Fast approximation of betweenness centrality through sampling
Betweenness centrality is a fundamental measure in social network analysis, expressing the importance or influence of individual vertices (or edges) in a network in terms of the fraction of shortest paths that pass through them. Since exact computation in large networks is prohibitively expensive, w...
Saved in:
Published in | Data mining and knowledge discovery Vol. 30; no. 2; pp. 438 - 475 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Betweenness centrality is a fundamental measure in social network analysis, expressing the importance or influence of individual vertices (or edges) in a network in terms of the fraction of shortest paths that pass through them. Since exact computation in large networks is prohibitively expensive, we present two efficient randomized algorithms for betweenness estimation. The algorithms are based on random sampling of shortest paths and offer probabilistic guarantees on the quality of the approximation. The first algorithm estimates the betweenness of all vertices (or edges): all approximate values are within an additive factor
ε
∈
(
0
,
1
)
from the real values, with probability at least
1
-
δ
. The second algorithm focuses on the top-K vertices (or edges) with highest betweenness and estimate their betweenness value to within a multiplicative factor
ε
, with probability at least
1
-
δ
. This is the first algorithm that can compute such approximation for the top-K vertices (or edges). By proving upper and lower bounds to the VC-dimension of a range set associated with the problem at hand, we can bound the sample size needed to achieve the desired approximations. We obtain sample sizes that are independent from the number of vertices in the network and only depend on a characteristic quantity that we call the vertex-diameter, that is the maximum number of vertices in a shortest path. In some cases, the sample size is completely independent from any quantitative property of the graph. An extensive experimental evaluation on real and artificial networks shows that our algorithms are significantly faster and much more scalable as the number of vertices grows than other algorithms with similar approximation guarantees. |
---|---|
AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).Betweenness centrality is a fundamental measure in social network analysis, expressing the importance or influence of individual vertices (or edges) in a network in terms of the fraction of shortest paths that pass through them. Since exact computation in large networks is prohibitively expensive, we present two efficient randomized algorithms for betweenness estimation. The algorithms are based on random sampling of shortest paths and offer probabilistic guarantees on the quality of the approximation. The first algorithm estimates the betweenness of all vertices (or edges): all approximate values are within an additive factor ... from the real values, with probability at least ... The second algorithm focuses on the top-K vertices (or edges) with highest betweenness and estimate their betweenness value to within a multiplicative factor ..., with probability at least ... This is the first algorithm that can compute such approximation for the top-K vertices (or edges). By proving upper and lower bounds to the VC-dimension of a range set associated with the problem at hand, we can bound the sample size needed to achieve the desired approximations. We obtain sample sizes that are independent from the number of vertices in the network and only depend on a characteristic quantity that we call the vertex-diameter, that is the maximum number of vertices in a shortest path. In some cases, the sample size is completely independent from any quantitative property of the graph. An extensive experimental evaluation on real and artificial networks shows that our algorithms are significantly faster and much more scalable as the number of vertices grows than other algorithms with similar approximation guarantees. Betweenness centrality is a fundamental measure in social network analysis, expressing the importance or influence of individual vertices (or edges) in a network in terms of the fraction of shortest paths that pass through them. Since exact computation in large networks is prohibitively expensive, we present two efficient randomized algorithms for betweenness estimation. The algorithms are based on random sampling of shortest paths and offer probabilistic guarantees