi: 10.1109/TSE.1976.233837
– ident: e_1_2_9_63_1
  doi: 10.1109/ICSE.2012.6227135
– ident: e_1_2_9_117_1
  doi: 10.1109/WPC.1993.263903
– ident: e_1_2_9_18_1
  doi: 10.1145/1390630.1390647
– ident: e_1_2_9_34_1
  doi: 10.1145/3236024.3236042
– ident: e_1_2_9_17_1
  doi: 10.18637/jss.v080.i01
– ident: e_1_2_9_31_1
– ident: e_1_2_9_59_1
– ident: e_1_2_9_108_1
  doi: 10.1016/j.cognition.2013.02.013
– ident: e_1_2_9_121_1
  doi: 10.1007/978-3-642-03013-0_15
– ident: e_1_2_9_12_1
  doi: 10.1016/0749-596X(87)90120-3
– volume-title: 8th International Conference on Learning Representations, ICLR 2020
  year: 2020
  ident: e_1_2_9_62_1
– start-page: arXiv:2005.0802
  year: 2020
  ident: e_1_2_9_110_1
  article-title: Intellicode compose: Code generation using transformer
  publication-title: arXiv Preprint
– ident: e_1_2_9_2_1
  doi: 10.1145/3359591.3359735
– start-page: 275
  volume-title: Advances in computers
  year: 2019
  ident: e_1_2_9_91_1
– start-page: 196
  volume-title: Proceedings of the 3rd International Conference on Software engineering
  year: 1978
  ident: e_1_2_9_14_1
– ident: e_1_2_9_46_1
  doi: 10.1037/h0031619
– ident: e_1_2_9_80_1
  doi: 10.1109/ICSE.2017.28
– ident: e_1_2_9_7_1
– ident: e_1_2_9_8_1
  doi: 10.1109/ICSE.2013.6606617
– volume-title: Proceedings of the 42nd Annual Meeting of the Cognitive Science Society
  year: 2020
  ident: e_1_2_9_23_1
– ident: e_1_2_9_102_1
  doi: 10.18653/v1/P16-1162
– ident: e_1_2_9_58_1
  doi: 10.1515/TLR.2006.013
– ident: e_1_2_9_98_1
  doi: 10.1109/ASE.2017.8115654
– ident: e_1_2_9_10_1
  doi: 10.1016/j.jml.2012.11.001
– ident: e_1_2_9_40_1
– ident: e_1_2_9_93_1
  doi: 10.1016/0010-0285(87)90007-7
– ident: e_1_2_9_81_1
  doi: 10.1049/iet-sen.2008.0038
– ident: e_1_2_9_55_1
  doi: 10.1145/3196398.3196432
– ident: e_1_2_9_15_1
  doi: 10.1016/S0020-7373(83)80031-5
– start-page: 144
  volume-title: Proceedings of the 6th digital arts and culture conference
  year: 2005
  ident: e_1_2_9_82_1
– volume-title: Rosetta code
  year: 2020
  ident: e_1_2_9_86_1
– ident: e_1_2_9_77_1
  doi: 10.3115/1613715.1613749
– ident: e_1_2_9_113_1
  doi: 10.1145/2635868.2635875
– ident: e_1_2_9_95_1
  doi: 10.1007/s10664-018-9660-3
– ident: e_1_2_9_107_1
  doi: 10.1145/3106237.3106268
– volume-title: Python 3 Abstract syntax tree module
  year: 2020
  ident: e_1_2_9_96_1
– ident: e_1_2_9_37_1
– ident: e_1_2_9_26_1
  doi: 10.1016/0010-0285(73)90004-2
– ident: e_1_2_9_50_1
– ident: e_1_2_9_53_1
– volume: 20
  start-page: 641
  year: 1981
  ident: e_1_2_9_42_1
  article-title: Contextual effects on word perception and eye movements during reading
  publication-title: Journal of Memory and Language
– ident: e_1_2_9_45_1
  doi: 10.1006/cogp.1999.0730
– ident: e_1_2_9_103_1
  doi: 10.1287/isre.6.3.286
– ident: e_1_2_9_84_1
  doi: 10.1201/9781315372495
– ident: e_1_2_9_88_1
  doi: 10.1016/j.cognition.2016.09.011
– ident: e_1_2_9_97_1
  doi: 10.1145/1774088.1774303
– ident: e_1_2_9_43_1
  doi: 10.1016/j.tics.2019.04.010
– ident: e_1_2_9_54_1
  doi: 10.1145/3106237.3106264
– ident: e_1_2_9_44_1
  doi: 10.1111/j.1749-818X.2007.00007.x
– ident: e_1_2_9_112_1
  doi: 10.1145/3196398.3196441
– volume-title: Phonology and language use
  year: 2003
  ident: e_1_2_9_21_1
– ident: e_1_2_9_36_1
  doi: 10.1037/met0000065
– ident: e_1_2_9_20_1
  doi: 10.1109/ICPC.2015.36
– ident: e_1_2_9_38_1
– ident: e_1_2_9_75_1
  doi: 10.1038/307161a0
– start-page: 045732
  year: 2020
  ident: e_1_2_9_66_1
  article-title: Comprehension of computer code relies primarily on domain‐general executive resources
  publication-title: BioRxiv
– start-page: 1
  volume-title: Proceedings of the second meeting of the North American Chapter of the Association for Computational Linguistics on Language technologies
  year: 2001
  ident: e_1_2_9_56_1
– ident: e_1_2_9_99_1
  doi: 10.1109/ICPC.2016.7503707
– ident: e_1_2_9_105_1
  doi: 10.1109/SANER.2016.35
– ident: e_1_2_9_41_1
– ident: e_1_2_9_114_1
  doi: 10.1145/3106237.3106289
– ident: e_1_2_9_101_1
  doi: 10.1017/S0305000918000041
– ident: e_1_2_9_25_1
  doi: 10.1007/s11682-018-9885-1
– ident: e_1_2_9_74_1
  doi: 10.1093/comjnl/27.2.97
– volume-title: Unique Turker
  year: 2019
  ident: e_1_2_9_90_1
– ident: e_1_2_9_33_1
  doi: 10.1007/978-1-4612-4444-8_1
– volume-title: Design patterns: Elements of reusable object‐oriented software
  year: 1995
  ident: e_1_2_9_49_1
– start-page: 36
  volume-title: Workshop on software reengineering
  year: 2011
  ident: e_1_2_9_111_1
– volume-title: Proceedings of the 37th Annual Meeting of the Cognitive Science Society
  year: 2015
  ident: e_1_2_9_87_1
– ident: e_1_2_9_60_1
  doi: 10.1145/3106237.3106290
– ident: e_1_2_9_104_1
  doi: 10.1007/BF00977789
– volume-title: 2020 IEEE/ACM 42nd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE‐NIER)
  year: 2020
  ident: e_1_2_9_22_1
– ident: e_1_2_9_3_1
  doi: 10.1145/3212695
– ident: e_1_2_9_29_1
  doi: 10.1177/001316446002000104
– ident: e_1_2_9_76_1
  doi: 10.1016/j.cognition.2007.05.006
– ident: e_1_2_9_79_1
  doi: 10.1145/2597073.2597085
– ident: e_1_2_9_32_1
  doi: 10.1145/268946.268962
– ident: e_1_2_9_11_1
  doi: 10.1353/lan.2006.0077
– ident: e_1_2_9_13_1
– ident: e_1_2_9_47_1
  doi: 10.1109/ICSE.2017.24
– volume-title: Nonparametric statistical methods
  year: 2013
  ident: e_1_2_9_64_1
– ident: e_1_2_9_65_1
  doi: 10.1080/15475441.2005.9684215
– ident: e_1_2_9_69_1
  doi: 10.1145/3239235.3240500
– ident: e_1_2_9_27_1
  doi: 10.1109/ICPC.2019.00037
– ident: e_1_2_9_94_1
  doi: 10.1145/1985441.1985454
– year: 2018
  ident: e_1_2_9_120_1
  article-title: Comparing theories of speaker choice using a model of classifier production in mandarin Chinese
  publication-title: Association for Computational Linguistics
– ident: e_1_2_9_5_1
  doi: 10.1145/2635868.2635901
– volume-title: astor
  year: 2019
  ident: e_1_2_9_92_1
– ident: e_1_2_9_61_1
  doi: 10.1109/MSR.2015.22
– ident: e_1_2_9_67_1
  doi: 10.1145/2597008.2597140
– ident: e_1_2_9_78_1
  doi: 10.1073/pnas.0907664106
– start-page: 5998
  volume-title: Advances in neural information processing systems
  year: 2017
  ident: e_1_2_9_115_1
– volume: 11
  start-page: 3571
  year: 2010
  ident: e_1_2_9_118_1
  article-title: Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_51_1
  doi: 10.1016/S1364-6613(03)00080-9
– volume-title: Bonferroni correction
  year: 2004
  ident: e_1_2_9_119_1
– ident: e_1_2_9_100_1
  doi: 10.1075/lllt.9.02sch
– ident: e_1_2_9_70_1
  doi: 10.1145/2610384.2628053
SSID ssj0006639
Score 2.375322
Snippet Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e12921
SubjectTerms Cognitive ability
Cognitive Measurement
Cognitive Processes
Dual channel constraints
Human preference
Language models
MATHEMATICS AND COMPUTING
Meaning‐preserving transformations
Programmers
Programming Languages
Source code expressions
Surprisal
Title Do Programmers Prefer Predictable Expressions in Code?
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcogs.12921
https://www.ncbi.nlm.nih.gov/pubmed/33314282
https://www.proquest.com/docview/2471927841
https://www.proquest.com/docview/2470024243
https://www.osti.gov/servlets/purl/1760357
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD6EPPVll3TLvKbFZWPQgYMvimzBYJS0WRhhLd0CeRlGN4_SYo_ZgbW_vjryJc0Ig-3FFljGsqRP59PR0SeAt4LGWjGVeSFl0kxQpG8wFwpPx4KHAkmqtFG-X-h8ST6vJqsefGj3wtT6EJ3DDZFhx2sEOBflI5DL4kc5NtbK7iLHYC1kRFcb7ShjSlm9UEk8Y8iiRpsUw3g2r25Zo35hULWLaW4TV2t5Zk_he1vmOuDkZryuxFje_yHn-L8_9QyeNJTUPa370HPo6XwAw0XjyCzdd-6i014uB7DXjZl3-0DPCveyDvFCB7hJo3At3tS1rHBblnv-u4m1zUv3OnenhdIfX8Bydv5tOveaoxg8SRIaGA6ufE6l1JzwhAkiApGRxDcXIhhiWDER-ySbRDoJKJcJQ_8PjwMiOfpUopfQz4tcvwKXMMOCsiyLzdSGUK54oPCwM0mUjiaxYA6ctE2SykanHI_LuE3b-QpWUmoryYE3Xd6ftTrHzlwH2LKp4RQojCsxgkhWaRBT33zRgVHb4GmD3zINjc1mdk3WgePusUEeLqfwXBdrm8cyHBI5MKw7SleIKIpQyi504L1t7r-ULp1efPpqU6__JfMB7IU49beRNSPoV7_W-tDwo0ocWRw8AA0cCJg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS9xAFL2U9UFfat22Gl1riqXQQpZ8zE4yT1K26lZXK1bBt2G-ItKSSJMF9dc7d5KNtUjBviSBTMhkZk7umTt3zgX4IGlqNNN5EFOm7ARFhRZzsQxMKkUskaQqF-V7TCfn5OBidNHG5uBemEYfonO4ITLc_xoBjg7pP1CuystqaM0VbiNfwJTebkZ1-qAeZY0pa5YqSWBNWdKqk2Igz8Ozj-xRr7S4eoprPqauzvbsLTcJVisnWYghJz-Hs1oO1d1fgo7__Vmv4GXLSv0vzTBagRem6MPqtPVlVv5Hf9rJL1d9WOp-m7evgX4t_ZMmygt94PYatWvxpK9UjTuz_N2bNty2qPyrwh-X2uy8gfO93bPxJGizMQSKZDSyNFyHgiplBBEZk0RGMidZaA9EMoSxZjINST5KTBZRoTKGLiCRRkQJdKskb6FXlIVZA58wS4TyPE_t7IZQoUWkMd-ZItoko1QyDz7N-4SrVqocM2b84vMpCzYSd43kwXZX9roR6Hiy1AZ2Lbe0ArVxFQYRqZpHKQ3tGz0YzHuctxCueGzNNnPLsh68725b8OGKiihMOXNlHMkhiQerzUjpKpEkCarZxR58dv39j9rx8ff9H-5q_TmFt2BxcnY05dNvx4cbsBSjJ8AF2gygV_-emU1Ll2r5zoHiHpE2DLM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ta9QwGH8YJ8i-TJ3b7O7UDkWY0KMvubQBQeRut6nHNtTBvoyQt46x0Q7bA_WvN0_6MidDcF_aQFOaJvnl-eXJk18AXkuaGs10HsSUKTtBUaHFXCwDk0oRSySpykX5HtKDE_LpdHK6Au-6vTCNPkTvcENkuPEaAX6t8z9ArsrzamytFe4if0BomGGfnn25EY-ytpQ1K5UksJYsacVJMY7n5t1b5mhQWljdRTVvM1dneuaP4KwrdBNxcjle1nKsfv2l53jfv3oMay0n9T80negJrJhiHbYWrSez8t_4i158uVqH1X7Q_PkU6Kz0j5sYL_SA2zQq1-JNX6ga92X5ez_aYNui8i8Kf1pq834DTuZ736YHQXsWQ6BIRiNLwnUoqFJGEJExSWQkc5KF9kIkQxBrJtOQ5JPEZBEVKmPoABJpRJRAp0qyCYOiLMwz8AmzNCjP89TObQgVWkQaTztTRJtkkkrmwW7XJFy1QuV4XsYV7yYsWEncVZIHr_q81408x525htiy3JIKVMZVGEKkah6lNLRf9GDUNThvAVzx2Bpt5hZlPdjpH1vo4XqKKEy5dHkcxSGJB1tNR-kLkSQJatnFHrx1zf2P0vHp0f5Xl9r-n8wv4eHxbM4XHw8_D2E1RjeAi7IZwaD-vjTPLVeq5QsHid96vwtr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Do+Programmers+Prefer+Predictable+Expressions+in+Code%3F&rft.jtitle=Cognitive+science&rft.au=Casalnuovo%2C+Casey&rft.au=Lee%2C+Kevin&rft.au=Wang%2C+Hulin&rft.au=Devanbu%2C+Prem&rft.date=2020-12-01&rft.issn=0364-0213&rft.eissn=1551-6709&rft.volume=44&rft.issue=12&rft_id=info:doi/10.1111%2Fcogs.12921&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cogs_12921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-0213&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-0213&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-0213&client=summon