Fast approximation of betweenness centrality through sampling

Betweenness centrality is a fundamental measure in social network analysis, expressing the importance or influence of individual vertices (or edges) in a network in terms of the fraction of shortest paths that pass through them. Since exact computation in large networks is prohibitively expensive, w...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 30; no. 2; pp. 438 - 475
Main Authors Riondato, Matteo, Kornaropoulos, Evgenios M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Betweenness centrality is a fundamental measure in social network analysis, expressing the importance or influence of individual vertices (or edges) in a network in terms of the fraction of shortest paths that pass through them. Since exact computation in large networks is prohibitively expensive, we present two efficient randomized algorithms for betweenness estimation. The algorithms are based on random sampling of shortest paths and offer probabilistic guarantees on the quality of the approximation. The first algorithm estimates the betweenness of all vertices (or edges): all approximate values are within an additive factor ε ∈ ( 0 , 1 ) from the real values, with probability at least 1 - δ . The second algorithm focuses on the top-K vertices (or edges) with highest betweenness and estimate their betweenness value to within a multiplicative factor ε , with probability at least 1 - δ . This is the first algorithm that can compute such approximation for the top-K vertices (or edges). By proving upper and lower bounds to the VC-dimension of a range set associated with the problem at hand, we can bound the sample size needed to achieve the desired approximations. We obtain sample sizes that are independent from the number of vertices in the network and only depend on a characteristic quantity that we call the vertex-diameter, that is the maximum number of vertices in a shortest path. In some cases, the sample size is completely independent from any quantitative property of the graph. An extensive experimental evaluation on real and artificial networks shows that our algorithms are significantly faster and much more scalable as the number of vertices grows than other algorithms with similar approximation guarantees.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).Betweenness centrality is a fundamental measure in social network analysis, expressing the importance or influence of individual vertices (or edges) in a network in terms of the fraction of shortest paths that pass through them. Since exact computation in large networks is prohibitively expensive, we present two efficient randomized algorithms for betweenness estimation. The algorithms are based on random sampling of shortest paths and offer probabilistic guarantees on the quality of the approximation. The first algorithm estimates the betweenness of all vertices (or edges): all approximate values are within an additive factor ... from the real values, with probability at least ... The second algorithm focuses on the top-K vertices (or edges) with highest betweenness and estimate their betweenness value to within a multiplicative factor ..., with probability at least ... This is the first algorithm that can compute such approximation for the top-K vertices (or edges). By proving upper and lower bounds to the VC-dimension of a range set associated with the problem at hand, we can bound the sample size needed to achieve the desired approximations. We obtain sample sizes that are independent from the number of vertices in the network and only depend on a characteristic quantity that we call the vertex-diameter, that is the maximum number of vertices in a shortest path. In some cases, the sample size is completely independent from any quantitative property of the graph. An extensive experimental evaluation on real and artificial networks shows that our algorithms are significantly faster and much more scalable as the number of vertices grows than other algorithms with similar approximation guarantees.
Betweenness centrality is a fundamental measure in social network analysis, expressing the importance or influence of individual vertices (or edges) in a network in terms of the fraction of shortest paths that pass through them. Since exact computation in large networks is prohibitively expensive, we present two efficient randomized algorithms for betweenness estimation. The algorithms are based on random sampling of shortest paths and offer probabilistic guarantees on the quality of the approximation. The first algorithm estimates the betweenness of all vertices (or edges): all approximate values are within an additive factor ε ∈ ( 0 , 1 ) from the real values, with probability at least 1 - δ . The second algorithm focuses on the top-K vertices (or edges) with highest betweenness and estimate their betweenness value to within a multiplicative factor ε , with probability at least 1 - δ . This is the first algorithm that can compute such approximation for the top-K vertices (or edges). By proving upper and lower bounds to the VC-dimension of a range set associated with the problem at hand, we can bound the sample size needed to achieve the desired approximations. We obtain sample sizes that are independent from the number of vertices in the network and only depend on a characteristic quantity that we call the vertex-diameter, that is the maximum number of vertices in a shortest path. In some cases, the sample size is completely independent from any quantitative property of the graph. An extensive experimental evaluation on real and artificial networks shows that our algorithms are significantly faster and much more scalable as the number of vertices grows than other algorithms with similar approximation guarantees.
Author Riondato, Matteo
Kornaropoulos, Evgenios M.
Author_xml – sequence: 1
  givenname: Matteo
  surname: Riondato
  fullname: Riondato, Matteo
  email: matteo@cs.brown.edu
  organization: Department of Computer Science, Brown University
– sequence: 2
  givenname: Evgenios M.
  surname: Kornaropoulos
  fullname: Kornaropoulos, Evgenios M.
  organization: Department of Computer Science, Brown University
BookMark eNp9kL1OwzAURi1UJErhAdgisbAYrv_iZGBAFQWkSiwd2CzHddpUqRNsV9C3xyUMqBLIgz2c7_q75xyNXOcsQlcEbgmAvAsEclJgIAIDpwzDCRoTIRmWIn8bpTcrOBYFgTN0HsIGAARlMEb3Mx1ipvved5_NVsemc1lXZ5WNH9Y6Z0PIjHXR67aJ-yyufbdbrbOgt33buNUFOq11G-zlzz1Bi9njYvqM569PL9OHOTa8EBHbiud1bdNhJWWSAjN1VS1JXlgOQshcEJ0ITaghLK_q5ZIbaaWohKhLLdgE3QxjU8v3nQ1RbZtgbNtqZ7tdUESWjB4m8YReH6GbbuddKpeonEPOCS0TRQbK-C4Eb2vV-7S93ysC6uBTDT5V8qkOPhWkjDzKmCZ-C0t2mvbfJB2SIf3iVtb_6vRn6AvG9Yu1
CitedBy_id crossref_primary_10_1093_comnet_cnz048
crossref_primary_10_1017_nws_2016_20
crossref_primary_10_1145_3446217
crossref_primary_10_1145_3284359
crossref_primary_10_14778_3236187_3269460
crossref_primary_10_1109_ACCESS_2020_2984762
crossref_primary_10_1016_j_cor_2019_06_011
crossref_primary_10_1080_15427951_2016_1177802
crossref_primary_10_1016_j_ins_2016_10_014
crossref_primary_10_1080_17517575_2021_1992675
crossref_primary_10_1038_s41598_023_39174_7
crossref_primary_10_1142_S012918311850047X
crossref_primary_10_1103_PhysRevE_109_044302
crossref_primary_10_1145_3441646
crossref_primary_10_1016_j_physa_2021_126480
crossref_primary_10_1016_j_ins_2020_12_016
crossref_primary_10_1109_ACCESS_2020_2988910
crossref_primary_10_1515_itit_2019_0032
crossref_primary_10_1007_s11280_024_01248_5
crossref_primary_10_1145_3166071
crossref_primary_10_1007_s00778_021_00694_1
crossref_primary_10_1016_j_ssaho_2024_101183
crossref_primary_10_14778_3236187_3236197
crossref_primary_10_3390_diagnostics12112882
crossref_primary_10_1108_CCIJ_01_2020_0018
crossref_primary_10_1016_j_cie_2018_03_008
crossref_primary_10_1155_2020_4046027
crossref_primary_10_3390_cancers14061481
crossref_primary_10_1016_j_physa_2022_128200
crossref_primary_10_3390_a12070127
crossref_primary_10_1109_TII_2018_2872579
crossref_primary_10_1186_s40649_019_0062_5
crossref_primary_10_1145_3577021
crossref_primary_10_1145_3375399
crossref_primary_10_3390_sym11070916
crossref_primary_10_1109_TNSE_2020_3035352
crossref_primary_10_1002_widm_1393
crossref_primary_10_1080_03081079_2023_2194642
crossref_primary_10_1109_ACCESS_2019_2927681
crossref_primary_10_1007_s10898_022_01269_2
crossref_primary_10_1016_j_dam_2021_07_023
crossref_primary_10_1145_3612919
crossref_primary_10_14778_3450980_3450988
crossref_primary_10_1186_s13059_019_1791_3
crossref_primary_10_1016_j_physa_2017_12_145
crossref_primary_10_3390_ijerph182312660
crossref_primary_10_1089_cmb_2019_0314
crossref_primary_10_1007_s13278_018_0506_1
crossref_primary_10_1155_2021_5585896
crossref_primary_10_1145_3208351
crossref_primary_10_1109_ACCESS_2019_2915974
crossref_primary_10_1016_j_ipm_2019_102074
crossref_primary_10_1140_epjds_s13688_018_0162_8
crossref_primary_10_4236_sn_2018_74017
crossref_primary_10_1063_5_0033197
crossref_primary_10_1371_journal_pone_0248764
crossref_primary_10_3390_biology11070963
crossref_primary_10_1145_3628601
crossref_primary_10_1002_cae_22350
Cites_doi 10.1093/acprof:oso/9780199206650.001.0001
10.1007/s00454-010-9248-1
10.1007/978-3-642-04128-0_29
10.1017/CBO9780511624216
10.1137/S0097539796303421
10.1137/1.9781611973754.12
10.1080/01621459.1963.10500830
10.1613/jair.460
10.1137/1116025
10.1016/j.socnet.2010.03.006
10.1007/978-1-4613-0039-7
10.1137/1.9781611972832.76
10.1007/978-3-662-48350-3_14
10.2307/3033543
10.1145/2187980.2188239
10.1016/j.socnet.2005.11.005
10.1126/science.286.5439.509
10.1609/aaai.v29i1.9202
10.1007/s13278-012-0076-6
10.2172/4785039
10.1145/2556195.2556224
10.7155/jgaa.00081
10.1016/j.socnet.2007.11.001
10.1145/2629586
10.1007/978-3-642-13657-3_12
10.1145/2623330.2630811
10.1142/S0218127407018403
10.1109/NSW.2011.6004633
10.1017/CBO9780511813603
10.1145/2623330.2623626
10.1006/jcss.2000.1741
10.1109/TKDE.2011.254
10.1016/S0166-218X(96)00137-0
10.1080/0022250X.2001.9990249
10.1007/978-3-642-22006-7_58
10.1137/1.9781611972887.9
10.1017/CBO9781107298019
10.1145/1734213.1734219
ContentType Journal Article
Copyright The Author(s) 2015
The Author(s) 2016
Copyright_xml – notice: The Author(s) 2015
– notice: The Author(s) 2016
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-015-0423-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 475
ExternalDocumentID 3947248501
10_1007_s10618_015_0423_0
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c485t-eb46ffefef39237203cfbbd168e40557651a46fa12c136bfdd4c7e75b55f9a53
IEDL.DBID U2A
ISSN 1384-5810
IngestDate Thu Jul 10 22:57:15 EDT 2025
Sat Aug 16 03:02:47 EDT 2025
Tue Jul 01 00:40:30 EDT 2025
Thu Apr 24 23:06:22 EDT 2025
Fri Feb 21 02:33:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Approximation algorithms
Betweenness centrality
VC-dimension
Social network analysis
Sampling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-eb46ffefef39237203cfbbd168e40557651a46fa12c136bfdd4c7e75b55f9a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1764064129
PQPubID 43030
PageCount 38
ParticipantIDs proquest_miscellaneous_1793240554
proquest_journals_1764064129
crossref_primary_10_1007_s10618_015_0423_0
crossref_citationtrail_10_1007_s10618_015_0423_0
springer_journals_10_1007_s10618_015_0423_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References MatoušekJLectures on discrete geometry2002SecaucusSpringer10.1007/978-1-4613-0039-70999.52006
Staudt C, Sazonovs A, Meyerhenke H (2014) Networkit: an interactive tool suite for high-performance network analysis. CoRR abs/1403.3005
BarabásiALAlbertREmergence of scaling in random networksScience1999286543950951210.1126/science.286.5439.5092091634
KourtellisNAlahakoonTSimhaRIamnitchiATripathiRIdentifying high betweenness centrality nodes in large social networksSoc Netw Anal Mining2012389991410.1007/s13278-012-0076-6
Pfeffer J, Carley KM (2012) k-centralities: local approximations of global measures based on shortest paths. In: Proceedings of the 21st international conference on companion on world wide web, WWW ’12 Companion, pp 1043–1050. ACM, New York. doi:10.1145/2187980.2188239
NewmanMEJGirvanMFinding and evaluating community structure in networksPhys Rev E200469026113
JacobRKoschützkiDLehmannKPeetersLTenfelde-PodehlDBrandesUErlebachTAlgorithms for centrality indicesNetwork analysis. Lecture notes in computer science2005BerlinSpringer6282
MaiyaASBerger-WolfTYZakiMYuJRavindranBPudiVOnline sampling of high centrality individuals in social networksAdvances in knowledge discovery and data mining. Lecture notes in computer science2010BerlinSpringer919810.1007/978-3-642-13657-3_12
AnthonyMBartlettPLNeural network learning—theoretical foundations1999New YorkCambridge University Press10.1017/CBO97805116242160968.68126
AingworthDChekuriCIndykPMotwaniRFast estimation of diameter and shortest paths (without matrix multiplication)SIAM J Comput19992841167118110.1137/S009753979630342116810580926.68093
LiYLongPMSrinivasanAImproved bounds on the sample complexity of learningJ Comput Syst Sci200162351652710.1006/jcss.2000.174118244570990.68081
Riondato M, Kornaropoulos EM (2014) Fast approximation of betweenness centrality through sampling. In: Castillo C, Metzler D (eds) Proceedings of 7th ACM conference on web search data mining, WSDM’14. ACM, New York
MitzenmacherMUpfalEProbability and computing: randomized algorithms and probabilistic analysis2005New YorkCambridge University Press10.1017/CBO9780511813603
Anthonisse JM (1971) The rush in a directed graph. Technical Report BN 9/71, Stichting Mathematisch Centrum, Amsterdam
Kourtellis N, Morales GDF, Bonchi F (2014) Scalable online betweenness centrality in evolving graphs. CoRR abs/1401.6981
Pohl I (1969) Bidirectional heuristic search in path problems. Ph.D. Thesis, Stanford University
AbrahamIDellingDFiatAGoldbergAVWerneckRFVC-dimension and shortest path algorithms. Automata, languages and programming2011BerlinSpringer69069910.1007/978-3-642-22006-7_58
LöfflerMPhillipsJMFiatASandersPShape fitting on point sets with probability distributionsAlgorithms—ESA 2009. Lecture notes in computer science2009BerlinSpringer313324
Riondato M, Upfal E (2014) Efficient discovery of association rules and frequent itemsets through sampling with tight performance guarantees. ACM Trans Knowl Disc Data 8(2)
Sarıyüce AE, Saule E, Kaya K, Çatalyürek UV (2013) Shattering and compressing networks for betweenness centrality. In: SIAM data mining conference
Cormode G, Duffield N (2014) Sampling for big data: a tutorial. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’14, pp 1975–1975. ACM, New York. doi:10.1145/2623330.2630811. http://doi.acm.org/10.1145/2623330.2630811