on the quality of the approximation. The first algorithm estimates the betweenness of all vertices (or edges): all approximate values are within an additive factor ε ∈ ( 0 , 1 ) from the real values, with probability at least 1 - δ . The second algorithm focuses on the top-K vertices (or edges) with highest betweenness and estimate their betweenness value to within a multiplicative factor ε , with probability at least 1 - δ . This is the first algorithm that can compute such approximation for the top-K vertices (or edges). By proving upper and lower bounds to the VC-dimension of a range set associated with the problem at hand, we can bound the sample size needed to achieve the desired approximations. We obtain sample sizes that are independent from the number of vertices in the network and only depend on a characteristic quantity that we call the vertex-diameter, that is the maximum number of vertices in a shortest path. In some cases, the sample size is completely independent from any quantitative property of the graph. An extensive experimental evaluation on real and artificial networks shows that our algorithms are significantly faster and much more scalable as the number of vertices grows than other algorithms with similar approximation guarantees. |
Author | Riondato, Matteo Kornaropoulos, Evgenios M. |
Author_xml | – sequence: 1 givenname: Matteo surname: Riondato fullname: Riondato, Matteo email: matteo@cs.brown.edu organization: Department of Computer Science, Brown University – sequence: 2 givenname: Evgenios M. surname: Kornaropoulos fullname: Kornaropoulos, Evgenios M. organization: Department of Computer Science, Brown University |
BookMark | eNp9kL1OwzAURi1UJErhAdgisbAYrv_iZGBAFQWkSiwd2CzHddpUqRNsV9C3xyUMqBLIgz2c7_q75xyNXOcsQlcEbgmAvAsEclJgIAIDpwzDCRoTIRmWIn8bpTcrOBYFgTN0HsIGAARlMEb3Mx1ipvved5_NVsemc1lXZ5WNH9Y6Z0PIjHXR67aJ-yyufbdbrbOgt33buNUFOq11G-zlzz1Bi9njYvqM569PL9OHOTa8EBHbiud1bdNhJWWSAjN1VS1JXlgOQshcEJ0ITaghLK_q5ZIbaaWohKhLLdgE3QxjU8v3nQ1RbZtgbNtqZ7tdUESWjB4m8YReH6GbbuddKpeonEPOCS0TRQbK-C4Eb2vV-7S93ysC6uBTDT5V8qkOPhWkjDzKmCZ-C0t2mvbfJB2SIf3iVtb_6vRn6AvG9Yu1 |
CitedBy_id | crossref_primary_10_1093_comnet_cnz048 crossref_primary_10_1017_nws_2016_20 crossref_primary_10_1145_3446217 crossref_primary_10_1145_3284359 crossref_primary_10_14778_3236187_3269460 crossref_primary_10_1109_ACCESS_2020_2984762 crossref_primary_10_1016_j_cor_2019_06_011 crossref_primary_10_1080_15427951_2016_1177802 crossref_primary_10_1016_j_ins_2016_10_014 crossref_primary_10_1080_17517575_2021_1992675 crossref_primary_10_1038_s41598_023_39174_7 crossref_primary_10_1142_S012918311850047X crossref_primary_10_1103_PhysRevE_109_044302 crossref_primary_10_1145_3441646 crossref_primary_10_1016_j_physa_2021_126480 crossref_primary_10_1016_j_ins_2020_12_016 crossref_primary_10_1109_ACCESS_2020_2988910 crossref_primary_10_1515_itit_2019_0032 crossref_primary_10_1007_s11280_024_01248_5 crossref_primary_10_1145_3166071 crossref_primary_10_1007_s00778_021_00694_1 crossref_primary_10_1016_j_ssaho_2024_101183 crossref_primary_10_14778_3236187_3236197 crossref_primary_10_3390_diagnostics12112882 crossref_primary_10_1108_CCIJ_01_2020_0018 crossref_primary_10_1016_j_cie_2018_03_008 crossref_primary_10_1155_2020_4046027 crossref_primary_10_3390_cancers14061481 crossref_primary_10_1016_j_physa_2022_128200 crossref_primary_10_3390_a12070127 crossref_primary_10_1109_TII_2018_2872579 crossref_primary_10_1186_s40649_019_0062_5 crossref_primary_10_1145_3577021 crossref_primary_10_1145_3375399 crossref_primary_10_3390_sym11070916 crossref_primary_10_1109_TNSE_2020_3035352 crossref_primary_10_1002_widm_1393 crossref_primary_10_1080_03081079_2023_2194642 crossref_primary_10_1109_ACCESS_2019_2927681 crossref_primary_10_1007_s10898_022_01269_2 crossref_primary_10_1016_j_dam_2021_07_023 crossref_primary_10_1145_3612919 crossref_primary_10_14778_3450980_3450988 crossref_primary_10_1186_s13059_019_1791_3 crossref_primary_10_1016_j_physa_2017_12_145 crossref_primary_10_3390_ijerph182312660 crossref_primary_10_1089_cmb_2019_0314 crossref_primary_10_1007_s13278_018_0506_1 crossref_primary_10_1155_2021_5585896 crossref_primary_10_1145_3208351 crossref_primary_10_1109_ACCESS_2019_2915974 crossref_primary_10_1016_j_ipm_2019_102074 crossref_primary_10_1140_epjds_s13688_018_0162_8 crossref_primary_10_4236_sn_2018_74017 crossref_primary_10_1063_5_0033197 crossref_primary_10_1371_journal_pone_0248764 crossref_primary_10_3390_biology11070963 crossref_primary_10_1145_3628601 crossref_primary_10_1002_cae_22350 |
Cites_doi | 10.1093/acprof:oso/9780199206650.001.0001 10.1007/s00454-010-9248-1 10.1007/978-3-642-04128-0_29 10.1017/CBO9780511624216 10.1137/S0097539796303421 10.1137/1.9781611973754.12 10.1080/01621459.1963.10500830 10.1613/jair.460 10.1137/1116025 10.1016/j.socnet.2010.03.006 10.1007/978-1-4613-0039-7 10.1137/1.9781611972832.76 10.1007/978-3-662-48350-3_14 10.2307/3033543 10.1145/2187980.2188239 10.1016/j.socnet.2005.11.005 10.1126/science.286.5439.509 10.1609/aaai.v29i1.9202 10.1007/s13278-012-0076-6 10.2172/4785039 10.1145/2556195.2556224 10.7155/jgaa.00081 10.1016/j.socnet.2007.11.001 10.1145/2629586 10.1007/978-3-642-13657-3_12 10.1145/2623330.2630811 10.1142/S0218127407018403 10.1109/NSW.2011.6004633 10.1017/CBO9780511813603 10.1145/2623330.2623626 10.1006/jcss.2000.1741 10.1109/TKDE.2011.254 10.1016/S0166-218X(96)00137-0 10.1080/0022250X.2001.9990249 10.1007/978-3-642-22006-7_58 10.1137/1.9781611972887.9 10.1017/CBO9781107298019 10.1145/1734213.1734219 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 The Author(s) 2016 |
Copyright_xml | – notice: The Author(s) 2015 – notice: The Author(s) 2016 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10618-015-0423-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep ProQuest SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 475 |
ExternalDocumentID | 3947248501 10_1007_s10618_015_0423_0 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c485t-eb46ffefef39237203cfbbd168e40557651a46fa12c136bfdd4c7e75b55f9a53 |
IEDL.DBID | U2A |
ISSN | 1384-5810 |
IngestDate | Thu Jul 10 22:57:15 EDT 2025 Sat Aug 16 03:02:47 EDT 2025 Tue Jul 01 00:40:30 EDT 2025 Thu Apr 24 23:06:22 EDT 2025 Fri Feb 21 02:33:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Approximation algorithms Betweenness centrality VC-dimension Social network analysis Sampling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-eb46ffefef39237203cfbbd168e40557651a46fa12c136bfdd4c7e75b55f9a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1764064129 |
PQPubID | 43030 |
PageCount | 38 |
ParticipantIDs | proquest_miscellaneous_1793240554 proquest_journals_1764064129 crossref_primary_10_1007_s10618_015_0423_0 crossref_citationtrail_10_1007_s10618_015_0423_0 springer_journals_10_1007_s10618_015_0423_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-01 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | MatoušekJLectures on discrete geometry2002SecaucusSpringer10.1007/978-1-4613-0039-70999.52006 Staudt C, Sazonovs A, Meyerhenke H (2014) Networkit: an interactive tool suite for high-performance network analysis. CoRR abs/1403.3005 BarabásiALAlbertREmergence of scaling in random networksScience1999286543950951210.1126/science.286.5439.5092091634 KourtellisNAlahakoonTSimhaRIamnitchiATripathiRIdentifying high betweenness centrality nodes in large social networksSoc Netw Anal Mining2012389991410.1007/s13278-012-0076-6 Pfeffer J, Carley KM (2012) k-centralities: local approximations of global measures based on shortest paths. In: Proceedings of the 21st international conference on companion on world wide web, WWW ’12 Companion, pp 1043–1050. ACM, New York. doi:10.1145/2187980.2188239 NewmanMEJGirvanMFinding and evaluating community structure in networksPhys Rev E200469026113 JacobRKoschützkiDLehmannKPeetersLTenfelde-PodehlDBrandesUErlebachTAlgorithms for centrality indicesNetwork analysis. Lecture notes in computer science2005BerlinSpringer6282 MaiyaASBerger-WolfTYZakiMYuJRavindranBPudiVOnline sampling of high centrality individuals in social networksAdvances in knowledge discovery and data mining. Lecture notes in computer science2010BerlinSpringer919810.1007/978-3-642-13657-3_12 AnthonyMBartlettPLNeural network learning—theoretical foundations1999New YorkCambridge University Press10.1017/CBO97805116242160968.68126 AingworthDChekuriCIndykPMotwaniRFast estimation of diameter and shortest paths (without matrix multiplication)SIAM J Comput19992841167118110.1137/S009753979630342116810580926.68093 LiYLongPMSrinivasanAImproved bounds on the sample complexity of learningJ Comput Syst Sci200162351652710.1006/jcss.2000.174118244570990.68081 Riondato M, Kornaropoulos EM (2014) Fast approximation of betweenness centrality through sampling. In: Castillo C, Metzler D (eds) Proceedings of 7th ACM conference on web search data mining, WSDM’14. ACM, New York MitzenmacherMUpfalEProbability and computing: randomized algorithms and probabilistic analysis2005New YorkCambridge University Press10.1017/CBO9780511813603 Anthonisse JM (1971) The rush in a directed graph. Technical Report BN 9/71, Stichting Mathematisch Centrum, Amsterdam Kourtellis N, Morales GDF, Bonchi F (2014) Scalable online betweenness centrality in evolving graphs. CoRR abs/1401.6981 Pohl I (1969) Bidirectional heuristic search in path problems. Ph.D. Thesis, Stanford University AbrahamIDellingDFiatAGoldbergAVWerneckRFVC-dimension and shortest path algorithms. Automata, languages and programming2011BerlinSpringer69069910.1007/978-3-642-22006-7_58 LöfflerMPhillipsJMFiatASandersPShape fitting on point sets with probability distributionsAlgorithms—ESA 2009. Lecture notes in computer science2009BerlinSpringer313324 Riondato M, Upfal E (2014) Efficient discovery of association rules and frequent itemsets through sampling with tight performance guarantees. ACM Trans Knowl Disc Data 8(2) Sarıyüce AE, Saule E, Kaya K, Çatalyürek UV (2013) Shattering and compressing networks for betweenness centrality. In: SIAM data mining conference Cormode G, Duffield N (2014) Sampling for big data: a tutorial. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’14, pp 1975–1975. ACM, New York. doi:10.1145/2623330.2630811. http://doi.acm.org/10.1145/2623330.2630811 Har-PeledSSharirMRelative (p,ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p,\varepsilon )$$\end{document}-approximations in geometryDiscret Comput Geom201145346249610.1007/s00454-010-9248-127705471220.68106 FreemanLCA set of measures of centrality based on betweennessSociometry197740354110.2307/3033543 KaindlHKainzGBidirectional heuristic search reconsideredJ Artif Intell Res1997728331716189560894.68042 Shalev-ShwartzSBen-DavidSUnderstanding machine learning: from theory to algorithms2014New YorkCambridge University Press10.1017/CBO9781107298019 CsárdiGNepuszTThe igraph software package for complex network researchInterJ Complex Syst2006169519 HoeffdingWProbability inequalities for sums of bounded random variablesJ Am Stat Assoc196358301133010.1080/01621459.1963.105008301443630127.10602 Yoshida Y (2014) Almost linear-time algorithms for adaptive betweenness centrality using hypergraph sketches. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’14, pp 1416–1425. ACM, New York. doi:10.1145/2623330.2623626 EppsteinDWangJFast approximation of centralityJ Graph Algorithms Appl200481394510.7155/jgaa.0008121122621090.68117 BoitmanisKFreivaldsKLediņšPOpmanisRAlvarezCSernaMFast and simple approximation of the diameter and radius of a graphExperimental algorithms. Lecture notes in computer science2006BerlinSpringer98108 PapagelisMDasGKoudasNSampling online social networksIEEE Trans Knowl Data Eng201325366267610.1109/TKDE.2011.254 VapnikVNChervonenkisAJOn the uniform convergence of relative frequencies of events to their probabilitiesTheory Probab Appl197116226428010.1137/11160253018550247.60005 Roditty L, Williams VV (2012) Approximating the diameter of a graph. CoRR abs/1207.3622 BorgattiSPEverettMGA graph-theoretic perspective on centralitySoc Netw200628446648410.1016/j.socnet.2005.11.005 NewmanMEJNetworks—an introduction2010OxfordOxford University Press10.1093/acprof:oso/9780199206650.001.00011195.94003 BrandesUPichCCentrality estimation in large networksInt J Bifurc Chaos20071772303231810.1142/S021812740701840323497421143.05304 Geisberger R, Sanders P, Schultes D (2008) Better approximation of betweenness centrality. In: Munro JI, Wagner D (eds) Algorithm engineering & experiments (ALENEX’08), SIAM, pp 90–100 Bergamini E, Meyerhenke H (2015) Fully-dynamic approximation of betweenness centrality. CoRR abs/1504.0709 (to appear in ESA’15) BrandesUOn variants of shortest-path betweenness centrality and their generic computationSoc Netw200830213614510.1016/j.socnet.2007.11.0012491389 Lim YS, Menasche DS, Ribeiro B, Towsley D, Basu P (2011) Online estimating the k central nodes of a network. In: IEEE network science workshop, NSW’11, pp 118–122. doi:10.1109/NSW.2011.6004633 KranakisEKrizancDRufBUrrutiaJWoegingerGThe VC-dimension of set systems defined by graphsDiscret Appl Math199777323725710.1016/S0166-218X(96)00137-014698080879.68079 OpsahlTAgneessensFSkvoretzJNode centrality in weighted networks: generalizing degree and shortest pathsSoc Netw201032324525110.1016/j.socnet.2010.03.006 BrandesUA faster algorithm for betweenness centralityJ Math Sociol200125216317710.1080/0022250X.2001.99902491051.91088 DolevSEloviciYPuzisRRouting betweenness centralityJ ACM201057425:125:2710.1145/1734213.17342192677123 BaderDAKintaliSMadduriKMihailMBonatoAChungFApproximating betweenness centralityAlgorithms and models for the web-graph. Lecture notes in computer science2007BerlinSpringer Bergamini E, Meyerhenke H, Staudt CL (2015) Approximating betweenness centrality in large evolving networks. In: 17th Workshop on Algorithm Engineering and Experiments, ALENEX 2015, SIAM, pp 133–146 Tang J, Zhang C, Cai K, Zhang L, Su Z (2015) Sampling representative users from large social networks. In: AAAI AL Barabási (423_CR6) 1999; 286 M Anthony (423_CR4) 1999 W Hoeffding (423_CR21) 1963; 58 423_CR38 423_CR39 VN Vapnik (423_CR46) 1971; 16 U Brandes (423_CR11) 2001; 25 423_CR14 423_CR3 423_CR37 E Kranakis (423_CR26) 1997; 77 K Boitmanis (423_CR9) 2006 423_CR8 423_CR7 M Löffler (423_CR29) 2009 U Brandes (423_CR13) 2007; 17 DA Bader (423_CR5) 2007 MEJ Newman (423_CR33) 2010 S Shalev-Shwartz (423_CR43) 2014 S Dolev (423_CR16) 2010; 57 M Papagelis (423_CR36) 2013; 25 423_CR41 U Brandes (423_CR12) 2008; 30 J Matoušek (423_CR31) 2002 423_CR42 G Csárdi (423_CR15) 2006; 1695 D Eppstein (423_CR17) 2004; 8 423_CR40 T Opsahl (423_CR35) 2010; 32 LC Freeman (423_CR18) 1977; 40 S Har-Peled (423_CR20) 2011; 45 N Kourtellis (423_CR24) 2012; 3 423_CR28 423_CR25 MEJ Newman (423_CR34) 2004; 69 423_CR47 423_CR45 R Jacob (423_CR22) 2005 M Mitzenmacher (423_CR32) 2005 423_CR44 D Aingworth (423_CR2) 1999; 28 423_CR19 H Kaindl (423_CR23) 1997; 7 Y Li (423_CR27) 2001; 62 SP Borgatti (423_CR10) 2006; 28 I Abraham (423_CR1) 2011 AS Maiya (423_CR30) 2010 |
References_xml | – reference: Bergamini E, Meyerhenke H (2015) Fully-dynamic approximation of betweenness centrality. CoRR abs/1504.0709 (to appear in ESA’15) – reference: VapnikVNChervonenkisAJOn the uniform convergence of relative frequencies of events to their probabilitiesTheory Probab Appl197116226428010.1137/11160253018550247.60005 – reference: Tang J, Zhang C, Cai K, Zhang L, Su Z (2015) Sampling representative users from large social networks. In: AAAI – reference: EppsteinDWangJFast approximation of centralityJ Graph Algorithms Appl200481394510.7155/jgaa.0008121122621090.68117 – reference: DolevSEloviciYPuzisRRouting betweenness centralityJ ACM201057425:125:2710.1145/1734213.17342192677123 – reference: Kourtellis N, Morales GDF, Bonchi F (2014) Scalable online betweenness centrality in evolving graphs. CoRR abs/1401.6981 – reference: BaderDAKintaliSMadduriKMihailMBonatoAChungFApproximating betweenness centralityAlgorithms and models for the web-graph. Lecture notes in computer science2007BerlinSpringer – reference: NewmanMEJGirvanMFinding and evaluating community structure in networksPhys Rev E200469026113 – reference: Yoshida Y (2014) Almost linear-time algorithms for adaptive betweenness centrality using hypergraph sketches. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’14, pp 1416–1425. ACM, New York. doi:10.1145/2623330.2623626 – reference: MatoušekJLectures on discrete geometry2002SecaucusSpringer10.1007/978-1-4613-0039-70999.52006 – reference: LiYLongPMSrinivasanAImproved bounds on the sample complexity of learningJ Comput Syst Sci200162351652710.1006/jcss.2000.174118244570990.68081 – reference: Roditty L, Williams VV (2012) Approximating the diameter of a graph. CoRR abs/1207.3622 – reference: Har-PeledSSharirMRelative (p,ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p,\varepsilon )$$\end{document}-approximations in geometryDiscret Comput Geom201145346249610.1007/s00454-010-9248-127705471220.68106 – reference: Pfeffer J, Carley KM (2012) k-centralities: local approximations of global measures based on shortest paths. In: Proceedings of the 21st international conference on companion on world wide web, WWW ’12 Companion, pp 1043–1050. ACM, New York. doi:10.1145/2187980.2188239 – reference: OpsahlTAgneessensFSkvoretzJNode centrality in weighted networks: generalizing degree and shortest pathsSoc Netw201032324525110.1016/j.socnet.2010.03.006 – reference: AnthonyMBartlettPLNeural network learning—theoretical foundations1999New YorkCambridge University Press10.1017/CBO97805116242160968.68126 – reference: BarabásiALAlbertREmergence of scaling in random networksScience1999286543950951210.1126/science.286.5439.5092091634 – reference: Staudt C, Sazonovs A, Meyerhenke H (2014) Networkit: an interactive tool suite for high-performance network analysis. CoRR abs/1403.3005 – reference: MaiyaASBerger-WolfTYZakiMYuJRavindranBPudiVOnline sampling of high centrality individuals in social networksAdvances in knowledge discovery and data mining. Lecture notes in computer science2010BerlinSpringer919810.1007/978-3-642-13657-3_12 – reference: Geisberger R, Sanders P, Schultes D (2008) Better approximation of betweenness centrality. In: Munro JI, Wagner D (eds) Algorithm engineering & experiments (ALENEX’08), SIAM, pp 90–100 – reference: KaindlHKainzGBidirectional heuristic search reconsideredJ Artif Intell Res1997728331716189560894.68042 – reference: KranakisEKrizancDRufBUrrutiaJWoegingerGThe VC-dimension of set systems defined by graphsDiscret Appl Math199777323725710.1016/S0166-218X(96)00137-014698080879.68079 – reference: Lim YS, Menasche DS, Ribeiro B, Towsley D, Basu P (2011) Online estimating the k central nodes of a network. In: IEEE network science workshop, NSW’11, pp 118–122. doi:10.1109/NSW.2011.6004633 – reference: LöfflerMPhillipsJMFiatASandersPShape fitting on point sets with probability distributionsAlgorithms—ESA 2009. Lecture notes in computer science2009BerlinSpringer313324 – reference: NewmanMEJNetworks—an introduction2010OxfordOxford University Press10.1093/acprof:oso/9780199206650.001.00011195.94003 – reference: KourtellisNAlahakoonTSimhaRIamnitchiATripathiRIdentifying high betweenness centrality nodes in large social networksSoc Netw Anal Mining2012389991410.1007/s13278-012-0076-6 – reference: Riondato M, Upfal E (2014) Efficient discovery of association rules and frequent itemsets through sampling with tight performance guarantees. ACM Trans Knowl Disc Data 8(2) – reference: BrandesUA faster algorithm for betweenness centralityJ Math Sociol200125216317710.1080/0022250X.2001.99902491051.91088 – reference: BorgattiSPEverettMGA graph-theoretic perspective on centralitySoc Netw200628446648410.1016/j.socnet.2005.11.005 – reference: Cormode G, Duffield N (2014) Sampling for big data: a tutorial. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’14, pp 1975–1975. ACM, New York. doi:10.1145/2623330.2630811. http://doi.acm.org/10.1145/2623330.2630811 – reference: HoeffdingWProbability inequalities for sums of bounded random variablesJ Am Stat Assoc196358301133010.1080/01621459.1963.105008301443630127.10602 – reference: JacobRKoschützkiDLehmannKPeetersLTenfelde-PodehlDBrandesUErlebachTAlgorithms for centrality indicesNetwork analysis. Lecture notes in computer science2005BerlinSpringer6282 – reference: Anthonisse JM (1971) The rush in a directed graph. Technical Report BN 9/71, Stichting Mathematisch Centrum, Amsterdam – reference: Pohl I (1969) Bidirectional heuristic search in path problems. Ph.D. Thesis, Stanford University – reference: BrandesUPichCCentrality estimation in large networksInt J Bifurc Chaos20071772303231810.1142/S021812740701840323497421143.05304 – reference: MitzenmacherMUpfalEProbability and computing: randomized algorithms and probabilistic analysis2005New YorkCambridge University Press10.1017/CBO9780511813603 – reference: Riondato M, Kornaropoulos EM (2014) Fast approximation of betweenness centrality through sampling. In: Castillo C, Metzler D (eds) Proceedings of 7th ACM conference on web search data mining, WSDM’14. ACM, New York – reference: BrandesUOn variants of shortest-path betweenness centrality and their generic computationSoc Netw200830213614510.1016/j.socnet.2007.11.0012491389 – reference: Sarıyüce AE, Saule E, Kaya K, Çatalyürek UV (2013) Shattering and compressing networks for betweenness centrality. In: SIAM data mining conference – reference: PapagelisMDasGKoudasNSampling online social networksIEEE Trans Knowl Data Eng201325366267610.1109/TKDE.2011.254 – reference: Bergamini E, Meyerhenke H, Staudt CL (2015) Approximating betweenness centrality in large evolving networks. In: 17th Workshop on Algorithm Engineering and Experiments, ALENEX 2015, SIAM, pp 133–146 – reference: FreemanLCA set of measures of centrality based on betweennessSociometry197740354110.2307/3033543 – reference: AingworthDChekuriCIndykPMotwaniRFast estimation of diameter and shortest paths (without matrix multiplication)SIAM J Comput19992841167118110.1137/S009753979630342116810580926.68093 – reference: BoitmanisKFreivaldsKLediņšPOpmanisRAlvarezCSernaMFast and simple approximation of the diameter and radius of a graphExperimental algorithms. Lecture notes in computer science2006BerlinSpringer98108 – reference: Shalev-ShwartzSBen-DavidSUnderstanding machine learning: from theory to algorithms2014New YorkCambridge University Press10.1017/CBO9781107298019 – reference: CsárdiGNepuszTThe igraph software package for complex network researchInterJ Complex Syst2006169519 – reference: AbrahamIDellingDFiatAGoldbergAVWerneckRFVC-dimension and shortest path algorithms. Automata, languages and programming2011BerlinSpringer69069910.1007/978-3-642-22006-7_58 – volume-title: Networks—an introduction year: 2010 ident: 423_CR33 doi: 10.1093/acprof:oso/9780199206650.001.0001 – volume: 45 start-page: 462 issue: 3 year: 2011 ident: 423_CR20 publication-title: Discret Comput Geom doi: 10.1007/s00454-010-9248-1 – start-page: 313 volume-title: Algorithms—ESA 2009. Lecture notes in computer science year: 2009 ident: 423_CR29 doi: 10.1007/978-3-642-04128-0_29 – volume-title: Neural network learning—theoretical foundations year: 1999 ident: 423_CR4 doi: 10.1017/CBO9780511624216 – volume: 28 start-page: 1167 issue: 4 year: 1999 ident: 423_CR2 publication-title: SIAM J Comput doi: 10.1137/S0097539796303421 – ident: 423_CR8 doi: 10.1137/1.9781611973754.12 – volume: 58 start-page: 13 issue: 301 year: 1963 ident: 423_CR21 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1963.10500830 – volume: 7 start-page: 283 year: 1997 ident: 423_CR23 publication-title: J Artif Intell Res doi: 10.1613/jair.460 – start-page: 98 volume-title: Experimental algorithms. Lecture notes in computer science year: 2006 ident: 423_CR9 – volume: 16 start-page: 264 issue: 2 year: 1971 ident: 423_CR46 publication-title: Theory Probab Appl doi: 10.1137/1116025 – volume: 32 start-page: 245 issue: 3 year: 2010 ident: 423_CR35 publication-title: Soc Netw doi: 10.1016/j.socnet.2010.03.006 – volume: 69 start-page: 113 issue: 026 year: 2004 ident: 423_CR34 publication-title: Phys Rev E – volume-title: Lectures on discrete geometry year: 2002 ident: 423_CR31 doi: 10.1007/978-1-4613-0039-7 – ident: 423_CR42 doi: 10.1137/1.9781611972832.76 – ident: 423_CR7 doi: 10.1007/978-3-662-48350-3_14 – volume: 40 start-page: 35 year: 1977 ident: 423_CR18 publication-title: Sociometry doi: 10.2307/3033543 – ident: 423_CR37 doi: 10.1145/2187980.2188239 – volume: 28 start-page: 466 issue: 4 year: 2006 ident: 423_CR10 publication-title: Soc Netw doi: 10.1016/j.socnet.2005.11.005 – ident: 423_CR41 – volume: 286 start-page: 509 issue: 5439 year: 1999 ident: 423_CR6 publication-title: Science doi: 10.1126/science.286.5439.509 – start-page: 62 volume-title: Network analysis. Lecture notes in computer science year: 2005 ident: 423_CR22 – ident: 423_CR45 doi: 10.1609/aaai.v29i1.9202 – volume: 3 start-page: 899 year: 2012 ident: 423_CR24 publication-title: Soc Netw Anal Mining doi: 10.1007/s13278-012-0076-6 – ident: 423_CR25 – ident: 423_CR38 doi: 10.2172/4785039 – ident: 423_CR39 doi: 10.1145/2556195.2556224 – volume: 8 start-page: 39 issue: 1 year: 2004 ident: 423_CR17 publication-title: J Graph Algorithms Appl doi: 10.7155/jgaa.00081 – volume: 1695 start-page: 1 year: 2006 ident: 423_CR15 publication-title: InterJ Complex Syst – volume: 30 start-page: 136 issue: 2 year: 2008 ident: 423_CR12 publication-title: Soc Netw doi: 10.1016/j.socnet.2007.11.001 – ident: 423_CR40 doi: 10.1145/2629586 – start-page: 91 volume-title: Advances in knowledge discovery and data mining. Lecture notes in computer science year: 2010 ident: 423_CR30 doi: 10.1007/978-3-642-13657-3_12 – ident: 423_CR14 doi: 10.1145/2623330.2630811 – volume: 17 start-page: 2303 issue: 7 year: 2007 ident: 423_CR13 publication-title: Int J Bifurc Chaos doi: 10.1142/S0218127407018403 – ident: 423_CR28 doi: 10.1109/NSW.2011.6004633 – ident: 423_CR3 – volume-title: Probability and computing: randomized algorithms and probabilistic analysis year: 2005 ident: 423_CR32 doi: 10.1017/CBO9780511813603 – ident: 423_CR47 doi: 10.1145/2623330.2623626 – volume-title: Algorithms and models for the web-graph. Lecture notes in computer science year: 2007 ident: 423_CR5 – volume: 62 start-page: 516 issue: 3 year: 2001 ident: 423_CR27 publication-title: J Comput Syst Sci doi: 10.1006/jcss.2000.1741 – volume: 25 start-page: 662 issue: 3 year: 2013 ident: 423_CR36 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2011.254 – volume: 77 start-page: 237 issue: 3 year: 1997 ident: 423_CR26 publication-title: Discret Appl Math doi: 10.1016/S0166-218X(96)00137-0 – ident: 423_CR44 – volume: 25 start-page: 163 issue: 2 year: 2001 ident: 423_CR11 publication-title: J Math Sociol doi: 10.1080/0022250X.2001.9990249 – start-page: 690 volume-title: VC-dimension and shortest path algorithms. Automata, languages and programming year: 2011 ident: 423_CR1 doi: 10.1007/978-3-642-22006-7_58 – ident: 423_CR19 doi: 10.1137/1.9781611972887.9 – volume-title: Understanding machine learning: from theory to algorithms year: 2014 ident: 423_CR43 doi: 10.1017/CBO9781107298019 – volume: 57 start-page: 25:1 issue: 4 year: 2010 ident: 423_CR16 publication-title: J ACM doi: 10.1145/1734213.1734219 |
SSID | ssj0005230 |
Score | 2.5066457 |
Snippet | Betweenness centrality is a fundamental measure in social network analysis, expressing the importance or influence of individual vertices (or edges) in a... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Betweenness centrality is a fundamental measure in social network analysis,... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).Betweenness centrality is a fundamental measure in social network analysis,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 438 |
SubjectTerms | Algorithms Approximation Artificial Intelligence Chemistry and Earth Sciences Communications networks Computer Science Data mining Data Mining and Knowledge Discovery Estimates Graph theory Graphs Information Storage and Retrieval Mathematical analysis Networks Physics Sample size Shortest-path problems Social network analysis Social networks Statistics for Engineering |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA66vfjib7E6JYJPSrCxSZo-iKhsDMEhMmFvJU1TEaSdtgP_fC9tuk3B0cekDdwld9fcd_chdG61msGxIVrRa8KknxHFZEpCxpSkJg2jmpLlaSSGr-xxwifuwq10sMrWJtaGOi20vSO_oqEA38PAPd1OP4lljbLZVUehsY66YIIl_Hx17_uj55clkEfQ1AlLRrik87xmUzwnqAVycWKxIcT_7ZkW4eafDGnteAbbaNNFjPiuUfEOWjP5Ltpq2RiwO5x76GagygrXPcK_35uCRFxk2AGxrEXDDokJgTd2_Dy4VBZSnr_to_GgP34YEkeOQDSTvCImYSLLDDwQ4ViqmUBnSZJSIQ2zfbUEpwpmgAY0DUQC-mA6NCFPOM8ixYMD1MmL3BwiLNKAUi1lonzFdBQpmFIX6EoGI4J7yG_lEmvXONzyV3zEi5bHVpQxiDK2oox9D13MX5k2XTNWTe61wo7dASrjhbo9dDYfhq1v8xkqN8XMzolsO0EIiDx02Spp6RP_LXi0esFjtAFRkWiAZj3Uqb5m5gQijyo5ddvrB7511A8 priority: 102 providerName: ProQuest |
Title | Fast approximation of betweenness centrality through sampling |
URI | https://link.springer.com/article/10.1007/s10618-015-0423-0 https://www.proquest.com/docview/1764064129 https://www.proquest.com/docview/1793240554 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90Ivjitzg_RgSflEBjkzR98GHKpiiKiIP5VNI0FUE6sRv453tp0zlFBelDH3JN4e6S_ML97g7g0Fk1x2VDjWYnlKsgp5qrjEaca8VsFsVVS5abW3k54FdDMfR53GXDdm9CktVOPZPsJpkjXgnquBwU7-kLwl3d0YkHJ90ZXkdYpwYrToVi01DmT1N8PYw-Eea3oGh11vRXYdmDRNKtrboGc7ZYh5WmAQPx63EdFiv-pik34LSvyzGpCoS_P9fZiGSUE8_CctsZ8TRMRN3EN-chpXZ88uJpEx76vYfzS-o7I1DDlRhTm3KZ5xYfhDeuz0xo8jTNmFSWu6JaUjCNEqh-w0KZojG4iWwkUiHyWItwC1rFqLDbQGQWMmaUSnWguYljjSJVdq7iOCJFG4JGQ4nxVcNd84qX5LPesVNqgkpNnFKToA1H009e65IZfwnvNWpP_OopExZJxBkcoUgbDqbD6PcumKELO5o4mdjVEkQ01IbjxlwzU_z2w51_Se_CEiIkWZPO9qA1fpvYfUQh47QD86p_0YGF7sXjdQ_fZ73bu_tO5Ysf6SrWKw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4heoALUApiC7SuRC8gi3hjO84BVVXLdnmeFomb5TgOQqqyC7sI-FH9j8zksQuV4IZy9OQ1nlcyjw9gh3a1QLXh3okulyYquJMm54mUzoiQJ2kFyXJ2rvsX8vhSXc7Bv7YXhsoqW5tYGep86Okf-b5INPoeie7px-iGE2oUZVdbCI1aLE7C4z1-so0Pjn7j_n7vdnuHg1993qAKcC-NmvCQSV0UAQ8MDQijJfZFluVCmyBpIJVWwiEFProXsc7wRaRPQqIypYrUEUgEWvwPMo5TUijT-_OsoiSum5KN5MqIaRK17tTTgqrGFKdCFB69dIOz2Pa_dGzl5XorsNSEp-xnLU8fYS6Uq7DcQj-wxhJ8goOeG09YNZD84brufmTDgjVVX2Q-WVP2iVE-a8CA2NhR_Xp5tQaD9-DZOsyXwzJsANN5LIQ3JnORkz5NHZJU3cBG4opWHYhavljfTCknsIy_djZfmVhpkZWWWGmjDuxOTxnVIzreIt5qmW0bbR3bmWx14Nt0GfWMkieuDMM7oklpdiFGXx3Yazfp2SVeu-Hnt2_4FRb6g7NTe3p0frIJixiO6brCbQvmJ7d3YRtDnkn2pRI0BvadBfsJ0-YQMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dSxwxEB_khNKXqv2gZ_1Iob5Ygpu7JJt9EPHr0KqHFAu-hWw2K4WyZ3sn1T_N_86Z3eydFuqb7GOyGzKZTCY7v5kfwBda1RK3DfdO9Lg0ScmdNAVPpXRGhCLNakqWs6E--iG_XarLObhvc2EIVtnaxNpQFyNP_8i3RKrx7JF4PG2VERZxfjDYuf7NiUGKIq0tnUajIifh7i9e38bbxwe41hu93uDwYv-IR4YB7qVREx5yqcsy4INuAvG19H2Z54XQJkgqTqWVcNgDp-FFX-c4KenTkKpcqTJzRBiB1n8-xUtR0oH5vcPh-fdH-JJ-k6JsJFdGTEOqTd6eFoQhU5xgKTx5eijOPN1_grP1mTdYhDfRWWW7jXYtwVyo3sJCSwTBol14B9sDN56wujz57c8mF5KNShYxYGRMWQSBos_PIjUQGztCs1dX7-HiJaT2ATrVqAofgemiL4Q3JneJkz7LHHapc4ONxBatupC0crE-1iwn6oxfdlZtmURpUZSWRGmTLmxOX7luCnY813mlFbaNe3dsZ5rWhc_TZtx1FEpxVRjdUJ-MKhmiL9aFr-0iPfrE_wZcfn7AdXiFSm1Pj4cnn-A1-ma6gbutQGfy5yasov8zydeipjGwL6zbDxgrFcQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+approximation+of+betweenness+centrality+through+sampling&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Riondato%2C+Matteo&rft.au=Kornaropoulos%2C+Evgenios+M.&rft.date=2016-03-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=30&rft.issue=2&rft.spage=438&rft.epage=475&rft_id=info:doi/10.1007%2Fs10618-015-0423-0&rft.externalDocID=10_1007_s10618_015_0423_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |