Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy
Aim To conduct a prospective randomized trial to investigate the effect of glucagon‐like peptide‐1 (GLP‐1) analogues on ectopic fat stores. Methods A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treat...
Saved in:
Published in | Diabetes, obesity & metabolism Vol. 18; no. 9; pp. 882 - 891 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.09.2016
Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim
To conduct a prospective randomized trial to investigate the effect of glucagon‐like peptide‐1 (GLP‐1) analogues on ectopic fat stores.
Methods
A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45 min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26 weeks of treatment.
Results
The study population had a mean glycated haemoglobin (HbA1c) level of 7.5 ± 0.2% and a mean body mass index of 36.1 ± 1.1 kg/m2. Ninety five percent had hepatic steatosis at baseline (HTGC ≥ 5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (−0.7 ± 0.3% vs. −0.7 ± 0.4%; p = 0.29), whereas significant weight loss was observed only in the exenatide group (−5.5 ± 1.2 kg vs. −0.2 ± 0.8 kg; p = 0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (−8.8 ± 2.1%) and HTGC (−23.8 ± 9.5%), compared with the reference treatment (EAT: −1.2 ± 1.6%, p = 0.003; HTGC: +12.5 ± 9.6%, p = 0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r = 0.47, p = 0.03, and r = 0.50, p = 0.018, respectively).
Conclusion
Our data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent. |
---|---|
AbstractList | Aim To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. Methods A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26weeks of treatment. Results The study population had a mean glycated haemoglobin (HbA1c) level of 7.5 plus or minus 0.2% and a mean body mass index of 36.1 plus or minus 1.1kg/m super(2). Ninety fivepercent had hepatic steatosis at baseline (HTGC greater than or equal to 5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (-0.7 plus or minus 0.3% vs. -0.7 plus or minus 0.4%; p=0.29), whereas significant weight loss was observed only in the exenatide group (-5.5 plus or minus 1.2kg vs. -0.2 plus or minus 0.8kg; p=0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (-8.8 plus or minus 2.1%) and HTGC (-23.8 plus or minus 9.5%), compared with the reference treatment (EAT: -1.2 plus or minus 1.6%, p=0.003; HTGC: +12.5 plus or minus 9.6%, p=0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r=0.47, p=0.03, and r=0.50, p=0.018, respectively). Conclusion Our data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent. Aim To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. Methods A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26weeks of treatment. Results The study population had a mean glycated haemoglobin (HbA1c) level of 7.5±0.2% and a mean body mass index of 36.1±1.1kg/m2. Ninety fivepercent had hepatic steatosis at baseline (HTGC≥5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (-0.7±0.3% vs. -0.7±0.4%; p=0.29), whereas significant weight loss was observed only in the exenatide group (-5.5±1.2kg vs. -0.2±0.8kg; p=0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (-8.8±2.1%) and HTGC (-23.8±9.5%), compared with the reference treatment (EAT: -1.2±1.6%, p=0.003; HTGC: +12.5±9.6%, p=0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r=0.47, p=0.03, and r=0.50, p=0.018, respectively). Conclusion Our data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent. Aim To conduct a prospective randomized trial to investigate the effect of glucagon‐like peptide‐1 (GLP‐1) analogues on ectopic fat stores. Methods A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45 min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26 weeks of treatment. Results The study population had a mean glycated haemoglobin (HbA1c) level of 7.5 ± 0.2% and a mean body mass index of 36.1 ± 1.1 kg/m2. Ninety five percent had hepatic steatosis at baseline (HTGC ≥ 5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (−0.7 ± 0.3% vs. −0.7 ± 0.4%; p = 0.29), whereas significant weight loss was observed only in the exenatide group (−5.5 ± 1.2 kg vs. −0.2 ± 0.8 kg; p = 0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (−8.8 ± 2.1%) and HTGC (−23.8 ± 9.5%), compared with the reference treatment (EAT: −1.2 ± 1.6%, p = 0.003; HTGC: +12.5 ± 9.6%, p = 0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r = 0.47, p = 0.03, and r = 0.50, p = 0.018, respectively). Conclusion Our data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent. To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45 min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26 weeks of treatment. The study population had a mean glycated haemoglobin (HbA1c) level of 7.5 ± 0.2% and a mean body mass index of 36.1 ± 1.1 kg/m(2) . Ninety five percent had hepatic steatosis at baseline (HTGC ≥ 5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (-0.7 ± 0.3% vs. -0.7 ± 0.4%; p = 0.29), whereas significant weight loss was observed only in the exenatide group (-5.5 ± 1.2 kg vs. -0.2 ± 0.8 kg; p = 0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (-8.8 ± 2.1%) and HTGC (-23.8 ± 9.5%), compared with the reference treatment (EAT: -1.2 ± 1.6%, p = 0.003; HTGC: +12.5 ± 9.6%, p = 0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r = 0.47, p = 0.03, and r = 0.50, p = 0.018, respectively). Our data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent. AimTo conduct a prospective randomized trial to investigate the effect of glucagon‐like peptide‐1 (GLP‐1) analogues on ectopic fat stores.MethodsA total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45 min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26 weeks of treatment.ResultsThe study population had a mean glycated haemoglobin (HbA1c) level of 7.5 ± 0.2% and a mean body mass index of 36.1 ± 1.1 kg/m2. Ninety five percent had hepatic steatosis at baseline (HTGC ≥ 5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (−0.7 ± 0.3% vs. −0.7 ± 0.4%; p = 0.29), whereas significant weight loss was observed only in the exenatide group (−5.5 ± 1.2 kg vs. −0.2 ± 0.8 kg; p = 0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (−8.8 ± 2.1%) and HTGC (−23.8 ± 9.5%), compared with the reference treatment (EAT: −1.2 ± 1.6%, p = 0.003; HTGC: +12.5 ± 9.6%, p = 0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r = 0.47, p = 0.03, and r = 0.50, p = 0.018, respectively).ConclusionOur data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent. AIM: To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. METHODS: A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45 min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26 weeks of treatment. RESULTS: The study population had a mean glycated haemoglobin (HbA1c) level of 7.5 ± 0.2% and a mean body mass index of 36.1 ± 1.1 kg/m(2) . Ninety five percent had hepatic steatosis at baseline (HTGC ≥ 5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (-0.7 ± 0.3% vs. -0.7 ± 0.4%; p = 0.29), whereas significant weight loss was observed only in the exenatide group (-5.5 ± 1.2 kg vs. -0.2 ± 0.8 kg; p = 0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (-8.8 ± 2.1%) and HTGC (-23.8 ± 9.5%), compared with the reference treatment (EAT: -1.2 ± 1.6%, p = 0.003; HTGC: +12.5 ± 9.6%, p = 0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r = 0.47, p = 0.03, and r = 0.50, p = 0.018, respectively). CONCLUSION: Our data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent. |
Author | Darmon, P. Kober, F. Ancel, P. Martin, J. C. Abdesselam, I. Dutour, A. Lesavre, N. Bernard, M. Jacquier, A. Ronsin, O. Pradel, V. Lefur, Y. Gaborit, B. Mrad, G. |
Author_xml | – sequence: 1 givenname: A. surname: Dutour fullname: Dutour, A. organization: Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France – sequence: 2 givenname: I. surname: Abdesselam fullname: Abdesselam, I. organization: Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France – sequence: 3 givenname: P. surname: Ancel fullname: Ancel, P. organization: Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France – sequence: 4 givenname: F. surname: Kober fullname: Kober, F. organization: Aix Marseille Université, Marseille, France – sequence: 5 givenname: G. surname: Mrad fullname: Mrad, G. organization: Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France – sequence: 6 givenname: P. surname: Darmon fullname: Darmon, P. organization: Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France – sequence: 7 givenname: O. surname: Ronsin fullname: Ronsin, O. organization: Department of Endocrinology, Metabolic Diseases and Nutrition, Pole Endo, Marseille, France – sequence: 8 givenname: V. surname: Pradel fullname: Pradel, V. organization: Aix Marseille Université, Marseille, France – sequence: 9 givenname: N. surname: Lesavre fullname: Lesavre, N. organization: Aix Marseille Université, Marseille, France – sequence: 10 givenname: J. C. surname: Martin fullname: Martin, J. C. organization: Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France – sequence: 11 givenname: A. surname: Jacquier fullname: Jacquier, A. organization: Aix Marseille Université, Marseille, France – sequence: 12 givenname: Y. surname: Lefur fullname: Lefur, Y. organization: Aix Marseille Université, Marseille, France – sequence: 13 givenname: M. surname: Bernard fullname: Bernard, M. organization: Aix Marseille Université, Marseille, France – sequence: 14 givenname: B. surname: Gaborit fullname: Gaborit, B. email: : Bénédicte Gaborit, Inserm U1062, Inra U1260, Aix Marseille Université, Faculté de Médecine, 27 boulevard Jean Moulin, 13385 Marseille cedex 05, France., benedicte.gaborit@ap-hm.fr organization: Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27106272$$D View this record in MEDLINE/PubMed https://hal.science/hal-01478321$$DView record in HAL |
BookMark | eNp9kstu1DAUhiNURC-w4AWQJTawSOtLEifsqrZMkQa6AITExnLsk9YlY6e203Z4xb5UnZl2kCpRb3z7_v_4-JzdbMs6C1n2luB9ksaBdot9Qqsav8h2SFGxnDBaba3WNK8bTLez3RAuMcYFq_mrbJtygivK6U52d3ILVkajAWlQHmSAgHpzDR51MiLlbAQbkbQawWCU9NrIHkltBhcARRPCCMhYNCSPBAZ0Y-IFci0EE5crWVwOgChKuhYihE9IosG7MICKKQzyiXEL8xc0Ur2xKUSPop-CjMHYc7SQ5xaiUchDcFZalcKls-lqcl_5JDvlhuXr7GUn-wBvHua97Ofnkx9Hp_n8bPbl6HCeq6KucK6hppg0rCubquW0LcpWUdKm_-jaRlddQTrNcYMVI5ITSUirpx1OWIM1wWwv-7j2vZC9GHx6jl8KJ404PZyL6QyTgteMkmuS2A9rNuV8NUKIYmGCgr6XFtwYBKlJyQlhbELfP0Ev3ehtykQwXDYF5hjXz1HJi5VN06y83j1QY7sAvXnlY-H_5aDS5wUP3QYhWExNJVJVxKqpEnvwhFUmpnqn3vDS9M8pbkwPy_9bi-Ozr4-KfK0wIcLtRiH9H1Fxxkvx69tMkO-8oLPfx6Jh91ma7hI |
CODEN | DOMEF6 |
CitedBy_id | crossref_primary_10_1080_14740338_2018_1424826 crossref_primary_10_1111_cen_14344 crossref_primary_10_1186_s12933_019_0890_5 crossref_primary_10_31146_1682_8658_ecg_169_9_4_10 crossref_primary_10_3389_fendo_2020_00070 crossref_primary_10_1007_s11897_025_00700_5 crossref_primary_10_1111_dom_14319 crossref_primary_10_3350_cmh_2020_0137 crossref_primary_10_1186_s12933_024_02181_7 crossref_primary_10_1007_s40261_019_00785_6 crossref_primary_10_1016_j_metabol_2018_11_014 crossref_primary_10_1016_j_diabres_2024_111675 crossref_primary_10_1186_s12933_021_01237_2 crossref_primary_10_1097_CRD_0000000000000670 crossref_primary_10_1111_dom_14399 crossref_primary_10_1002_oby_23865 crossref_primary_10_3389_fphys_2021_785879 crossref_primary_10_12677_ACM_2023_1361396 crossref_primary_10_3390_cells11060991 crossref_primary_10_1038_s41366_018_0263_2 crossref_primary_10_1089_met_2017_0070 crossref_primary_10_3390_biom12020176 crossref_primary_10_1016_j_atherosclerosis_2022_11_008 crossref_primary_10_4254_wjh_v16_i5_731 crossref_primary_10_1111_dom_13061 crossref_primary_10_1016_j_diabet_2019_01_008 crossref_primary_10_1002_hep_32012 crossref_primary_10_1016_j_bbalip_2018_12_010 crossref_primary_10_1016_j_diabres_2025_112017 crossref_primary_10_2337_dc18_0588 crossref_primary_10_1111_bcp_14855 crossref_primary_10_14406_acu_2017_029 crossref_primary_10_1111_dom_16107 crossref_primary_10_3390_diagnostics12010126 crossref_primary_10_1016_j_peptides_2017_02_008 crossref_primary_10_3390_metabo13050581 crossref_primary_10_1016_j_cardfail_2019_09_002 crossref_primary_10_4239_wjd_v9_i9_141 crossref_primary_10_1016_S2468_1253_21_00261_2 crossref_primary_10_1371_journal_pone_0289616 crossref_primary_10_1007_s42000_018_0021_9 crossref_primary_10_3389_fendo_2023_1181452 crossref_primary_10_1016_j_cpcardiol_2023_101739 crossref_primary_10_1177_10742484211006997 crossref_primary_10_1155_2021_3715026 crossref_primary_10_3390_nu14142926 crossref_primary_10_1515_mr_2024_0007 crossref_primary_10_3389_fendo_2023_1193373 crossref_primary_10_1111_dom_14933 crossref_primary_10_1253_circj_CJ_20_0935 crossref_primary_10_1007_s40265_024_02022_7 crossref_primary_10_1016_j_cld_2023_01_002 crossref_primary_10_3390_metabo13040517 crossref_primary_10_17816_brmma50562 crossref_primary_10_1016_j_metabol_2021_154892 crossref_primary_10_3390_diabetology4030032 crossref_primary_10_1016_j_numecd_2021_04_028 crossref_primary_10_1002_jmri_27009 crossref_primary_10_1016_j_tem_2022_03_005 crossref_primary_10_1016_j_aohep_2022_100751 crossref_primary_10_1016_j_jdiacomp_2024_108928 crossref_primary_10_1097_MOL_0000000000000431 crossref_primary_10_1111_pace_13825 crossref_primary_10_1111_dme_14912 crossref_primary_10_3389_fphys_2024_1522471 crossref_primary_10_1159_000526808 crossref_primary_10_1016_S1262_3636_17_30070_8 crossref_primary_10_3390_life13030839 crossref_primary_10_1530_EC_18_0497 crossref_primary_10_3390_ijms21072641 crossref_primary_10_1111_obr_13574 crossref_primary_10_1016_S2213_8587_22_00070_5 crossref_primary_10_1016_j_molmet_2020_101122 crossref_primary_10_1111_jdi_14200 crossref_primary_10_1002_hep_31852 crossref_primary_10_4254_wjh_v12_i8_493 crossref_primary_10_1016_j_rce_2022_11_007 crossref_primary_10_1152_ajpcell_00020_2021 crossref_primary_10_1016_S2468_1253_22_00338_7 crossref_primary_10_3390_ijms17091554 crossref_primary_10_1007_s12072_019_09990_z crossref_primary_10_2174_0929867330666230113110431 crossref_primary_10_1038_s41574_021_00507_z crossref_primary_10_1111_dom_14516 crossref_primary_10_3390_ijms25052961 crossref_primary_10_3390_jcm8030299 crossref_primary_10_1007_s10620_021_06824_7 crossref_primary_10_1371_journal_pone_0270899 crossref_primary_10_1002_dmrr_3668 crossref_primary_10_1111_apt_17848 crossref_primary_10_4254_wjh_v12_i9_533 crossref_primary_10_1007_s40519_021_01287_1 crossref_primary_10_1016_j_jacc_2018_03_509 crossref_primary_10_3390_gastroent15010014 crossref_primary_10_4254_wjh_v14_i9_1718 crossref_primary_10_1111_dom_14595 crossref_primary_10_3390_jcm9103213 crossref_primary_10_7570_jomes_2019_28_1_18 crossref_primary_10_4239_wjd_v14_i6_724 crossref_primary_10_1002_dmrr_3386 crossref_primary_10_1007_s13300_016_0222_7 crossref_primary_10_1111_dom_14196 crossref_primary_10_3390_ijms23147886 crossref_primary_10_1089_met_2024_0115 crossref_primary_10_1016_j_phrs_2018_09_025 crossref_primary_10_1111_bcp_15344 crossref_primary_10_1007_s00125_019_05021_6 crossref_primary_10_3390_biomedicines10020274 crossref_primary_10_1007_s40618_021_01687_1 crossref_primary_10_1016_j_dld_2021_04_029 crossref_primary_10_1055_a_1877_9656 crossref_primary_10_1111_dom_13792 crossref_primary_10_1016_j_ajpc_2024_100711 crossref_primary_10_1186_s12933_017_0658_8 crossref_primary_10_1038_s41401_021_00836_9 crossref_primary_10_1093_europace_euac015 crossref_primary_10_15420_cfr_2022_25 crossref_primary_10_1038_s41598_021_01663_y crossref_primary_10_1186_s12933_023_01738_2 crossref_primary_10_1002_mco2_413 crossref_primary_10_1530_JOE_19_0007 crossref_primary_10_3389_fcvm_2023_1151717 crossref_primary_10_1016_j_chest_2024_11_020 crossref_primary_10_1016_j_rceng_2022_12_001 crossref_primary_10_1016_j_clinthera_2017_03_013 crossref_primary_10_3390_jcm12247738 crossref_primary_10_1111_cpr_13764 crossref_primary_10_1007_s00125_016_4100_7 crossref_primary_10_1016_j_molmet_2020_101158 crossref_primary_10_1055_a_2145_1004 crossref_primary_10_1113_EP091566 crossref_primary_10_1016_j_ejphar_2019_172657 crossref_primary_10_14309_ajg_0000000000002519 crossref_primary_10_15420_cfr_2024_06 crossref_primary_10_3389_fragi_2021_666260 crossref_primary_10_1016_j_dsx_2022_102562 crossref_primary_10_1093_nutrit_nuad159 crossref_primary_10_3390_ijms24119324 crossref_primary_10_1161_CIRCULATIONAHA_117_032474 crossref_primary_10_1002_jcp_70012 crossref_primary_10_1038_s41574_021_00573_3 crossref_primary_10_1016_j_clnesp_2023_12_005 crossref_primary_10_37349_emed_2020_00008 crossref_primary_10_1177_10742484221146371 crossref_primary_10_1002_edm2_163 crossref_primary_10_1210_jendso_bvz042 crossref_primary_10_3390_metabo11020073 crossref_primary_10_1016_j_ijcard_2019_04_039 crossref_primary_10_3390_biology11030355 crossref_primary_10_20996_1819_6446_2020_08_15 crossref_primary_10_1038_s41569_022_00679_9 crossref_primary_10_3390_jcm11175144 crossref_primary_10_1038_s41598_024_79428_6 crossref_primary_10_7759_cureus_46153 crossref_primary_10_1016_j_jacc_2021_05_035 crossref_primary_10_3390_ijms24021703 crossref_primary_10_1177_20420188241229540 crossref_primary_10_3390_ijms25073832 crossref_primary_10_4239_wjd_v14_i5_549 crossref_primary_10_1038_s41598_022_06351_z crossref_primary_10_1111_obr_13136 crossref_primary_10_3389_fendo_2023_1150360 crossref_primary_10_1016_j_dsx_2020_09_030 crossref_primary_10_1016_j_clinre_2022_102053 crossref_primary_10_1080_03007995_2021_1965563 crossref_primary_10_1093_europace_euaa214 crossref_primary_10_1590_0001_3765202220201819 crossref_primary_10_1001_jamacardio_2019_2074 crossref_primary_10_1530_EJE_18_0318 crossref_primary_10_1007_s11739_024_03765_7 crossref_primary_10_1016_j_diabet_2019_12_007 crossref_primary_10_1016_j_metabol_2019_154001 crossref_primary_10_1161_CIRCULATIONAHA_120_045888 |
Cites_doi | 10.1007/s10334-013-0421-4 10.1038/ijo.2014.126 10.1210/jc.2015-3906 10.1001/2012.jama.11132 10.1016/j.jacc.2015.10.052 10.1210/jc.2009-0584 10.1016/j.numecd.2009.01.010 10.1038/mt.2008.198 10.1186/1749-8090-9-2 10.1210/jc.2009-1441 10.1016/j.jhep.2015.08.038 10.1016/j.jacc.2012.06.016 10.2337/dc09-1961 10.1038/nature05488 10.1038/oby.2008.251 10.1161/ATVBAHA.112.300829 10.1016/j.yjmcc.2015.09.018 10.1006/jmre.1997.1244 10.1161/CIRCULATIONAHA.106.645614 10.1038/ng.257 10.1016/j.numecd.2008.05.002 10.1172/JCI78425 10.2337/dc10-2229 10.1016/j.tem.2013.05.009 10.1016/S0140-6736(15)00803-X 10.1161/CIRCRESAHA.114.301958 10.1016/j.jacc.2012.11.062 10.1152/japplphysiol.90756.2008 10.2337/dc07-1463 10.1161/CIRCULATIONAHA.111.077602 10.1038/ijo.2011.117 10.1371/journal.pone.0050117 10.1186/s12968-015-0198-x 10.1007/s00125-011-2317-z 10.1016/j.cmet.2013.04.008 10.1016/j.atherosclerosis.2008.09.038 10.1016/j.jhep.2013.09.002 10.1152/ajpheart.00990.2012 10.2337/db15-0627 10.3748/wjg.v20.i27.9090 10.1152/ajpendo.00064.2004 10.1371/journal.pone.0025269 10.1038/oby.2011.152 10.1007/s00592-014-0710-z 10.1148/radiol.13121631 10.1097/MCO.0b013e32830a98e3 10.1093/ajcn/4.1.20 10.1038/oby.2009.352 10.1002/hep.21006 10.1016/j.jacc.2008.07.062 10.2337/dc07-0326 |
ContentType | Journal Article |
Copyright | 2016 John Wiley & Sons Ltd 2016 John Wiley & Sons Ltd. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2016 John Wiley & Sons Ltd – notice: 2016 John Wiley & Sons Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. 1XC |
DOI | 10.1111/dom.12680 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Neurosciences Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts AIDS and Cancer Research Abstracts MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1463-1326 |
EndPage | 891 |
ExternalDocumentID | oai_HAL_hal_01478321v1 4156844131 27106272 10_1111_dom_12680 DOM12680 ark_67375_WNG_1S742GZD_9 |
Genre | article Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Astra Zeneca funderid: ESR MB001‐029 – fundername: Amylin – fundername: Lilly |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 29F 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~KM ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. 1XC |
ID | FETCH-LOGICAL-c4860-de820193f596b72b45bc21b627fb9d6f41fd7090c31a71a11bd090c05bc90d103 |
IEDL.DBID | DR2 |
ISSN | 1462-8902 |
IngestDate | Fri May 09 12:28:19 EDT 2025 Fri Jul 11 09:04:54 EDT 2025 Sun Jul 13 03:43:17 EDT 2025 Sun Jul 13 05:24:52 EDT 2025 Wed Feb 19 02:41:19 EST 2025 Thu Jul 03 08:37:37 EDT 2025 Thu Apr 24 22:59:15 EDT 2025 Wed Jan 22 16:47:06 EST 2025 Wed Oct 30 09:48:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | magnetic resonance imaging type 2 diabetes hepatic triglyceride content pancreatic triglyceride content epicardial adipose tissue myocardial triglyceride content proton magnetic resonance spectroscopy glucagon-like peptide 1 receptor agonist obesity |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 John Wiley & Sons Ltd. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4860-de820193f596b72b45bc21b627fb9d6f41fd7090c31a71a11bd090c05bc90d103 |
Notes | Astra Zeneca - No. ESR MB001-029 istex:5DA8EC7870D1A1EFCB8D1D7FBE606A53BF9179F8 Amylin Figure S1. Discriminant multivariate analysis showing the distribution of patients according to the change of clinical and biological variables between baseline and 26 weeks.Figure S2. Heat map of patients regarding the change of their metabolic data between baseline and 26 weeks.Table S1. Left ventricular function parameters evolution between groups. ArticleID:DOM12680 ark:/67375/WNG-1S742GZD-9 Lilly ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 content type line 23 |
ORCID | 0000-0002-7869-3615 0000-0002-1808-0251 |
PMID | 27106272 |
PQID | 1813599931 |
PQPubID | 1006516 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_01478321v1 proquest_miscellaneous_1815711331 proquest_journals_3059407008 proquest_journals_1813599931 pubmed_primary_27106272 crossref_primary_10_1111_dom_12680 crossref_citationtrail_10_1111_dom_12680 wiley_primary_10_1111_dom_12680_DOM12680 istex_primary_ark_67375_WNG_1S742GZD_9 |
PublicationCentury | 2000 |
PublicationDate | 2016-09 September 2016 2016-09-00 20160901 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Diabetes, obesity & metabolism |
PublicationTitleAlternate | Diabetes Obes Metab |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Wiley |
References | Eroglu S, Sade LE, Yildirir A et al. Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr Metab Cardiovasc Dis 2009; 19: 211-217. Sade LE, Eroglu S, Bozbas H et al. Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries. Atherosclerosis 2009; 204: 580-585. Cuthbertson DJ, Irwin A, Gardner CJ et al. Improved glycaemia correlates with liver fat reduction in obese, type 2 diabetes, patients given glucagon-like peptide-1 (GLP-1) receptor agonists. PLoS One 2012; 7: e50117. Romeo S, Kozlitina J, Xing C et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40: 1461-1465. Lamb HJ, Smit JW, van der Meer RW et al. Metabolic MRI of myocardial and hepatic triglyceride content in response to nutritional interventions. Curr Opin Clin Nutr Metab Care 2008; 11: 573-579. Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997; 129: 35-43. Levelt E, Mahmod M, Piechnik SK et al. Relationship between Left ventricular structural and metabolic remodelling in type 2 diabetes mellitus. Diabetes 2016; 65: 44-52. Samson SL, Sathyanarayana P, Jogi M et al. Exenatide decreases hepatic fibroblast growth factor 21 resistance in non-alcoholic fatty liver disease in a mouse model of obesity and in a randomised controlled trial. Diabetologia 2011; 54: 3093-3100. Monji A, Mitsui T, Bando YK, Aoyama M, Shigeta T, Murohara T. Glucagon-like peptide-1 receptor activation reverses cardiac remodeling via normalizing cardiac steatosis and oxidative stress in type 2 diabetes. Am J Physiol Heart Circ Physiol 2013; 305: H295-H304. Mahabadi AA, Berg MH, Lehmann N et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol 2013; 61: 1388-1395. Livingstone RS, Begovatz P, Kahl S et al. Initial clinical application of modified Dixon with flexible echo times: hepatic and pancreatic fat assessments in comparison with (1)H MRS. MAGMA 2014; 27: 397-405. Lingvay I, Esser V, Legendre JL et al. Noninvasive quantification of pancreatic fat in humans. J Clin Endocrinol Metab 2009; 94: 4070-4076. Szczepaniak LS, Nurenberg P, Leonard D et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005; 288: E462-E468. Wallner M, Kolesnik E, Ablasser K et al. Exenatide exerts a PKA-dependent positive inotropic effect in human atrial myocardium: GLP-1R mediated effects in human myocardium. J Mol Cell Cardiol 2015; 89 (Pt B): 365-375. Moschen AR, Kaser S, Tilg H. Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends Endocrinol Metab 2013; 24: 537-545. Sathyanarayana P, Jogi M, Muthupillai R, Krishnamurthy R, Samson SL, Bajaj M. Effects of combined exenatide and pioglitazone therapy on hepatic fat content in type 2 diabetes. Obesity (Silver Spring) 2011; 19: 2310-2315. Hu HH, Kim HW, Nayak KS, Goran MI. Comparison of fat-water MRI and single-voxel MRS in the assessment of hepatic and pancreatic fat fractions in humans. Obesity (Silver Spring) 2010; 18: 841-847. McKenney ML, Schultz KA, Boyd JH et al. Epicardial adipose excision slows the progression of porcine coronary atherosclerosis. J Cardiothorac Surg 2014; 9: 2. Sharma S, Mells JE, Fu PP, Saxena NK, Anania FA. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS One 2011; 6: e25269. Gaborit B, Abdesselam I, Kober F et al. Ectopic fat storage in the pancreas using 1H-MRS: importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int J Obes (Lond) 2015; 39: 480-487. Tushuizen ME, Bunck MC, Pouwels PJ et al. Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care 2007; 30: 2916-2921. Liu Y, Wei R, Hong TP. Potential roles of glucagon-like peptide-1-based therapies in treating non-alcoholic fatty liver disease. World J Gastroenterol 2014; 20: 9090-9097. Neeland IJ, Turer AT, Ayers CR et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA 2012; 308: 1150-1159. Shimabukuro M, Hirata Y, Tabata M et al. Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2013; 33: 1077-1084. Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 2013; 17: 819-837. Gaborit B, Kober F, Jacquier A et al. Assessment of epicardial fat volume and myocardial triglyceride content in severely obese subjects: relationship to metabolic profile, cardiac function and visceral fat. Int J Obes (Lond) 2012; 36: 422-430. Kim MK, Tomita T, Kim MJ, Sasai H, Maeda S, Tanaka K. Aerobic exercise training reduces epicardial fat in obese men. J Appl Physiol 2009; 106: 5-11. Armstrong MJ, Gaunt P, Aithal GP et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 2016; 387: 679-690. Vanderheiden A, Harrison LB, Warshauer JT et al. Mechanisms of action of liraglutide in patients with type 2 diabetes treated with high-dose insulin. J Clin Endocrinol Metab 2016; 101: 1798-1806. Fabbrini E, Yoshino J, Yoshino M et al. Metabolically normal obese people are protected from adverse effects following weight gain. J Clin Invest 2015; 125: 787-795. Ding X, Saxena NK, Lin S, Gupta NA, Anania FA. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 2006; 43: 173-181. McGavock JM, Lingvay I, Zib I et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 2007; 116: 1170-1175. Williamson RM, Price JF, Glancy S et al. Prevalence of and risk factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: the Edinburgh type 2 diabetes study. Diabetes Care 2011; 34: 1139-1144. Vague J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr 1956; 4: 20-34. Morano S, Romagnoli E, Filardi T et al. Short-term effects of glucagon-like peptide 1 (GLP-1) receptor agonists on fat distribution in patients with type 2 diabetes mellitus: an ultrasonography study. Acta Diabetol 2015; 52: 727-732. Armstrong MJ, Hull D, Guo K et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatophepatitis. J Hepatol 2015; 64: 399-408. Britton KA, Fox CS. Ectopic fat depots and cardiovascular disease. Circulation 2011; 124: e837-e841. Kim MK, Tanaka K, Kim MJ et al. Comparison of epicardial, abdominal and regional fat compartments in response to weight loss. Nutr Metab Cardiovasc Dis 2009; 19: 760-766. Kotronen A, Juurinen L, Hakkarainen A et al. Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects. Diabetes Care 2008; 31: 165-169. Banerjee R, Pavlides M, Tunnicliffe EM et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepat0ol 2014; 60: 69-77. Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res 2014; 114: 1788-1803. Samson SL, Gonzalez EV, Yechoor V, Bajaj M, Oka K, Chan L. Gene therapy for diabetes: metabolic effects of helper-dependent adenoviral exendin 4 expression in a diet-induced obesity mouse model. Mol Ther 2008; 16: 1805-1812. Rijzewijk LJ, van der Meer RW, Smit JW et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 2008; 52: 1793-1799. Koska J, Schwartz EA, Mullin MP, Schwenke DC, Reaven PD. Improvement of postprandial endothelial function after a single dose of exenatide in individuals with impaired glucose tolerance and recent-onset type 2 diabetes. Diabetes Care 2010; 33: 1028-1030. Jonker JT, de Mol P, de Vries ST et al. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function. Radiology 2013; 269: 434-442. Iacobellis G, Singh N, Wharton S, Sharma AM. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring) 2008; 16: 1693-1697. Abdesselam I, Pepino P, Troalen T et al. Time course of cardiometabolic alterations in a high fat high sucrose diet mice model and improvement after GLP-1 analog treatment using multimodal cardiovascular magnetic resonance. J Cardiovasc Mag Reson 2015; 17: 95. Gaborit B, Jacquier A, Kober F et al. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J Am Coll Cardiol 2012; 60: 1381-1389. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006; 444: 881-887. Abdesselam I, Dutour A, Kober F et al. Time course of change in ectopic fat stores after bariatric surgery. J Am Coll Cardiol 2016; 67: 117-119. Jonker JT, Lamb HJ, van der Meer RW et al. Pioglitazone compared with metformin increases pericardial fat volume in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95: 456-460. 2012; 60 2015; 39 2013; 24 2010; 18 2013; 61 2014; 27 2016; 387 2016; 101 2011; 54 2007; 30 2008; 31 2011; 19 2014; 60 2014; 20 2015; 89 2011; 124 2013; 17 2009; 94 2014; 9 2009; 19 2006; 444 2009; 204 2010; 33 2015; 17 2015; 125 2015; 52 2013; 269 2013; 305 2008; 16 2011; 34 2008; 11 2008; 52 2012; 36 2011; 6 2014; 114 2012; 308 1997; 129 2007; 116 2013; 33 2006; 43 2005; 288 2015; 64 2016; 65 2015 2008; 40 2012; 7 2010; 95 2016; 67 1956; 4 2009; 106 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 Levelt E (e_1_2_7_43_1) 2016; 65 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Liu Y (e_1_2_7_18_1) 2014; 20 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – reference: Vanderheiden A, Harrison LB, Warshauer JT et al. Mechanisms of action of liraglutide in patients with type 2 diabetes treated with high-dose insulin. J Clin Endocrinol Metab 2016; 101: 1798-1806. – reference: Hu HH, Kim HW, Nayak KS, Goran MI. Comparison of fat-water MRI and single-voxel MRS in the assessment of hepatic and pancreatic fat fractions in humans. Obesity (Silver Spring) 2010; 18: 841-847. – reference: Kim MK, Tomita T, Kim MJ, Sasai H, Maeda S, Tanaka K. Aerobic exercise training reduces epicardial fat in obese men. J Appl Physiol 2009; 106: 5-11. – reference: Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997; 129: 35-43. – reference: Iacobellis G, Singh N, Wharton S, Sharma AM. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring) 2008; 16: 1693-1697. – reference: Britton KA, Fox CS. Ectopic fat depots and cardiovascular disease. Circulation 2011; 124: e837-e841. – reference: Gaborit B, Jacquier A, Kober F et al. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J Am Coll Cardiol 2012; 60: 1381-1389. – reference: Gaborit B, Kober F, Jacquier A et al. Assessment of epicardial fat volume and myocardial triglyceride content in severely obese subjects: relationship to metabolic profile, cardiac function and visceral fat. Int J Obes (Lond) 2012; 36: 422-430. – reference: Morano S, Romagnoli E, Filardi T et al. Short-term effects of glucagon-like peptide 1 (GLP-1) receptor agonists on fat distribution in patients with type 2 diabetes mellitus: an ultrasonography study. Acta Diabetol 2015; 52: 727-732. – reference: Lamb HJ, Smit JW, van der Meer RW et al. Metabolic MRI of myocardial and hepatic triglyceride content in response to nutritional interventions. Curr Opin Clin Nutr Metab Care 2008; 11: 573-579. – reference: Romeo S, Kozlitina J, Xing C et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40: 1461-1465. – reference: Cuthbertson DJ, Irwin A, Gardner CJ et al. Improved glycaemia correlates with liver fat reduction in obese, type 2 diabetes, patients given glucagon-like peptide-1 (GLP-1) receptor agonists. PLoS One 2012; 7: e50117. – reference: Vague J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr 1956; 4: 20-34. – reference: Szczepaniak LS, Nurenberg P, Leonard D et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005; 288: E462-E468. – reference: Armstrong MJ, Hull D, Guo K et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatophepatitis. J Hepatol 2015; 64: 399-408. – reference: Jonker JT, de Mol P, de Vries ST et al. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function. Radiology 2013; 269: 434-442. – reference: Abdesselam I, Dutour A, Kober F et al. Time course of change in ectopic fat stores after bariatric surgery. J Am Coll Cardiol 2016; 67: 117-119. – reference: Kim MK, Tanaka K, Kim MJ et al. Comparison of epicardial, abdominal and regional fat compartments in response to weight loss. Nutr Metab Cardiovasc Dis 2009; 19: 760-766. – reference: Lingvay I, Esser V, Legendre JL et al. Noninvasive quantification of pancreatic fat in humans. J Clin Endocrinol Metab 2009; 94: 4070-4076. – reference: Wallner M, Kolesnik E, Ablasser K et al. Exenatide exerts a PKA-dependent positive inotropic effect in human atrial myocardium: GLP-1R mediated effects in human myocardium. J Mol Cell Cardiol 2015; 89 (Pt B): 365-375. – reference: Jonker JT, Lamb HJ, van der Meer RW et al. Pioglitazone compared with metformin increases pericardial fat volume in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95: 456-460. – reference: Koska J, Schwartz EA, Mullin MP, Schwenke DC, Reaven PD. Improvement of postprandial endothelial function after a single dose of exenatide in individuals with impaired glucose tolerance and recent-onset type 2 diabetes. Diabetes Care 2010; 33: 1028-1030. – reference: Eroglu S, Sade LE, Yildirir A et al. Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr Metab Cardiovasc Dis 2009; 19: 211-217. – reference: Kotronen A, Juurinen L, Hakkarainen A et al. Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects. Diabetes Care 2008; 31: 165-169. – reference: Shimabukuro M, Hirata Y, Tabata M et al. Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2013; 33: 1077-1084. – reference: Banerjee R, Pavlides M, Tunnicliffe EM et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepat0ol 2014; 60: 69-77. – reference: Tushuizen ME, Bunck MC, Pouwels PJ et al. Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care 2007; 30: 2916-2921. – reference: Williamson RM, Price JF, Glancy S et al. Prevalence of and risk factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: the Edinburgh type 2 diabetes study. Diabetes Care 2011; 34: 1139-1144. – reference: Abdesselam I, Pepino P, Troalen T et al. Time course of cardiometabolic alterations in a high fat high sucrose diet mice model and improvement after GLP-1 analog treatment using multimodal cardiovascular magnetic resonance. J Cardiovasc Mag Reson 2015; 17: 95. – reference: Sade LE, Eroglu S, Bozbas H et al. Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries. Atherosclerosis 2009; 204: 580-585. – reference: Moschen AR, Kaser S, Tilg H. Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends Endocrinol Metab 2013; 24: 537-545. – reference: McKenney ML, Schultz KA, Boyd JH et al. Epicardial adipose excision slows the progression of porcine coronary atherosclerosis. J Cardiothorac Surg 2014; 9: 2. – reference: Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 2013; 17: 819-837. – reference: Livingstone RS, Begovatz P, Kahl S et al. Initial clinical application of modified Dixon with flexible echo times: hepatic and pancreatic fat assessments in comparison with (1)H MRS. MAGMA 2014; 27: 397-405. – reference: Mahabadi AA, Berg MH, Lehmann N et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol 2013; 61: 1388-1395. – reference: Rijzewijk LJ, van der Meer RW, Smit JW et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 2008; 52: 1793-1799. – reference: Levelt E, Mahmod M, Piechnik SK et al. Relationship between Left ventricular structural and metabolic remodelling in type 2 diabetes mellitus. Diabetes 2016; 65: 44-52. – reference: Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006; 444: 881-887. – reference: Neeland IJ, Turer AT, Ayers CR et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA 2012; 308: 1150-1159. – reference: Samson SL, Sathyanarayana P, Jogi M et al. Exenatide decreases hepatic fibroblast growth factor 21 resistance in non-alcoholic fatty liver disease in a mouse model of obesity and in a randomised controlled trial. Diabetologia 2011; 54: 3093-3100. – reference: Fabbrini E, Yoshino J, Yoshino M et al. Metabolically normal obese people are protected from adverse effects following weight gain. J Clin Invest 2015; 125: 787-795. – reference: Armstrong MJ, Gaunt P, Aithal GP et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 2016; 387: 679-690. – reference: Monji A, Mitsui T, Bando YK, Aoyama M, Shigeta T, Murohara T. Glucagon-like peptide-1 receptor activation reverses cardiac remodeling via normalizing cardiac steatosis and oxidative stress in type 2 diabetes. Am J Physiol Heart Circ Physiol 2013; 305: H295-H304. – reference: Gaborit B, Abdesselam I, Kober F et al. Ectopic fat storage in the pancreas using 1H-MRS: importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int J Obes (Lond) 2015; 39: 480-487. – reference: Liu Y, Wei R, Hong TP. Potential roles of glucagon-like peptide-1-based therapies in treating non-alcoholic fatty liver disease. World J Gastroenterol 2014; 20: 9090-9097. – reference: Ding X, Saxena NK, Lin S, Gupta NA, Anania FA. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 2006; 43: 173-181. – reference: Sathyanarayana P, Jogi M, Muthupillai R, Krishnamurthy R, Samson SL, Bajaj M. Effects of combined exenatide and pioglitazone therapy on hepatic fat content in type 2 diabetes. Obesity (Silver Spring) 2011; 19: 2310-2315. – reference: Samson SL, Gonzalez EV, Yechoor V, Bajaj M, Oka K, Chan L. Gene therapy for diabetes: metabolic effects of helper-dependent adenoviral exendin 4 expression in a diet-induced obesity mouse model. Mol Ther 2008; 16: 1805-1812. – reference: Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res 2014; 114: 1788-1803. – reference: McGavock JM, Lingvay I, Zib I et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 2007; 116: 1170-1175. – reference: Sharma S, Mells JE, Fu PP, Saxena NK, Anania FA. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS One 2011; 6: e25269. – volume: 116 start-page: 1170 year: 2007 end-page: 1175 article-title: Cardiac steatosis in diabetes mellitus: a 1H‐magnetic resonance spectroscopy study publication-title: Circulation – volume: 33 start-page: 1028 year: 2010 end-page: 1030 article-title: Improvement of postprandial endothelial function after a single dose of exenatide in individuals with impaired glucose tolerance and recent‐onset type 2 diabetes publication-title: Diabetes Care – volume: 106 start-page: 5 year: 2009 end-page: 11 article-title: Aerobic exercise training reduces epicardial fat in obese men publication-title: J Appl Physiol – volume: 6 start-page: e25269 year: 2011 article-title: GLP‐1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy publication-title: PLoS One – volume: 95 start-page: 456 year: 2010 end-page: 460 article-title: Pioglitazone compared with metformin increases pericardial fat volume in patients with type 2 diabetes mellitus publication-title: J Clin Endocrinol Metab – volume: 94 start-page: 4070 year: 2009 end-page: 4076 article-title: Noninvasive quantification of pancreatic fat in humans publication-title: J Clin Endocrinol Metab – volume: 33 start-page: 1077 year: 2013 end-page: 1084 article-title: Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis publication-title: Arterioscler Thromb Vasc Biol – volume: 16 start-page: 1693 year: 2008 end-page: 1697 article-title: Substantial changes in epicardial fat thickness after weight loss in severely obese subjects publication-title: Obesity (Silver Spring) – volume: 31 start-page: 165 year: 2008 end-page: 169 article-title: Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects publication-title: Diabetes Care – volume: 61 start-page: 1388 year: 2013 end-page: 1395 article-title: Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study publication-title: J Am Coll Cardiol – volume: 125 start-page: 787 year: 2015 end-page: 795 article-title: Metabolically normal obese people are protected from adverse effects following weight gain publication-title: J Clin Invest – volume: 387 start-page: 679 year: 2016 end-page: 690 article-title: Liraglutide safety and efficacy in patients with non‐alcoholic steatohepatitis (LEAN): a multicentre, double‐blind, randomised, placebo‐controlled phase 2 study publication-title: Lancet – volume: 7 start-page: e50117 year: 2012 article-title: Improved glycaemia correlates with liver fat reduction in obese, type 2 diabetes, patients given glucagon‐like peptide‐1 (GLP‐1) receptor agonists publication-title: PLoS One – volume: 16 start-page: 1805 year: 2008 end-page: 1812 article-title: Gene therapy for diabetes: metabolic effects of helper‐dependent adenoviral exendin 4 expression in a diet‐induced obesity mouse model publication-title: Mol Ther – volume: 9 start-page: 2 year: 2014 article-title: Epicardial adipose excision slows the progression of porcine coronary atherosclerosis publication-title: J Cardiothorac Surg – volume: 114 start-page: 1788 year: 2014 end-page: 1803 article-title: Cardiovascular actions of incretin‐based therapies publication-title: Circ Res – volume: 40 start-page: 1461 year: 2008 end-page: 1465 article-title: Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease publication-title: Nat Genet – volume: 60 start-page: 1381 year: 2012 end-page: 1389 article-title: Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content publication-title: J Am Coll Cardiol – volume: 64 start-page: 399 year: 2015 end-page: 408 article-title: Glucagon‐like peptide 1 decreases lipotoxicity in non‐alcoholic steatophepatitis publication-title: J Hepatol – volume: 4 start-page: 20 year: 1956 end-page: 34 article-title: The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease publication-title: Am J Clin Nutr – volume: 124 start-page: e837 year: 2011 end-page: e841 article-title: Ectopic fat depots and cardiovascular disease publication-title: Circulation – volume: 18 start-page: 841 year: 2010 end-page: 847 article-title: Comparison of fat‐water MRI and single‐voxel MRS in the assessment of hepatic and pancreatic fat fractions in humans publication-title: Obesity (Silver Spring) – volume: 36 start-page: 422 year: 2012 end-page: 430 article-title: Assessment of epicardial fat volume and myocardial triglyceride content in severely obese subjects: relationship to metabolic profile, cardiac function and visceral fat publication-title: Int J Obes (Lond) – volume: 308 start-page: 1150 year: 2012 end-page: 1159 article-title: Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults publication-title: JAMA – volume: 54 start-page: 3093 year: 2011 end-page: 3100 article-title: Exenatide decreases hepatic fibroblast growth factor 21 resistance in non‐alcoholic fatty liver disease in a mouse model of obesity and in a randomised controlled trial publication-title: Diabetologia – volume: 60 start-page: 69 year: 2014 end-page: 77 article-title: Multiparametric magnetic resonance for the non‐invasive diagnosis of liver disease publication-title: J Hepat0ol – volume: 27 start-page: 397 year: 2014 end-page: 405 article-title: Initial clinical application of modified Dixon with flexible echo times: hepatic and pancreatic fat assessments in comparison with (1)H MRS publication-title: MAGMA – volume: 19 start-page: 211 year: 2009 end-page: 217 article-title: Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease publication-title: Nutr Metab Cardiovasc Dis – volume: 43 start-page: 173 year: 2006 end-page: 181 article-title: Exendin‐4, a glucagon‐like protein‐1 (GLP‐1) receptor agonist, reverses hepatic steatosis in ob/ob mice publication-title: Hepatology – volume: 30 start-page: 2916 year: 2007 end-page: 2921 article-title: Pancreatic fat content and beta‐cell function in men with and without type 2 diabetes publication-title: Diabetes Care – volume: 17 start-page: 819 year: 2013 end-page: 837 article-title: Pharmacology, physiology, and mechanisms of incretin hormone action publication-title: Cell Metab – year: 2015 – volume: 67 start-page: 117 year: 2016 end-page: 119 article-title: Time course of change in ectopic fat stores after bariatric surgery publication-title: J Am Coll Cardiol – volume: 19 start-page: 2310 year: 2011 end-page: 2315 article-title: Effects of combined exenatide and pioglitazone therapy on hepatic fat content in type 2 diabetes publication-title: Obesity (Silver Spring) – volume: 288 start-page: E462 year: 2005 end-page: E468 article-title: Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population publication-title: Am J Physiol Endocrinol Metab – volume: 24 start-page: 537 year: 2013 end-page: 545 article-title: Non‐alcoholic steatohepatitis: a microbiota‐driven disease publication-title: Trends Endocrinol Metab – volume: 52 start-page: 1793 year: 2008 end-page: 1799 article-title: Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus publication-title: J Am Coll Cardiol – volume: 65 start-page: 44 year: 2016 end-page: 52 article-title: Relationship between Left ventricular structural and metabolic remodelling in type 2 diabetes mellitus publication-title: Diabetes – volume: 20 start-page: 9090 year: 2014 end-page: 9097 article-title: Potential roles of glucagon‐like peptide‐1‐based therapies in treating non‐alcoholic fatty liver disease publication-title: World J Gastroenterol – volume: 17 start-page: 95 year: 2015 article-title: Time course of cardiometabolic alterations in a high fat high sucrose diet mice model and improvement after GLP‐1 analog treatment using multimodal cardiovascular magnetic resonance publication-title: J Cardiovasc Mag Reson – volume: 89 start-page: 365 year: 2015 end-page: 375 article-title: Exenatide exerts a PKA‐dependent positive inotropic effect in human atrial myocardium: GLP‐1R mediated effects in human myocardium publication-title: J Mol Cell Cardiol – volume: 444 start-page: 881 year: 2006 end-page: 887 article-title: Abdominal obesity and metabolic syndrome publication-title: Nature – volume: 101 start-page: 1798 year: 2016 end-page: 1806 article-title: Mechanisms of action of liraglutide in patients with type 2 diabetes treated with high‐dose insulin publication-title: J Clin Endocrinol Metab – volume: 52 start-page: 727 year: 2015 end-page: 732 article-title: Short‐term effects of glucagon‐like peptide 1 (GLP‐1) receptor agonists on fat distribution in patients with type 2 diabetes mellitus: an ultrasonography study publication-title: Acta Diabetol – volume: 129 start-page: 35 year: 1997 end-page: 43 article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge publication-title: J Magn Reson – volume: 39 start-page: 480 year: 2015 end-page: 487 article-title: Ectopic fat storage in the pancreas using 1H‐MRS: importance of diabetic status and modulation with bariatric surgery‐induced weight loss publication-title: Int J Obes (Lond) – volume: 19 start-page: 760 year: 2009 end-page: 766 article-title: Comparison of epicardial, abdominal and regional fat compartments in response to weight loss publication-title: Nutr Metab Cardiovasc Dis – volume: 305 start-page: H295 year: 2013 end-page: H304 article-title: Glucagon‐like peptide‐1 receptor activation reverses cardiac remodeling via normalizing cardiac steatosis and oxidative stress in type 2 diabetes publication-title: Am J Physiol Heart Circ Physiol – volume: 204 start-page: 580 year: 2009 end-page: 585 article-title: Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries publication-title: Atherosclerosis – volume: 11 start-page: 573 year: 2008 end-page: 579 article-title: Metabolic MRI of myocardial and hepatic triglyceride content in response to nutritional interventions publication-title: Curr Opin Clin Nutr Metab Care – volume: 269 start-page: 434 year: 2013 end-page: 442 article-title: Exercise and type 2 diabetes mellitus: changes in tissue‐specific fat distribution and cardiac function publication-title: Radiology – volume: 34 start-page: 1139 year: 2011 end-page: 1144 article-title: Prevalence of and risk factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: the Edinburgh type 2 diabetes study publication-title: Diabetes Care – ident: e_1_2_7_53_1 doi: 10.1007/s10334-013-0421-4 – ident: e_1_2_7_11_1 doi: 10.1038/ijo.2014.126 – ident: e_1_2_7_51_1 doi: 10.1210/jc.2015-3906 – ident: e_1_2_7_4_1 doi: 10.1001/2012.jama.11132 – ident: e_1_2_7_35_1 doi: 10.1016/j.jacc.2015.10.052 – ident: e_1_2_7_23_1 doi: 10.1210/jc.2009-0584 – ident: e_1_2_7_38_1 doi: 10.1016/j.numecd.2009.01.010 – ident: e_1_2_7_45_1 doi: 10.1038/mt.2008.198 – ident: e_1_2_7_41_1 doi: 10.1186/1749-8090-9-2 – ident: e_1_2_7_29_1 doi: 10.1210/jc.2009-1441 – ident: e_1_2_7_19_1 doi: 10.1016/j.jhep.2015.08.038 – ident: e_1_2_7_25_1 doi: 10.1016/j.jacc.2012.06.016 – ident: e_1_2_7_14_1 doi: 10.2337/dc09-1961 – ident: e_1_2_7_3_1 doi: 10.1038/nature05488 – ident: e_1_2_7_37_1 doi: 10.1038/oby.2008.251 – ident: e_1_2_7_30_1 doi: 10.1161/ATVBAHA.112.300829 – ident: e_1_2_7_34_1 doi: 10.1016/j.yjmcc.2015.09.018 – ident: e_1_2_7_26_1 doi: 10.1006/jmre.1997.1244 – ident: e_1_2_7_42_1 doi: 10.1161/CIRCULATIONAHA.106.645614 – ident: e_1_2_7_46_1 – ident: e_1_2_7_10_1 doi: 10.1038/ng.257 – ident: e_1_2_7_31_1 doi: 10.1016/j.numecd.2008.05.002 – ident: e_1_2_7_5_1 doi: 10.1172/JCI78425 – ident: e_1_2_7_9_1 doi: 10.2337/dc10-2229 – ident: e_1_2_7_49_1 doi: 10.1016/j.tem.2013.05.009 – ident: e_1_2_7_47_1 doi: 10.1016/S0140-6736(15)00803-X – ident: e_1_2_7_33_1 doi: 10.1161/CIRCRESAHA.114.301958 – ident: e_1_2_7_6_1 doi: 10.1016/j.jacc.2012.11.062 – ident: e_1_2_7_39_1 doi: 10.1152/japplphysiol.90756.2008 – ident: e_1_2_7_44_1 doi: 10.2337/dc07-1463 – ident: e_1_2_7_2_1 doi: 10.1161/CIRCULATIONAHA.111.077602 – ident: e_1_2_7_7_1 doi: 10.1038/ijo.2011.117 – ident: e_1_2_7_20_1 doi: 10.1371/journal.pone.0050117 – ident: e_1_2_7_15_1 doi: 10.1186/s12968-015-0198-x – ident: e_1_2_7_48_1 doi: 10.1007/s00125-011-2317-z – ident: e_1_2_7_13_1 doi: 10.1016/j.cmet.2013.04.008 – ident: e_1_2_7_32_1 doi: 10.1016/j.atherosclerosis.2008.09.038 – ident: e_1_2_7_22_1 doi: 10.1016/j.jhep.2013.09.002 – ident: e_1_2_7_17_1 doi: 10.1152/ajpheart.00990.2012 – volume: 65 start-page: 44 year: 2016 ident: e_1_2_7_43_1 article-title: Relationship between Left ventricular structural and metabolic remodelling in type 2 diabetes mellitus publication-title: Diabetes doi: 10.2337/db15-0627 – volume: 20 start-page: 9090 year: 2014 ident: e_1_2_7_18_1 article-title: Potential roles of glucagon‐like peptide‐1‐based therapies in treating non‐alcoholic fatty liver disease publication-title: World J Gastroenterol doi: 10.3748/wjg.v20.i27.9090 – ident: e_1_2_7_27_1 doi: 10.1152/ajpendo.00064.2004 – ident: e_1_2_7_50_1 doi: 10.1371/journal.pone.0025269 – ident: e_1_2_7_21_1 doi: 10.1038/oby.2011.152 – ident: e_1_2_7_36_1 doi: 10.1007/s00592-014-0710-z – ident: e_1_2_7_40_1 doi: 10.1148/radiol.13121631 – ident: e_1_2_7_24_1 doi: 10.1097/MCO.0b013e32830a98e3 – ident: e_1_2_7_28_1 doi: 10.1093/ajcn/4.1.20 – ident: e_1_2_7_52_1 doi: 10.1038/oby.2009.352 – ident: e_1_2_7_16_1 doi: 10.1002/hep.21006 – ident: e_1_2_7_8_1 doi: 10.1016/j.jacc.2008.07.062 – ident: e_1_2_7_12_1 doi: 10.2337/dc07-0326 |
SSID | ssj0004387 |
Score | 2.5631764 |
Snippet | Aim
To conduct a prospective randomized trial to investigate the effect of glucagon‐like peptide‐1 (GLP‐1) analogues on ectopic fat stores.
Methods
A total of... To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. A total of 44 obese... Aim To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. Methods A total of... AimTo conduct a prospective randomized trial to investigate the effect of glucagon‐like peptide‐1 (GLP‐1) analogues on ectopic fat stores.MethodsA total of 44... AIM: To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. METHODS: A total... |
SourceID | hal proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 882 |
SubjectTerms | Adiponectin Adipose tissue Adipose Tissue - diagnostic imaging Adipose Tissue - metabolism Body fat Body mass index Body weight loss Diabetes Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - complications Diabetes Mellitus, Type 2 - drug therapy Diabetes Mellitus, Type 2 - metabolism Endocrinology and metabolism epicardial adipose tissue Fatty liver Fatty Liver - complications Fatty Liver - diagnostic imaging Fatty Liver - metabolism Female Glucagon glucagon-like peptide 1 receptor agonist Glycated Hemoglobin A - metabolism Heart - diagnostic imaging Hemoglobin hepatic triglyceride content Human health and pathology Humans Hypoglycemic Agents - therapeutic use Insulin resistance Life Sciences Liver - diagnostic imaging Liver - metabolism Magnetic Resonance Imaging Magnetic resonance spectroscopy Male Middle Aged myocardial triglyceride content Myocardium - metabolism NMR Nuclear magnetic resonance Obesity Obesity - complications Obesity - metabolism Pancreas - diagnostic imaging Pancreas - metabolism pancreatic triglyceride content Patients Peptides - therapeutic use Pericardium - diagnostic imaging Pericardium - metabolism Population studies Postprandial Period Proton Magnetic Resonance Spectroscopy Spectrum analysis Steatosis Treatment Outcome Triglycerides - metabolism type 2 diabetes Venoms - therapeutic use |
Title | Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy |
URI | https://api.istex.fr/ark:/67375/WNG-1S742GZD-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.12680 https://www.ncbi.nlm.nih.gov/pubmed/27106272 https://www.proquest.com/docview/1813599931 https://www.proquest.com/docview/3059407008 https://www.proquest.com/docview/1815711331 https://hal.science/hal-01478321 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbGkBBfYLyNwoYOhBBfUsWJEyfwadpbhdiQgIkJIUV27IxqbVI1LRr7i_wp7pwXGCoS4ltTXyy_3NmPL4_vGHtujbbCytwTOkk9UfiJp0XEvcLnymihpFSOIHscj07Em9PodI297u7CNPEheocbWYZbr8nAla5_M3JTTYc8iBM6rxNXiwDR-1-ho0TokuPhQoAWnxKLZ6Nj8fRvXtmLrn0lJuR1GtyLVXDzKnp128_Bbfala3jDOjkfLhd6mF_-EdPxP3u2wW61sBR2Gj26w9ZseZfdOGo_vN9jP_YvLPkNjQXjgGZta5gQpwMKtQAivOPuBao0YGc476R2E1BmPKtqCws3uzAuoQ3jWgP5f6FqshK418gXDAF0vuBXoAA7210EBdxSscHjS2ugu8wJLuMIEHP_DKbqrKT7mDC3dLhAVYbx1GVgcrW7eihwZzX7fp-dHOx_3B15bR4IL6cUWZ6xBFPSsIjSWMsAdUnnAddxIAudmrgQvDDST_085Epyxbk29OSjWOob7ocP2HpZlfYhg5jHSmiVcF8jFFOhQgRaqCK1wvgyjvWAvew0IsvbIOmUq2OSdYcl7GvmJmfAnvWisyYyyEohVKu-nGJ5j3beZvQfnk0lpYn6xgfshdO6XkzNz4lvJ6Ps0_Fhxj9IERx-3svSAdvq1DJrl5o6Q4gWRgjzQ76yOKSAPLiu-8mAPe2LcQ2hD0OqtNXSVRFJzkOqYrPR9r4tAUJQHOkAR8bp7N_7mu29O3I_Hv276GN2E6c2bkh7W2x9MV_abUR5C_3EmfNPBnNPbQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF71IQEXKO9AgQEB4uLI62eMxKEibVOaFAlaUXExu951iZrYUZxA29_EP0H8J2bWDygKEpceuCXZyWo9O68dfzvD2FOtpPZ0mFie7ESWl9odS3o-t1KbCyU9EYbCAGT3gt6B9-bQP1xi3-q7MGV9iCbhRpph7DUpOCWkf9NylY_b3Ak6dgWp3NWnX_HAVrza6eLuPnOcrc391z2r6ilgJdRuyVKaXF7kpn4UyNDBdcnE4TJwwlRGKkg9nqrQjuzE5SLkgnOp6JuNZJGtuO3ivMtslTqIU6X-7rtfxao817TjQ9ODNiYi3NBajRtqlnrO-y1_JuzlKm3nyaIA93y8bBze1jX2o2ZViXM5bs9nsp2c_VFF8n_h5Rq7WkXesFGqynW2pLMb7NKgwhbcZN83TzSlRpUGZWLpQhcwItgKpGIGhOlHBw0iU6AnKNqkWSMQajjJCw0zI8AwzKCqVFsApbghLxsvmL9RuhscqNPdL0EAcre-6woYNSCDhmdaQX1fFUxTFaDLCUcwFkcZXTmFqabzE2orDMemyZSZ3cxDtUnzyektdnAhrLzNVrI803cZBDwQnhQdbkuMNoUrMMhORRppT9lhEMgWe1GLYJxUdeCpHckors-D-KyxEYYWe9KQTsriJwuJUI6bcSpX3tvox_QbHr9D6oT1hbfYcyPmDZmYHhOkMPTjD3vbMX8fes72x24ctdh6rQdxZU2LGKNQ18eTjMsXDrtUcwhdl91pscfNMJpJevclMp3PzRR-yLlLU9wp1atZi4NRNnLaQc4YJfn7s8bdtwPz4d6_kz5il3v7g37c39nbvc-u4DYHJUZxna3MpnP9AIPamXxobAmwTxetcD8BnMerww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELb6kCouUN6BAgMCxGWj9T6zSBwq0jSlbUBARcVlsdfeEjXZjbIJtP1L_BT4Ucx4H1AUJC49cEvWjuUdz4y_cT7PMPZYK6k9HSaWJzuR5aV2x5Kez63U5kJJT4ShMATZQdA_8F4d-odL7Ft9F6bMD9EcuJFlGH9NBj5R6W9GrvJxmztBx64Ylbv69CvGa8WLnS4u7hPH6W29f9m3qpICVkLVliylaceL3NSPAhk6OC2ZOFwGTpjKSAWpx1MV2pGduFyEXHAuFX2zsVtkK267OO4yW_UCfEoI7O2vXFWea6rxoedBFxMRbWi9pg01Uz23-S1_JurlKq3mySJ8ex4um_2ud4X9qCVV0lyO2_OZbCdnfySR_E9Euc4uV7gbNktDucqWdHaNre1XzILr7PvWiaaDUaVBGSRd6AJGRFqBVMyAGP24PYPIFOgJKjbZ1QiEGk7yQsPMqC8MM6jy1BZAB9yQl2UXzM_osBscqA-7n4MAFG590xUQM6CAhmdaQX1bFUxJFaCrCUcwFkcZXTiFqaboCW0VhmNTYsqMbsahzKT55PQGO7gQUd5kK1me6dsMAh4IT4oOtyViTeEKhNipSCPtKTsMAtliz2oNjJMqCzwVIxnFdTSI7xobZWixR03XSZn6ZGEnVOOmnZKV9zf3YnqGwXdIdbC-8BZ7arS86Samx0QoDP34w2A75u9Cz9n-2I2jFtuozSCufGkRIwZ1fYxjXL6w2aWMQ7hx2Z0We9g0o5Okf75EpvO5GcIPOXdpiFuldTVzcRBjo6QdlIyxkb-_a9x9vW8-3Pn3rg_Y2ptuL97bGezeZZdwlYOSoLjBVmbTub6HiHYm7xtPAuzTRdvbT-RpqnI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exenatide+decreases+liver+fat+content+and+epicardial+adipose+tissue+in+patients+with+obesity+and+type+2+diabetes%3A+a+prospective+randomized+clinical+trial+using+magnetic+resonance+imaging+and+spectroscopy&rft.jtitle=Diabetes%2C+obesity+%26+metabolism&rft.au=Dutour%2C+A&rft.au=Abdesselam%2C+I&rft.au=Ancel%2C+P&rft.au=Kober%2C+F&rft.date=2016-09-01&rft.issn=1462-8902&rft.eissn=1463-1326&rft.volume=18&rft.issue=9&rft.spage=882&rft.epage=891&rft_id=info:doi/10.1111%2Fdom.12680&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-8902&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-8902&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-8902&client=summon |