Har-PeledSSharirMRelative (p,ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p,\varepsilon )$$\end{document}-approximations in geometryDiscret Comput Geom201145346249610.1007/s00454-010-9248-127705471220.68106
FreemanLCA set of measures of centrality based on betweennessSociometry197740354110.2307/3033543
KaindlHKainzGBidirectional heuristic search reconsideredJ Artif Intell Res1997728331716189560894.68042
Shalev-ShwartzSBen-DavidSUnderstanding machine learning: from theory to algorithms2014New YorkCambridge University Press10.1017/CBO9781107298019
CsárdiGNepuszTThe igraph software package for complex network researchInterJ Complex Syst2006169519
HoeffdingWProbability inequalities for sums of bounded random variablesJ Am Stat Assoc196358301133010.1080/01621459.1963.105008301443630127.10602
Yoshida Y (2014) Almost linear-time algorithms for adaptive betweenness centrality using hypergraph sketches. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’14, pp 1416–1425. ACM, New York. doi:10.1145/2623330.2623626
EppsteinDWangJFast approximation of centralityJ Graph Algorithms Appl200481394510.7155/jgaa.0008121122621090.68117
BoitmanisKFreivaldsKLediņšPOpmanisRAlvarezCSernaMFast and simple approximation of the diameter and radius of a graphExperimental algorithms. Lecture notes in computer science2006BerlinSpringer98108
PapagelisMDasGKoudasNSampling online social networksIEEE Trans Knowl Data Eng201325366267610.1109/TKDE.2011.254
VapnikVNChervonenkisAJOn the uniform convergence of relative frequencies of events to their probabilitiesTheory Probab Appl197116226428010.1137/11160253018550247.60005
Roditty L, Williams VV (2012) Approximating the diameter of a graph. CoRR abs/1207.3622
BorgattiSPEverettMGA graph-theoretic perspective on centralitySoc Netw200628446648410.1016/j.socnet.2005.11.005
NewmanMEJNetworks—an introduction2010OxfordOxford University Press10.1093/acprof:oso/9780199206650.001.00011195.94003
BrandesUPichCCentrality estimation in large networksInt J Bifurc Chaos20071772303231810.1142/S021812740701840323497421143.05304
Geisberger R, Sanders P, Schultes D (2008) Better approximation of betweenness centrality. In: Munro JI, Wagner D (eds) Algorithm engineering & experiments (ALENEX’08), SIAM, pp 90–100
Bergamini E, Meyerhenke H (2015) Fully-dynamic approximation of betweenness centrality. CoRR abs/1504.0709 (to appear in ESA’15)
BrandesUOn variants of shortest-path betweenness centrality and their generic computationSoc Netw200830213614510.1016/j.socnet.2007.11.0012491389
Lim YS, Menasche DS, Ribeiro B, Towsley D, Basu P (2011) Online estimating the k central nodes of a network. In: IEEE network science workshop, NSW’11, pp 118–122. doi:10.1109/NSW.2011.6004633
KranakisEKrizancDRufBUrrutiaJWoegingerGThe VC-dimension of set systems defined by graphsDiscret Appl Math199777323725710.1016/S0166-218X(96)00137-014698080879.68079
OpsahlTAgneessensFSkvoretzJNode centrality in weighted networks: generalizing degree and shortest pathsSoc Netw201032324525110.1016/j.socnet.2010.03.006
BrandesUA faster algorithm for betweenness centralityJ Math Sociol200125216317710.1080/0022250X.2001.99902491051.91088
DolevSEloviciYPuzisRRouting betweenness centralityJ ACM201057425:125:2710.1145/1734213.17342192677123
BaderDAKintaliSMadduriKMihailMBonatoAChungFApproximating betweenness centralityAlgorithms and models for the web-graph. Lecture notes in computer science2007BerlinSpringer
Bergamini E, Meyerhenke H, Staudt CL (2015) Approximating betweenness centrality in large evolving networks. In: 17th Workshop on Algorithm Engineering and Experiments, ALENEX 2015, SIAM, pp 133–146
Tang J, Zhang C, Cai K, Zhang L, Su Z (2015) Sampling representative users from large social networks. In: AAAI
AL Barabási (423_CR6) 1999; 286
M Anthony (423_CR4) 1999
W Hoeffding (423_CR21) 1963; 58
423_CR38
423_CR39
VN Vapnik (423_CR46) 1971; 16
U Brandes (423_CR11) 2001; 25
423_CR14
423_CR3
423_CR37
E Kranakis (423_CR26) 1997; 77
K Boitmanis (423_CR9) 2006
423_CR8
423_CR7
M Löffler (423_CR29) 2009
U Brandes (423_CR13) 2007; 17
DA Bader (423_CR5) 2007
MEJ Newman (423_CR33) 2010
S Shalev-Shwartz (423_CR43) 2014
S Dolev (423_CR16) 2010; 57
M Papagelis (423_CR36) 2013; 25
423_CR41
U Brandes (423_CR12) 2008; 30
J Matoušek (423_CR31) 2002
423_CR42
G Csárdi (423_CR15) 2006; 1695
D Eppstein (423_CR17) 2004; 8
423_CR40
T Opsahl (423_CR35) 2010; 32
LC Freeman (423_CR18) 1977; 40
S Har-Peled (423_CR20) 2011; 45
N Kourtellis (423_CR24) 2012; 3
423_CR28
423_CR25
MEJ Newman (423_CR34) 2004; 69
423_CR47
423_CR45
R Jacob (423_CR22) 2005
M Mitzenmacher (423_CR32) 2005
423_CR44
D Aingworth (423_CR2) 1999; 28
423_CR19
H Kaindl (423_CR23) 1997; 7
Y Li (423_CR27) 2001; 62
SP Borgatti (423_CR10) 2006; 28
I Abraham (423_CR1) 2011
AS Maiya (423_CR30) 2010
References_xml – reference: Bergamini E, Meyerhenke H (2015) Fully-dynamic approximation of betweenness centrality. CoRR abs/1504.0709 (to appear in ESA’15)
– reference: VapnikVNChervonenkisAJOn the uniform convergence of relative frequencies of events to their probabilitiesTheory Probab Appl197116226428010.1137/11160253018550247.60005
– reference: Tang J, Zhang C, Cai K, Zhang L, Su Z (2015) Sampling representative users from large social networks. In: AAAI
– reference: EppsteinDWangJFast approximation of centralityJ Graph Algorithms Appl200481394510.7155/jgaa.0008121122621090.68117
– reference: DolevSEloviciYPuzisRRouting betweenness centralityJ ACM201057425:125:2710.1145/1734213.17342192677123
– reference: Kourtellis N, Morales GDF, Bonchi F (2014) Scalable online betweenness centrality in evolving graphs. CoRR abs/1401.6981
– reference: BaderDAKintaliSMadduriKMihailMBonatoAChungFApproximating betweenness centralityAlgorithms and models for the web-graph. Lecture notes in computer science2007BerlinSpringer
– reference: NewmanMEJGirvanMFinding and evaluating community structure in networksPhys Rev E200469026113
– reference: Yoshida Y (2014) Almost linear-time algorithms for adaptive betweenness centrality using hypergraph sketches. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’14, pp 1416–1425. ACM, New York. doi:10.1145/2623330.2623626
– reference: MatoušekJLectures on discrete geometry2002SecaucusSpringer10.1007/978-1-4613-0039-70999.52006
– reference: LiYLongPMSrinivasanAImproved bounds on the sample complexity of learningJ Comput Syst Sci200162351652710.1006/jcss.2000.174118244570990.68081
– reference: Roditty L, Williams VV (2012) Approximating the diameter of a graph. CoRR abs/1207.3622
– reference: Har-PeledSSharirMRelative (p,ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p,\varepsilon )$$\end{document}-approximations in geometryDiscret Comput Geom201145346249610.1007/s00454-010-9248-127705471220.68106
– reference: Pfeffer J, Carley KM (2012) k-centralities: local approximations of global measures based on shortest paths. In: Proceedings of the 21st international conference on companion on world wide web, WWW ’12 Companion, pp 1043–1050. ACM, New York. doi:10.1145/2187980.2188239
– reference: OpsahlTAgneessensFSkvoretzJNode centrality in weighted networks: generalizing degree and shortest pathsSoc Netw201032324525110.1016/j.socnet.2010.03.006
– reference: AnthonyMBartlettPLNeural network learning—theoretical foundations1999New YorkCambridge University Press10.1017/CBO97805116242160968.68126
– reference: BarabásiALAlbertREmergence of scaling in random networksScience1999286543950951210.1126/science.286.5439.5092091634
– reference: Staudt C, Sazonovs A, Meyerhenke H (2014) Networkit: an interactive tool suite for high-performance network analysis. CoRR abs/1403.3005
– reference: MaiyaASBerger-WolfTYZakiMYuJRavindranBPudiVOnline sampling of high centrality individuals in social networksAdvances in knowledge discovery and data mining. Lecture notes in computer science2010BerlinSpringer919810.1007/978-3-642-13657-3_12
– reference: Geisberger R, Sanders P, Schultes D (2008) Better approximation of betweenness centrality. In: Munro JI, Wagner D (eds) Algorithm engineering & experiments (ALENEX’08), SIAM, pp 90–100
– reference: KaindlHKainzGBidirectional heuristic search reconsideredJ Artif Intell Res1997728331716189560894.68042
– reference: KranakisEKrizancDRufBUrrutiaJWoegingerGThe VC-dimension of set systems defined by graphsDiscret Appl Math199777323725710.1016/S0166-218X(96)00137-014698080879.68079
– reference: Lim YS, Menasche DS, Ribeiro B, Towsley D, Basu P (2011) Online estimating the k central nodes of a network. In: IEEE network science workshop, NSW’11, pp 118–122. doi:10.1109/NSW.2011.6004633
– reference: LöfflerMPhillipsJMFiatASandersPShape fitting on point sets with probability distributionsAlgorithms—ESA 2009. Lecture notes in computer science2009BerlinSpringer313324
– reference: NewmanMEJNetworks—an introduction2010OxfordOxford University Press10.1093/acprof:oso/9780199206650.001.00011195.94003
– reference: KourtellisNAlahakoonTSimhaRIamnitchiATripathiRIdentifying high betweenness centrality nodes in large social networksSoc Netw Anal Mining2012389991410.1007/s13278-012-0076-6
– reference: Riondato M, Upfal E (2014) Efficient discovery of association rules and frequent itemsets through sampling with tight performance guarantees. ACM Trans Knowl Disc Data 8(2)
– reference: BrandesUA faster algorithm for betweenness centralityJ Math Sociol200125216317710.1080/0022250X.2001.99902491051.91088
– reference: BorgattiSPEverettMGA graph-theoretic perspective on centralitySoc Netw200628446648410.1016/j.socnet.2005.11.005
– reference: Cormode G, Duffield N (2014) Sampling for big data: a tutorial. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’14, pp 1975–1975. ACM, New York. doi:10.1145/2623330.2630811. http://doi.acm.org/10.1145/2623330.2630811
– reference: HoeffdingWProbability inequalities for sums of bounded random variablesJ Am Stat Assoc196358301133010.1080/01621459.1963.105008301443630127.10602
– reference: JacobRKoschützkiDLehmannKPeetersLTenfelde-PodehlDBrandesUErlebachTAlgorithms for centrality indicesNetwork analysis. Lecture notes in computer science2005BerlinSpringer6282
– reference: Anthonisse JM (1971) The rush in a directed graph. Technical Report BN 9/71, Stichting Mathematisch Centrum, Amsterdam
– reference: Pohl I (1969) Bidirectional heuristic search in path problems. Ph.D. Thesis, Stanford University
– reference: BrandesUPichCCentrality estimation in large networksInt J Bifurc Chaos20071772303231810.1142/S021812740701840323497421143.05304
– reference: MitzenmacherMUpfalEProbability and computing: randomized algorithms and probabilistic analysis2005New YorkCambridge University Press10.1017/CBO9780511813603
– reference: Riondato M, Kornaropoulos EM (2014) Fast approximation of betweenness centrality through sampling. In: Castillo C, Metzler D (eds) Proceedings of 7th ACM conference on web search data mining, WSDM’14. ACM, New York
– reference: BrandesUOn variants of shortest-path betweenness centrality and their generic computationSoc Netw200830213614510.1016/j.socnet.2007.11.0012491389
– reference: Sarıyüce AE, Saule E, Kaya K, Çatalyürek UV (2013) Shattering and compressing networks for betweenness centrality. In: SIAM data mining conference
– reference: PapagelisMDasGKoudasNSampling online social networksIEEE Trans Knowl Data Eng201325366267610.1109/TKDE.2011.254
– reference: Bergamini E, Meyerhenke H, Staudt CL (2015) Approximating betweenness centrality in large evolving networks. In: 17th Workshop on Algorithm Engineering and Experiments, ALENEX 2015, SIAM, pp 133–146
– reference: FreemanLCA set of measures of centrality based on betweennessSociometry197740354110.2307/3033543
– reference: AingworthDChekuriCIndykPMotwaniRFast estimation of diameter and shortest paths (without matrix multiplication)SIAM J Comput19992841167118110.1137/S009753979630342116810580926.68093
– reference: BoitmanisKFreivaldsKLediņšPOpmanisRAlvarezCSernaMFast and simple approximation of the diameter and radius of a graphExperimental algorithms. Lecture notes in computer science2006BerlinSpringer98108
– reference: Shalev-ShwartzSBen-DavidSUnderstanding machine learning: from theory to algorithms2014New YorkCambridge University Press10.1017/CBO9781107298019
– reference: CsárdiGNepuszTThe igraph software package for complex network researchInterJ Complex Syst2006169519
– reference: AbrahamIDellingDFiatAGoldbergAVWerneckRFVC-dimension and shortest path algorithms. Automata, languages and programming2011BerlinSpringer69069910.1007/978-3-642-22006-7_58
– volume-title: Networks—an introduction
  year: 2010
  ident: 423_CR33
  doi: 10.1093/acprof:oso/9780199206650.001.0001
– volume: 45
  start-page: 462
  issue: 3
  year: 2011
  ident: 423_CR20
  publication-title: Discret Comput Geom
  doi: 10.1007/s00454-010-9248-1
– start-page: 313
  volume-title: Algorithms—ESA 2009. Lecture notes in computer science
  year: 2009
  ident: 423_CR29
  doi: 10.1007/978-3-642-04128-0_29
– volume-title: Neural network learning—theoretical foundations
