Nonlinear Stress‐Induced Transformations in Collagen Fibrillar Organization, Disorder and Strain Mechanisms in the Bone‐Cartilage Unit

By developing a 3D X‐ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone‐cartilage unit (BCU), whose healthy functioning is critical for joint...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 12; no. 1; pp. e2407649 - n/a
Main Authors Badar, Waqas, Inamdar, Sheetal R., Fratzl, Peter, Snow, Tim, Terrill, Nicholas J., Knight, Martin M., Gupta, Himadri S.
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.01.2025
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By developing a 3D X‐ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone‐cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small‐angle X‐ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage‐bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular‐level disorder, is found in the cartilage (sliding) surface region. Just below, fibrils accommodate tissue strain by reorientation, which transitions molecular‐level kinking or loss of crystallinity in the deep zone. Crystalline fibrils laterally shrink far more (20×) than they contract, possibly by water loss from between tropocollagen molecules. With the calcified plate acting as an anchor for surrounding tissue, a qualitative switch occurs in fibrillar deformation between the articular cartilage and calcified regions. These findings significantly advance this understanding of the complex, nonlinear ultrastructural dynamics at this critical interface, and opens avenues for developing targeted diagnostic and therapeutic strategies for musculoskeletal disorders. The ultrastructural mechanisms enabling physiological compression in cartilage/bone interfaces in joints are explored using X‐ray nanomechanical imaging and 3D modeling of the hydrated collagen fibril/proteoglycan nanostructure. The approach reveals synergistic and microscale spatially‐graded stress‐induced interactions between hidden modes like fibrillar compaction, fluid flow, crystallinity transitions, and reorientation. These molecular‐to‐microscale biophysical mechanisms advance fundamental understandings of joint function and pathological degeneration.
AbstractList By developing a 3D X‐ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone‐cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small‐angle X‐ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage‐bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular‐level disorder, is found in the cartilage (sliding) surface region. Just below, fibrils accommodate tissue strain by reorientation, which transitions molecular‐level kinking or loss of crystallinity in the deep zone. Crystalline fibrils laterally shrink far more (20×) than they contract, possibly by water loss from between tropocollagen molecules. With the calcified plate acting as an anchor for surrounding tissue, a qualitative switch occurs in fibrillar deformation between the articular cartilage and calcified regions. These findings significantly advance this understanding of the complex, nonlinear ultrastructural dynamics at this critical interface, and opens avenues for developing targeted diagnostic and therapeutic strategies for musculoskeletal disorders.
Abstract By developing a 3D X‐ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone‐cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small‐angle X‐ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage‐bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular‐level disorder, is found in the cartilage (sliding) surface region. Just below, fibrils accommodate tissue strain by reorientation, which transitions molecular‐level kinking or loss of crystallinity in the deep zone. Crystalline fibrils laterally shrink far more (20×) than they contract, possibly by water loss from between tropocollagen molecules. With the calcified plate acting as an anchor for surrounding tissue, a qualitative switch occurs in fibrillar deformation between the articular cartilage and calcified regions. These findings significantly advance this understanding of the complex, nonlinear ultrastructural dynamics at this critical interface, and opens avenues for developing targeted diagnostic and therapeutic strategies for musculoskeletal disorders.
By developing a 3D X‐ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone‐cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small‐angle X‐ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage‐bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular‐level disorder, is found in the cartilage (sliding) surface region. Just below, fibrils accommodate tissue strain by reorientation, which transitions molecular‐level kinking or loss of crystallinity in the deep zone. Crystalline fibrils laterally shrink far more (20×) than they contract, possibly by water loss from between tropocollagen molecules. With the calcified plate acting as an anchor for surrounding tissue, a qualitative switch occurs in fibrillar deformation between the articular cartilage and calcified regions. These findings significantly advance this understanding of the complex, nonlinear ultrastructural dynamics at this critical interface, and opens avenues for developing targeted diagnostic and therapeutic strategies for musculoskeletal disorders. The ultrastructural mechanisms enabling physiological compression in cartilage/bone interfaces in joints are explored using X‐ray nanomechanical imaging and 3D modeling of the hydrated collagen fibril/proteoglycan nanostructure. The approach reveals synergistic and microscale spatially‐graded stress‐induced interactions between hidden modes like fibrillar compaction, fluid flow, crystallinity transitions, and reorientation. These molecular‐to‐microscale biophysical mechanisms advance fundamental understandings of joint function and pathological degeneration.
By developing a 3D X-ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone-cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small-angle X-ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage-bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular-level disorder, is found in the cartilage (sliding) surface region. Just below, fibrils accommodate tissue strain by reorientation, which transitions molecular-level kinking or loss of crystallinity in the deep zone. Crystalline fibrils laterally shrink far more (20×) than they contract, possibly by water loss from between tropocollagen molecules. With the calcified plate acting as an anchor for surrounding tissue, a qualitative switch occurs in fibrillar deformation between the articular cartilage and calcified regions. These findings significantly advance this understanding of the complex, nonlinear ultrastructural dynamics at this critical interface, and opens avenues for developing targeted diagnostic and therapeutic strategies for musculoskeletal disorders.By developing a 3D X-ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone-cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small-angle X-ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage-bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular-level disorder, is found in the cartilage (sliding) surface region. Just below, fibrils accommodate tissue strain by reorientation, which transitions molecular-level kinking or loss of crystallinity in the deep zone. Crystalline fibrils laterally shrink far more (20×) than they contract, possibly by water loss from between tropocollagen molecules. With the calcified plate acting as an anchor for surrounding tissue, a qualitative switch occurs in fibrillar deformation between the articular cartilage and calcified regions. These findings significantly advance this understanding of the complex, nonlinear ultrastructural dynamics at this critical interface, and opens avenues for developing targeted diagnostic and therapeutic strategies for musculoskeletal disorders.
Author Snow, Tim
Badar, Waqas
Gupta, Himadri S.
Fratzl, Peter
Knight, Martin M.
Inamdar, Sheetal R.
Terrill, Nicholas J.
AuthorAffiliation 3 Diamond Light Source Harwell Science Campus Harwell OX11 0DE UK
1 Centre for Bioengineering and School of Engineering and Materials Science Queen Mary University of London London E1 4NS UK
2 Max Planck Institute of Colloids and Interfaces Research Campus Golm 14424 Potsdam Germany
AuthorAffiliation_xml – name: 2 Max Planck Institute of Colloids and Interfaces Research Campus Golm 14424 Potsdam Germany
– name: 1 Centre for Bioengineering and School of Engineering and Materials Science Queen Mary University of London London E1 4NS UK
– name: 3 Diamond Light Source Harwell Science Campus Harwell OX11 0DE UK
Author_xml – sequence: 1
  givenname: Waqas
  surname: Badar
  fullname: Badar, Waqas
  organization: Queen Mary University of London
– sequence: 2
  givenname: Sheetal R.
  surname: Inamdar
  fullname: Inamdar, Sheetal R.
  organization: Queen Mary University of London
– sequence: 3
  givenname: Peter
  surname: Fratzl
  fullname: Fratzl, Peter
  organization: Research Campus Golm
– sequence: 4
  givenname: Tim
  surname: Snow
  fullname: Snow, Tim
  organization: Harwell Science Campus
– sequence: 5
  givenname: Nicholas J.
  surname: Terrill
  fullname: Terrill, Nicholas J.
  organization: Harwell Science Campus
– sequence: 6
  givenname: Martin M.
  surname: Knight
  fullname: Knight, Martin M.
  organization: Queen Mary University of London
– sequence: 7
  givenname: Himadri S.
  orcidid: 0000-0003-2201-8933
  surname: Gupta
  fullname: Gupta, Himadri S.
  email: h.gupta@qmul.ac.uk
  organization: Queen Mary University of London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39527673$$D View this record in MEDLINE/PubMed
BookMark eNqFkjFvEzEUgC1UREvoyohOYmEgwc_2ne0JlZRCpEKHtqyWz_Ylri52sS9FZWJm4jfyS3CSErUsTH6yv_f5-fk9RXshBofQc8ATwJi80fYmTwgmDPOGyUfogIAUYyoY27sX76PDnK8wxlBTzkA8QftU1oQ3nB6gn59j6H1wOlXnQ3I5__7xaxbsyjhbXSQdchfTUg8-hlz5UE1j3-u5C9WJb5MvcarO0lwH_33DvK6OfY7JulTpYNdGXZI-ObMoSF5uFMPCVe_KO8pFU50Gv_ZVl8EPz9DjTvfZHd6tI3R58v5i-nF8evZhNj06HRsmGjx2NRMM2s5oC7jDgkrTUaCE89o6i4lmhhpubAstrZvGaNwa4rjsSOcaZ4GO0GzrtVFfqevklzrdqqi92mzENFfrukzvlBCSt20DLRDOWm4lEZhJ3BEAZrmgxfV267petUtnjQvlyf0D6cOT4BdqHm8UAAcGkhXDqztDil9XLg9q6bNxpbXBxVVWFIjgTEreFPTlP-hVXKVQelWomsiGs9KOEXpxv6RdLX__vACTLWBSzDm5bocAVuu5Uuu5Uru5Kgn1NuGb793tf2h1dPzlHDAQTP8AMWPTzw
Cites_doi 10.3233/BSI-170164
10.1016/j.actbio.2019.07.055
10.1016/j.jmbbm.2021.104854
10.1002/jbmr.4642
10.1364/BOE.10.001841
10.1007/s10856-007-3187-2
10.1016/j.joca.2006.12.006
10.1371/journal.pone.0273832
10.1038/s41551-019-0477-1
10.1016/0021-9290(96)00024-3
10.1016/j.actbio.2021.07.060
10.1006/jsbi.1998.3966
10.1016/j.nima.2009.03.200
10.1016/j.biomaterials.2011.08.013
10.1177/1941738109350438
10.1016/j.matbio.2022.11.006
10.1016/j.actbio.2017.11.015
10.1016/j.jsb.2004.10.010
10.1107/S1600576717004708
10.1021/acsnano.7b00563
10.3389/fbioe.2022.1010056
10.1073/pnas.1107966108
10.1038/boneres.2016.28
10.1016/S0006-3495(93)81362-6
10.1098/rsif.2018.0611
10.1016/S1047-8477(02)00635-4
10.1016/j.actbio.2018.05.053
10.1098/rsif.2005.0100
10.1098/rspb.1981.0040
10.1155/2013/326150
10.1038/nrrheum.2016.148
10.1007/BF00583443
10.1107/S205327331701614X
10.1098/rsfs.2013.0058
10.1371/journal.pone.0163552
10.3390/ma13112579
10.1016/j.joca.2005.07.014
10.1038/ncomms6942
10.1016/j.actbio.2021.09.037
10.1115/1.3049478
10.1017/CBO9781139170130
10.1007/s11224-007-9155-0
10.1002/art.42089
10.1016/j.actbio.2023.07.021
10.1002/advs.202308811
10.1039/B402005G
10.1088/0022-3719/21/23/004
10.1126/scitranslmed.aax6775
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
– notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202407649
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_8897bb61b1274b7d9280490f2114d783
PMC11714194
39527673
10_1002_advs_202407649
ADVS10120
Genre article
Journal Article
GrantInformation_xml – fundername: Diamond Light Source for beamtime
  funderid: SM25602
– fundername: National Institute for Health and Care Research
  funderid: NIHR203330
– fundername: Engineering and Physical Sciences Research Council
  funderid: EP/V011235/1; EP/V011383/1
– fundername: Biotechnology and Biological Sciences Research Council
  funderid: BB/R003610/1
– fundername: Medical Research Council
  funderid: MR/R025673/1
– fundername: Medical Research Council
  grantid: MR/R025673/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/R003610/1
– fundername: Diamond Light Source for beamtime
  grantid: SM25602
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/V011235/1
– fundername: National Institute for Health and Care Research
  grantid: NIHR203330
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/V011383/1
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAMMB
AAZKR
ABDBF
ABUWG
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFBPY
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
CITATION
EJD
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c4860-e54841bfcad10f0839cf3132775ded02a4c3c7cdb1b3566ca0bc2e79f2fe6ed13
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:26:00 EDT 2025
Thu Aug 21 18:28:44 EDT 2025
Fri Jul 11 16:50:15 EDT 2025
Sat Aug 23 13:52:45 EDT 2025
Thu Apr 03 06:59:02 EDT 2025
Thu Jul 24 02:08:07 EDT 2025
Mon Aug 11 05:48:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords nanoscale mechanics
collagen fibrils
small‐angle x‐ray scattering
bone‐cartilage interface
3D diffraction modelling
Language English
License Attribution
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4860-e54841bfcad10f0839cf3132775ded02a4c3c7cdb1b3566ca0bc2e79f2fe6ed13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2201-8933
OpenAccessLink https://www.proquest.com/docview/3152967408?pq-origsite=%requestingapplication%
PMID 39527673
PQID 3152967408
PQPubID 4365299
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_8897bb61b1274b7d9280490f2114d783
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11714194
proquest_miscellaneous_3128749976
proquest_journals_3152967408
pubmed_primary_39527673
crossref_primary_10_1002_advs_202407649
wiley_primary_10_1002_advs_202407649_ADVS10120
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2025
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 6
2019; 97
2021; 124
2019; 11
2019; 10
1993; 64
2019; 16
2020; 13
2020; 4
1996; 29
2014; 4
2009; 607
2013; 2013
2005; 149
2022; 37
2022; 74
2018; 74
1998; 122
2018; 76
2007; 18
2015; 6
2023; 168
2008; 19
2006; 14
1996
2011; 32
2006; 3
2024; 11
2009; 131
2018; 65
2016; 12
2007; 15
2016; 11
2016; 4
2017; 50
2011; 108
1981; 212
2021; 134
2021; 136
2004; 14
2017; 11
1925; 2
1988; 21
2023; 115
2017
2022; 10
2009; 1
2022; 17
2003; 141
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 14
  start-page: 13
  year: 2006
  publication-title: Osteoarthritis Cartilage
– volume: 11
  start-page: 9728
  year: 2017
  publication-title: ACS Nano
– volume: 4
  year: 2016
  publication-title: Bone Res.
– volume: 168
  start-page: 264
  year: 2023
  publication-title: Acta Biomater.
– volume: 134
  start-page: 804
  year: 2021
  publication-title: Acta Biomater.
– volume: 108
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 76
  start-page: 295
  year: 2018
  publication-title: Acta Biomater.
– volume: 15
  start-page: 682
  year: 2007
  publication-title: Osteoarthritis Cartilage
– volume: 3
  start-page: 117
  year: 2006
  publication-title: J. R. Soc. Interface
– volume: 18
  start-page: 257
  year: 2007
  publication-title: Struct. Chem.
– volume: 6
  start-page: 37
  year: 2017
  publication-title: Biomed. Spectrosc. Imaging
– volume: 11
  year: 2016
  publication-title: PLoS One
– volume: 16
  year: 2019
  publication-title: J. R. Soc. Interface
– volume: 50
  start-page: 959
  year: 2017
  publication-title: J. Appl. Crystallogr.
– volume: 212
  start-page: 299
  year: 1981
  publication-title: Proc. R. Soc. Lond. – Biol. Sci.
– volume: 19
  start-page: 703
  year: 2008
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 29
  start-page: 1131
  year: 1996
  publication-title: J. Biomech.
– volume: 11
  year: 2019
  publication-title: Sci. Transl. Med.
– volume: 10
  start-page: 1841
  year: 2019
  publication-title: Biomed. Opt. Express
– volume: 13
  start-page: 2579
  year: 2020
  publication-title: Materials
– volume: 32
  start-page: 8892
  year: 2011
  publication-title: Biomaterials
– volume: 122
  start-page: 119
  year: 1998
  publication-title: J. Struct. Biol.
– volume: 4
  year: 2014
  publication-title: Interface Focus
– volume: 65
  start-page: 216
  year: 2018
  publication-title: Acta Biomater.
– volume: 115
  start-page: 32
  year: 2023
  publication-title: Matrix Biol.
– volume: 10
  year: 2022
  publication-title: Front. Bioeng. Biotechnol.
– volume: 607
  start-page: 247
  year: 2009
  publication-title: Nucl. Instrum. Methods Phys. Res. A
– volume: 17
  year: 2022
  publication-title: PLoS One
– volume: 2
  start-page: 783
  year: 1925
  publication-title: Z. Zellforsch. Mikrosk. Anat.
– volume: 64
  start-page: 260
  year: 1993
  publication-title: Biophys. J.
– volume: 6
  start-page: 5942
  year: 2015
  publication-title: Nat. Commun.
– volume: 74
  start-page: 12
  year: 2018
  publication-title: Acta Crystallogr., A Found Adv
– volume: 37
  start-page: 1700
  year: 2022
  publication-title: J. Bone Miner. Res.
– year: 1996
– volume: 97
  start-page: 437
  year: 2019
  publication-title: Acta Biomater.
– volume: 21
  start-page: 4155
  year: 1988
  publication-title: J. Phys. C: Solid State Phys.
– volume: 124
  year: 2021
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 131
  year: 2009
  publication-title: J. Biomech. Eng.
– volume: 136
  start-page: 314
  year: 2021
  publication-title: Acta Biomater.
– volume: 149
  start-page: 138
  year: 2005
  publication-title: J. Struct. Biol.
– volume: 14
  start-page: 2115
  year: 2004
  publication-title: J. Mater. Chem.
– volume: 11
  year: 2024
  publication-title: Adv. Sci.
– volume: 1
  start-page: 461
  year: 2009
  publication-title: Sports Health
– volume: 2013
  year: 2013
  publication-title: Comput. Math. Methods Med.
– volume: 4
  start-page: 343
  year: 2020
  publication-title: Nat. Biomed. Eng.
– year: 2017
– volume: 141
  start-page: 208
  year: 2003
  publication-title: J. Struct. Biol.
– volume: 74
  start-page: 1172
  year: 2022
  publication-title: Arthritis Rheumatol.
– volume: 12
  start-page: 632
  year: 2016
  publication-title: Nat. Rev. Rheumatol.
– ident: e_1_2_8_11_1
  doi: 10.3233/BSI-170164
– ident: e_1_2_8_6_1
  doi: 10.1016/j.actbio.2019.07.055
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jmbbm.2021.104854
– ident: e_1_2_8_12_1
  doi: 10.1002/jbmr.4642
– ident: e_1_2_8_33_1
  doi: 10.1364/BOE.10.001841
– ident: e_1_2_8_44_1
  doi: 10.1007/s10856-007-3187-2
– ident: e_1_2_8_10_1
  doi: 10.1016/j.joca.2006.12.006
– ident: e_1_2_8_17_1
  doi: 10.1371/journal.pone.0273832
– ident: e_1_2_8_8_1
  doi: 10.1038/s41551-019-0477-1
– ident: e_1_2_8_27_1
  doi: 10.1016/0021-9290(96)00024-3
– ident: e_1_2_8_39_1
  doi: 10.1016/j.actbio.2021.07.060
– ident: e_1_2_8_26_1
  doi: 10.1006/jsbi.1998.3966
– ident: e_1_2_8_45_1
  doi: 10.1016/j.nima.2009.03.200
– ident: e_1_2_8_47_1
  doi: 10.1016/j.biomaterials.2011.08.013
– ident: e_1_2_8_4_1
  doi: 10.1177/1941738109350438
– ident: e_1_2_8_46_1
  doi: 10.1016/j.matbio.2022.11.006
– ident: e_1_2_8_19_1
  doi: 10.1016/j.actbio.2017.11.015
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jsb.2004.10.010
– ident: e_1_2_8_48_1
  doi: 10.1107/S1600576717004708
– ident: e_1_2_8_28_1
  doi: 10.1021/acsnano.7b00563
– ident: e_1_2_8_42_1
  doi: 10.3389/fbioe.2022.1010056
– ident: e_1_2_8_30_1
  doi: 10.1073/pnas.1107966108
– ident: e_1_2_8_1_1
  doi: 10.1038/boneres.2016.28
– ident: e_1_2_8_22_1
  doi: 10.1016/S0006-3495(93)81362-6
– ident: e_1_2_8_9_1
  doi: 10.1098/rsif.2018.0611
– ident: e_1_2_8_23_1
  doi: 10.1016/S1047-8477(02)00635-4
– ident: e_1_2_8_31_1
  doi: 10.1016/j.actbio.2018.05.053
– ident: e_1_2_8_32_1
  doi: 10.1098/rsif.2005.0100
– ident: e_1_2_8_15_1
  doi: 10.1098/rspb.1981.0040
– ident: e_1_2_8_7_1
  doi: 10.1155/2013/326150
– ident: e_1_2_8_2_1
  doi: 10.1038/nrrheum.2016.148
– ident: e_1_2_8_5_1
  doi: 10.1007/BF00583443
– ident: e_1_2_8_37_1
  doi: 10.1107/S205327331701614X
– ident: e_1_2_8_41_1
  doi: 10.1098/rsfs.2013.0058
– ident: e_1_2_8_14_1
  doi: 10.1371/journal.pone.0163552
– ident: e_1_2_8_43_1
  doi: 10.3390/ma13112579
– ident: e_1_2_8_34_1
  doi: 10.1016/j.joca.2005.07.014
– ident: e_1_2_8_18_1
  doi: 10.1038/ncomms6942
– ident: e_1_2_8_25_1
  doi: 10.1016/j.actbio.2021.09.037
– ident: e_1_2_8_16_1
  doi: 10.1115/1.3049478
– ident: e_1_2_8_24_1
  doi: 10.1017/CBO9781139170130
– ident: e_1_2_8_40_1
  doi: 10.1007/s11224-007-9155-0
– ident: e_1_2_8_3_1
  doi: 10.1002/art.42089
– ident: e_1_2_8_49_1
– ident: e_1_2_8_38_1
  doi: 10.1016/j.actbio.2023.07.021
– ident: e_1_2_8_13_1
  doi: 10.1002/advs.202308811
– ident: e_1_2_8_21_1
  doi: 10.1039/B402005G
– ident: e_1_2_8_29_1
  doi: 10.1088/0022-3719/21/23/004
– ident: e_1_2_8_36_1
  doi: 10.1126/scitranslmed.aax6775
SSID ssj0001537418
Score 2.30813
Snippet By developing a 3D X‐ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of...
By developing a 3D X-ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of...
Abstract By developing a 3D X‐ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2407649
SubjectTerms 3D diffraction modelling
Animals
Biomechanics
Bone and Bones - metabolism
bone‐cartilage interface
Calcification
Cartilage
Cartilage - metabolism
Cartilage, Articular - diagnostic imaging
Cartilage, Articular - metabolism
Collagen
Collagen - chemistry
Collagen - metabolism
collagen fibrils
Deformation
Hydrogels
nanoscale mechanics
Osteoarthritis
Physiology
Scattering, Small Angle
small‐angle x‐ray scattering
Stress, Mechanical
X-Ray Diffraction - methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJy6IRylpF-RKSKUSgfixcXxkEStUCS6AxM3yK2IPDdUu9Nwzp_7G_hJmnOwqK5C4cItixx7NjONv_PiGkANW-xiij7l3WucyqpjbwhZ5tMrjtpv1acHt8qq8uJU_74Z3vVRfeCaspQduFXdSVVo5VzLHIH5yKmhe4WZVDYGLDKpKPJ8w5_WCqfZ-sEBaljlLY8FPbPiD7NwYwJRInNmbhRJZ_1sI8_VByT6ATTPQeIOsd9CRnrYib5KV2GyRzW5wzuhhxyD9Y5s8X7UEGHZKr9NdkP9__2GODlAYvekhVfA4OmkoLh7Ab6WhYzz_D89T2r-ieUTnFJ3UNgFbtPDRZcQ7w5PZr9QEwEg6emgidHSGOsX2KOLZT-R2fH5zdpF3SRdyj_mo8gghjGSu9jawogaApn2N9I5KDUMMBbfSC698cMwJgILeFs7zqHTN61jGwMQOWW2gv11CXSWHSjhtPcyB3nMXtAIEKQK3lZB1lZHvcyOY3y23hmlZlLlBc5mFuTIyQhstaiEndnoBnmI6TzHveUpGBnMLm26gzoxguPGsZAHSfFsUwxDDfRPbxIcnrINJATQAt4x8bh1iIYnQQ65KBY1XS66yJOpySTO5TzTeDHPPMy0zcpy86h0dGMAp18jGVnz5CG18JWscUxmn1aQBWX2cPsU9wFePbj8NpRdOfCTM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLiglmdKWxkJCZCIGj8S20dasaqQWiG1lXqz_ArsgSzabTlz5sRv5Jcw42TTjUBC3KI8Jk5mJv5mnPmGkJesDSmmkMrgjSllUql0lavK5FTAZTcXcsLt9Kw5uZQfruqrjSr-nh9iTLihZ-TvNTq486vDW9JQF78h3TZGJI00d8k9rK9F9nwuP95mWWqB9CzYYQ6i61JoKdfMjRU_nIqYzEyZwP9vqPPPnyc3QW2elWbb5MEAJ-m7Xv875E7qHpKdwWFX9PXAKv3mEflx1j-0W9LzXB_y6_tP7NsBL5FebKBXsEI67ygmFOBT09EZ1gTA9pJulm2-pWvaTuq6iBIdXHSasI54vvqSRQC0pEeLLsGNjtFAUR5FjPuYXM7eXxyflEMjhjJgj6oyQVgjmW-Di6xqAbSZ0CLlo1J1TLHiTgYRVIieeQHwMLjKB56UaXmbmhSZeEK2OrjfM0K9lrUS3rgA82II3EejAFWKyJ0WstUFebVWgv3a823YnlmZW1SXHdVVkCPU0XgW8mTnHYvlJzu4ndXaKO8b5hlE315FwzUudbYQ9sqotCjI3lrDdnDelRUMF6OVrGA0L8bD4Ha4luK6tLjBc7BRgAEwV5CnvUGMIxGm5qpRIFxPTGUy1OmRbv45U3sz7EfPjCxIb_v_eAcWsMs5MrRVu_97wXNyn2Mr45xN2iNb18ubtA_46tofZBf6DWclIrc
  priority: 102
  providerName: Wiley-Blackwell
Title Nonlinear Stress‐Induced Transformations in Collagen Fibrillar Organization, Disorder and Strain Mechanisms in the Bone‐Cartilage Unit
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202407649
https://www.ncbi.nlm.nih.gov/pubmed/39527673
https://www.proquest.com/docview/3152967408
https://www.proquest.com/docview/3128749976
https://pubmed.ncbi.nlm.nih.gov/PMC11714194
https://doaj.org/article/8897bb61b1274b7d9280490f2114d783
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZo98IFUZ6BsjISEiARGttJHJ9Qt3RVIXZVsa3UW-RXyh7Ilt2255458Rv5Jcw43u2uQHCL8nASz4z9zYz9DSGvWGO989an1iiV5l76VGc6S72WFtNu2oaA22hcHp3mn86KsxhwW8RllcsxMQzUbmYxRr4nGGYIZZ5VHy6-p1g1CrOrsYTGFunBEFyB89UbHI6Pv9xGWQqB9CxLtsaM72l3jSzd6MiUSKC5NhsF0v6_Ic0_F0yuA9kwEw3vk3sRQtL9TuY75I5vH5CdaKQL-iYySb99SH6MOyIMPaeTsCfk181PrNUBHUdP1hAraB6dthSDCDC8tHSI-wDgeE7Xt2q-o0uqTqpbhy1qeGjkce_wdPEtNAFwkg5mrYcXHaBSYnsUce0jcjo8PDk4SmPxhdRiXarUgyuTM9NY7VjWAFBTtkGaRykL513GdW6FldYZZgRAQqszY7mXquGNL71j4jHZbuF9Twk1VV5IYZS2MBday41TEpCkcFxXIm-qhLxeCqG-6Dg26o5NmdcornolroQMUEaru5AbO5yYzc_raGp1VSlpTMkMA4_bSKd4henNBlzd3MlKJGR3KeE6GuyivlWvhLxcXQZTw_yJbv3sCu_B4gAKAFxCnnQKsfoSoQouSwmNVxuqsvGpm1fa6ddA582wBj1TeULeB636Tx_UgFcmyMqWPfv3jzwndzkWKw7xol2yfTm_8i8AQV2aPtni-XGf9PY_jj5P-tFo-iEe8RuTSyLL
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXRHkaCmwlECBhau86We8BIdI2SmkTIZpKvbn7MuSAU5IWxI0zJ34JP4pfwowfaSIQnHqLYmdsZx77zYz3G4BHcW6989aH1igVJl76UEc6Cr2Wltpu2pYFt8Gw0z9M3hy1j1bgZ7MXhl6rbGJiGajdxFKNfFPE1CGUSZS-OvkU0tQo6q42IzQqs9jzX79gyjZ7ubuN-n3MeW9ntNUP66kCoaWBS6FHjJ7EJrfaxVGOCETZnPgLpWw77yKuEyustM7ERiDWsToylnupcp77jnexQLmXYDURmMq0YLW7M3z77ryq0xZEB9OwQ0Z8U7vPxApOiVOHCDsXVr9ySMDfkO2fL2guAudy5etdg6s1ZGWvKxtbgxVfXIe1OijM2NOaufrZDfg-rIg39JQdlHtQfn37QbNBUFFstICQ0dLZuGBUtMBwVrAe7TvAz1O2uDX0OWuoQZkuHEnU-KOBp73K49nHUgTCV9adFB4vtEVOQPIY4eibcHgharkFrQKvdweYSZO2FEZpi2uvtdw4JRG5Csd1KpI8DeBJo4TspOL0yCr2Zp6RurK5ugLoko7mZxEXd_nFZPo-q107S1MljenEJsYM30ineErt1BxT68TJVASw3mg4qwPELDs35wA25ofRtalfows_OaNzaBiBQsAYwO3KIOZ3IlSby45E4emSqSzd6vKRYvyhpA-PaeZ9rJIAXpRW9Z__IEN8dEAscNHdfz_IQ7jcHw32s_3d4d49uMJpUHJZq1qH1un0zN9H9HZqHtQuw-D4or30N_c0XUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEOVpKLBIIEDCxLu2s94DQqRt1FIaVbSVejP7cpsDTklaEDfOnPg9_Bx-CTN-pIlAcOotip3xOvPYb2d2vwF4zAvrnbc-tEapMPHShzrSUei1tFR207ZKuO0Me5sHydvD9HAJfrZnYWhbZRsTq0DtxpZy5N2YU4VQJlHWLZptEbvrg9cnn0LqIEWV1radRm0i2_7rF1y-TV9traOunwgx2Nhf2wybDgOhpeZLoUe8nnBTWO14VCAaUbYgLkMpU-ddJHRiYyutM9zEiHusjowVXqpCFL7nHY9R7iVYxlHJqAPL_Y3h7vvzDE8aEzVMyxQZia52n4khnBZRPSLvnJsJq4YBf0O5f27WnAfR1Sw4uAZXG_jK3tT2tgJLvrwOK02AmLJnDYv18xvwfViTcOgJ26vOo_z69oP6hKDS2P4cWkarZ6OSUQIDQ1vJBnQGAT9P2Pwx0RespQllunQkUeOPdjydWx5NP1YiEMqy_rj0-KA1cgiSxwhT34SDC1HLLeiU-Lw7wEyWpDI2Sluch60VximJKDZ2QmdxUmQBPG2VkJ_U_B55zeQsclJXPlNXAH3S0ewu4uWuvhhPjvLGzfMsU9KYHjccV_tGOiUyKq0WuMxOnMziAFZbDedNsJjm56YdwKPZZXRzqt3o0o_P6B5qTKAQPAZwuzaI2UhilQrZkyg8WzCVhaEuXilHxxWVOOeSJ1wlAbysrOo__0GOWGmPGOGiu_9-kYdwGb0zf7c13L4HVwT1TK7SVqvQOZ2c-fsI5E7Ng8ZjGHy4aCf9DQDYYYE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Stress%E2%80%90Induced+Transformations+in+Collagen+Fibrillar+Organization%2C+Disorder+and+Strain+Mechanisms+in+the+Bone%E2%80%90Cartilage+Unit&rft.jtitle=Advanced+science&rft.au=Badar%2C+Waqas&rft.au=Inamdar%2C+Sheetal+R&rft.au=Fratzl%2C+Peter&rft.au=Snow%2C+Tim&rft.date=2025-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1002%2Fadvs.202407649&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon