Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy

Aim To conduct a prospective randomized trial to investigate the effect of glucagon‐like peptide‐1 (GLP‐1) analogues on ectopic fat stores. Methods A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treat...

Full description

Saved in:
Bibliographic Details
Published inDiabetes, obesity & metabolism Vol. 18; no. 9; pp. 882 - 891
Main Authors Dutour, A., Abdesselam, I., Ancel, P., Kober, F., Mrad, G., Darmon, P., Ronsin, O., Pradel, V., Lesavre, N., Martin, J. C., Jacquier, A., Lefur, Y., Bernard, M., Gaborit, B.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2016
Wiley Subscription Services, Inc
Wiley
Subjects
NMR
Online AccessGet full text

Cover

Loading…
Abstract Aim To conduct a prospective randomized trial to investigate the effect of glucagon‐like peptide‐1 (GLP‐1) analogues on ectopic fat stores. Methods A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45 min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26 weeks of treatment. Results The study population had a mean glycated haemoglobin (HbA1c) level of 7.5 ± 0.2% and a mean body mass index of 36.1 ± 1.1 kg/m2. Ninety five percent had hepatic steatosis at baseline (HTGC ≥ 5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (−0.7 ± 0.3% vs. −0.7 ± 0.4%; p = 0.29), whereas significant weight loss was observed only in the exenatide group (−5.5 ± 1.2 kg vs. −0.2 ± 0.8 kg; p = 0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (−8.8 ± 2.1%) and HTGC (−23.8 ± 9.5%), compared with the reference treatment (EAT: −1.2 ± 1.6%, p = 0.003; HTGC: +12.5 ± 9.6%, p = 0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r = 0.47, p = 0.03, and r = 0.50, p = 0.018, respectively). Conclusion Our data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent.
AbstractList Aim To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. Methods A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26weeks of treatment. Results The study population had a mean glycated haemoglobin (HbA1c) level of 7.5 plus or minus 0.2% and a mean body mass index of 36.1 plus or minus 1.1kg/m super(2). Ninety fivepercent had hepatic steatosis at baseline (HTGC greater than or equal to 5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (-0.7 plus or minus 0.3% vs. -0.7 plus or minus 0.4%; p=0.29), whereas significant weight loss was observed only in the exenatide group (-5.5 plus or minus 1.2kg vs. -0.2 plus or minus 0.8kg; p=0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (-8.8 plus or minus 2.1%) and HTGC (-23.8 plus or minus 9.5%), compared with the reference treatment (EAT: -1.2 plus or minus 1.6%, p=0.003; HTGC: +12.5 plus or minus 9.6%, p=0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r=0.47, p=0.03, and r=0.50, p=0.018, respectively). Conclusion Our data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent.
Aim To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. Methods A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26weeks of treatment. Results The study population had a mean glycated haemoglobin (HbA1c) level of 7.5±0.2% and a mean body mass index of 36.1±1.1kg/m2. Ninety fivepercent had hepatic steatosis at baseline (HTGC≥5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (-0.7±0.3% vs. -0.7±0.4%; p=0.29), whereas significant weight loss was observed only in the exenatide group (-5.5±1.2kg vs. -0.2±0.8kg; p=0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (-8.8±2.1%) and HTGC (-23.8±9.5%), compared with the reference treatment (EAT: -1.2±1.6%, p=0.003; HTGC: +12.5±9.6%, p=0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r=0.47, p=0.03, and r=0.50, p=0.018, respectively). Conclusion Our data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent.
Aim To conduct a prospective randomized trial to investigate the effect of glucagon‐like peptide‐1 (GLP‐1) analogues on ectopic fat stores. Methods A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45 min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26 weeks of treatment. Results The study population had a mean glycated haemoglobin (HbA1c) level of 7.5 ± 0.2% and a mean body mass index of 36.1 ± 1.1 kg/m2. Ninety five percent had hepatic steatosis at baseline (HTGC ≥ 5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (−0.7 ± 0.3% vs. −0.7 ± 0.4%; p = 0.29), whereas significant weight loss was observed only in the exenatide group (−5.5 ± 1.2 kg vs. −0.2 ± 0.8 kg; p = 0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (−8.8 ± 2.1%) and HTGC (−23.8 ± 9.5%), compared with the reference treatment (EAT: −1.2 ± 1.6%, p = 0.003; HTGC: +12.5 ± 9.6%, p = 0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r = 0.47, p = 0.03, and r = 0.50, p = 0.018, respectively). Conclusion Our data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent.
To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45 min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26 weeks of treatment. The study population had a mean glycated haemoglobin (HbA1c) level of 7.5 ± 0.2% and a mean body mass index of 36.1 ± 1.1 kg/m(2) . Ninety five percent had hepatic steatosis at baseline (HTGC ≥ 5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (-0.7 ± 0.3% vs. -0.7 ± 0.4%; p = 0.29), whereas significant weight loss was observed only in the exenatide group (-5.5 ± 1.2 kg vs. -0.2 ± 0.8 kg; p = 0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (-8.8 ± 2.1%) and HTGC (-23.8 ± 9.5%), compared with the reference treatment (EAT: -1.2 ± 1.6%, p = 0.003; HTGC: +12.5 ± 9.6%, p = 0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r = 0.47, p = 0.03, and r = 0.50, p = 0.018, respectively). Our data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent.
AimTo conduct a prospective randomized trial to investigate the effect of glucagon‐like peptide‐1 (GLP‐1) analogues on ectopic fat stores.MethodsA total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45 min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26 weeks of treatment.ResultsThe study population had a mean glycated haemoglobin (HbA1c) level of 7.5 ± 0.2% and a mean body mass index of 36.1 ± 1.1 kg/m2. Ninety five percent had hepatic steatosis at baseline (HTGC ≥ 5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (−0.7 ± 0.3% vs. −0.7 ± 0.4%; p = 0.29), whereas significant weight loss was observed only in the exenatide group (−5.5 ± 1.2 kg vs. −0.2 ± 0.8 kg; p = 0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (−8.8 ± 2.1%) and HTGC (−23.8 ± 9.5%), compared with the reference treatment (EAT: −1.2 ± 1.6%, p = 0.003; HTGC: +12.5 ± 9.6%, p = 0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r = 0.47, p = 0.03, and r = 0.50, p = 0.018, respectively).ConclusionOur data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent.
AIM: To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. METHODS: A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45 min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26 weeks of treatment. RESULTS: The study population had a mean glycated haemoglobin (HbA1c) level of 7.5 ± 0.2% and a mean body mass index of 36.1 ± 1.1 kg/m(2) . Ninety five percent had hepatic steatosis at baseline (HTGC ≥ 5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (-0.7 ± 0.3% vs. -0.7 ± 0.4%; p = 0.29), whereas significant weight loss was observed only in the exenatide group (-5.5 ± 1.2 kg vs. -0.2 ± 0.8 kg; p = 0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (-8.8 ± 2.1%) and HTGC (-23.8 ± 9.5%), compared with the reference treatment (EAT: -1.2 ± 1.6%, p = 0.003; HTGC: +12.5 ± 9.6%, p = 0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r = 0.47, p = 0.03, and r = 0.50, p = 0.018, respectively). CONCLUSION: Our data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent.
Author Darmon, P.
Kober, F.
Ancel, P.
Martin, J. C.
Abdesselam, I.
Dutour, A.
Lesavre, N.
Bernard, M.
Jacquier, A.
Ronsin, O.
Pradel, V.
Lefur, Y.
Gaborit, B.
Mrad, G.
Author_xml – sequence: 1
  givenname: A.
  surname: Dutour
  fullname: Dutour, A.
  organization: Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France
– sequence: 2
  givenname: I.
  surname: Abdesselam
  fullname: Abdesselam, I.
  organization: Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France
– sequence: 3
  givenname: P.
  surname: Ancel
  fullname: Ancel, P.
  organization: Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France
– sequence: 4
  givenname: F.
  surname: Kober
  fullname: Kober, F.
  organization: Aix Marseille Université, Marseille, France
– sequence: 5
  givenname: G.
  surname: Mrad
  fullname: Mrad, G.
  organization: Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France
– sequence: 6
  givenname: P.
  surname: Darmon
  fullname: Darmon, P.
  organization: Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France
– sequence: 7
  givenname: O.
  surname: Ronsin
  fullname: Ronsin, O.
  organization: Department of Endocrinology, Metabolic Diseases and Nutrition, Pole Endo, Marseille, France
– sequence: 8
  givenname: V.
  surname: Pradel
  fullname: Pradel, V.
  organization: Aix Marseille Université, Marseille, France
– sequence: 9
  givenname: N.
  surname: Lesavre
  fullname: Lesavre, N.
  organization: Aix Marseille Université, Marseille, France
– sequence: 10
  givenname: J. C.
  surname: Martin
  fullname: Martin, J. C.
  organization: Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France
– sequence: 11
  givenname: A.
  surname: Jacquier
  fullname: Jacquier, A.
  organization: Aix Marseille Université, Marseille, France
– sequence: 12
  givenname: Y.
  surname: Lefur
  fullname: Lefur, Y.
  organization: Aix Marseille Université, Marseille, France
– sequence: 13
  givenname: M.
  surname: Bernard
  fullname: Bernard, M.
  organization: Aix Marseille Université, Marseille, France
– sequence: 14
  givenname: B.
  surname: Gaborit
  fullname: Gaborit, B.
  email: : Bénédicte Gaborit, Inserm U1062, Inra U1260, Aix Marseille Université, Faculté de Médecine, 27 boulevard Jean Moulin, 13385 Marseille cedex 05, France., benedicte.gaborit@ap-hm.fr
  organization: Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27106272$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01478321$$DView record in HAL
BookMark eNp9kstu1DAUhiNURC-w4AWQJTawSOtLEifsqrZMkQa6AITExnLsk9YlY6e203Z4xb5UnZl2kCpRb3z7_v_4-JzdbMs6C1n2luB9ksaBdot9Qqsav8h2SFGxnDBaba3WNK8bTLez3RAuMcYFq_mrbJtygivK6U52d3ILVkajAWlQHmSAgHpzDR51MiLlbAQbkbQawWCU9NrIHkltBhcARRPCCMhYNCSPBAZ0Y-IFci0EE5crWVwOgChKuhYihE9IosG7MICKKQzyiXEL8xc0Ur2xKUSPop-CjMHYc7SQ5xaiUchDcFZalcKls-lqcl_5JDvlhuXr7GUn-wBvHua97Ofnkx9Hp_n8bPbl6HCeq6KucK6hppg0rCubquW0LcpWUdKm_-jaRlddQTrNcYMVI5ITSUirpx1OWIM1wWwv-7j2vZC9GHx6jl8KJ404PZyL6QyTgteMkmuS2A9rNuV8NUKIYmGCgr6XFtwYBKlJyQlhbELfP0Ev3ehtykQwXDYF5hjXz1HJi5VN06y83j1QY7sAvXnlY-H_5aDS5wUP3QYhWExNJVJVxKqpEnvwhFUmpnqn3vDS9M8pbkwPy_9bi-Ozr4-KfK0wIcLtRiH9H1Fxxkvx69tMkO-8oLPfx6Jh91ma7hI
CODEN DOMEF6
CitedBy_id crossref_primary_10_1080_14740338_2018_1424826
crossref_primary_10_1111_cen_14344
crossref_primary_10_1186_s12933_019_0890_5
crossref_primary_10_31146_1682_8658_ecg_169_9_4_10
crossref_primary_10_3389_fendo_2020_00070
crossref_primary_10_1007_s11897_025_00700_5
crossref_primary_10_1111_dom_14319
crossref_primary_10_3350_cmh_2020_0137
crossref_primary_10_1186_s12933_024_02181_7
crossref_primary_10_1007_s40261_019_00785_6
crossref_primary_10_1016_j_metabol_2018_11_014
crossref_primary_10_1016_j_diabres_2024_111675
crossref_primary_10_1186_s12933_021_01237_2
crossref_primary_10_1097_CRD_0000000000000670
crossref_primary_10_1111_dom_14399
crossref_primary_10_1002_oby_23865
crossref_primary_10_3389_fphys_2021_785879
crossref_primary_10_12677_ACM_2023_1361396
crossref_primary_10_3390_cells11060991
crossref_primary_10_1038_s41366_018_0263_2
crossref_primary_10_1089_met_2017_0070
crossref_primary_10_3390_biom12020176
crossref_primary_10_1016_j_atherosclerosis_2022_11_008
crossref_primary_10_4254_wjh_v16_i5_731
crossref_primary_10_1111_dom_13061
crossref_primary_10_1016_j_diabet_2019_01_008
crossref_primary_10_1002_hep_32012
crossref_primary_10_1016_j_bbalip_2018_12_010
crossref_primary_10_1016_j_diabres_2025_112017
crossref_primary_10_2337_dc18_0588
crossref_primary_10_1111_bcp_14855
crossref_primary_10_14406_acu_2017_029
crossref_primary_10_1111_dom_16107
crossref_primary_10_3390_diagnostics12010126
crossref_primary_10_1016_j_peptides_2017_02_008
crossref_primary_10_3390_metabo13050581
crossref_primary_10_1016_j_cardfail_2019_09_002
crossref_primary_10_4239_wjd_v9_i9_141
crossref_primary_10_1016_S2468_1253_21_00261_2
crossref_primary_10_1371_journal_pone_0289616
crossref_primary_10_1007_s42000_018_0021_9
crossref_primary_10_3389_fendo_2023_1181452
crossref_primary_10_1016_j_cpcardiol_2023_101739
crossref_primary_10_1177_10742484211006997
crossref_primary_10_1155_2021_3715026
crossref_primary_10_3390_nu14142926
crossref_primary_10_1515_mr_2024_0007
crossref_primary_10_3389_fendo_2023_1193373
crossref_primary_10_1111_dom_14933
crossref_primary_10_1253_circj_CJ_20_0935
crossref_primary_10_1007_s40265_024_02022_7
crossref_primary_10_1016_j_cld_2023_01_002
crossref_primary_10_3390_metabo13040517
crossref_primary_10_17816_brmma50562
crossref_primary_10_1016_j_metabol_2021_154892
crossref_primary_10_3390_diabetology4030032
crossref_primary_10_1016_j_numecd_2021_04_028
crossref_primary_10_1002_jmri_27009
crossref_primary_10_1016_j_tem_2022_03_005
crossref_primary_10_1016_j_aohep_2022_100751
crossref_primary_10_1016_j_jdiacomp_2024_108928
crossref_primary_10_1097_MOL_0000000000000431
crossref_primary_10_1111_pace_13825
crossref_primary_10_1111_dme_14912
crossref_primary_10_3389_fphys_2024_1522471
crossref_primary_10_1159_000526808
crossref_primary_10_1016_S1262_3636_17_30070_8
crossref_primary_10_3390_life13030839
crossref_primary_10_1530_EC_18_0497
crossref_primary_10_3390_ijms21072641
crossref_primary_10_1111_obr_13574
crossref_primary_10_1016_S2213_8587_22_00070_5
crossref_primary_10_1016_j_molmet_2020_101122
crossref_primary_10_1111_jdi_14200
crossref_primary_10_1002_hep_31852
crossref_primary_10_4254_wjh_v12_i8_493
crossref_primary_10_1016_j_rce_2022_11_007
crossref_primary_10_1152_ajpcell_00020_2021
crossref_primary_10_1016_S2468_1253_22_00338_7
crossref_primary_10_3390_ijms17091554
crossref_primary_10_1007_s12072_019_09990_z
crossref_primary_10_2174_0929867330666230113110431
crossref_primary_10_1038_s41574_021_00507_z
crossref_primary_10_1111_dom_14516
crossref_primary_10_3390_ijms25052961
crossref_primary_10_3390_jcm8030299
crossref_primary_10_1007_s10620_021_06824_7
crossref_primary_10_1371_journal_pone_0270899
crossref_primary_10_1002_dmrr_3668
crossref_primary_10_1111_apt_17848
crossref_primary_10_4254_wjh_v12_i9_533
crossref_primary_10_1007_s40519_021_01287_1
crossref_primary_10_1016_j_jacc_2018_03_509
crossref_primary_10_3390_gastroent15010014
crossref_primary_10_4254_wjh_v14_i9_1718
crossref_primary_10_1111_dom_14595
crossref_primary_10_3390_jcm9103213
crossref_primary_10_7570_jomes_2019_28_1_18
crossref_primary_10_4239_wjd_v14_i6_724
crossref_primary_10_1002_dmrr_3386
crossref_primary_10_1007_s13300_016_0222_7
crossref_primary_10_1111_dom_14196
crossref_primary_10_3390_ijms23147886
crossref_primary_10_1089_met_2024_0115
crossref_primary_10_1016_j_phrs_2018_09_025
crossref_primary_10_1111_bcp_15344
crossref_primary_10_1007_s00125_019_05021_6
crossref_primary_10_3390_biomedicines10020274
crossref_primary_10_1007_s40618_021_01687_1
crossref_primary_10_1016_j_dld_2021_04_029
crossref_primary_10_1055_a_1877_9656
crossref_primary_10_1111_dom_13792
crossref_primary_10_1016_j_ajpc_2024_100711
crossref_primary_10_1186_s12933_017_0658_8
crossref_primary_10_1038_s41401_021_00836_9
crossref_primary_10_1093_europace_euac015
crossref_primary_10_15420_cfr_2022_25
crossref_primary_10_1038_s41598_021_01663_y
crossref_primary_10_1186_s12933_023_01738_2
crossref_primary_10_1002_mco2_413
crossref_primary_10_1530_JOE_19_0007
crossref_primary_10_3389_fcvm_2023_1151717
crossref_primary_10_1016_j_chest_2024_11_020
crossref_primary_10_1016_j_rceng_2022_12_001
crossref_primary_10_1016_j_clinthera_2017_03_013
crossref_primary_10_3390_jcm12247738
crossref_primary_10_1111_cpr_13764
crossref_primary_10_1007_s00125_016_4100_7
crossref_primary_10_1016_j_molmet_2020_101158
crossref_primary_10_1055_a_2145_1004
crossref_primary_10_1113_EP091566
crossref_primary_10_1016_j_ejphar_2019_172657
crossref_primary_10_14309_ajg_0000000000002519
crossref_primary_10_15420_cfr_2024_06
crossref_primary_10_3389_fragi_2021_666260
crossref_primary_10_1016_j_dsx_2022_102562
crossref_primary_10_1093_nutrit_nuad159
crossref_primary_10_3390_ijms24119324
crossref_primary_10_1161_CIRCULATIONAHA_117_032474
crossref_primary_10_1002_jcp_70012
crossref_primary_10_1038_s41574_021_00573_3
crossref_primary_10_1016_j_clnesp_2023_12_005
crossref_primary_10_37349_emed_2020_00008
crossref_primary_10_1177_10742484221146371
crossref_primary_10_1002_edm2_163
crossref_primary_10_1210_jendso_bvz042
crossref_primary_10_3390_metabo11020073
crossref_primary_10_1016_j_ijcard_2019_04_039
crossref_primary_10_3390_biology11030355
crossref_primary_10_20996_1819_6446_2020_08_15
crossref_primary_10_1038_s41569_022_00679_9
crossref_primary_10_3390_jcm11175144
crossref_primary_10_1038_s41598_024_79428_6
crossref_primary_10_7759_cureus_46153
crossref_primary_10_1016_j_jacc_2021_05_035
crossref_primary_10_3390_ijms24021703
crossref_primary_10_1177_20420188241229540
crossref_primary_10_3390_ijms25073832
crossref_primary_10_4239_wjd_v14_i5_549
crossref_primary_10_1038_s41598_022_06351_z
crossref_primary_10_1111_obr_13136
crossref_primary_10_3389_fendo_2023_1150360
crossref_primary_10_1016_j_dsx_2020_09_030
crossref_primary_10_1016_j_clinre_2022_102053
crossref_primary_10_1080_03007995_2021_1965563
crossref_primary_10_1093_europace_euaa214
crossref_primary_10_1590_0001_3765202220201819
crossref_primary_10_1001_jamacardio_2019_2074
crossref_primary_10_1530_EJE_18_0318
crossref_primary_10_1007_s11739_024_03765_7
crossref_primary_10_1016_j_diabet_2019_12_007
crossref_primary_10_1016_j_metabol_2019_154001
crossref_primary_10_1161_CIRCULATIONAHA_120_045888
Cites_doi 10.1007/s10334-013-0421-4
10.1038/ijo.2014.126
10.1210/jc.2015-3906
10.1001/2012.jama.11132
10.1016/j.jacc.2015.10.052
10.1210/jc.2009-0584
10.1016/j.numecd.2009.01.010
10.1038/mt.2008.198
10.1186/1749-8090-9-2
10.1210/jc.2009-1441
10.1016/j.jhep.2015.08.038
10.1016/j.jacc.2012.06.016
10.2337/dc09-1961
10.1038/nature05488
10.1038/oby.2008.251
10.1161/ATVBAHA.112.300829
10.1016/j.yjmcc.2015.09.018
10.1006/jmre.1997.1244
10.1161/CIRCULATIONAHA.106.645614
10.1038/ng.257
10.1016/j.numecd.2008.05.002
10.1172/JCI78425
10.2337/dc10-2229
10.1016/j.tem.2013.05.009
10.1016/S0140-6736(15)00803-X
10.1161/CIRCRESAHA.114.301958
10.1016/j.jacc.2012.11.062
10.1152/japplphysiol.90756.2008
10.2337/dc07-1463
10.1161/CIRCULATIONAHA.111.077602
10.1038/ijo.2011.117
10.1371/journal.pone.0050117
10.1186/s12968-015-0198-x
10.1007/s00125-011-2317-z
10.1016/j.cmet.2013.04.008
10.1016/j.atherosclerosis.2008.09.038
10.1016/j.jhep.2013.09.002
10.1152/ajpheart.00990.2012
10.2337/db15-0627
10.3748/wjg.v20.i27.9090
10.1152/ajpendo.00064.2004
10.1371/journal.pone.0025269
10.1038/oby.2011.152
10.1007/s00592-014-0710-z
10.1148/radiol.13121631
10.1097/MCO.0b013e32830a98e3
10.1093/ajcn/4.1.20
10.1038/oby.2009.352
10.1002/hep.21006
10.1016/j.jacc.2008.07.062
10.2337/dc07-0326
ContentType Journal Article
Copyright 2016 John Wiley & Sons Ltd
2016 John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 John Wiley & Sons Ltd
– notice: 2016 John Wiley & Sons Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
1XC
DOI 10.1111/dom.12680
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Neurosciences Abstracts
DatabaseTitleList AIDS and Cancer Research Abstracts
AIDS and Cancer Research Abstracts

MEDLINE
AIDS and Cancer Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1463-1326
EndPage 891
ExternalDocumentID oai_HAL_hal_01478321v1
4156844131
27106272
10_1111_dom_12680
DOM12680
ark_67375_WNG_1S742GZD_9
Genre article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Astra Zeneca
  funderid: ESR MB001‐029
– fundername: Amylin
– fundername: Lilly
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OC
29F
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~KM
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
1XC
ID FETCH-LOGICAL-c4860-de820193f596b72b45bc21b627fb9d6f41fd7090c31a71a11bd090c05bc90d103
IEDL.DBID DR2
ISSN 1462-8902
IngestDate Fri May 09 12:28:19 EDT 2025
Fri Jul 11 09:04:54 EDT 2025
Sun Jul 13 03:43:17 EDT 2025
Sun Jul 13 05:24:52 EDT 2025
Wed Feb 19 02:41:19 EST 2025
Thu Jul 03 08:37:37 EDT 2025
Thu Apr 24 22:59:15 EDT 2025
Wed Jan 22 16:47:06 EST 2025
Wed Oct 30 09:48:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords magnetic resonance imaging
type 2 diabetes
hepatic triglyceride content
pancreatic triglyceride content
epicardial adipose tissue
myocardial triglyceride content
proton magnetic resonance spectroscopy
glucagon-like peptide 1 receptor agonist
obesity
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4860-de820193f596b72b45bc21b627fb9d6f41fd7090c31a71a11bd090c05bc90d103
Notes Astra Zeneca - No. ESR MB001-029
istex:5DA8EC7870D1A1EFCB8D1D7FBE606A53BF9179F8
Amylin
Figure S1. Discriminant multivariate analysis showing the distribution of patients according to the change of clinical and biological variables between baseline and 26 weeks.Figure S2. Heat map of patients regarding the change of their metabolic data between baseline and 26 weeks.Table S1. Left ventricular function parameters evolution between groups.
ArticleID:DOM12680
ark:/67375/WNG-1S742GZD-9
Lilly
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
content type line 23
ORCID 0000-0002-7869-3615
0000-0002-1808-0251
PMID 27106272
PQID 1813599931
PQPubID 1006516
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_01478321v1
proquest_miscellaneous_1815711331
proquest_journals_3059407008
proquest_journals_1813599931
pubmed_primary_27106272
crossref_primary_10_1111_dom_12680
crossref_citationtrail_10_1111_dom_12680
wiley_primary_10_1111_dom_12680_DOM12680
istex_primary_ark_67375_WNG_1S742GZD_9
PublicationCentury 2000
PublicationDate 2016-09
September 2016
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Diabetes, obesity & metabolism
PublicationTitleAlternate Diabetes Obes Metab
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley
References Eroglu S, Sade LE, Yildirir A et al. Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr Metab Cardiovasc Dis 2009; 19: 211-217.
Sade LE, Eroglu S, Bozbas H et al. Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries. Atherosclerosis 2009; 204: 580-585.
Cuthbertson DJ, Irwin A, Gardner CJ et al. Improved glycaemia correlates with liver fat reduction in obese, type 2 diabetes, patients given glucagon-like peptide-1 (GLP-1) receptor agonists. PLoS One 2012; 7: e50117.
Romeo S, Kozlitina J, Xing C et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40: 1461-1465.
Lamb HJ, Smit JW, van der Meer RW et al. Metabolic MRI of myocardial and hepatic triglyceride content in response to nutritional interventions. Curr Opin Clin Nutr Metab Care 2008; 11: 573-579.
Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997; 129: 35-43.
Levelt E, Mahmod M, Piechnik SK et al. Relationship between Left ventricular structural and metabolic remodelling in type 2 diabetes mellitus. Diabetes 2016; 65: 44-52.
Samson SL, Sathyanarayana P, Jogi M et al. Exenatide decreases hepatic fibroblast growth factor 21 resistance in non-alcoholic fatty liver disease in a mouse model of obesity and in a randomised controlled trial. Diabetologia 2011; 54: 3093-3100.
Monji A, Mitsui T, Bando YK, Aoyama M, Shigeta T, Murohara T. Glucagon-like peptide-1 receptor activation reverses cardiac remodeling via normalizing cardiac steatosis and oxidative stress in type 2 diabetes. Am J Physiol Heart Circ Physiol 2013; 305: H295-H304.
Mahabadi AA, Berg MH, Lehmann N et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol 2013; 61: 1388-1395.
Livingstone RS, Begovatz P, Kahl S et al. Initial clinical application of modified Dixon with flexible echo times: hepatic and pancreatic fat assessments in comparison with (1)H MRS. MAGMA 2014; 27: 397-405.
Lingvay I, Esser V, Legendre JL et al. Noninvasive quantification of pancreatic fat in humans. J Clin Endocrinol Metab 2009; 94: 4070-4076.
Szczepaniak LS, Nurenberg P, Leonard D et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005; 288: E462-E468.
Wallner M, Kolesnik E, Ablasser K et al. Exenatide exerts a PKA-dependent positive inotropic effect in human atrial myocardium: GLP-1R mediated effects in human myocardium. J Mol Cell Cardiol 2015; 89 (Pt B): 365-375.
Moschen AR, Kaser S, Tilg H. Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends Endocrinol Metab 2013; 24: 537-545.
Sathyanarayana P, Jogi M, Muthupillai R, Krishnamurthy R, Samson SL, Bajaj M. Effects of combined exenatide and pioglitazone therapy on hepatic fat content in type 2 diabetes. Obesity (Silver Spring) 2011; 19: 2310-2315.
Hu HH, Kim HW, Nayak KS, Goran MI. Comparison of fat-water MRI and single-voxel MRS in the assessment of hepatic and pancreatic fat fractions in humans. Obesity (Silver Spring) 2010; 18: 841-847.
McKenney ML, Schultz KA, Boyd JH et al. Epicardial adipose excision slows the progression of porcine coronary atherosclerosis. J Cardiothorac Surg 2014; 9: 2.
Sharma S, Mells JE, Fu PP, Saxena NK, Anania FA. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS One 2011; 6: e25269.
Gaborit B, Abdesselam I, Kober F et al. Ectopic fat storage in the pancreas using 1H-MRS: importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int J Obes (Lond) 2015; 39: 480-487.
Tushuizen ME, Bunck MC, Pouwels PJ et al. Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care 2007; 30: 2916-2921.
Liu Y, Wei R, Hong TP. Potential roles of glucagon-like peptide-1-based therapies in treating non-alcoholic fatty liver disease. World J Gastroenterol 2014; 20: 9090-9097.
Neeland IJ, Turer AT, Ayers CR et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA 2012; 308: 1150-1159.
Shimabukuro M, Hirata Y, Tabata M et al. Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2013; 33: 1077-1084.
Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 2013; 17: 819-837.
Gaborit B, Kober F, Jacquier A et al. Assessment of epicardial fat volume and myocardial triglyceride content in severely obese subjects: relationship to metabolic profile, cardiac function and visceral fat. Int J Obes (Lond) 2012; 36: 422-430.
Kim MK, Tomita T, Kim MJ, Sasai H, Maeda S, Tanaka K. Aerobic exercise training reduces epicardial fat in obese men. J Appl Physiol 2009; 106: 5-11.
Armstrong MJ, Gaunt P, Aithal GP et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 2016; 387: 679-690.
Vanderheiden A, Harrison LB, Warshauer JT et al. Mechanisms of action of liraglutide in patients with type 2 diabetes treated with high-dose insulin. J Clin Endocrinol Metab 2016; 101: 1798-1806.
Fabbrini E, Yoshino J, Yoshino M et al. Metabolically normal obese people are protected from adverse effects following weight gain. J Clin Invest 2015; 125: 787-795.
Ding X, Saxena NK, Lin S, Gupta NA, Anania FA. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 2006; 43: 173-181.
McGavock JM, Lingvay I, Zib I et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 2007; 116: 1170-1175.
Williamson RM, Price JF, Glancy S et al. Prevalence of and risk factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: the Edinburgh type 2 diabetes study. Diabetes Care 2011; 34: 1139-1144.
Vague J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr 1956; 4: 20-34.
Morano S, Romagnoli E, Filardi T et al. Short-term effects of glucagon-like peptide 1 (GLP-1) receptor agonists on fat distribution in patients with type 2 diabetes mellitus: an ultrasonography study. Acta Diabetol 2015; 52: 727-732.
Armstrong MJ, Hull D, Guo K et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatophepatitis. J Hepatol 2015; 64: 399-408.
Britton KA, Fox CS. Ectopic fat depots and cardiovascular disease. Circulation 2011; 124: e837-e841.
Kim MK, Tanaka K, Kim MJ et al. Comparison of epicardial, abdominal and regional fat compartments in response to weight loss. Nutr Metab Cardiovasc Dis 2009; 19: 760-766.
Kotronen A, Juurinen L, Hakkarainen A et al. Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects. Diabetes Care 2008; 31: 165-169.
Banerjee R, Pavlides M, Tunnicliffe EM et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepat0ol 2014; 60: 69-77.
Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res 2014; 114: 1788-1803.
Samson SL, Gonzalez EV, Yechoor V, Bajaj M, Oka K, Chan L. Gene therapy for diabetes: metabolic effects of helper-dependent adenoviral exendin 4 expression in a diet-induced obesity mouse model. Mol Ther 2008; 16: 1805-1812.
Rijzewijk LJ, van der Meer RW, Smit JW et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 2008; 52: 1793-1799.
Koska J, Schwartz EA, Mullin MP, Schwenke DC, Reaven PD. Improvement of postprandial endothelial function after a single dose of exenatide in individuals with impaired glucose tolerance and recent-onset type 2 diabetes. Diabetes Care 2010; 33: 1028-1030.
Jonker JT, de Mol P, de Vries ST et al. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function. Radiology 2013; 269: 434-442.
Iacobellis G, Singh N, Wharton S, Sharma AM. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring) 2008; 16: 1693-1697.
Abdesselam I, Pepino P, Troalen T et al. Time course of cardiometabolic alterations in a high fat high sucrose diet mice model and improvement after GLP-1 analog treatment using multimodal cardiovascular magnetic resonance. J Cardiovasc Mag Reson 2015; 17: 95.
Gaborit B, Jacquier A, Kober F et al. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J Am Coll Cardiol 2012; 60: 1381-1389.
Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006; 444: 881-887.
Abdesselam I, Dutour A, Kober F et al. Time course of change in ectopic fat stores after bariatric surgery. J Am Coll Cardiol 2016; 67: 117-119.
Jonker JT, Lamb HJ, van der Meer RW et al. Pioglitazone compared with metformin increases pericardial fat volume in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95: 456-460.
2012; 60
2015; 39
2013; 24
2010; 18
2013; 61
2014; 27
2016; 387
2016; 101
2011; 54
2007; 30
2008; 31
2011; 19
2014; 60
2014; 20
2015; 89
2011; 124
2013; 17
2009; 94
2014; 9
2009; 19
2006; 444
2009; 204
2010; 33
2015; 17
2015; 125
2015; 52
2013; 269
2013; 305
2008; 16
2011; 34
2008; 11
2008; 52
2012; 36
2011; 6
2014; 114
2012; 308
1997; 129
2007; 116
2013; 33
2006; 43
2005; 288
2015; 64
2016; 65
2015
2008; 40
2012; 7
2010; 95
2016; 67
1956; 4
2009; 106
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
Levelt E (e_1_2_7_43_1) 2016; 65
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Liu Y (e_1_2_7_18_1) 2014; 20
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – reference: Vanderheiden A, Harrison LB, Warshauer JT et al. Mechanisms of action of liraglutide in patients with type 2 diabetes treated with high-dose insulin. J Clin Endocrinol Metab 2016; 101: 1798-1806.
– reference: Hu HH, Kim HW, Nayak KS, Goran MI. Comparison of fat-water MRI and single-voxel MRS in the assessment of hepatic and pancreatic fat fractions in humans. Obesity (Silver Spring) 2010; 18: 841-847.
– reference: Kim MK, Tomita T, Kim MJ, Sasai H, Maeda S, Tanaka K. Aerobic exercise training reduces epicardial fat in obese men. J Appl Physiol 2009; 106: 5-11.
– reference: Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997; 129: 35-43.
– reference: Iacobellis G, Singh N, Wharton S, Sharma AM. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring) 2008; 16: 1693-1697.
– reference: Britton KA, Fox CS. Ectopic fat depots and cardiovascular disease. Circulation 2011; 124: e837-e841.
– reference: Gaborit B, Jacquier A, Kober F et al. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J Am Coll Cardiol 2012; 60: 1381-1389.
– reference: Gaborit B, Kober F, Jacquier A et al. Assessment of epicardial fat volume and myocardial triglyceride content in severely obese subjects: relationship to metabolic profile, cardiac function and visceral fat. Int J Obes (Lond) 2012; 36: 422-430.
– reference: Morano S, Romagnoli E, Filardi T et al. Short-term effects of glucagon-like peptide 1 (GLP-1) receptor agonists on fat distribution in patients with type 2 diabetes mellitus: an ultrasonography study. Acta Diabetol 2015; 52: 727-732.
– reference: Lamb HJ, Smit JW, van der Meer RW et al. Metabolic MRI of myocardial and hepatic triglyceride content in response to nutritional interventions. Curr Opin Clin Nutr Metab Care 2008; 11: 573-579.
– reference: Romeo S, Kozlitina J, Xing C et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40: 1461-1465.
– reference: Cuthbertson DJ, Irwin A, Gardner CJ et al. Improved glycaemia correlates with liver fat reduction in obese, type 2 diabetes, patients given glucagon-like peptide-1 (GLP-1) receptor agonists. PLoS One 2012; 7: e50117.
– reference: Vague J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr 1956; 4: 20-34.
– reference: Szczepaniak LS, Nurenberg P, Leonard D et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005; 288: E462-E468.
– reference: Armstrong MJ, Hull D, Guo K et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatophepatitis. J Hepatol 2015; 64: 399-408.
– reference: Jonker JT, de Mol P, de Vries ST et al. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function. Radiology 2013; 269: 434-442.
– reference: Abdesselam I, Dutour A, Kober F et al. Time course of change in ectopic fat stores after bariatric surgery. J Am Coll Cardiol 2016; 67: 117-119.
– reference: Kim MK, Tanaka K, Kim MJ et al. Comparison of epicardial, abdominal and regional fat compartments in response to weight loss. Nutr Metab Cardiovasc Dis 2009; 19: 760-766.
– reference: Lingvay I, Esser V, Legendre JL et al. Noninvasive quantification of pancreatic fat in humans. J Clin Endocrinol Metab 2009; 94: 4070-4076.
– reference: Wallner M, Kolesnik E, Ablasser K et al. Exenatide exerts a PKA-dependent positive inotropic effect in human atrial myocardium: GLP-1R mediated effects in human myocardium. J Mol Cell Cardiol 2015; 89 (Pt B): 365-375.
– reference: Jonker JT, Lamb HJ, van der Meer RW et al. Pioglitazone compared with metformin increases pericardial fat volume in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95: 456-460.
– reference: Koska J, Schwartz EA, Mullin MP, Schwenke DC, Reaven PD. Improvement of postprandial endothelial function after a single dose of exenatide in individuals with impaired glucose tolerance and recent-onset type 2 diabetes. Diabetes Care 2010; 33: 1028-1030.
– reference: Eroglu S, Sade LE, Yildirir A et al. Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr Metab Cardiovasc Dis 2009; 19: 211-217.
– reference: Kotronen A, Juurinen L, Hakkarainen A et al. Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects. Diabetes Care 2008; 31: 165-169.
– reference: Shimabukuro M, Hirata Y, Tabata M et al. Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2013; 33: 1077-1084.
– reference: Banerjee R, Pavlides M, Tunnicliffe EM et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepat0ol 2014; 60: 69-77.
– reference: Tushuizen ME, Bunck MC, Pouwels PJ et al. Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care 2007; 30: 2916-2921.
– reference: Williamson RM, Price JF, Glancy S et al. Prevalence of and risk factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: the Edinburgh type 2 diabetes study. Diabetes Care 2011; 34: 1139-1144.
– reference: Abdesselam I, Pepino P, Troalen T et al. Time course of cardiometabolic alterations in a high fat high sucrose diet mice model and improvement after GLP-1 analog treatment using multimodal cardiovascular magnetic resonance. J Cardiovasc Mag Reson 2015; 17: 95.
– reference: Sade LE, Eroglu S, Bozbas H et al. Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries. Atherosclerosis 2009; 204: 580-585.
– reference: Moschen AR, Kaser S, Tilg H. Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends Endocrinol Metab 2013; 24: 537-545.
– reference: McKenney ML, Schultz KA, Boyd JH et al. Epicardial adipose excision slows the progression of porcine coronary atherosclerosis. J Cardiothorac Surg 2014; 9: 2.
– reference: Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 2013; 17: 819-837.
– reference: Livingstone RS, Begovatz P, Kahl S et al. Initial clinical application of modified Dixon with flexible echo times: hepatic and pancreatic fat assessments in comparison with (1)H MRS. MAGMA 2014; 27: 397-405.
– reference: Mahabadi AA, Berg MH, Lehmann N et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol 2013; 61: 1388-1395.
– reference: Rijzewijk LJ, van der Meer RW, Smit JW et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 2008; 52: 1793-1799.
– reference: Levelt E, Mahmod M, Piechnik SK et al. Relationship between Left ventricular structural and metabolic remodelling in type 2 diabetes mellitus. Diabetes 2016; 65: 44-52.
– reference: Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006; 444: 881-887.
– reference: Neeland IJ, Turer AT, Ayers CR et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA 2012; 308: 1150-1159.
– reference: Samson SL, Sathyanarayana P, Jogi M et al. Exenatide decreases hepatic fibroblast growth factor 21 resistance in non-alcoholic fatty liver disease in a mouse model of obesity and in a randomised controlled trial. Diabetologia 2011; 54: 3093-3100.
– reference: Fabbrini E, Yoshino J, Yoshino M et al. Metabolically normal obese people are protected from adverse effects following weight gain. J Clin Invest 2015; 125: 787-795.
– reference: Armstrong MJ, Gaunt P, Aithal GP et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 2016; 387: 679-690.
– reference: Monji A, Mitsui T, Bando YK, Aoyama M, Shigeta T, Murohara T. Glucagon-like peptide-1 receptor activation reverses cardiac remodeling via normalizing cardiac steatosis and oxidative stress in type 2 diabetes. Am J Physiol Heart Circ Physiol 2013; 305: H295-H304.
– reference: Gaborit B, Abdesselam I, Kober F et al. Ectopic fat storage in the pancreas using 1H-MRS: importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int J Obes (Lond) 2015; 39: 480-487.
– reference: Liu Y, Wei R, Hong TP. Potential roles of glucagon-like peptide-1-based therapies in treating non-alcoholic fatty liver disease. World J Gastroenterol 2014; 20: 9090-9097.
– reference: Ding X, Saxena NK, Lin S, Gupta NA, Anania FA. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 2006; 43: 173-181.
– reference: Sathyanarayana P, Jogi M, Muthupillai R, Krishnamurthy R, Samson SL, Bajaj M. Effects of combined exenatide and pioglitazone therapy on hepatic fat content in type 2 diabetes. Obesity (Silver Spring) 2011; 19: 2310-2315.
– reference: Samson SL, Gonzalez EV, Yechoor V, Bajaj M, Oka K, Chan L. Gene therapy for diabetes: metabolic effects of helper-dependent adenoviral exendin 4 expression in a diet-induced obesity mouse model. Mol Ther 2008; 16: 1805-1812.
– reference: Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res 2014; 114: 1788-1803.
– reference: McGavock JM, Lingvay I, Zib I et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 2007; 116: 1170-1175.
– reference: Sharma S, Mells JE, Fu PP, Saxena NK, Anania FA. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS One 2011; 6: e25269.
– volume: 116
  start-page: 1170
  year: 2007
  end-page: 1175
  article-title: Cardiac steatosis in diabetes mellitus: a 1H‐magnetic resonance spectroscopy study
  publication-title: Circulation
– volume: 33
  start-page: 1028
  year: 2010
  end-page: 1030
  article-title: Improvement of postprandial endothelial function after a single dose of exenatide in individuals with impaired glucose tolerance and recent‐onset type 2 diabetes
  publication-title: Diabetes Care
– volume: 106
  start-page: 5
  year: 2009
  end-page: 11
  article-title: Aerobic exercise training reduces epicardial fat in obese men
  publication-title: J Appl Physiol
– volume: 6
  start-page: e25269
  year: 2011
  article-title: GLP‐1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy
  publication-title: PLoS One
– volume: 95
  start-page: 456
  year: 2010
  end-page: 460
  article-title: Pioglitazone compared with metformin increases pericardial fat volume in patients with type 2 diabetes mellitus
  publication-title: J Clin Endocrinol Metab
– volume: 94
  start-page: 4070
  year: 2009
  end-page: 4076
  article-title: Noninvasive quantification of pancreatic fat in humans
  publication-title: J Clin Endocrinol Metab
– volume: 33
  start-page: 1077
  year: 2013
  end-page: 1084
  article-title: Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 16
  start-page: 1693
  year: 2008
  end-page: 1697
  article-title: Substantial changes in epicardial fat thickness after weight loss in severely obese subjects
  publication-title: Obesity (Silver Spring)
– volume: 31
  start-page: 165
  year: 2008
  end-page: 169
  article-title: Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects
  publication-title: Diabetes Care
– volume: 61
  start-page: 1388
  year: 2013
  end-page: 1395
  article-title: Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study
  publication-title: J Am Coll Cardiol
– volume: 125
  start-page: 787
  year: 2015
  end-page: 795
  article-title: Metabolically normal obese people are protected from adverse effects following weight gain
  publication-title: J Clin Invest
– volume: 387
  start-page: 679
  year: 2016
  end-page: 690
  article-title: Liraglutide safety and efficacy in patients with non‐alcoholic steatohepatitis (LEAN): a multicentre, double‐blind, randomised, placebo‐controlled phase 2 study
  publication-title: Lancet
– volume: 7
  start-page: e50117
  year: 2012
  article-title: Improved glycaemia correlates with liver fat reduction in obese, type 2 diabetes, patients given glucagon‐like peptide‐1 (GLP‐1) receptor agonists
  publication-title: PLoS One
– volume: 16
  start-page: 1805
  year: 2008
  end-page: 1812
  article-title: Gene therapy for diabetes: metabolic effects of helper‐dependent adenoviral exendin 4 expression in a diet‐induced obesity mouse model
  publication-title: Mol Ther
– volume: 9
  start-page: 2
  year: 2014
  article-title: Epicardial adipose excision slows the progression of porcine coronary atherosclerosis
  publication-title: J Cardiothorac Surg
– volume: 114
  start-page: 1788
  year: 2014
  end-page: 1803
  article-title: Cardiovascular actions of incretin‐based therapies
  publication-title: Circ Res
– volume: 40
  start-page: 1461
  year: 2008
  end-page: 1465
  article-title: Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease
  publication-title: Nat Genet
– volume: 60
  start-page: 1381
  year: 2012
  end-page: 1389
  article-title: Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content
  publication-title: J Am Coll Cardiol
– volume: 64
  start-page: 399
  year: 2015
  end-page: 408
  article-title: Glucagon‐like peptide 1 decreases lipotoxicity in non‐alcoholic steatophepatitis
  publication-title: J Hepatol
– volume: 4
  start-page: 20
  year: 1956
  end-page: 34
  article-title: The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease
  publication-title: Am J Clin Nutr
– volume: 124
  start-page: e837
  year: 2011
  end-page: e841
  article-title: Ectopic fat depots and cardiovascular disease
  publication-title: Circulation
– volume: 18
  start-page: 841
  year: 2010
  end-page: 847
  article-title: Comparison of fat‐water MRI and single‐voxel MRS in the assessment of hepatic and pancreatic fat fractions in humans
  publication-title: Obesity (Silver Spring)
– volume: 36
  start-page: 422
  year: 2012
  end-page: 430
  article-title: Assessment of epicardial fat volume and myocardial triglyceride content in severely obese subjects: relationship to metabolic profile, cardiac function and visceral fat
  publication-title: Int J Obes (Lond)
– volume: 308
  start-page: 1150
  year: 2012
  end-page: 1159
  article-title: Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults
  publication-title: JAMA
– volume: 54
  start-page: 3093
  year: 2011
  end-page: 3100
  article-title: Exenatide decreases hepatic fibroblast growth factor 21 resistance in non‐alcoholic fatty liver disease in a mouse model of obesity and in a randomised controlled trial
  publication-title: Diabetologia
– volume: 60
  start-page: 69
  year: 2014
  end-page: 77
  article-title: Multiparametric magnetic resonance for the non‐invasive diagnosis of liver disease
  publication-title: J Hepat0ol
– volume: 27
  start-page: 397
  year: 2014
  end-page: 405
  article-title: Initial clinical application of modified Dixon with flexible echo times: hepatic and pancreatic fat assessments in comparison with (1)H MRS
  publication-title: MAGMA
– volume: 19
  start-page: 211
  year: 2009
  end-page: 217
  article-title: Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease
  publication-title: Nutr Metab Cardiovasc Dis
– volume: 43
  start-page: 173
  year: 2006
  end-page: 181
  article-title: Exendin‐4, a glucagon‐like protein‐1 (GLP‐1) receptor agonist, reverses hepatic steatosis in ob/ob mice
  publication-title: Hepatology
– volume: 30
  start-page: 2916
  year: 2007
  end-page: 2921
  article-title: Pancreatic fat content and beta‐cell function in men with and without type 2 diabetes
  publication-title: Diabetes Care
– volume: 17
  start-page: 819
  year: 2013
  end-page: 837
  article-title: Pharmacology, physiology, and mechanisms of incretin hormone action
  publication-title: Cell Metab
– year: 2015
– volume: 67
  start-page: 117
  year: 2016
  end-page: 119
  article-title: Time course of change in ectopic fat stores after bariatric surgery
  publication-title: J Am Coll Cardiol
– volume: 19
  start-page: 2310
  year: 2011
  end-page: 2315
  article-title: Effects of combined exenatide and pioglitazone therapy on hepatic fat content in type 2 diabetes
  publication-title: Obesity (Silver Spring)
– volume: 288
  start-page: E462
  year: 2005
  end-page: E468
  article-title: Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population
  publication-title: Am J Physiol Endocrinol Metab
– volume: 24
  start-page: 537
  year: 2013
  end-page: 545
  article-title: Non‐alcoholic steatohepatitis: a microbiota‐driven disease
  publication-title: Trends Endocrinol Metab
– volume: 52
  start-page: 1793
  year: 2008
  end-page: 1799
  article-title: Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus
  publication-title: J Am Coll Cardiol
– volume: 65
  start-page: 44
  year: 2016
  end-page: 52
  article-title: Relationship between Left ventricular structural and metabolic remodelling in type 2 diabetes mellitus
  publication-title: Diabetes
– volume: 20
  start-page: 9090
  year: 2014
  end-page: 9097
  article-title: Potential roles of glucagon‐like peptide‐1‐based therapies in treating non‐alcoholic fatty liver disease
  publication-title: World J Gastroenterol
– volume: 17
  start-page: 95
  year: 2015
  article-title: Time course of cardiometabolic alterations in a high fat high sucrose diet mice model and improvement after GLP‐1 analog treatment using multimodal cardiovascular magnetic resonance
  publication-title: J Cardiovasc Mag Reson
– volume: 89
  start-page: 365
  year: 2015
  end-page: 375
  article-title: Exenatide exerts a PKA‐dependent positive inotropic effect in human atrial myocardium: GLP‐1R mediated effects in human myocardium
  publication-title: J Mol Cell Cardiol
– volume: 444
  start-page: 881
  year: 2006
  end-page: 887
  article-title: Abdominal obesity and metabolic syndrome
  publication-title: Nature
– volume: 101
  start-page: 1798
  year: 2016
  end-page: 1806
  article-title: Mechanisms of action of liraglutide in patients with type 2 diabetes treated with high‐dose insulin
  publication-title: J Clin Endocrinol Metab
– volume: 52
  start-page: 727
  year: 2015
  end-page: 732
  article-title: Short‐term effects of glucagon‐like peptide 1 (GLP‐1) receptor agonists on fat distribution in patients with type 2 diabetes mellitus: an ultrasonography study
  publication-title: Acta Diabetol
– volume: 129
  start-page: 35
  year: 1997
  end-page: 43
  article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge
  publication-title: J Magn Reson
– volume: 39
  start-page: 480
  year: 2015
  end-page: 487
  article-title: Ectopic fat storage in the pancreas using 1H‐MRS: importance of diabetic status and modulation with bariatric surgery‐induced weight loss
  publication-title: Int J Obes (Lond)
– volume: 19
  start-page: 760
  year: 2009
  end-page: 766
  article-title: Comparison of epicardial, abdominal and regional fat compartments in response to weight loss
  publication-title: Nutr Metab Cardiovasc Dis
– volume: 305
  start-page: H295
  year: 2013
  end-page: H304
  article-title: Glucagon‐like peptide‐1 receptor activation reverses cardiac remodeling via normalizing cardiac steatosis and oxidative stress in type 2 diabetes
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 204
  start-page: 580
  year: 2009
  end-page: 585
  article-title: Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries
  publication-title: Atherosclerosis
– volume: 11
  start-page: 573
  year: 2008
  end-page: 579
  article-title: Metabolic MRI of myocardial and hepatic triglyceride content in response to nutritional interventions
  publication-title: Curr Opin Clin Nutr Metab Care
– volume: 269
  start-page: 434
  year: 2013
  end-page: 442
  article-title: Exercise and type 2 diabetes mellitus: changes in tissue‐specific fat distribution and cardiac function
  publication-title: Radiology
– volume: 34
  start-page: 1139
  year: 2011
  end-page: 1144
  article-title: Prevalence of and risk factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: the Edinburgh type 2 diabetes study
  publication-title: Diabetes Care
– ident: e_1_2_7_53_1
  doi: 10.1007/s10334-013-0421-4
– ident: e_1_2_7_11_1
  doi: 10.1038/ijo.2014.126
– ident: e_1_2_7_51_1
  doi: 10.1210/jc.2015-3906
– ident: e_1_2_7_4_1
  doi: 10.1001/2012.jama.11132
– ident: e_1_2_7_35_1
  doi: 10.1016/j.jacc.2015.10.052
– ident: e_1_2_7_23_1
  doi: 10.1210/jc.2009-0584
– ident: e_1_2_7_38_1
  doi: 10.1016/j.numecd.2009.01.010
– ident: e_1_2_7_45_1
  doi: 10.1038/mt.2008.198
– ident: e_1_2_7_41_1
  doi: 10.1186/1749-8090-9-2
– ident: e_1_2_7_29_1
  doi: 10.1210/jc.2009-1441
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jhep.2015.08.038
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jacc.2012.06.016
– ident: e_1_2_7_14_1
  doi: 10.2337/dc09-1961
– ident: e_1_2_7_3_1
  doi: 10.1038/nature05488
– ident: e_1_2_7_37_1
  doi: 10.1038/oby.2008.251
– ident: e_1_2_7_30_1
  doi: 10.1161/ATVBAHA.112.300829
– ident: e_1_2_7_34_1
  doi: 10.1016/j.yjmcc.2015.09.018
– ident: e_1_2_7_26_1
  doi: 10.1006/jmre.1997.1244
– ident: e_1_2_7_42_1
  doi: 10.1161/CIRCULATIONAHA.106.645614
– ident: e_1_2_7_46_1
– ident: e_1_2_7_10_1
  doi: 10.1038/ng.257
– ident: e_1_2_7_31_1
  doi: 10.1016/j.numecd.2008.05.002
– ident: e_1_2_7_5_1
  doi: 10.1172/JCI78425
– ident: e_1_2_7_9_1
  doi: 10.2337/dc10-2229
– ident: e_1_2_7_49_1
  doi: 10.1016/j.tem.2013.05.009
– ident: e_1_2_7_47_1
  doi: 10.1016/S0140-6736(15)00803-X
– ident: e_1_2_7_33_1
  doi: 10.1161/CIRCRESAHA.114.301958
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jacc.2012.11.062
– ident: e_1_2_7_39_1
  doi: 10.1152/japplphysiol.90756.2008
– ident: e_1_2_7_44_1
  doi: 10.2337/dc07-1463
– ident: e_1_2_7_2_1
  doi: 10.1161/CIRCULATIONAHA.111.077602
– ident: e_1_2_7_7_1
  doi: 10.1038/ijo.2011.117
– ident: e_1_2_7_20_1
  doi: 10.1371/journal.pone.0050117
– ident: e_1_2_7_15_1
  doi: 10.1186/s12968-015-0198-x
– ident: e_1_2_7_48_1
  doi: 10.1007/s00125-011-2317-z
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cmet.2013.04.008
– ident: e_1_2_7_32_1
  doi: 10.1016/j.atherosclerosis.2008.09.038
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jhep.2013.09.002
– ident: e_1_2_7_17_1
  doi: 10.1152/ajpheart.00990.2012
– volume: 65
  start-page: 44
  year: 2016
  ident: e_1_2_7_43_1
  article-title: Relationship between Left ventricular structural and metabolic remodelling in type 2 diabetes mellitus
  publication-title: Diabetes
  doi: 10.2337/db15-0627
– volume: 20
  start-page: 9090
  year: 2014
  ident: e_1_2_7_18_1
  article-title: Potential roles of glucagon‐like peptide‐1‐based therapies in treating non‐alcoholic fatty liver disease
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v20.i27.9090
– ident: e_1_2_7_27_1
  doi: 10.1152/ajpendo.00064.2004
– ident: e_1_2_7_50_1
  doi: 10.1371/journal.pone.0025269
– ident: e_1_2_7_21_1
  doi: 10.1038/oby.2011.152
– ident: e_1_2_7_36_1
  doi: 10.1007/s00592-014-0710-z
– ident: e_1_2_7_40_1
  doi: 10.1148/radiol.13121631
– ident: e_1_2_7_24_1
  doi: 10.1097/MCO.0b013e32830a98e3
– ident: e_1_2_7_28_1
  doi: 10.1093/ajcn/4.1.20
– ident: e_1_2_7_52_1
  doi: 10.1038/oby.2009.352
– ident: e_1_2_7_16_1
  doi: 10.1002/hep.21006
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jacc.2008.07.062
– ident: e_1_2_7_12_1
  doi: 10.2337/dc07-0326
SSID ssj0004387
Score 2.5631764
Snippet Aim To conduct a prospective randomized trial to investigate the effect of glucagon‐like peptide‐1 (GLP‐1) analogues on ectopic fat stores. Methods A total of...
To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. A total of 44 obese...
Aim To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. Methods A total of...
AimTo conduct a prospective randomized trial to investigate the effect of glucagon‐like peptide‐1 (GLP‐1) analogues on ectopic fat stores.MethodsA total of 44...
AIM: To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. METHODS: A total...
SourceID hal
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 882
SubjectTerms Adiponectin
Adipose tissue
Adipose Tissue - diagnostic imaging
Adipose Tissue - metabolism
Body fat
Body mass index
Body weight loss
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - complications
Diabetes Mellitus, Type 2 - drug therapy
Diabetes Mellitus, Type 2 - metabolism
Endocrinology and metabolism
epicardial adipose tissue
Fatty liver
Fatty Liver - complications
Fatty Liver - diagnostic imaging
Fatty Liver - metabolism
Female
Glucagon
glucagon-like peptide 1 receptor agonist
Glycated Hemoglobin A - metabolism
Heart - diagnostic imaging
Hemoglobin
hepatic triglyceride content
Human health and pathology
Humans
Hypoglycemic Agents - therapeutic use
Insulin resistance
Life Sciences
Liver - diagnostic imaging
Liver - metabolism
Magnetic Resonance Imaging
Magnetic resonance spectroscopy
Male
Middle Aged
myocardial triglyceride content
Myocardium - metabolism
NMR
Nuclear magnetic resonance
Obesity
Obesity - complications
Obesity - metabolism
Pancreas - diagnostic imaging
Pancreas - metabolism
pancreatic triglyceride content
Patients
Peptides - therapeutic use
Pericardium - diagnostic imaging
Pericardium - metabolism
Population studies
Postprandial Period
Proton Magnetic Resonance Spectroscopy
Spectrum analysis
Steatosis
Treatment Outcome
Triglycerides - metabolism
type 2 diabetes
Venoms - therapeutic use
Title Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy
URI https://api.istex.fr/ark:/67375/WNG-1S742GZD-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.12680
https://www.ncbi.nlm.nih.gov/pubmed/27106272
https://www.proquest.com/docview/1813599931
https://www.proquest.com/docview/3059407008
https://www.proquest.com/docview/1815711331
https://hal.science/hal-01478321
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbGkBBfYLyNwoYOhBBfUsWJEyfwadpbhdiQgIkJIUV27IxqbVI1LRr7i_wp7pwXGCoS4ltTXyy_3NmPL4_vGHtujbbCytwTOkk9UfiJp0XEvcLnymihpFSOIHscj07Em9PodI297u7CNPEheocbWYZbr8nAla5_M3JTTYc8iBM6rxNXiwDR-1-ho0TokuPhQoAWnxKLZ6Nj8fRvXtmLrn0lJuR1GtyLVXDzKnp128_Bbfala3jDOjkfLhd6mF_-EdPxP3u2wW61sBR2Gj26w9ZseZfdOGo_vN9jP_YvLPkNjQXjgGZta5gQpwMKtQAivOPuBao0YGc476R2E1BmPKtqCws3uzAuoQ3jWgP5f6FqshK418gXDAF0vuBXoAA7210EBdxSscHjS2ugu8wJLuMIEHP_DKbqrKT7mDC3dLhAVYbx1GVgcrW7eihwZzX7fp-dHOx_3B15bR4IL6cUWZ6xBFPSsIjSWMsAdUnnAddxIAudmrgQvDDST_085Epyxbk29OSjWOob7ocP2HpZlfYhg5jHSmiVcF8jFFOhQgRaqCK1wvgyjvWAvew0IsvbIOmUq2OSdYcl7GvmJmfAnvWisyYyyEohVKu-nGJ5j3beZvQfnk0lpYn6xgfshdO6XkzNz4lvJ6Ps0_Fhxj9IERx-3svSAdvq1DJrl5o6Q4gWRgjzQ76yOKSAPLiu-8mAPe2LcQ2hD0OqtNXSVRFJzkOqYrPR9r4tAUJQHOkAR8bp7N_7mu29O3I_Hv276GN2E6c2bkh7W2x9MV_abUR5C_3EmfNPBnNPbQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF71IQEXKO9AgQEB4uLI62eMxKEibVOaFAlaUXExu951iZrYUZxA29_EP0H8J2bWDygKEpceuCXZyWo9O68dfzvD2FOtpPZ0mFie7ESWl9odS3o-t1KbCyU9EYbCAGT3gt6B9-bQP1xi3-q7MGV9iCbhRpph7DUpOCWkf9NylY_b3Ak6dgWp3NWnX_HAVrza6eLuPnOcrc391z2r6ilgJdRuyVKaXF7kpn4UyNDBdcnE4TJwwlRGKkg9nqrQjuzE5SLkgnOp6JuNZJGtuO3ivMtslTqIU6X-7rtfxao817TjQ9ODNiYi3NBajRtqlnrO-y1_JuzlKm3nyaIA93y8bBze1jX2o2ZViXM5bs9nsp2c_VFF8n_h5Rq7WkXesFGqynW2pLMb7NKgwhbcZN83TzSlRpUGZWLpQhcwItgKpGIGhOlHBw0iU6AnKNqkWSMQajjJCw0zI8AwzKCqVFsApbghLxsvmL9RuhscqNPdL0EAcre-6woYNSCDhmdaQX1fFUxTFaDLCUcwFkcZXTmFqabzE2orDMemyZSZ3cxDtUnzyektdnAhrLzNVrI803cZBDwQnhQdbkuMNoUrMMhORRppT9lhEMgWe1GLYJxUdeCpHckors-D-KyxEYYWe9KQTsriJwuJUI6bcSpX3tvox_QbHr9D6oT1hbfYcyPmDZmYHhOkMPTjD3vbMX8fes72x24ctdh6rQdxZU2LGKNQ18eTjMsXDrtUcwhdl91pscfNMJpJevclMp3PzRR-yLlLU9wp1atZi4NRNnLaQc4YJfn7s8bdtwPz4d6_kz5il3v7g37c39nbvc-u4DYHJUZxna3MpnP9AIPamXxobAmwTxetcD8BnMerww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELb6kCouUN6BAgMCxGWj9T6zSBwq0jSlbUBARcVlsdfeEjXZjbIJtP1L_BT4Ucx4H1AUJC49cEvWjuUdz4y_cT7PMPZYK6k9HSaWJzuR5aV2x5Kez63U5kJJT4ShMATZQdA_8F4d-odL7Ft9F6bMD9EcuJFlGH9NBj5R6W9GrvJxmztBx64Ylbv69CvGa8WLnS4u7hPH6W29f9m3qpICVkLVliylaceL3NSPAhk6OC2ZOFwGTpjKSAWpx1MV2pGduFyEXHAuFX2zsVtkK267OO4yW_UCfEoI7O2vXFWea6rxoedBFxMRbWi9pg01Uz23-S1_JurlKq3mySJ8ex4um_2ud4X9qCVV0lyO2_OZbCdnfySR_E9Euc4uV7gbNktDucqWdHaNre1XzILr7PvWiaaDUaVBGSRd6AJGRFqBVMyAGP24PYPIFOgJKjbZ1QiEGk7yQsPMqC8MM6jy1BZAB9yQl2UXzM_osBscqA-7n4MAFG590xUQM6CAhmdaQX1bFUxJFaCrCUcwFkcZXTiFqaboCW0VhmNTYsqMbsahzKT55PQGO7gQUd5kK1me6dsMAh4IT4oOtyViTeEKhNipSCPtKTsMAtliz2oNjJMqCzwVIxnFdTSI7xobZWixR03XSZn6ZGEnVOOmnZKV9zf3YnqGwXdIdbC-8BZ7arS86Samx0QoDP34w2A75u9Cz9n-2I2jFtuozSCufGkRIwZ1fYxjXL6w2aWMQ7hx2Z0We9g0o5Okf75EpvO5GcIPOXdpiFuldTVzcRBjo6QdlIyxkb-_a9x9vW8-3Pn3rg_Y2ptuL97bGezeZZdwlYOSoLjBVmbTub6HiHYm7xtPAuzTRdvbT-RpqnI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exenatide+decreases+liver+fat+content+and+epicardial+adipose+tissue+in+patients+with+obesity+and+type+2+diabetes%3A+a+prospective+randomized+clinical+trial+using+magnetic+resonance+imaging+and+spectroscopy&rft.jtitle=Diabetes%2C+obesity+%26+metabolism&rft.au=Dutour%2C+A&rft.au=Abdesselam%2C+I&rft.au=Ancel%2C+P&rft.au=Kober%2C+F&rft.date=2016-09-01&rft.issn=1462-8902&rft.eissn=1463-1326&rft.volume=18&rft.issue=9&rft.spage=882&rft.epage=891&rft_id=info:doi/10.1111%2Fdom.12680&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-8902&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-8902&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-8902&client=summon