Nonlinear Stress‐Induced Transformations in Collagen Fibrillar Organization, Disorder and Strain Mechanisms in the Bone‐Cartilage Unit
By developing a 3D X‐ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone‐cartilage unit (BCU), whose healthy functioning is critical for joint...
Saved in:
Published in | Advanced science Vol. 12; no. 1; pp. e2407649 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.01.2025
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By developing a 3D X‐ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone‐cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small‐angle X‐ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage‐bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular‐level disorder, is found in the cartilage (sliding) surface region. Just below, fibrils accommodate tissue strain by reorientation, which transitions molecular‐level kinking or loss of crystallinity in the deep zone. Crystalline fibrils laterally shrink far more (20×) than they contract, possibly by water loss from between tropocollagen molecules. With the calcified plate acting as an anchor for surrounding tissue, a qualitative switch occurs in fibrillar deformation between the articular cartilage and calcified regions. These findings significantly advance this understanding of the complex, nonlinear ultrastructural dynamics at this critical interface, and opens avenues for developing targeted diagnostic and therapeutic strategies for musculoskeletal disorders.
The ultrastructural mechanisms enabling physiological compression in cartilage/bone interfaces in joints are explored using X‐ray nanomechanical imaging and 3D modeling of the hydrated collagen fibril/proteoglycan nanostructure. The approach reveals synergistic and microscale spatially‐graded stress‐induced interactions between hidden modes like fibrillar compaction, fluid flow, crystallinity transitions, and reorientation. These molecular‐to‐microscale biophysical mechanisms advance fundamental understandings of joint function and pathological degeneration. |
---|---|
AbstractList | By developing a 3D X‐ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone‐cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small‐angle X‐ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage‐bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular‐level disorder, is found in the cartilage (sliding) surface region. Just below, fibrils accommodate tissue strain by reorientation, which transitions molecular‐level kinking or loss of crystallinity in the deep zone. Crystalline fibrils laterally shrink far more (20×) than they contract, possibly by water loss from between tropocollagen molecules. With the calcified plate acting as an anchor for surrounding tissue, a qualitative switch occurs in fibrillar deformation between the articular cartilage and calcified regions. These findings significantly advance this understanding of the complex, nonlinear ultrastructural dynamics at this critical interface, and opens avenues for developing targeted diagnostic and therapeutic strategies for musculoskeletal disorders. Abstract By developing a 3D X‐ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone‐cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small‐angle X‐ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage‐bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular‐level disorder, is found in the cartilage (sliding) surface region. Just below, fibrils accommodate tissue strain by reorientation, which transitions molecular‐level kinking or loss of crystallinity in the deep zone. Crystalline fibrils laterally shrink far more (20×) than they contract, possibly by water loss from between tropocollagen molecules. With the calcified plate acting as an anchor for surrounding tissue, a qualitative switch occurs in fibrillar deformation between the articular cartilage and calcified regions. These findings significantly advance this understanding of the complex, nonlinear ultrastructural dynamics at this critical interface, and opens avenues for developing targeted diagnostic and therapeutic strategies for musculoskeletal disorders. By developing a 3D X‐ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone‐cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small‐angle X‐ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage‐bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular‐level disorder, is found in the cartilage (sliding) surface region. Just below, fibrils accommodate tissue strain by reorientation, which transitions molecular‐level kinking or loss of crystallinity in the deep zone. Crystalline fibrils laterally shrink far more (20×) than they contract, possibly by water loss from between tropocollagen molecules. With the calcified plate acting as an anchor for surrounding tissue, a qualitative switch occurs in fibrillar deformation between the articular cartilage and calcified regions. These findings significantly advance this understanding of the complex, nonlinear ultrastructural dynamics at this critical interface, and opens avenues for developing targeted diagnostic and therapeutic strategies for musculoskeletal disorders. The ultrastructural mechanisms enabling physiological compression in cartilage/bone interfaces in joints are explored using X‐ray nanomechanical imaging and 3D modeling of the hydrated collagen fibril/proteoglycan nanostructure. The approach reveals synergistic and microscale spatially‐graded stress‐induced interactions between hidden modes like fibrillar compaction, fluid flow, crystallinity transitions, and reorientation. These molecular‐to‐microscale biophysical mechanisms advance fundamental understandings of joint function and pathological degeneration. By developing a 3D X-ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone-cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small-angle X-ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage-bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular-level disorder, is found in the cartilage (sliding) surface region. Just below, fibrils accommodate tissue strain by reorientation, which transitions molecular-level kinking or loss of crystallinity in the deep zone. Crystalline fibrils laterally shrink far more (20×) than they contract, possibly by water loss from between tropocollagen molecules. With the calcified plate acting as an anchor for surrounding tissue, a qualitative switch occurs in fibrillar deformation between the articular cartilage and calcified regions. These findings significantly advance this understanding of the complex, nonlinear ultrastructural dynamics at this critical interface, and opens avenues for developing targeted diagnostic and therapeutic strategies for musculoskeletal disorders.By developing a 3D X-ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone-cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small-angle X-ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage-bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular-level disorder, is found in the cartilage (sliding) surface region. Just below, fibrils accommodate tissue strain by reorientation, which transitions molecular-level kinking or loss of crystallinity in the deep zone. Crystalline fibrils laterally shrink far more (20×) than they contract, possibly by water loss from between tropocollagen molecules. With the calcified plate acting as an anchor for surrounding tissue, a qualitative switch occurs in fibrillar deformation between the articular cartilage and calcified regions. These findings significantly advance this understanding of the complex, nonlinear ultrastructural dynamics at this critical interface, and opens avenues for developing targeted diagnostic and therapeutic strategies for musculoskeletal disorders. |
Author | Snow, Tim Badar, Waqas Gupta, Himadri S. Fratzl, Peter Knight, Martin M. Inamdar, Sheetal R. Terrill, Nicholas J. |
AuthorAffiliation | 3 Diamond Light Source Harwell Science Campus Harwell OX11 0DE UK 1 Centre for Bioengineering and School of Engineering and Materials Science Queen Mary University of London London E1 4NS UK 2 Max Planck Institute of Colloids and Interfaces Research Campus Golm 14424 Potsdam Germany |
AuthorAffiliation_xml | – name: 2 Max Planck Institute of Colloids and Interfaces Research Campus Golm 14424 Potsdam Germany – name: 1 Centre for Bioengineering and School of Engineering and Materials Science Queen Mary University of London London E1 4NS UK – name: 3 Diamond Light Source Harwell Science Campus Harwell OX11 0DE UK |
Author_xml | – sequence: 1 givenname: Waqas surname: Badar fullname: Badar, Waqas organization: Queen Mary University of London – sequence: 2 givenname: Sheetal R. surname: Inamdar fullname: Inamdar, Sheetal R. organization: Queen Mary University of London – sequence: 3 givenname: Peter surname: Fratzl fullname: Fratzl, Peter organization: Research Campus Golm – sequence: 4 givenname: Tim surname: Snow fullname: Snow, Tim organization: Harwell Science Campus – sequence: 5 givenname: Nicholas J. surname: Terrill fullname: Terrill, Nicholas J. organization: Harwell Science Campus – sequence: 6 givenname: Martin M. surname: Knight fullname: Knight, Martin M. organization: Queen Mary University of London – sequence: 7 givenname: Himadri S. orcidid: 0000-0003-2201-8933 surname: Gupta fullname: Gupta, Himadri S. email: h.gupta@qmul.ac.uk organization: Queen Mary University of London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39527673$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkjFvEzEUgC1UREvoyohOYmEgwc_2ne0JlZRCpEKHtqyWz_Ylri52sS9FZWJm4jfyS3CSErUsTH6yv_f5-fk9RXshBofQc8ATwJi80fYmTwgmDPOGyUfogIAUYyoY27sX76PDnK8wxlBTzkA8QftU1oQ3nB6gn59j6H1wOlXnQ3I5__7xaxbsyjhbXSQdchfTUg8-hlz5UE1j3-u5C9WJb5MvcarO0lwH_33DvK6OfY7JulTpYNdGXZI-ObMoSF5uFMPCVe_KO8pFU50Gv_ZVl8EPz9DjTvfZHd6tI3R58v5i-nF8evZhNj06HRsmGjx2NRMM2s5oC7jDgkrTUaCE89o6i4lmhhpubAstrZvGaNwa4rjsSOcaZ4GO0GzrtVFfqevklzrdqqi92mzENFfrukzvlBCSt20DLRDOWm4lEZhJ3BEAZrmgxfV267petUtnjQvlyf0D6cOT4BdqHm8UAAcGkhXDqztDil9XLg9q6bNxpbXBxVVWFIjgTEreFPTlP-hVXKVQelWomsiGs9KOEXpxv6RdLX__vACTLWBSzDm5bocAVuu5Uuu5Uru5Kgn1NuGb793tf2h1dPzlHDAQTP8AMWPTzw |
Cites_doi | 10.3233/BSI-170164 10.1016/j.actbio.2019.07.055 10.1016/j.jmbbm.2021.104854 10.1002/jbmr.4642 10.1364/BOE.10.001841 10.1007/s10856-007-3187-2 10.1016/j.joca.2006.12.006 10.1371/journal.pone.0273832 10.1038/s41551-019-0477-1 10.1016/0021-9290(96)00024-3 10.1016/j.actbio.2021.07.060 10.1006/jsbi.1998.3966 10.1016/j.nima.2009.03.200 10.1016/j.biomaterials.2011.08.013 10.1177/1941738109350438 10.1016/j.matbio.2022.11.006 10.1016/j.actbio.2017.11.015 10.1016/j.jsb.2004.10.010 10.1107/S1600576717004708 10.1021/acsnano.7b00563 10.3389/fbioe.2022.1010056 10.1073/pnas.1107966108 10.1038/boneres.2016.28 10.1016/S0006-3495(93)81362-6 10.1098/rsif.2018.0611 10.1016/S1047-8477(02)00635-4 10.1016/j.actbio.2018.05.053 10.1098/rsif.2005.0100 10.1098/rspb.1981.0040 10.1155/2013/326150 10.1038/nrrheum.2016.148 10.1007/BF00583443 10.1107/S205327331701614X 10.1098/rsfs.2013.0058 10.1371/journal.pone.0163552 10.3390/ma13112579 10.1016/j.joca.2005.07.014 10.1038/ncomms6942 10.1016/j.actbio.2021.09.037 10.1115/1.3049478 10.1017/CBO9781139170130 10.1007/s11224-007-9155-0 10.1002/art.42089 10.1016/j.actbio.2023.07.021 10.1002/advs.202308811 10.1039/B402005G 10.1088/0022-3719/21/23/004 10.1126/scitranslmed.aax6775 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. – notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202407649 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_8897bb61b1274b7d9280490f2114d783 PMC11714194 39527673 10_1002_advs_202407649 ADVS10120 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Diamond Light Source for beamtime funderid: SM25602 – fundername: National Institute for Health and Care Research funderid: NIHR203330 – fundername: Engineering and Physical Sciences Research Council funderid: EP/V011235/1; EP/V011383/1 – fundername: Biotechnology and Biological Sciences Research Council funderid: BB/R003610/1 – fundername: Medical Research Council funderid: MR/R025673/1 – fundername: Medical Research Council grantid: MR/R025673/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/R003610/1 – fundername: Diamond Light Source for beamtime grantid: SM25602 – fundername: Engineering and Physical Sciences Research Council grantid: EP/V011235/1 – fundername: National Institute for Health and Care Research grantid: NIHR203330 – fundername: Engineering and Physical Sciences Research Council grantid: EP/V011383/1 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAMMB AAZKR ABDBF ABUWG ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFBPY AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM WIN AAYXX CITATION EJD AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c4860-e54841bfcad10f0839cf3132775ded02a4c3c7cdb1b3566ca0bc2e79f2fe6ed13 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:26:00 EDT 2025 Thu Aug 21 18:28:44 EDT 2025 Fri Jul 11 16:50:15 EDT 2025 Sat Aug 23 13:52:45 EDT 2025 Thu Apr 03 06:59:02 EDT 2025 Thu Jul 24 02:08:07 EDT 2025 Mon Aug 11 05:48:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | nanoscale mechanics collagen fibrils small‐angle x‐ray scattering bone‐cartilage interface 3D diffraction modelling |
Language | English |
License | Attribution 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4860-e54841bfcad10f0839cf3132775ded02a4c3c7cdb1b3566ca0bc2e79f2fe6ed13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2201-8933 |
OpenAccessLink | https://www.proquest.com/docview/3152967408?pq-origsite=%requestingapplication% |
PMID | 39527673 |
PQID | 3152967408 |
PQPubID | 4365299 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8897bb61b1274b7d9280490f2114d783 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11714194 proquest_miscellaneous_3128749976 proquest_journals_3152967408 pubmed_primary_39527673 crossref_primary_10_1002_advs_202407649 wiley_primary_10_1002_advs_202407649_ADVS10120 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 6 2019; 97 2021; 124 2019; 11 2019; 10 1993; 64 2019; 16 2020; 13 2020; 4 1996; 29 2014; 4 2009; 607 2013; 2013 2005; 149 2022; 37 2022; 74 2018; 74 1998; 122 2018; 76 2007; 18 2015; 6 2023; 168 2008; 19 2006; 14 1996 2011; 32 2006; 3 2024; 11 2009; 131 2018; 65 2016; 12 2007; 15 2016; 11 2016; 4 2017; 50 2011; 108 1981; 212 2021; 134 2021; 136 2004; 14 2017; 11 1925; 2 1988; 21 2023; 115 2017 2022; 10 2009; 1 2022; 17 2003; 141 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 14 start-page: 13 year: 2006 publication-title: Osteoarthritis Cartilage – volume: 11 start-page: 9728 year: 2017 publication-title: ACS Nano – volume: 4 year: 2016 publication-title: Bone Res. – volume: 168 start-page: 264 year: 2023 publication-title: Acta Biomater. – volume: 134 start-page: 804 year: 2021 publication-title: Acta Biomater. – volume: 108 year: 2011 publication-title: Proc. Natl. Acad. Sci. USA – volume: 76 start-page: 295 year: 2018 publication-title: Acta Biomater. – volume: 15 start-page: 682 year: 2007 publication-title: Osteoarthritis Cartilage – volume: 3 start-page: 117 year: 2006 publication-title: J. R. Soc. Interface – volume: 18 start-page: 257 year: 2007 publication-title: Struct. Chem. – volume: 6 start-page: 37 year: 2017 publication-title: Biomed. Spectrosc. Imaging – volume: 11 year: 2016 publication-title: PLoS One – volume: 16 year: 2019 publication-title: J. R. Soc. Interface – volume: 50 start-page: 959 year: 2017 publication-title: J. Appl. Crystallogr. – volume: 212 start-page: 299 year: 1981 publication-title: Proc. R. Soc. Lond. – Biol. Sci. – volume: 19 start-page: 703 year: 2008 publication-title: J. Mater. Sci. Mater. Med. – volume: 29 start-page: 1131 year: 1996 publication-title: J. Biomech. – volume: 11 year: 2019 publication-title: Sci. Transl. Med. – volume: 10 start-page: 1841 year: 2019 publication-title: Biomed. Opt. Express – volume: 13 start-page: 2579 year: 2020 publication-title: Materials – volume: 32 start-page: 8892 year: 2011 publication-title: Biomaterials – volume: 122 start-page: 119 year: 1998 publication-title: J. Struct. Biol. – volume: 4 year: 2014 publication-title: Interface Focus – volume: 65 start-page: 216 year: 2018 publication-title: Acta Biomater. – volume: 115 start-page: 32 year: 2023 publication-title: Matrix Biol. – volume: 10 year: 2022 publication-title: Front. Bioeng. Biotechnol. – volume: 607 start-page: 247 year: 2009 publication-title: Nucl. Instrum. Methods Phys. Res. A – volume: 17 year: 2022 publication-title: PLoS One – volume: 2 start-page: 783 year: 1925 publication-title: Z. Zellforsch. Mikrosk. Anat. – volume: 64 start-page: 260 year: 1993 publication-title: Biophys. J. – volume: 6 start-page: 5942 year: 2015 publication-title: Nat. Commun. – volume: 74 start-page: 12 year: 2018 publication-title: Acta Crystallogr., A Found Adv – volume: 37 start-page: 1700 year: 2022 publication-title: J. Bone Miner. Res. – year: 1996 – volume: 97 start-page: 437 year: 2019 publication-title: Acta Biomater. – volume: 21 start-page: 4155 year: 1988 publication-title: J. Phys. C: Solid State Phys. – volume: 124 year: 2021 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 131 year: 2009 publication-title: J. Biomech. Eng. – volume: 136 start-page: 314 year: 2021 publication-title: Acta Biomater. – volume: 149 start-page: 138 year: 2005 publication-title: J. Struct. Biol. – volume: 14 start-page: 2115 year: 2004 publication-title: J. Mater. Chem. – volume: 11 year: 2024 publication-title: Adv. Sci. – volume: 1 start-page: 461 year: 2009 publication-title: Sports Health – volume: 2013 year: 2013 publication-title: Comput. Math. Methods Med. – volume: 4 start-page: 343 year: 2020 publication-title: Nat. Biomed. Eng. – year: 2017 – volume: 141 start-page: 208 year: 2003 publication-title: J. Struct. Biol. – volume: 74 start-page: 1172 year: 2022 publication-title: Arthritis Rheumatol. – volume: 12 start-page: 632 year: 2016 publication-title: Nat. Rev. Rheumatol. – ident: e_1_2_8_11_1 doi: 10.3233/BSI-170164 – ident: e_1_2_8_6_1 doi: 10.1016/j.actbio.2019.07.055 – ident: e_1_2_8_35_1 doi: 10.1016/j.jmbbm.2021.104854 – ident: e_1_2_8_12_1 doi: 10.1002/jbmr.4642 – ident: e_1_2_8_33_1 doi: 10.1364/BOE.10.001841 – ident: e_1_2_8_44_1 doi: 10.1007/s10856-007-3187-2 – ident: e_1_2_8_10_1 doi: 10.1016/j.joca.2006.12.006 – ident: e_1_2_8_17_1 doi: 10.1371/journal.pone.0273832 – ident: e_1_2_8_8_1 doi: 10.1038/s41551-019-0477-1 – ident: e_1_2_8_27_1 doi: 10.1016/0021-9290(96)00024-3 – ident: e_1_2_8_39_1 doi: 10.1016/j.actbio.2021.07.060 – ident: e_1_2_8_26_1 doi: 10.1006/jsbi.1998.3966 – ident: e_1_2_8_45_1 doi: 10.1016/j.nima.2009.03.200 – ident: e_1_2_8_47_1 doi: 10.1016/j.biomaterials.2011.08.013 – ident: e_1_2_8_4_1 doi: 10.1177/1941738109350438 – ident: e_1_2_8_46_1 doi: 10.1016/j.matbio.2022.11.006 – ident: e_1_2_8_19_1 doi: 10.1016/j.actbio.2017.11.015 – ident: e_1_2_8_20_1 doi: 10.1016/j.jsb.2004.10.010 – ident: e_1_2_8_48_1 doi: 10.1107/S1600576717004708 – ident: e_1_2_8_28_1 doi: 10.1021/acsnano.7b00563 – ident: e_1_2_8_42_1 doi: 10.3389/fbioe.2022.1010056 – ident: e_1_2_8_30_1 doi: 10.1073/pnas.1107966108 – ident: e_1_2_8_1_1 doi: 10.1038/boneres.2016.28 – ident: e_1_2_8_22_1 doi: 10.1016/S0006-3495(93)81362-6 – ident: e_1_2_8_9_1 doi: 10.1098/rsif.2018.0611 – ident: e_1_2_8_23_1 doi: 10.1016/S1047-8477(02)00635-4 – ident: e_1_2_8_31_1 doi: 10.1016/j.actbio.2018.05.053 – ident: e_1_2_8_32_1 doi: 10.1098/rsif.2005.0100 – ident: e_1_2_8_15_1 doi: 10.1098/rspb.1981.0040 – ident: e_1_2_8_7_1 doi: 10.1155/2013/326150 – ident: e_1_2_8_2_1 doi: 10.1038/nrrheum.2016.148 – ident: e_1_2_8_5_1 doi: 10.1007/BF00583443 – ident: e_1_2_8_37_1 doi: 10.1107/S205327331701614X – ident: e_1_2_8_41_1 doi: 10.1098/rsfs.2013.0058 – ident: e_1_2_8_14_1 doi: 10.1371/journal.pone.0163552 – ident: e_1_2_8_43_1 doi: 10.3390/ma13112579 – ident: e_1_2_8_34_1 doi: 10.1016/j.joca.2005.07.014 – ident: e_1_2_8_18_1 doi: 10.1038/ncomms6942 – ident: e_1_2_8_25_1 doi: 10.1016/j.actbio.2021.09.037 – ident: e_1_2_8_16_1 doi: 10.1115/1.3049478 – ident: e_1_2_8_24_1 doi: 10.1017/CBO9781139170130 – ident: e_1_2_8_40_1 doi: 10.1007/s11224-007-9155-0 – ident: e_1_2_8_3_1 doi: 10.1002/art.42089 – ident: e_1_2_8_49_1 – ident: e_1_2_8_38_1 doi: 10.1016/j.actbio.2023.07.021 – ident: e_1_2_8_13_1 doi: 10.1002/advs.202308811 – ident: e_1_2_8_21_1 doi: 10.1039/B402005G – ident: e_1_2_8_29_1 doi: 10.1088/0022-3719/21/23/004 – ident: e_1_2_8_36_1 doi: 10.1126/scitranslmed.aax6775 |
SSID | ssj0001537418 |
Score | 2.30813 |
Snippet | By developing a 3D X‐ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of... By developing a 3D X-ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of... Abstract By developing a 3D X‐ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2407649 |
SubjectTerms | 3D diffraction modelling Animals Biomechanics Bone and Bones - metabolism bone‐cartilage interface Calcification Cartilage Cartilage - metabolism Cartilage, Articular - diagnostic imaging Cartilage, Articular - metabolism Collagen Collagen - chemistry Collagen - metabolism collagen fibrils Deformation Hydrogels nanoscale mechanics Osteoarthritis Physiology Scattering, Small Angle small‐angle x‐ray scattering Stress, Mechanical X-Ray Diffraction - methods |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJy6IRylpF-RKSKUSgfixcXxkEStUCS6AxM3yK2IPDdUu9Nwzp_7G_hJmnOwqK5C4cItixx7NjONv_PiGkANW-xiij7l3WucyqpjbwhZ5tMrjtpv1acHt8qq8uJU_74Z3vVRfeCaspQduFXdSVVo5VzLHIH5yKmhe4WZVDYGLDKpKPJ8w5_WCqfZ-sEBaljlLY8FPbPiD7NwYwJRInNmbhRJZ_1sI8_VByT6ATTPQeIOsd9CRnrYib5KV2GyRzW5wzuhhxyD9Y5s8X7UEGHZKr9NdkP9__2GODlAYvekhVfA4OmkoLh7Ab6WhYzz_D89T2r-ieUTnFJ3UNgFbtPDRZcQ7w5PZr9QEwEg6emgidHSGOsX2KOLZT-R2fH5zdpF3SRdyj_mo8gghjGSu9jawogaApn2N9I5KDUMMBbfSC698cMwJgILeFs7zqHTN61jGwMQOWW2gv11CXSWHSjhtPcyB3nMXtAIEKQK3lZB1lZHvcyOY3y23hmlZlLlBc5mFuTIyQhstaiEndnoBnmI6TzHveUpGBnMLm26gzoxguPGsZAHSfFsUwxDDfRPbxIcnrINJATQAt4x8bh1iIYnQQ65KBY1XS66yJOpySTO5TzTeDHPPMy0zcpy86h0dGMAp18jGVnz5CG18JWscUxmn1aQBWX2cPsU9wFePbj8NpRdOfCTM priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLiglmdKWxkJCZCIGj8S20dasaqQWiG1lXqz_ArsgSzabTlz5sRv5Jcw42TTjUBC3KI8Jk5mJv5mnPmGkJesDSmmkMrgjSllUql0lavK5FTAZTcXcsLt9Kw5uZQfruqrjSr-nh9iTLihZ-TvNTq486vDW9JQF78h3TZGJI00d8k9rK9F9nwuP95mWWqB9CzYYQ6i61JoKdfMjRU_nIqYzEyZwP9vqPPPnyc3QW2elWbb5MEAJ-m7Xv875E7qHpKdwWFX9PXAKv3mEflx1j-0W9LzXB_y6_tP7NsBL5FebKBXsEI67ygmFOBT09EZ1gTA9pJulm2-pWvaTuq6iBIdXHSasI54vvqSRQC0pEeLLsGNjtFAUR5FjPuYXM7eXxyflEMjhjJgj6oyQVgjmW-Di6xqAbSZ0CLlo1J1TLHiTgYRVIieeQHwMLjKB56UaXmbmhSZeEK2OrjfM0K9lrUS3rgA82II3EejAFWKyJ0WstUFebVWgv3a823YnlmZW1SXHdVVkCPU0XgW8mTnHYvlJzu4ndXaKO8b5hlE315FwzUudbYQ9sqotCjI3lrDdnDelRUMF6OVrGA0L8bD4Ha4luK6tLjBc7BRgAEwV5CnvUGMIxGm5qpRIFxPTGUy1OmRbv45U3sz7EfPjCxIb_v_eAcWsMs5MrRVu_97wXNyn2Mr45xN2iNb18ubtA_46tofZBf6DWclIrc priority: 102 providerName: Wiley-Blackwell |
Title | Nonlinear Stress‐Induced Transformations in Collagen Fibrillar Organization, Disorder and Strain Mechanisms in the Bone‐Cartilage Unit |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202407649 https://www.ncbi.nlm.nih.gov/pubmed/39527673 https://www.proquest.com/docview/3152967408 https://www.proquest.com/docview/3128749976 https://pubmed.ncbi.nlm.nih.gov/PMC11714194 https://doaj.org/article/8897bb61b1274b7d9280490f2114d783 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZo98IFUZ6BsjISEiARGttJHJ9Qt3RVIXZVsa3UW-RXyh7Ilt2255458Rv5Jcw43u2uQHCL8nASz4z9zYz9DSGvWGO989an1iiV5l76VGc6S72WFtNu2oaA22hcHp3mn86KsxhwW8RllcsxMQzUbmYxRr4nGGYIZZ5VHy6-p1g1CrOrsYTGFunBEFyB89UbHI6Pv9xGWQqB9CxLtsaM72l3jSzd6MiUSKC5NhsF0v6_Ic0_F0yuA9kwEw3vk3sRQtL9TuY75I5vH5CdaKQL-iYySb99SH6MOyIMPaeTsCfk181PrNUBHUdP1hAraB6dthSDCDC8tHSI-wDgeE7Xt2q-o0uqTqpbhy1qeGjkce_wdPEtNAFwkg5mrYcXHaBSYnsUce0jcjo8PDk4SmPxhdRiXarUgyuTM9NY7VjWAFBTtkGaRykL513GdW6FldYZZgRAQqszY7mXquGNL71j4jHZbuF9Twk1VV5IYZS2MBday41TEpCkcFxXIm-qhLxeCqG-6Dg26o5NmdcornolroQMUEaru5AbO5yYzc_raGp1VSlpTMkMA4_bSKd4henNBlzd3MlKJGR3KeE6GuyivlWvhLxcXQZTw_yJbv3sCu_B4gAKAFxCnnQKsfoSoQouSwmNVxuqsvGpm1fa6ddA582wBj1TeULeB636Tx_UgFcmyMqWPfv3jzwndzkWKw7xol2yfTm_8i8AQV2aPtni-XGf9PY_jj5P-tFo-iEe8RuTSyLL |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXRHkaCmwlECBhau86We8BIdI2SmkTIZpKvbn7MuSAU5IWxI0zJ34JP4pfwowfaSIQnHqLYmdsZx77zYz3G4BHcW6989aH1igVJl76UEc6Cr2Wltpu2pYFt8Gw0z9M3hy1j1bgZ7MXhl6rbGJiGajdxFKNfFPE1CGUSZS-OvkU0tQo6q42IzQqs9jzX79gyjZ7ubuN-n3MeW9ntNUP66kCoaWBS6FHjJ7EJrfaxVGOCETZnPgLpWw77yKuEyustM7ERiDWsToylnupcp77jnexQLmXYDURmMq0YLW7M3z77ryq0xZEB9OwQ0Z8U7vPxApOiVOHCDsXVr9ySMDfkO2fL2guAudy5etdg6s1ZGWvKxtbgxVfXIe1OijM2NOaufrZDfg-rIg39JQdlHtQfn37QbNBUFFstICQ0dLZuGBUtMBwVrAe7TvAz1O2uDX0OWuoQZkuHEnU-KOBp73K49nHUgTCV9adFB4vtEVOQPIY4eibcHgharkFrQKvdweYSZO2FEZpi2uvtdw4JRG5Csd1KpI8DeBJo4TspOL0yCr2Zp6RurK5ugLoko7mZxEXd_nFZPo-q107S1MljenEJsYM30ineErt1BxT68TJVASw3mg4qwPELDs35wA25ofRtalfows_OaNzaBiBQsAYwO3KIOZ3IlSby45E4emSqSzd6vKRYvyhpA-PaeZ9rJIAXpRW9Z__IEN8dEAscNHdfz_IQ7jcHw32s_3d4d49uMJpUHJZq1qH1un0zN9H9HZqHtQuw-D4or30N_c0XUw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEOVpKLBIIEDCxLu2s94DQqRt1FIaVbSVejP7cpsDTklaEDfOnPg9_Bx-CTN-pIlAcOotip3xOvPYb2d2vwF4zAvrnbc-tEapMPHShzrSUei1tFR207ZKuO0Me5sHydvD9HAJfrZnYWhbZRsTq0DtxpZy5N2YU4VQJlHWLZptEbvrg9cnn0LqIEWV1radRm0i2_7rF1y-TV9traOunwgx2Nhf2wybDgOhpeZLoUe8nnBTWO14VCAaUbYgLkMpU-ddJHRiYyutM9zEiHusjowVXqpCFL7nHY9R7iVYxlHJqAPL_Y3h7vvzDE8aEzVMyxQZia52n4khnBZRPSLvnJsJq4YBf0O5f27WnAfR1Sw4uAZXG_jK3tT2tgJLvrwOK02AmLJnDYv18xvwfViTcOgJ26vOo_z69oP6hKDS2P4cWkarZ6OSUQIDQ1vJBnQGAT9P2Pwx0RespQllunQkUeOPdjydWx5NP1YiEMqy_rj0-KA1cgiSxwhT34SDC1HLLeiU-Lw7wEyWpDI2Sluch60VximJKDZ2QmdxUmQBPG2VkJ_U_B55zeQsclJXPlNXAH3S0ewu4uWuvhhPjvLGzfMsU9KYHjccV_tGOiUyKq0WuMxOnMziAFZbDedNsJjm56YdwKPZZXRzqt3o0o_P6B5qTKAQPAZwuzaI2UhilQrZkyg8WzCVhaEuXilHxxWVOOeSJ1wlAbysrOo__0GOWGmPGOGiu_9-kYdwGb0zf7c13L4HVwT1TK7SVqvQOZ2c-fsI5E7Ng8ZjGHy4aCf9DQDYYYE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Stress%E2%80%90Induced+Transformations+in+Collagen+Fibrillar+Organization%2C+Disorder+and+Strain+Mechanisms+in+the+Bone%E2%80%90Cartilage+Unit&rft.jtitle=Advanced+science&rft.au=Badar%2C+Waqas&rft.au=Inamdar%2C+Sheetal+R&rft.au=Fratzl%2C+Peter&rft.au=Snow%2C+Tim&rft.date=2025-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1002%2Fadvs.202407649&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |