Do Programmers Prefer Predictable Expressions in Code?
Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are...
Saved in:
Published in | Cognitive science Vol. 44; no. 12; pp. e12921 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.12.2020
Wiley, Cognitive Science Society |
Subjects | |
Online Access | Get full text |
ISSN | 0364-0213 1551-6709 1551-6709 |
DOI | 10.1111/cogs.12921 |
Cover
Loading…
Abstract | Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are also very expressive, allowing a great many different ways to express even very simple computations. Still, code written by developers is highly predictable, and many programming tools have taken advantage of this phenomenon, relying on language model surprisal as a guiding mechanism. While surprisal has been validated as a measure of cognitive load in natural language, its relation to human cognitive processes in code is still poorly understood. In this paper, we explore the relationship between surprisal and programmer preference at a small granularity—do programmers prefer more predictable expressions in code? Using meaning‐preserving transformations, we produce equivalent alternatives to developer‐written code expressions and run a corpus study on Java and Python projects. In general, language models rate the code expressions developers choose to write as more predictable than these transformed alternatives. Then, we perform two human subject studies asking participants to choose between two equivalent snippets of Java code with different surprisal scores (one original and transformed). We find that programmers do prefer more predictable variants, and that stronger language models like the transformer align more often and more consistently with these preferences. |
---|---|
AbstractList | Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are also very expressive, allowing a great many different ways to express even very simple computations. Still, code written by developers is highly predictable, and many programming tools have taken advantage of this phenomenon, relying on language model surprisal as a guiding mechanism. While surprisal has been validated as a measure of cognitive load in natural language, its relation to human cognitive processes in code is still poorly understood. In this paper, we explore the relationship between surprisal and programmer preference at a small granularity-do programmers prefer more predictable expressions in code? Using meaning-preserving transformations, we produce equivalent alternatives to developer-written code expressions and run a corpus study on Java and Python projects. In general, language models rate the code expressions developers choose to write as more predictable than these transformed alternatives. Then, we perform two human subject studies asking participants to choose between two equivalent snippets of Java code with different surprisal scores (one original and transformed). We find that programmers do prefer more predictable variants, and that stronger language models like the transformer align more often and more consistently with these preferences. Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are also very expressive, allowing a great many different ways to express even very simple computations. Still, code written by developers is highly predictable, and many programming tools have taken advantage of this phenomenon, relying on language model surprisal as a guiding mechanism. While surprisal has been validated as a measure of cognitive load in natural language, its relation to human cognitive processes in code is still poorly understood. In this paper, we explore the relationship between surprisal and programmer preference at a small granularity—do programmers prefer more predictable expressions in code? Using meaning‐preserving transformations , we produce equivalent alternatives to developer‐written code expressions and run a corpus study on Java and Python projects. In general, language models rate the code expressions developers choose to write as more predictable than these transformed alternatives. Then, we perform two human subject studies asking participants to choose between two equivalent snippets of Java code with different surprisal scores (one original and transformed). We find that programmers do prefer more predictable variants, and that stronger language models like the transformer align more often and more consistently with these preferences. Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are also very expressive, allowing a great many different ways to express even very simple computations. Still, code written by developers is highly predictable, and many programming tools have taken advantage of this phenomenon, relying on language model surprisal as a guiding mechanism. While surprisal has been validated as a measure of cognitive load in natural language, its relation to human cognitive processes in code is still poorly understood. In this paper, we explore the relationship between surprisal and programmer preference at a small granularity-do programmers prefer more predictable expressions in code? Using meaning-preserving transformations, we produce equivalent alternatives to developer-written code expressions and run a corpus study on Java and Python projects. In general, language models rate the code expressions developers choose to write as more predictable than these transformed alternatives. Then, we perform two human subject studies asking participants to choose between two equivalent snippets of Java code with different surprisal scores (one original and transformed). We find that programmers do prefer more predictable variants, and that stronger language models like the transformer align more often and more consistently with these preferences.Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are also very expressive, allowing a great many different ways to express even very simple computations. Still, code written by developers is highly predictable, and many programming tools have taken advantage of this phenomenon, relying on language model surprisal as a guiding mechanism. While surprisal has been validated as a measure of cognitive load in natural language, its relation to human cognitive processes in code is still poorly understood. In this paper, we explore the relationship between surprisal and programmer preference at a small granularity-do programmers prefer more predictable expressions in code? Using meaning-preserving transformations, we produce equivalent alternatives to developer-written code expressions and run a corpus study on Java and Python projects. In general, language models rate the code expressions developers choose to write as more predictable than these transformed alternatives. Then, we perform two human subject studies asking participants to choose between two equivalent snippets of Java code with different surprisal scores (one original and transformed). We find that programmers do prefer more predictable variants, and that stronger language models like the transformer align more often and more consistently with these preferences. Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are also very expressive, allowing a great many different ways to express even very simple computations. Still, code written by developers is highly predictable, and many programming tools have taken advantage of this phenomenon, relying on language model surprisal as a guiding mechanism. Additionally, while surprisal has been validated as a measure of cognitive load in natural language, its relation to human cognitive processes in code is still poorly understood. In this paper, we explore the relationship between surprisal and programmer preference at a small granularity—do programmers prefer more predictable expressions in code? Using meaning-preserving transformations, we produce equivalent alternatives to developer-written code expressions and run a corpus study on Java and Python projects. In general, language models rate the code expressions developers choose to write as more predictable than these transformed alternatives. Then, we perform two human subject studies asking participants to choose between two equivalent snippets of Java code with different surprisal scores (one original and transformed). We find that programmers do prefer more predictable variants, and that stronger language models like the transformer align more often and more consistently with these preferences. |
Author | Lee, Kevin Morgan, Emily Casalnuovo, Casey Wang, Hulin Devanbu, Prem |
Author_xml | – sequence: 1 givenname: Casey surname: Casalnuovo fullname: Casalnuovo, Casey email: ccasal@ucdavis.edu organization: University of California, Davis – sequence: 2 givenname: Kevin surname: Lee fullname: Lee, Kevin organization: University of California, Davis – sequence: 3 givenname: Hulin surname: Wang fullname: Wang, Hulin organization: University of California, Davis – sequence: 4 givenname: Prem surname: Devanbu fullname: Devanbu, Prem organization: University of California, Davis – sequence: 5 givenname: Emily surname: Morgan fullname: Morgan, Emily organization: University of California, Davis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33314282$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1760357$$D View this record in Osti.gov |
BookMark | eNp90UFLHTEQAOAgFn1aL_4AedhLKaydSbLJ5lTKq7UFwULbc8hm52lkd_NM9tH675vX1YuU5pDJ4ZthMnPE9sc4EmOnCBdYznsfb_MFcsNxjy2wrrFSGsw-W4BQsgKO4pAd5XwPAEoJc8AOhRAoecMXTH2Ky28p3iY3DJRyedOa0i50wU-u7Wl5-XuTKOcQx7wM43IVO_rwmr1auz7TyVM8Zj8_X_5Yfamub66-rj5eV142CiutO3DKe3LSNaaVLbZr2UC5ZGuMEk1nWg1yXQtqUDnfGDAgnEbpHWAN4pidz3VjnoLNPkzk73wcR_KTRa1A1LqgtzPapPiwpTzZIWRPfe9GittsudQAXHIpCn3zgt7HbRrLF3YKDdeNxKLOntS2HaizmxQGlx7t89gKgBn4FHMuI7OlMzeVEU3Jhd4i2N1m7G4z9u9mSsq7FynPVf-Jcca_Qk-P_5F2dXP1fc75Az_4mqU |
CitedBy_id | crossref_primary_10_2197_ipsjjip_31_679 crossref_primary_10_1080_20445911_2024_2447117 crossref_primary_10_1073_pnas_2313473122 crossref_primary_10_1109_MS_2021_3086338 |
Cites_doi | 10.1145/2568225.2568252 10.1007/s10664-016-9477-x 10.1007/s10664-018-9669-7 10.1145/3377811.3380342 10.1109/MSR.2019.00057 10.1016/j.cognition.2008.07.008 10.1016/S0749-596X(02)00519-3 10.1145/163359.163375 10.1109/TSE.2009.70 10.7551/mitpress/10655.001.0001 10.1109/ISSRE.2016.53 10.1145/3145904 10.1109/TSE.1976.233837 10.1109/ICSE.2012.6227135 10.1109/WPC.1993.263903 10.1145/1390630.1390647 10.1145/3236024.3236042 10.18637/jss.v080.i01 10.1016/j.cognition.2013.02.013 10.1007/978-3-642-03013-0_15 10.1016/0749-596X(87)90120-3 10.1145/3359591.3359735 10.1037/h0031619 10.1109/ICSE.2017.28 10.1109/ICSE.2013.6606617 10.18653/v1/P16-1162 10.1515/TLR.2006.013 10.1109/ASE.2017.8115654 10.1016/j.jml.2012.11.001 10.1016/0010-0285(87)90007-7 10.1049/iet-sen.2008.0038 10.1145/3196398.3196432 10.1016/S0020-7373(83)80031-5 10.3115/1613715.1613749 10.1145/2635868.2635875 10.1007/s10664-018-9660-3 10.1145/3106237.3106268 10.1016/0010-0285(73)90004-2 10.1006/cogp.1999.0730 10.1287/isre.6.3.286 10.1201/9781315372495 10.1016/j.cognition.2016.09.011 10.1145/1774088.1774303 10.1016/j.tics.2019.04.010 10.1145/3106237.3106264 10.1111/j.1749-818X.2007.00007.x 10.1145/3196398.3196441 10.1037/met0000065 10.1109/ICPC.2015.36 10.1038/307161a0 10.1109/ICPC.2016.7503707 10.1109/SANER.2016.35 10.1145/3106237.3106289 10.1017/S0305000918000041 10.1007/s11682-018-9885-1 10.1093/comjnl/27.2.97 10.1007/978-1-4612-4444-8_1 10.1145/3106237.3106290 10.1007/BF00977789 10.1145/3212695 10.1177/001316446002000104 10.1016/j.cognition.2007.05.006 10.1145/2597073.2597085 10.1145/268946.268962 10.1353/lan.2006.0077 10.1109/ICSE.2017.24 10.1080/15475441.2005.9684215 10.1145/3239235.3240500 10.1109/ICPC.2019.00037 10.1145/1985441.1985454 10.1145/2635868.2635901 10.1109/MSR.2015.22 10.1145/2597008.2597140 10.1073/pnas.0907664106 10.1016/S1364-6613(03)00080-9 10.1075/lllt.9.02sch 10.1145/2610384.2628053 |
ContentType | Journal Article |
Copyright | 2020 Cognitive Science Society (CSS) 2020 Cognitive Science Society (CSS). Copyright © 2020 Cognitive Science Society, Inc. |
Copyright_xml | – notice: 2020 Cognitive Science Society (CSS) – notice: 2020 Cognitive Science Society (CSS). – notice: Copyright © 2020 Cognitive Science Society, Inc. |
CorporateAuthor | Sandia National Lab. (SNL-CA), Livermore, CA (United States) |
CorporateAuthor_xml | – name: Sandia National Lab. (SNL-CA), Livermore, CA (United States) |
DBID | AAYXX CITATION NPM 7TK AHOVV 7X8 OIOZB OTOTI |
DOI | 10.1111/cogs.12921 |
DatabaseName | CrossRef PubMed Neurosciences Abstracts Education Research Index MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Neurosciences Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Languages & Literatures Psychology |
EISSN | 1551-6709 |
EndPage | n/a |
ExternalDocumentID | 1760357 33314282 10_1111_cogs_12921 COGS12921 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: NSF funderid: 1414172 |
GroupedDBID | --- --K --Z -DZ -W8 -~X .3N .DC .GA .GO .Y3 05W 0R~ 10A 1B1 1OC 1RT 1~5 24P 29F 31~ 33P 3EH 3R3 3WU 4.4 4G. 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 53G 5GY 5HH 5LA 5VS 66C 6J9 6TJ 7-5 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 9M8 A04 AABNI AACTN AAEDT AAESR AAHHS AAHQN AAHSB AALRI AAMNL AAONW AAOUF AAQFI AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIVO ABLJU ABMAC ABPVW ABSOO ABWVN ABZLS ACAHQ ACBKW ACCFJ ACCZN ACFBH ACGFO ACGFS ACHQT ACIUM ACNCT ACPOU ACPRK ACRPL ACSCC ACXQS ADBBV ADEMA ADEOM ADIYS ADIZJ ADJOM ADKYN ADMGS ADMHG ADMUD ADNMO ADVLN ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKFF AFPWT AFWVQ AFYRF AHBTC AHHHB AIAGR AIFKG AITUG AIURR AIWBW AJBDE AJWEG ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASTYK AZBYB AZVAB BAFTC BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BY8 C1A CAG COF CS3 D-C D-D DCZOG DPXWK DR2 DRFUL DRSSH DU5 EBD EBS EDJ EJD EMOBN F00 F01 F5P FDB FEDTE FGOYB FIRID FRP G-2 G-S G.N G50 GODZA HF~ HGLYW HHY HLZ HMQ HMW HVGLF HZ~ H~9 IHE IX1 J0M LATKE LC2 LC4 LEEKS LG9 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2V M3V M41 MEWTI MK4 MRFUL MRSSH MSFUL MSSSH MS~ MVM MXFUL MXSSH N04 N06 N9A NF~ NQ- O66 O9- OIG OK1 OVD P2P P2W P2Y P4C PQQKQ Q.N Q11 QB0 QRW R.K R2- RIG ROL RPZ RWI RWL RX1 RXW SBC SEW SNS SPS SSZ SUPJJ SV3 TAE TAF TEORI TN5 TWZ U5U UB1 UQL VAE W8V W99 WBKPD WH7 WHDPE WHG WIH WII WIN WOHZO WQZ WRC WSUWO WUQ WXSBR XG1 XJT XPP XV2 YYP ZCG ZMT ZZTAW ~IA ~WP AAFWJ AAYWO AAYXX ACVFH ADCNI ADXHL AETEA AEUPX AEYWJ AFPUW AGHNM AGQPQ AIGII CITATION NPM PKN 7TK AAMMB AEFGJ AGXDD AHOVV AIDQK AIDYY 7X8 ABPTK ABWRO ACXME ADDAD AFVGU AGJLS AJYWA AKALU OIOZB OTOTI PQEST ZA5 |
ID | FETCH-LOGICAL-c4861-77d0a6ccea4a89b4b1bf480bf44b99638d9b704f53e816ac890903a714ca01503 |
IEDL.DBID | DR2 |
ISSN | 0364-0213 1551-6709 |
IngestDate | Fri May 19 00:37:11 EDT 2023 Fri Jul 11 03:47:37 EDT 2025 Fri Aug 29 17:20:53 EDT 2025 Wed Feb 19 02:28:44 EST 2025 Tue Jul 01 04:19:46 EDT 2025 Thu Apr 24 23:00:24 EDT 2025 Wed Jan 22 16:31:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Dual channel constraints Surprisal Meaning-preserving transformations Human preference Language models Source code expressions |
Language | English |
License | 2020 Cognitive Science Society (CSS). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4861-77d0a6ccea4a89b4b1bf480bf44b99638d9b704f53e816ac890903a714ca01503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 National Science Foundation (NSF) AC04-94AL85000; 1414172 SAND-2020-11603J USDOE National Nuclear Security Administration (NNSA) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1760357 |
PMID | 33314282 |
PQID | 2471927841 |
PQPubID | 30149 |
PageCount | 47 |
ParticipantIDs | osti_scitechconnect_1760357 proquest_miscellaneous_2470024243 proquest_journals_2471927841 pubmed_primary_33314282 crossref_citationtrail_10_1111_cogs_12921 crossref_primary_10_1111_cogs_12921 wiley_primary_10_1111_cogs_12921_COGS12921 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Cognitive science |
PublicationTitleAlternate | Cogn Sci |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc Wiley, Cognitive Science Society |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley, Cognitive Science Society |
References | 2008a; 106 2010; 11 2017; 80 2013; 68 1984; 27 2008b 2019; 13 2013; 128 2008; 109 2018; 45 1983; 18 1978 1977 1993; 36 2001 2006; 23 2019; 24 2019; 23 2003; 7 2016; 157 2020b 2020a 2003; 48 1982 2007; 1 2010; 4 1979; 8 2012 2011 2010 2017; 22 1998 2009 2008 1997 1984; 307 1995 2005 2004 1993 2003 1976; SE‐2 1987; 19 1995; 6 1981; 20 2006; 82 2009; 36 1971; 76 1960; 20 2020 1994; 12 2019 2000; 40 2018 2013; 136 2017 2016 2005; 1 2018; 51 2015 2014 2013 1987; 26 1973; 4 2009; 106 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_103_1 Kim M. (e_1_2_9_73_1) 2004 e_1_2_9_107_1 e_1_2_9_37_1 e_1_2_9_18_1 Ehrlich S. F. (e_1_2_9_42_1) 1981; 20 Python Software Foundation (e_1_2_9_96_1) 2020 e_1_2_9_41_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 Mol M. (e_1_2_9_86_1) 2020 Watanabe S. (e_1_2_9_118_1) 2010; 11 e_1_2_9_6_1 Casalnuovo C. (e_1_2_9_22_1) 2020 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 Gage P. (e_1_2_9_48_1) 1994; 12 Kasto N. (e_1_2_9_72_1) 2013; 136 e_1_2_9_53_1 e_1_2_9_99_1 Ott M. (e_1_2_9_90_1) 2019 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_95_1 e_1_2_9_76_1 Hale J. (e_1_2_9_56_1) 2001 e_1_2_9_102_1 e_1_2_9_106_1 Bybee J. (e_1_2_9_21_1) 2003 Papadakis M. (e_1_2_9_91_1) 2019 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 Hollander M. (e_1_2_9_64_1) 2013 e_1_2_9_114_1 Miele J. (e_1_2_9_85_1) 2018 e_1_2_9_9_1 Mateas M. (e_1_2_9_82_1) 2005 e_1_2_9_27_1 e_1_2_9_69_1 Vaswani A. (e_1_2_9_115_1) 2017 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_109_1 Hellendoorn V. J. (e_1_2_9_62_1) 2020 Halstead M. H. (e_1_2_9_57_1) 1977 e_1_2_9_101_1 e_1_2_9_105_1 Brooks R. (e_1_2_9_14_1) 1978 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_81_1 Gamma E. (e_1_2_9_49_1) 1995 Svyatkovskiy A. (e_1_2_9_110_1) 2020 Zhan M. (e_1_2_9_120_1) 2018 e_1_2_9_113_1 Weisstein E. W. (e_1_2_9_119_1) 2004 e_1_2_9_117_1 Clark H. H. (e_1_2_9_28_1) 1982 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 Tiarks R. (e_1_2_9_111_1) 2011 Ivanova A. A. (e_1_2_9_66_1) 2020 e_1_2_9_100_1 Morgan E. (e_1_2_9_87_1) 2015 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 Allamanis M. (e_1_2_9_4_1) 2017 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_3_1 Cohen J. (e_1_2_9_30_1) 2003 Peksag B. (e_1_2_9_92_1) 2019 Casalnuovo C. (e_1_2_9_23_1) 2020 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_29_1 |
References_xml | – start-page: 144 year: 2005 end-page: 153 – start-page: 310 year: 2019 end-page: 320 – year: 2017 article-title: Learning to represent programs with graphs publication-title: arXiv Preprint – volume: 23 start-page: 321 year: 2006 end-page: 349 article-title: Spoken syntax: The phonetics of giving a hand in New Zealand English publication-title: The Linguistic Review – volume: 20 start-page: 37 year: 1960 end-page: 46 article-title: A coefficient of agreement for nominal scales publication-title: Educational and Psychological Measurement – volume: 307 start-page: 161 year: 1984 end-page: 163 article-title: Brain potentials during reading reflect word expectancy and semantic association publication-title: Nature – volume: 18 start-page: 543 year: 1983 end-page: 554 article-title: Towards a theory of the comprehension of computer programs publication-title: International Journal of Man‐Machine Studies – volume: 36 start-page: 546 year: 2009 end-page: 558 article-title: Learning a metric for code readability publication-title: IEEE Transactions on Software Engineering – volume: 4 start-page: 32 year: 2010 end-page: 42 article-title: Judy–a mutation testing tool for Java publication-title: IET Software – volume: 24 start-page: 1823 year: 2019 end-page: 1868 article-title: Studying the difference between natural and programming language corpora publication-title: Empirical Software Engineering – volume: 1 start-page: 71 year: 2007 end-page: 83 article-title: The “good enough” approach to language comprehension publication-title: Language and Linguistics Compass – start-page: 683 year: 2017 end-page: 693 – start-page: 83 year: 2004 end-page: 92 – volume: 23 start-page: 525 issue: 7 year: 2019 end-page: 528 article-title: The language of programming: A cognitive perspective publication-title: Trends in Cognitive Sciences – volume: 22 start-page: 1440 year: 2017 end-page: 1477 article-title: How programmers read regular code: A controlled experiment using eye tracking publication-title: Empirical Software Engineering – start-page: 318 year: 2009 end-page: 343 – start-page: 837 year: 2012 end-page: 847 – volume: 1 start-page: 151 year: 2005 end-page: 195 article-title: Regularizing unpredictable variation: The roles of adult and child learners in language formation and change publication-title: Language Learning and Development – start-page: 1020 year: 2010 end-page: 1025 – year: 2019 – start-page: 157 year: 2015 end-page: 167 – volume: 106 start-page: 1126 year: 2008a end-page: 1177 article-title: Expectation‐based syntactic comprehension publication-title: Cognition – start-page: 78 year: 1993 end-page: 86 – volume: 68 start-page: 255 issue: 3 year: 2013 end-page: 278 article-title: Random effects structure for confirmatory hypothesis testing: Keep it maximal publication-title: Journal of Memory and Language – start-page: 1 year: 2018 end-page: 10 – volume: 128 start-page: 302 year: 2013 end-page: 319 article-title: The effect of word predictability on reading time is logarithmic publication-title: Cognition – start-page: 1 year: 2004 end-page: 22 – volume: 82 start-page: 233 year: 2006 end-page: 278 article-title: The chicken or the egg? A probabilistic analysis of English binomials publication-title: Language – volume: 6 start-page: 286 year: 1995 end-page: 299 article-title: The relevance of application domain knowledge: The case of computer program comprehension publication-title: Information Systems Research – start-page: 255 year: 2015 end-page: 265 – start-page: 189 year: 2014 end-page: 200 – start-page: 121 year: 2008 end-page: 130 – volume: 80 start-page: 1 year: 2017 end-page: 28 article-title: brms: An R package for Bayesian multilevel models using Stan publication-title: Journal of Statistical Software – start-page: 36 year: 2011 end-page: 37 – volume: 26 start-page: 119 year: 1987 end-page: 137 article-title: An effect of the accessibility of word forms on sentence structures publication-title: Journal of Memory and Language – year: 1995 – year: 2020b – volume: 20 start-page: 641 year: 1981 article-title: Contextual effects on word perception and eye movements during reading publication-title: Journal of Memory and Language – volume: 51 start-page: 5 year: 2018 article-title: A survey on the usage of eye‐tracking in computer programming publication-title: ACM Computing Surveys (CSUR) – start-page: 143 year: 2019 end-page: 153 – start-page: 712 year: 2013 end-page: 721 – year: 2013 – volume: 7 start-page: 219 year: 2003 end-page: 224 article-title: Constructions: A new theoretical approach to language publication-title: Trends in Cognitive Sciences – start-page: 13 year: 2016 end-page: 20 – start-page: 73 year: 2011 end-page: 82 – volume: 36 start-page: 81 year: 1993 end-page: 95 article-title: Software complexity and maintenance costs publication-title: Communications of the ACM – start-page: 378 year: 2014 end-page: 389 – volume: 136 start-page: 59 year: 2013 end-page: 65 article-title: Measuring the difficulty of code comprehension tasks using software metrics publication-title: Proceedings of the Fifteenth Australasian Computing Education Conference – start-page: 2 year: 2014 end-page: 11 – start-page: 5998 year: 2017 end-page: 6008 – year: 2018 article-title: Comparing theories of speaker choice using a model of classifier production in mandarin Chinese publication-title: Association for Computational Linguistics – volume: 4 start-page: 55 year: 1973 end-page: 81 article-title: Perception in chess publication-title: Cognitive Psychology – year: 2018 – start-page: 129 year: 2017 end-page: 139 – start-page: 196 year: 1978 end-page: 201 – volume: 157 start-page: 384 year: 2016 end-page: 402 article-title: Abstract knowledge versus direct experience in processing of binomial expressions publication-title: Cognition – year: 1982 – volume: 40 start-page: 296 year: 2000 end-page: 340 article-title: Effect of ambiguity and lexical availability on syntactic and lexical production publication-title: Cognitive Psychology – volume: 24 start-page: 1296 year: 2019 end-page: 1327 article-title: Categorizing the content of github readme files publication-title: Empirical Software Engineering – start-page: 433 year: 2014 end-page: 436 – year: 2004 – year: 1997 – year: 2020 article-title: Comprehension of computer code relies primarily on domain‐general executive resources publication-title: BioRxiv – volume: 76 start-page: 378 year: 1971 article-title: Measuring nominal scale agreement among many raters publication-title: Psychological Bulletin – start-page: 314 year: 2018 end-page: 318 – year: 2015 – volume: 8 start-page: 219 year: 1979 end-page: 238 article-title: Syntactic/semantic interactions in programmer behavior: A model and experimental results publication-title: International Journal of Computer & Information Sciences – start-page: 417 year: 2017 end-page: 427 – volume: 27 start-page: 97 year: 1984 end-page: 111 article-title: Literate programming publication-title: The Computer Journal – volume: 48 start-page: 103 year: 2003 end-page: 130 article-title: Using prosody to avoid ambiguity: Effects of speaker awareness and referential context publication-title: Journal of Memory and Language – start-page: 107 year: 2018 end-page: 117 – start-page: 87 year: 2016 end-page: 92 – year: 2003 – start-page: 184 year: 1998 end-page: 196 – start-page: 1715 year: 2016 end-page: 1725 – volume: 11 start-page: 3571 year: 2010 end-page: 3594 article-title: Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory publication-title: Journal of Machine Learning Research – start-page: arXiv:2005.08025 year: 2020 article-title: Intellicode compose: Code generation using transformer publication-title: arXiv Preprint – start-page: 269 year: 2014 end-page: 280 – year: 2020a – volume: 51 start-page: 1 issue: 4 year: 2018 end-page: 37 article-title: A survey of machine learning for big code and naturalness publication-title: ACM Computing Surveys – year: 1977 – start-page: 234 year: 2008b end-page: 243 – volume: 106 start-page: 21086 year: 2009 end-page: 21090 article-title: Eye movement evidence that readers maintain and act on uncertainty about past linguistic input publication-title: Proceedings of the National Academy of Sciences of the United States of America – start-page: 179 year: 2019 end-page: 190 – volume: 13 start-page: 623 year: 2019 end-page: 637 article-title: The role of the insula in intuitive expert bug detection in computer code: an fmri study publication-title: Brain Imaging and Behavior – year: 2012 – volume: 12 start-page: 23 year: 1994 end-page: 38 article-title: A new algorithm for data compression publication-title: C Users Journal – start-page: 140 year: 2017 end-page: 150 – volume: 19 start-page: 295 year: 1987 end-page: 341 article-title: Stimulus structures and mental representations in expert comprehension of computer programs publication-title: Cognitive Psychology – start-page: 175 year: 2017 end-page: 186 – start-page: 1 year: 2001 end-page: 8 article-title: A probabilistic Earley parser as a psycholinguistic model – volume: 22 start-page: 240 year: 2017 article-title: Improving transparency and replication in Bayesian statistics: The WAMBS‐checklist publication-title: Psychological Methods – volume: SE‐2 start-page: 308 issue: 4 year: 1976 end-page: 320 article-title: A complexity measure publication-title: IEEE Transactions on Software Engineering – volume: 45 start-page: 1054 year: 2018 end-page: 1072 article-title: When regularization gets it wrong: Children over‐simplify language input only in production publication-title: Journal of Child Language – start-page: 472 year: 2014 end-page: 483 – start-page: 275 year: 2019 end-page: 378 – year: 2020 – start-page: 763 year: 2017 end-page: 773 – start-page: 221 year: 2017 end-page: 231 – start-page: 1 year: 2016 end-page: 10 – year: 2017 – volume: 109 start-page: 193 year: 2008 end-page: 210 article-title: Data from eye‐tracking corpora as evidence for theories of syntactic processing complexity publication-title: Cognition – volume: 136 start-page: 59 year: 2013 ident: e_1_2_9_72_1 article-title: Measuring the difficulty of code comprehension tasks using software metrics publication-title: Proceedings of the Fifteenth Australasian Computing Education Conference – ident: e_1_2_9_106_1 doi: 10.1145/2568225.2568252 – ident: e_1_2_9_68_1 doi: 10.1007/s10664-016-9477-x – ident: e_1_2_9_24_1 doi: 10.1007/s10664-018-9669-7 – ident: e_1_2_9_71_1 doi: 10.1145/3377811.3380342 – ident: e_1_2_9_6_1 doi: 10.1109/MSR.2019.00057 – ident: e_1_2_9_35_1 doi: 10.1016/j.cognition.2008.07.008 – ident: e_1_2_9_109_1 doi: 10.1016/S0749-596X(02)00519-3 – ident: e_1_2_9_9_1 doi: 10.1145/163359.163375 – ident: e_1_2_9_16_1 – volume-title: Elements of software science year: 1977 ident: e_1_2_9_57_1 – ident: e_1_2_9_52_1 – volume: 12 start-page: 23 year: 1994 ident: e_1_2_9_48_1 article-title: A new algorithm for data compression publication-title: C Users Journal – ident: e_1_2_9_19_1 doi: 10.1109/TSE.2009.70 – start-page: 83 volume-title: Proceedings. 2004 International Symposium on Empirical Software Engineering, 2004. ISESE '04 year: 2004 ident: e_1_2_9_73_1 – ident: e_1_2_9_116_1 doi: 10.7551/mitpress/10655.001.0001 – start-page: arXiv:1711.0074 year: 2017 ident: e_1_2_9_4_1 article-title: Learning to represent programs with graphs publication-title: arXiv Preprint – volume-title: Audience design in meaning and reference, vol. 9 of Language and comprehension year: 1982 ident: e_1_2_9_28_1 – volume-title: Applied multiple correlation/regression analysis for the behavioral sciences year: 2003 ident: e_1_2_9_30_1 – volume-title: The bot problem on mturk year: 2018 ident: e_1_2_9_85_1 – ident: e_1_2_9_39_1 doi: 10.1109/ISSRE.2016.53 – ident: e_1_2_9_89_1 doi: 10.1145/3145904 – ident: e_1_2_9_83_1 doi: 10.1109/TSE.1976.233837 – ident: e_1_2_9_63_1 doi: 10.1109/ICSE.2012.6227135 – ident: e_1_2_9_117_1 doi: 10.1109/WPC.1993.263903 – ident: e_1_2_9_18_1 doi: 10.1145/1390630.1390647 – ident: e_1_2_9_34_1 doi: 10.1145/3236024.3236042 – ident: e_1_2_9_17_1 doi: 10.18637/jss.v080.i01 – ident: e_1_2_9_31_1 – ident: e_1_2_9_59_1 – ident: e_1_2_9_108_1 doi: 10.1016/j.cognition.2013.02.013 – ident: e_1_2_9_121_1 doi: 10.1007/978-3-642-03013-0_15 – ident: e_1_2_9_12_1 doi: 10.1016/0749-596X(87)90120-3 – volume-title: 8th International Conference on Learning Representations, ICLR 2020 year: 2020 ident: e_1_2_9_62_1 – start-page: arXiv:2005.0802 year: 2020 ident: e_1_2_9_110_1 article-title: Intellicode compose: Code generation using transformer publication-title: arXiv Preprint – ident: e_1_2_9_2_1 doi: 10.1145/3359591.3359735 – start-page: 275 volume-title: Advances in computers year: 2019 ident: e_1_2_9_91_1 – start-page: 196 volume-title: Proceedings of the 3rd International Conference on Software engineering year: 1978 ident: e_1_2_9_14_1 – ident: e_1_2_9_46_1 doi: 10.1037/h0031619 – ident: e_1_2_9_80_1 doi: 10.1109/ICSE.2017.28 – ident: e_1_2_9_7_1 – ident: e_1_2_9_8_1 doi: 10.1109/ICSE.2013.6606617 – volume-title: Proceedings of the 42nd Annual Meeting of the Cognitive Science Society year: 2020 ident: e_1_2_9_23_1 – ident: e_1_2_9_102_1 doi: 10.18653/v1/P16-1162 – ident: e_1_2_9_58_1 doi: 10.1515/TLR.2006.013 – ident: e_1_2_9_98_1 doi: 10.1109/ASE.2017.8115654 – ident: e_1_2_9_10_1 doi: 10.1016/j.jml.2012.11.001 – ident: e_1_2_9_40_1 – ident: e_1_2_9_93_1 doi: 10.1016/0010-0285(87)90007-7 – ident: e_1_2_9_81_1 doi: 10.1049/iet-sen.2008.0038 – ident: e_1_2_9_55_1 doi: 10.1145/3196398.3196432 – ident: e_1_2_9_15_1 doi: 10.1016/S0020-7373(83)80031-5 – start-page: 144 volume-title: Proceedings of the 6th digital arts and culture conference year: 2005 ident: e_1_2_9_82_1 – volume-title: Rosetta code year: 2020 ident: e_1_2_9_86_1 – ident: e_1_2_9_77_1 doi: 10.3115/1613715.1613749 – ident: e_1_2_9_113_1 doi: 10.1145/2635868.2635875 – ident: e_1_2_9_95_1 doi: 10.1007/s10664-018-9660-3 – ident: e_1_2_9_107_1 doi: 10.1145/3106237.3106268 – volume-title: Python 3 Abstract syntax tree module year: 2020 ident: e_1_2_9_96_1 – ident: e_1_2_9_37_1 – ident: e_1_2_9_26_1 doi: 10.1016/0010-0285(73)90004-2 – ident: e_1_2_9_50_1 – ident: e_1_2_9_53_1 – volume: 20 start-page: 641 year: 1981 ident: e_1_2_9_42_1 article-title: Contextual effects on word perception and eye movements during reading publication-title: Journal of Memory and Language – ident: e_1_2_9_45_1 doi: 10.1006/cogp.1999.0730 – ident: e_1_2_9_103_1 doi: 10.1287/isre.6.3.286 – ident: e_1_2_9_84_1 doi: 10.1201/9781315372495 – ident: e_1_2_9_88_1 doi: 10.1016/j.cognition.2016.09.011 – ident: e_1_2_9_97_1 doi: 10.1145/1774088.1774303 – ident: e_1_2_9_43_1 doi: 10.1016/j.tics.2019.04.010 – ident: e_1_2_9_54_1 doi: 10.1145/3106237.3106264 – ident: e_1_2_9_44_1 doi: 10.1111/j.1749-818X.2007.00007.x – ident: e_1_2_9_112_1 doi: 10.1145/3196398.3196441 – volume-title: Phonology and language use year: 2003 ident: e_1_2_9_21_1 – ident: e_1_2_9_36_1 doi: 10.1037/met0000065 – ident: e_1_2_9_20_1 doi: 10.1109/ICPC.2015.36 – ident: e_1_2_9_38_1 – ident: e_1_2_9_75_1 doi: 10.1038/307161a0 – start-page: 045732 year: 2020 ident: e_1_2_9_66_1 article-title: Comprehension of computer code relies primarily on domain‐general executive resources publication-title: BioRxiv – start-page: 1 volume-title: Proceedings of the second meeting of the North American Chapter of the Association for Computational Linguistics on Language technologies year: 2001 ident: e_1_2_9_56_1 – ident: e_1_2_9_99_1 doi: 10.1109/ICPC.2016.7503707 – ident: e_1_2_9_105_1 doi: 10.1109/SANER.2016.35 – ident: e_1_2_9_41_1 – ident: e_1_2_9_114_1 doi: 10.1145/3106237.3106289 – ident: e_1_2_9_101_1 doi: 10.1017/S0305000918000041 – ident: e_1_2_9_25_1 doi: 10.1007/s11682-018-9885-1 – ident: e_1_2_9_74_1 doi: 10.1093/comjnl/27.2.97 – volume-title: Unique Turker year: 2019 ident: e_1_2_9_90_1 – ident: e_1_2_9_33_1 doi: 10.1007/978-1-4612-4444-8_1 – volume-title: Design patterns: Elements of reusable object‐oriented software year: 1995 ident: e_1_2_9_49_1 – start-page: 36 volume-title: Workshop on software reengineering year: 2011 ident: e_1_2_9_111_1 – volume-title: Proceedings of the 37th Annual Meeting of the Cognitive Science Society year: 2015 ident: e_1_2_9_87_1 – ident: e_1_2_9_60_1 doi: 10.1145/3106237.3106290 – ident: e_1_2_9_104_1 doi: 10.1007/BF00977789 – volume-title: 2020 IEEE/ACM 42nd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE‐NIER) year: 2020 ident: e_1_2_9_22_1 – ident: e_1_2_9_3_1 doi: 10.1145/3212695 – ident: e_1_2_9_29_1 doi: 10.1177/001316446002000104 – ident: e_1_2_9_76_1 doi: 10.1016/j.cognition.2007.05.006 – ident: e_1_2_9_79_1 doi: 10.1145/2597073.2597085 – ident: e_1_2_9_32_1 doi: 10.1145/268946.268962 – ident: e_1_2_9_11_1 doi: 10.1353/lan.2006.0077 – ident: e_1_2_9_13_1 – ident: e_1_2_9_47_1 doi: 10.1109/ICSE.2017.24 – volume-title: Nonparametric statistical methods year: 2013 ident: e_1_2_9_64_1 – ident: e_1_2_9_65_1 doi: 10.1080/15475441.2005.9684215 – ident: e_1_2_9_69_1 doi: 10.1145/3239235.3240500 – ident: e_1_2_9_27_1 doi: 10.1109/ICPC.2019.00037 – ident: e_1_2_9_94_1 doi: 10.1145/1985441.1985454 – year: 2018 ident: e_1_2_9_120_1 article-title: Comparing theories of speaker choice using a model of classifier production in mandarin Chinese publication-title: Association for Computational Linguistics – ident: e_1_2_9_5_1 doi: 10.1145/2635868.2635901 – volume-title: astor year: 2019 ident: e_1_2_9_92_1 – ident: e_1_2_9_61_1 doi: 10.1109/MSR.2015.22 – ident: e_1_2_9_67_1 doi: 10.1145/2597008.2597140 – ident: e_1_2_9_78_1 doi: 10.1073/pnas.0907664106 – start-page: 5998 volume-title: Advances in neural information processing systems year: 2017 ident: e_1_2_9_115_1 – volume: 11 start-page: 3571 year: 2010 ident: e_1_2_9_118_1 article-title: Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory publication-title: Journal of Machine Learning Research – ident: e_1_2_9_51_1 doi: 10.1016/S1364-6613(03)00080-9 – volume-title: Bonferroni correction year: 2004 ident: e_1_2_9_119_1 – ident: e_1_2_9_100_1 doi: 10.1075/lllt.9.02sch – ident: e_1_2_9_70_1 doi: 10.1145/2610384.2628053 |
SSID | ssj0006639 |
Score | 2.375322 |
Snippet | Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e12921 |
SubjectTerms | Cognitive ability Cognitive Measurement Cognitive Processes Dual channel constraints Human preference Language models MATHEMATICS AND COMPUTING Meaning‐preserving transformations Programmers Programming Languages Source code expressions Surprisal |
Title | Do Programmers Prefer Predictable Expressions in Code? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcogs.12921 https://www.ncbi.nlm.nih.gov/pubmed/33314282 https://www.proquest.com/docview/2471927841 https://www.proquest.com/docview/2470024243 https://www.osti.gov/servlets/purl/1760357 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD6EPPVll3TLvKbFZWPQgYMvimzBYJS0WRhhLd0CeRlGN4_SYo_ZgbW_vjryJc0Ig-3FFljGsqRP59PR0SeAt4LGWjGVeSFl0kxQpG8wFwpPx4KHAkmqtFG-X-h8ST6vJqsefGj3wtT6EJ3DDZFhx2sEOBflI5DL4kc5NtbK7iLHYC1kRFcb7ShjSlm9UEk8Y8iiRpsUw3g2r25Zo35hULWLaW4TV2t5Zk_he1vmOuDkZryuxFje_yHn-L8_9QyeNJTUPa370HPo6XwAw0XjyCzdd-6i014uB7DXjZl3-0DPCveyDvFCB7hJo3At3tS1rHBblnv-u4m1zUv3OnenhdIfX8Bydv5tOveaoxg8SRIaGA6ufE6l1JzwhAkiApGRxDcXIhhiWDER-ySbRDoJKJcJQ_8PjwMiOfpUopfQz4tcvwKXMMOCsiyLzdSGUK54oPCwM0mUjiaxYA6ctE2SykanHI_LuE3b-QpWUmoryYE3Xd6ftTrHzlwH2LKp4RQojCsxgkhWaRBT33zRgVHb4GmD3zINjc1mdk3WgePusUEeLqfwXBdrm8cyHBI5MKw7SleIKIpQyi504L1t7r-ULp1efPpqU6__JfMB7IU49beRNSPoV7_W-tDwo0ocWRw8AA0cCJg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS9xAFL2U9UFfat22Gl1riqXQQpZ8zE4yT1K26lZXK1bBt2G-ItKSSJMF9dc7d5KNtUjBviSBTMhkZk7umTt3zgX4IGlqNNN5EFOm7ARFhRZzsQxMKkUskaQqF-V7TCfn5OBidNHG5uBemEYfonO4ITLc_xoBjg7pP1CuystqaM0VbiNfwJTebkZ1-qAeZY0pa5YqSWBNWdKqk2Igz8Ozj-xRr7S4eoprPqauzvbsLTcJVisnWYghJz-Hs1oO1d1fgo7__Vmv4GXLSv0vzTBagRem6MPqtPVlVv5Hf9rJL1d9WOp-m7evgX4t_ZMmygt94PYatWvxpK9UjTuz_N2bNty2qPyrwh-X2uy8gfO93bPxJGizMQSKZDSyNFyHgiplBBEZk0RGMidZaA9EMoSxZjINST5KTBZRoTKGLiCRRkQJdKskb6FXlIVZA58wS4TyPE_t7IZQoUWkMd-ZItoko1QyDz7N-4SrVqocM2b84vMpCzYSd43kwXZX9roR6Hiy1AZ2Lbe0ArVxFQYRqZpHKQ3tGz0YzHuctxCueGzNNnPLsh68725b8OGKiihMOXNlHMkhiQerzUjpKpEkCarZxR58dv39j9rx8ff9H-5q_TmFt2BxcnY05dNvx4cbsBSjJ8AF2gygV_-emU1Ll2r5zoHiHpE2DLM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ta9QwGH8YJ8i-TJ3b7O7UDkWY0KMvubQBQeRut6nHNtTBvoyQt46x0Q7bA_WvN0_6MidDcF_aQFOaJvnl-eXJk18AXkuaGs10HsSUKTtBUaHFXCwDk0oRSySpykX5HtKDE_LpdHK6Au-6vTCNPkTvcENkuPEaAX6t8z9ArsrzamytFe4if0BomGGfnn25EY-ytpQ1K5UksJYsacVJMY7n5t1b5mhQWljdRTVvM1dneuaP4KwrdBNxcjle1nKsfv2l53jfv3oMay0n9T80negJrJhiHbYWrSez8t_4i158uVqH1X7Q_PkU6Kz0j5sYL_SA2zQq1-JNX6ga92X5ez_aYNui8i8Kf1pq834DTuZ736YHQXsWQ6BIRiNLwnUoqFJGEJExSWQkc5KF9kIkQxBrJtOQ5JPEZBEVKmPoABJpRJRAp0qyCYOiLMwz8AmzNCjP89TObQgVWkQaTztTRJtkkkrmwW7XJFy1QuV4XsYV7yYsWEncVZIHr_q81408x525htiy3JIKVMZVGEKkah6lNLRf9GDUNThvAVzx2Bpt5hZlPdjpH1vo4XqKKEy5dHkcxSGJB1tNR-kLkSQJatnFHrx1zf2P0vHp0f5Xl9r-n8wv4eHxbM4XHw8_D2E1RjeAi7IZwaD-vjTPLVeq5QsHid96vwtr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Do+Programmers+Prefer+Predictable+Expressions+in+Code%3F&rft.jtitle=Cognitive+science&rft.au=Casalnuovo%2C+Casey&rft.au=Lee%2C+Kevin&rft.au=Wang%2C+Hulin&rft.au=Devanbu%2C+Prem&rft.date=2020-12-01&rft.issn=0364-0213&rft.eissn=1551-6709&rft.volume=44&rft.issue=12&rft_id=info:doi/10.1111%2Fcogs.12921&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cogs_12921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-0213&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-0213&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-0213&client=summon |