  year: 1999
  ident: 423_CR4
  doi: 10.1017/CBO9780511624216
– volume: 28
  start-page: 1167
  issue: 4
  year: 1999
  ident: 423_CR2
  publication-title: SIAM J Comput
  doi: 10.1137/S0097539796303421
– ident: 423_CR8
  doi: 10.1137/1.9781611973754.12
– volume: 58
  start-page: 13
  issue: 301
  year: 1963
  ident: 423_CR21
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1963.10500830
– volume: 7
  start-page: 283
  year: 1997
  ident: 423_CR23
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.460
– start-page: 98
  volume-title: Experimental algorithms. Lecture notes in computer science
  year: 2006
  ident: 423_CR9
– volume: 16
  start-page: 264
  issue: 2
  year: 1971
  ident: 423_CR46
  publication-title: Theory Probab Appl
  doi: 10.1137/1116025
– volume: 32
  start-page: 245
  issue: 3
  year: 2010
  ident: 423_CR35
  publication-title: Soc Netw
  doi: 10.1016/j.socnet.2010.03.006
– volume: 69
  start-page: 113
  issue: 026
  year: 2004
  ident: 423_CR34
  publication-title: Phys Rev E
– volume-title: Lectures on discrete geometry
  year: 2002
  ident: 423_CR31
  doi: 10.1007/978-1-4613-0039-7
– ident: 423_CR42
  doi: 10.1137/1.9781611972832.76
– ident: 423_CR7
  doi: 10.1007/978-3-662-48350-3_14
– volume: 40
  start-page: 35
  year: 1977
  ident: 423_CR18
  publication-title: Sociometry
  doi: 10.2307/3033543
– ident: 423_CR37
  doi: 10.1145/2187980.2188239
– volume: 28
  start-page: 466
  issue: 4
  year: 2006
  ident: 423_CR10
  publication-title: Soc Netw
  doi: 10.1016/j.socnet.2005.11.005
– ident: 423_CR41
– volume: 286
  start-page: 509
  issue: 5439
  year: 1999
  ident: 423_CR6
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– start-page: 62
  volume-title: Network analysis. Lecture notes in computer science
  year: 2005
  ident: 423_CR22
– ident: 423_CR45
  doi: 10.1609/aaai.v29i1.9202
– volume: 3
  start-page: 899
  year: 2012
  ident: 423_CR24
  publication-title: Soc Netw Anal Mining
  doi: 10.1007/s13278-012-0076-6
– ident: 423_CR25
– ident: 423_CR38
  doi: 10.2172/4785039
– ident: 423_CR39
  doi: 10.1145/2556195.2556224
– volume: 8
  start-page: 39
  issue: 1
  year: 2004
  ident: 423_CR17
  publication-title: J Graph Algorithms Appl
  doi: 10.7155/jgaa.00081
– volume: 1695
  start-page: 1
  year: 2006
  ident: 423_CR15
  publication-title: InterJ Complex Syst
– volume: 30
  start-page: 136
  issue: 2
  year: 2008
  ident: 423_CR12
  publication-title: Soc Netw
  doi: 10.1016/j.socnet.2007.11.001
– ident: 423_CR40
  doi: 10.1145/2629586
– start-page: 91
  volume-title: Advances in knowledge discovery and data mining. Lecture notes in computer science
  year: 2010
  ident: 423_CR30
  doi: 10.1007/978-3-642-13657-3_12
– ident: 423_CR14
  doi: 10.1145/2623330.2630811
– volume: 17
  start-page: 2303
  issue: 7
  year: 2007
  ident: 423_CR13
  publication-title: Int J Bifurc Chaos
  doi: 10.1142/S0218127407018403
– ident: 423_CR28
  doi: 10.1109/NSW.2011.6004633
– ident: 423_CR3
– volume-title: Probability and computing: randomized algorithms and probabilistic analysis
  year: 2005
  ident: 423_CR32
  doi: 10.1017/CBO9780511813603
– ident: 423_CR47
  doi: 10.1145/2623330.2623626
– volume-title: Algorithms and models for the web-graph. Lecture notes in computer science
  year: 2007
  ident: 423_CR5
– volume: 62
  start-page: 516
  issue: 3
  year: 2001
  ident: 423_CR27
  publication-title: J Comput Syst Sci
  doi: 10.1006/jcss.2000.1741
– volume: 25
  start-page: 662
  issue: 3
  year: 2013
  ident: 423_CR36
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2011.254
– volume: 77
  start-page: 237
  issue: 3
  year: 1997
  ident: 423_CR26
  publication-title: Discret Appl Math
  doi: 10.1016/S0166-218X(96)00137-0
– ident: 423_CR44
– volume: 25
  start-page: 163
  issue: 2
  year: 2001
  ident: 423_CR11
  publication-title: J Math Sociol
  doi: 10.1080/0022250X.2001.9990249
– start-page: 690
  volume-title: VC-dimension and shortest path algorithms. Automata, languages and programming
  year: 2011
  ident: 423_CR1
  doi: 10.1007/978-3-642-22006-7_58
– ident: 423_CR19
  doi: 10.1137/1.9781611972887.9
– volume-title: Understanding machine learning: from theory to algorithms
  year: 2014
  ident: 423_CR43
  doi: 10.1017/CBO9781107298019
– volume: 57
  start-page: 25:1
  issue: 4
  year: 2010
  ident: 423_CR16
  publication-title: J ACM
  doi: 10.1145/1734213.1734219
SSID ssj0005230
Score 2.5066457
Snippet Betweenness centrality is a fundamental measure in social network analysis, expressing the importance or influence of individual vertices (or edges) in a...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Betweenness centrality is a fundamental measure in social network analysis,...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).Betweenness centrality is a fundamental measure in social network analysis,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 438
SubjectTerms Algorithms
Approximation
Artificial Intelligence
Chemistry and Earth Sciences
Communications networks
Computer Science
Data mining
Data Mining and Knowledge Discovery
Estimates
Graph theory
Graphs
Information Storage and Retrieval
Mathematical analysis
Networks
Physics
Sample size
Shortest-path problems
Social network analysis
Social networks
Statistics for Engineering
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA66vfjib7E6JYJPSrCxSZo-iKhsDMEhMmFvJU1TEaSdtgP_fC9tuk3B0cekDdwld9fcd_chdG61msGxIVrRa8KknxHFZEpCxpSkJg2jmpLlaSSGr-xxwifuwq10sMrWJtaGOi20vSO_oqEA38PAPd1OP4lljbLZVUehsY66YIIl_Hx17_uj55clkEfQ1AlLRrik87xmUzwnqAVycWKxIcT_7ZkW4eafDGnteAbbaNNFjPiuUfEOWjP5Ltpq2RiwO5x76GagygrXPcK_35uCRFxk2AGxrEXDDokJgTd2_Dy4VBZSnr_to_GgP34YEkeOQDSTvCImYSLLDDwQ4ViqmUBnSZJSIQ2zfbUEpwpmgAY0DUQC-mA6NCFPOM8ixYMD1MmL3BwiLNKAUi1lonzFdBQpmFIX6EoGI4J7yG_lEmvXONzyV3zEi5bHVpQxiDK2oox9D13MX5k2XTNWTe61wo7dASrjhbo9dDYfhq1v8xkqN8XMzolsO0EIiDx02Spp6RP_LXi0esFjtAFRkWiAZj3Uqb5m5gQijyo5ddvrB7511A8
  priority: 102
  providerName: ProQuest
Title Fast approximation of betweenness centrality through sampling
URI https://link.springer.com/article/10.1007/s10618-015-0423-0
https://www.proquest.com/docview/1764064129
https://www.proquest.com/docview/1793240554
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90Ivjitzg_RgSflEBjkzR98GHKpiiKiIP5VNI0FUE6sRv453tp0zlFBelDH3JN4e6S_ML97g7g0Fk1x2VDjWYnlKsgp5qrjEaca8VsFsVVS5abW3k54FdDMfR53GXDdm9CktVOPZPsJpkjXgnquBwU7-kLwl3d0YkHJ90ZXkdYpwYrToVi01DmT1N8PYw-Eea3oGh11vRXYdmDRNKtrboGc7ZYh5WmAQPx63EdFiv-pik34LSvyzGpCoS_P9fZiGSUE8_CctsZ8TRMRN3EN-chpXZ88uJpEx76vYfzS-o7I1DDlRhTm3KZ5xYfhDeuz0xo8jTNmFSWu6JaUjCNEqh-w0KZojG4iWwkUiHyWItwC1rFqLDbQGQWMmaUSnWguYljjSJVdq7iOCJFG4JGQ4nxVcNd84qX5LPesVNqgkpNnFKToA1H009e65IZfwnvNWpP_OopExZJxBkcoUgbDqbD6PcumKELO5o4mdjVEkQ01IbjxlwzU_z2w51_Se_CEiIkWZPO9qA1fpvYfUQh47QD86p_0YGF7sXjdQ_fZ73bu_tO5Ysf6SrWKw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4heoALUApiC7SuRC8gi3hjO84BVVXLdnmeFomb5TgOQqqyC7sI-FH9j8zksQuV4IZy9OQ1nlcyjw9gh3a1QLXh3okulyYquJMm54mUzoiQJ2kFyXJ2rvsX8vhSXc7Bv7YXhsoqW5tYGep86Okf-b5INPoeie7px-iGE2oUZVdbCI1aLE7C4z1-so0Pjn7j_n7vdnuHg1993qAKcC-NmvCQSV0UAQ8MDQijJfZFluVCmyBpIJVWwiEFProXsc7wRaRPQqIypYrUEUgEWvwPMo5TUijT-_OsoiSum5KN5MqIaRK17tTTgqrGFKdCFB69dIOz2Pa_dGzl5XorsNSEp-xnLU8fYS6Uq7DcQj-wxhJ8goOeG09YNZD84brufmTDgjVVX2Q-WVP2iVE-a8CA2NhR_Xp5tQaD9-DZOsyXwzJsANN5LIQ3JnORkz5NHZJU3cBG4opWHYhavljfTCknsIy_djZfmVhpkZWWWGmjDuxOTxnVIzreIt5qmW0bbR3bmWx14Nt0GfWMkieuDMM7oklpdiFGXx3Yazfp2SVeu-Hnt2_4FRb6g7NTe3p0frIJixiO6brCbQvmJ7d3YRtDnkn2pRI0BvadBfsJ0-YQMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dSxwxEB_khNKXqv2gZ_1Iob5Ygpu7JJt9EPHr0KqHFAu-hWw2K4WyZ3sn1T_N_86Z3eydFuqb7GOyGzKZTCY7v5kfwBda1RK3DfdO9Lg0ScmdNAVPpXRGhCLNakqWs6E--iG_XarLObhvc2EIVtnaxNpQFyNP_8i3RKrx7JF4PG2VERZxfjDYuf7NiUGKIq0tnUajIifh7i9e38bbxwe41hu93uDwYv-IR4YB7qVREx5yqcsy4INuAvG19H2Z54XQJkgqTqWVcNgDp-FFX-c4KenTkKpcqTJzRBiB1n8-xUtR0oH5vcPh-fdH-JJ-k6JsJFdGTEOqTd6eFoQhU5xgKTx5eijOPN1_grP1mTdYhDfRWWW7jXYtwVyo3sJCSwTBol14B9sDN56wujz57c8mF5KNShYxYGRMWQSBos_PIjUQGztCs1dX7-HiJaT2ATrVqAofgemiL4Q3JneJkz7LHHapc4ONxBatupC0crE-1iwn6oxfdlZtmURpUZSWRGmTLmxOX7luCnY813mlFbaNe3dsZ5rWhc_TZtx1FEpxVRjdUJ-MKhmiL9aFr-0iPfrE_wZcfn7AdXiFSm1Pj4cnn-A1-ma6gbutQGfy5yasov8zydeipjGwL6zbDxgrFcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+approximation+of+betweenness+centrality+through+sampling&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Riondato%2C+Matteo&rft.au=Kornaropoulos%2C+Evgenios+M.&rft.date=2016-03-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=30&rft.issue=2&rft.spage=438&rft.epage=475&rft_id=info:doi/10.1007%2Fs10618-015-0423-0&rft.externalDocID=10_1007_s10618_015_0423_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon