Rewetting increases vegetation cover and net growing season carbon uptake under fen conditions after peat-extraction in Manitoba, Canada
The moss layer transfer technique has been developed to restore the carbon sequestration function and typical vegetation of Sphagnum -dominated peatlands after peat extraction in North America. However, the technique does not lead to successful bryophyte establishment when applied to peatlands with...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 20588 - 13 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.11.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The moss layer transfer technique has been developed to restore the carbon sequestration function and typical vegetation of
Sphagnum
-dominated peatlands after peat extraction in North America. However, the technique does not lead to successful bryophyte establishment when applied to peatlands with a richer residual fen peat. Therefore, we evaluated an alternative method of active rewetting and passive vegetation establishment using vegetation surveys and carbon dioxide and methane (CH
4
) flux measurements at a post-extracted fen in southern Manitoba, Canada. After one growing season post-rewetting, wetland vegetation established and the site was a net carbon sink over the growing season. However, high abundance of
Carex lasiocarpa
10 years post-treatment led to higher CH
4
emissions than the reference ecosystem. Successful establishment of wetland vegetation is attributed to the area being surrounded by undisturbed fens that can provide a local source of plant propagules. Bryophyte expansion was less successful than vascular plants, likely due to episodic flooding and shading from the sedge communities. Therefore, careful management of water levels to just below the peat surface is needed if reference vegetation community recovery is the goal of restoration. Water level management will also play a key role in controlling CH
4
emissions to maximize carbon sequestration potential. |
---|---|
AbstractList | The moss layer transfer technique has been developed to restore the carbon sequestration function and typical vegetation of Sphagnum-dominated peatlands after peat extraction in North America. However, the technique does not lead to successful bryophyte establishment when applied to peatlands with a richer residual fen peat. Therefore, we evaluated an alternative method of active rewetting and passive vegetation establishment using vegetation surveys and carbon dioxide and methane (CH4) flux measurements at a post-extracted fen in southern Manitoba, Canada. After one growing season post-rewetting, wetland vegetation established and the site was a net carbon sink over the growing season. However, high abundance of Carex lasiocarpa 10 years post-treatment led to higher CH4 emissions than the reference ecosystem. Successful establishment of wetland vegetation is attributed to the area being surrounded by undisturbed fens that can provide a local source of plant propagules. Bryophyte expansion was less successful than vascular plants, likely due to episodic flooding and shading from the sedge communities. Therefore, careful management of water levels to just below the peat surface is needed if reference vegetation community recovery is the goal of restoration. Water level management will also play a key role in controlling CH4 emissions to maximize carbon sequestration potential.The moss layer transfer technique has been developed to restore the carbon sequestration function and typical vegetation of Sphagnum-dominated peatlands after peat extraction in North America. However, the technique does not lead to successful bryophyte establishment when applied to peatlands with a richer residual fen peat. Therefore, we evaluated an alternative method of active rewetting and passive vegetation establishment using vegetation surveys and carbon dioxide and methane (CH4) flux measurements at a post-extracted fen in southern Manitoba, Canada. After one growing season post-rewetting, wetland vegetation established and the site was a net carbon sink over the growing season. However, high abundance of Carex lasiocarpa 10 years post-treatment led to higher CH4 emissions than the reference ecosystem. Successful establishment of wetland vegetation is attributed to the area being surrounded by undisturbed fens that can provide a local source of plant propagules. Bryophyte expansion was less successful than vascular plants, likely due to episodic flooding and shading from the sedge communities. Therefore, careful management of water levels to just below the peat surface is needed if reference vegetation community recovery is the goal of restoration. Water level management will also play a key role in controlling CH4 emissions to maximize carbon sequestration potential. The moss layer transfer technique has been developed to restore the carbon sequestration function and typical vegetation of Sphagnum -dominated peatlands after peat extraction in North America. However, the technique does not lead to successful bryophyte establishment when applied to peatlands with a richer residual fen peat. Therefore, we evaluated an alternative method of active rewetting and passive vegetation establishment using vegetation surveys and carbon dioxide and methane (CH 4 ) flux measurements at a post-extracted fen in southern Manitoba, Canada. After one growing season post-rewetting, wetland vegetation established and the site was a net carbon sink over the growing season. However, high abundance of Carex lasiocarpa 10 years post-treatment led to higher CH 4 emissions than the reference ecosystem. Successful establishment of wetland vegetation is attributed to the area being surrounded by undisturbed fens that can provide a local source of plant propagules. Bryophyte expansion was less successful than vascular plants, likely due to episodic flooding and shading from the sedge communities. Therefore, careful management of water levels to just below the peat surface is needed if reference vegetation community recovery is the goal of restoration. Water level management will also play a key role in controlling CH 4 emissions to maximize carbon sequestration potential. Abstract The moss layer transfer technique has been developed to restore the carbon sequestration function and typical vegetation of Sphagnum-dominated peatlands after peat extraction in North America. However, the technique does not lead to successful bryophyte establishment when applied to peatlands with a richer residual fen peat. Therefore, we evaluated an alternative method of active rewetting and passive vegetation establishment using vegetation surveys and carbon dioxide and methane (CH4) flux measurements at a post-extracted fen in southern Manitoba, Canada. After one growing season post-rewetting, wetland vegetation established and the site was a net carbon sink over the growing season. However, high abundance of Carex lasiocarpa 10 years post-treatment led to higher CH4 emissions than the reference ecosystem. Successful establishment of wetland vegetation is attributed to the area being surrounded by undisturbed fens that can provide a local source of plant propagules. Bryophyte expansion was less successful than vascular plants, likely due to episodic flooding and shading from the sedge communities. Therefore, careful management of water levels to just below the peat surface is needed if reference vegetation community recovery is the goal of restoration. Water level management will also play a key role in controlling CH4 emissions to maximize carbon sequestration potential. The moss layer transfer technique has been developed to restore the carbon sequestration function and typical vegetation of Sphagnum-dominated peatlands after peat extraction in North America. However, the technique does not lead to successful bryophyte establishment when applied to peatlands with a richer residual fen peat. Therefore, we evaluated an alternative method of active rewetting and passive vegetation establishment using vegetation surveys and carbon dioxide and methane (CH ) flux measurements at a post-extracted fen in southern Manitoba, Canada. After one growing season post-rewetting, wetland vegetation established and the site was a net carbon sink over the growing season. However, high abundance of Carex lasiocarpa 10 years post-treatment led to higher CH emissions than the reference ecosystem. Successful establishment of wetland vegetation is attributed to the area being surrounded by undisturbed fens that can provide a local source of plant propagules. Bryophyte expansion was less successful than vascular plants, likely due to episodic flooding and shading from the sedge communities. Therefore, careful management of water levels to just below the peat surface is needed if reference vegetation community recovery is the goal of restoration. Water level management will also play a key role in controlling CH emissions to maximize carbon sequestration potential. The moss layer transfer technique has been developed to restore the carbon sequestration function and typical vegetation of Sphagnum-dominated peatlands after peat extraction in North America. However, the technique does not lead to successful bryophyte establishment when applied to peatlands with a richer residual fen peat. Therefore, we evaluated an alternative method of active rewetting and passive vegetation establishment using vegetation surveys and carbon dioxide and methane (CH4) flux measurements at a post-extracted fen in southern Manitoba, Canada. After one growing season post-rewetting, wetland vegetation established and the site was a net carbon sink over the growing season. However, high abundance of Carex lasiocarpa 10 years post-treatment led to higher CH4 emissions than the reference ecosystem. Successful establishment of wetland vegetation is attributed to the area being surrounded by undisturbed fens that can provide a local source of plant propagules. Bryophyte expansion was less successful than vascular plants, likely due to episodic flooding and shading from the sedge communities. Therefore, careful management of water levels to just below the peat surface is needed if reference vegetation community recovery is the goal of restoration. Water level management will also play a key role in controlling CH4 emissions to maximize carbon sequestration potential. |
ArticleNumber | 20588 |
Author | Strack, Maria Guêné-Nanchen, Mélina Turmel-Courchesne, Laurence Davies, Marissa A. Rochefort, Line |
Author_xml | – sequence: 1 givenname: Laurence surname: Turmel-Courchesne fullname: Turmel-Courchesne, Laurence organization: Department of Plant Sciences, Université Laval, Centre for Northern Studies and Peatland Ecology Research Group, Université Laval – sequence: 2 givenname: Marissa A. orcidid: 0000-0003-1564-010X surname: Davies fullname: Davies, Marissa A. email: m3davies@uwaterloo.ca organization: Department of Geography and Environmental Management, University of Waterloo – sequence: 3 givenname: Mélina surname: Guêné-Nanchen fullname: Guêné-Nanchen, Mélina organization: Department of Plant Sciences, Université Laval, Centre for Northern Studies and Peatland Ecology Research Group, Université Laval – sequence: 4 givenname: Maria surname: Strack fullname: Strack, Maria email: mstrack@uwaterloo.ca organization: Department of Geography and Environmental Management, University of Waterloo – sequence: 5 givenname: Line surname: Rochefort fullname: Rochefort, Line organization: Department of Plant Sciences, Université Laval, Centre for Northern Studies and Peatland Ecology Research Group, Université Laval |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37996571$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNUREvpH-CAInHhQMCfiX1EKz4qFSEhOFsTZ7LysmsvttOy_4CfjbNpAfVQX8YaP--rGc88rU588FhVzyl5QwlXb5OgUquGMN6ITnW6OTyqzhgRsmGcsZP_7qfVRUobUo5kWlD9pDrlndat7OhZ9fsr3mDOzq9r521ESJjqa1xjhuyCr224xliDH2qPuV7HcDOjqXDzI8S-hGmf4QfWkx8KOuIs8oOb5amGMZfkHiE3-CtHsEdX5-vP4F0OPbyuV-BhgGfV4xG2CS9u43n1_cP7b6tPzdWXj5erd1eNFUoWE6rtiJ0apQTs2n7oWKuRDz0SZrG3vSqNDURLVD2nfCR9B9SiHJiggpbMeXW5-A4BNmYf3Q7iwQRw5pgIcW0gZme3aIQmAhCUYhwFaXuQnZRoydgil2K0xevV4rWP4eeEKZudSxa3W_AYpmSY0lxxQRkr6Mt76CZM0ZdOZ4opSjomCvXilpr6HQ5_y7ubVwHUAtgYUoo4GuuWSZW_dVtDiZm3wyzbYcp2mON2mEORsnvSO_cHRXwRpQL7NcZ_ZT-g-gODc86i |
CitedBy_id | crossref_primary_10_3390_w17050650 crossref_primary_10_1016_j_ecoleng_2024_107496 |
Cites_doi | 10.1038/s41467-018-03406-6 10.1016/j.ecoleng.2014.03.090 10.1007/s13157-013-0490-1 10.1016/j.aquabot.2018.07.006 10.1029/1999JD900136 10.1111/gcbb.12214 10.1029/2002GB001946 10.1111/j.1365-2486.2007.01339.x 10.1139/cjb-2016-0023 10.1023/a:1022069808489 10.1016/j.ecoleng.2019.01.023 10.1016/j.catena.2017.09.010 10.1029/2003gb002209 10.1672/06-136.1 10.1016/j.ecoleng.2013.12.013 10.3390/soilsystems4010017 10.1139/f95-059 10.1007/s11356-015-5396-4 10.1111/geb.13081 10.1016/j.soilbio.2020.108077 10.1139/cjb-2018-0109 10.2307/2261594 10.1007/s10750-011-0729-x 10.1016/j.biocon.2012.01.039 10.1111/brv.12102 10.1016/0925-8574(96)00004-3 10.1080/00040851.1987.12002621 10.1111/j.1526-100X.2005.00009.x 10.1023/A:1022011027946 10.1071/WF07021 10.2307/2425214 10.5194/bg-17-4797-2020 10.19189/MaP.2016.OMB.220 10.1023/a:1022046409485 10.2307/1478886 10.1007/s11104-016-2999-6 10.1007/s10021-007-9046-7 10.1016/j.ecoleng.2009.11.017 10.1029/2009JG001090 10.5194/bg-12-5291-2015 10.1139/b05-025 10.1016/j.biocon.2018.02.002 10.1007/s10021-007-9083-2 10.1639/0007-2745-118.2.123 10.1029/2001GB001398 10.1088/1748-9326/ab56e6 10.1111/rec.13246 10.1139/cjb-2015-0262 10.1016/j.ecoleng.2014.03.051 10.1016/j.ecoleng.2018.06.021 10.1029/2010gl043584 10.1038/s41467-021-25619-y 10.1080/11956860.2001.11682664 10.5194/bg-17-5285-2020 10.1017/CBO9781139177788.005 10.1016/j.ecoleng.2018.10.018 10.1111/gcb.12131 10.1111/gcb.14449 10.1111/rec.13714 10.1029/2007JG000400 10.1007/978-1-4419-0318-1 10.1016/j.ecoleng.2011.06.007 10.1007/s004420050891 10.5194/bg-10-2885-2013 10.1080/02723646.2000.10642719 10.19189/MaP.2015.OMB.216 10.1639/079.031.0402 10.1016/j.ecoleng.2021.106324 10.1139/b04-081 10.1111/j.1526-100X.2012.00889.x 10.1515/9782763712222 10.1007/978-981-10-0077-5_1 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.1038/s41598-023-47879-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_4904aea8823e406ba5755ec0f6e354fc 37996571 10_1038_s41598_023_47879_y |
Genre | Journal Article |
GeographicLocations | Canada Manitoba Manitoba Canada |
GeographicLocations_xml | – name: Manitoba – name: Canada – name: Manitoba Canada |
GrantInformation_xml | – fundername: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada) funderid: 501100000038 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-e19cfe78f55ae76bd7269e3dbe02cebcb8965d095e8b313f0b7a1ce5d24141313 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:25:23 EDT 2025 Fri Jul 11 15:29:18 EDT 2025 Wed Aug 13 05:12:37 EDT 2025 Thu Jan 02 22:37:42 EST 2025 Thu Apr 24 22:57:00 EDT 2025 Tue Jul 01 03:57:56 EDT 2025 Fri Feb 21 02:39:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-e19cfe78f55ae76bd7269e3dbe02cebcb8965d095e8b313f0b7a1ce5d24141313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1564-010X |
OpenAccessLink | https://doaj.org/article/4904aea8823e406ba5755ec0f6e354fc |
PMID | 37996571 |
PQID | 2892810724 |
PQPubID | 2041939 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4904aea8823e406ba5755ec0f6e354fc proquest_miscellaneous_2893834122 proquest_journals_2892810724 pubmed_primary_37996571 crossref_citationtrail_10_1038_s41598_023_47879_y crossref_primary_10_1038_s41598_023_47879_y springer_journals_10_1038_s41598_023_47879_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-23 |
PublicationDateYYYYMMDD | 2023-11-23 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Pinheiro, Bates (CR57) 2000 Strack, Zuback (CR33) 2013; 10 Wilson (CR12) 2015; 12 Davies, Hamilton, Smith, Legg (CR56) 2008; 17 Karofeld, Müür, Vellak (CR26) 2016; 23 Joiner, Lafeur, McCaughey, Bartlett (CR88) 1999; 104 Waddington, Warner, Kennedy (CR10) 2002; 16 Borkenhagen, Cooper (CR68) 2019; 130 Vitt (CR55) 2014; 31 Bourgeois, Rochefort, Bérubé, Poulin (CR28) 2018; 151 Hedberg (CR37) 2012; 147 Pfadenhauer, Grootjans (CR61) 1999; 2 Forster, Masson-Delmotte (CR50) 2021 Vitt, House (CR66) 2015; 118 Daigle, Gautreau-Daigle (CR8) 2001 Bubier, Crill, Mosedale, Frolking, Linder (CR59) 2003 Kreyling (CR38) 2021; 12 Tuittila, Komulainen, Vasander, Laine (CR74) 1999; 120 Wheeler (CR63) 1983; 110 CR73 Groeneveld, Rochefort (CR17) 2005; 13 Basiliko, Blodau, Roehm, Bengtson, Moore (CR78) 2007; 10 Couwenberg (CR86) 2011; 674 Jeglum (CR51) 1991; 28 Rochefort (CR29) 2016; 94 Waddington, Strack, Greenwood (CR75) 2010 Lavoie, Grosvernier, Girard, Marcoux (CR19) 2003; 11 Li (CR77) 2021; 153 Poulin, Andersen, Rochefort (CR22) 2013; 21 Nugent, Strachan, Strack, Roulet, Rochefort (CR24) 2018; 24 Nugent (CR25) 2019; 14 Emsens, Aggenbach, Rydin, Smolders, van Diggelen (CR72) 2018; 220 Konvalinková, Prach (CR40) 2014; 69 Glaser (CR65) 1987; 19 Poulin, Rochefort, Quinty, Lavoie (CR18) 2005; 83 Strack (CR21) 2016; 17 CR45 CR44 CR43 CR42 Green, Baird (CR49) 2017; 19 Vitt, House, Hartsock (CR67) 2016; 94 Frolking, Roulet (CR4) 2007; 13 Waddington, Warner (CR32) 2001; 8 Rankin, Strachan, Strack (CR11) 2018; 122 Riutta, Laine, Tuittila (CR76) 2007; 10 Lamers (CR41) 2015; 90 Müller, Joos (CR6) 2020; 17 Bubier (CR81) 1995; 83 Mahmood, Strack (CR39) 2011; 37 Strack (CR84) 2017; 410 Xu, Morris, Liu, Holden (CR3) 2018; 160 Graf, Bérubé, Rochefort, Vitt, Bhatti (CR15) 2012 Rochefort, Batzer, Baldwin (CR69) 2012 Leifeld, Menichetti (CR7) 2018; 9 Payette, Rochefort (CR52) 2001 CR58 Purre, Ilomets, Truus, Pajula, Sepp (CR27) 2020; 28 Groeneveld, Rochefort (CR16) 2002; 53 Gagnon, Rochefort, Lavoie (CR36) 2018; 96 Bieniada, Strack (CR82) 2021; 169 Price, Heathwaite, Baird (CR14) 2003; 11 Wind-Mulder, Rochefort, Vitt (CR70) 1996; 7 Zeh (CR85) 2020; 17 Waddington, Price (CR9) 2000; 21 Qiu, Zhu, Ciais, Guenet, Peng (CR5) 2020; 29 Strack, Keith, Xu (CR47) 2014; 64 Yu, Loisel, Brosseau, Beilman, Hunt (CR2) 2010; 37 Rochefort, Quinty, Campeau, Johnson, Malterer (CR20) 2003; 11 González, Rochefort (CR23) 2014; 68 Faubert (CR54) 2014 Vitt, Bayley, Jin (CR46) 1995; 52 Lazcano, Robinson, Hassanpour, Strack (CR30) 2018; 125 Waddington, Day (CR13) 2007 Strack, Waddington, Tuittila (CR79) 2004; 18 Gignac, Gauthier, Rochefort, Bubier (CR53) 2004; 82 Jordan (CR83) 2020; 4 Günther, Huth, Jurasinski, Glatzel (CR48) 2015; 7 Bridgham, Cadillo-Quiroz, Keller, Zhuang (CR89) 2013; 19 Joosten, Sirin, Couwenberg, Laine, Smith, Bonn (CR1) 2016 Lucchese (CR34) 2010; 36 CR62 Graf, Rochefort, Poulin (CR31) 2008; 28 CR60 Priede, Mežaka, Dobkeviča, Grīnberga (CR35) 2016; 18 Nishimura, Tsuyuzaki (CR71) 2014; 34 Couwenberg, Fritz (CR80) 2012; 10 Lemmer, Xu, Strack, Rochefort (CR64) 2023; 31 Wilson, Farrell, Mueller, Hepp, Renou-Wilson (CR87) 2013; 11 J Bubier (47879_CR81) 1995; 83 P Hedberg (47879_CR37) 2012; 147 LPM Lamers (47879_CR41) 2015; 90 S Frolking (47879_CR4) 2007; 13 47879_CR62 JR Xu (47879_CR3) 2018; 160 47879_CR60 L Rochefort (47879_CR29) 2016; 94 E Karofeld (47879_CR26) 2016; 23 M Strack (47879_CR21) 2016; 17 LD Gignac (47879_CR53) 2004; 82 JM Waddington (47879_CR32) 2001; 8 Q Li (47879_CR77) 2021; 153 J Leifeld (47879_CR7) 2018; 9 M Strack (47879_CR84) 2017; 410 M Poulin (47879_CR22) 2013; 21 A-H Purre (47879_CR27) 2020; 28 EVG Groeneveld (47879_CR17) 2005; 13 L Rochefort (47879_CR20) 2003; 11 M Strack (47879_CR79) 2004; 18 E González (47879_CR23) 2014; 68 P Forster (47879_CR50) 2021 C Lazcano (47879_CR30) 2018; 125 A Günther (47879_CR48) 2015; 7 J Faubert (47879_CR54) 2014 J Pfadenhauer (47879_CR61) 1999; 2 PH Glaser (47879_CR65) 1987; 19 D Wilson (47879_CR87) 2013; 11 JC Pinheiro (47879_CR57) 2000 S Green (47879_CR49) 2017; 19 47879_CR58 JM Waddington (47879_CR13) 2007 T Riutta (47879_CR76) 2007; 10 JM Waddington (47879_CR10) 2002; 16 J Kreyling (47879_CR38) 2021; 12 ZC Yu (47879_CR2) 2010; 37 HL Wind-Mulder (47879_CR70) 1996; 7 DW Joiner (47879_CR88) 1999; 104 L Rochefort (47879_CR69) 2012 A Nishimura (47879_CR71) 2014; 34 DH Vitt (47879_CR46) 1995; 52 F Gagnon (47879_CR36) 2018; 96 GM Davies (47879_CR56) 2008; 17 SD Bridgham (47879_CR89) 2013; 19 J Waddington (47879_CR75) 2010 D Wilson (47879_CR12) 2015; 12 47879_CR43 L Zeh (47879_CR85) 2020; 17 M Lucchese (47879_CR34) 2010; 36 47879_CR44 M Lemmer (47879_CR64) 2023; 31 JS Price (47879_CR14) 2003; 11 47879_CR42 P Konvalinková (47879_CR40) 2014; 69 H Joosten (47879_CR1) 2016 N Basiliko (47879_CR78) 2007; 10 E-S Tuittila (47879_CR74) 1999; 120 JY Daigle (47879_CR8) 2001 KA Nugent (47879_CR25) 2019; 14 B Bourgeois (47879_CR28) 2018; 151 47879_CR45 M Strack (47879_CR47) 2014; 64 S Jordan (47879_CR83) 2020; 4 J Couwenberg (47879_CR86) 2011; 674 DH Vitt (47879_CR55) 2014; 31 DH Vitt (47879_CR66) 2015; 118 DH Vitt (47879_CR67) 2016; 94 A Bieniada (47879_CR82) 2021; 169 MD Graf (47879_CR15) 2012 EV Groeneveld (47879_CR16) 2002; 53 W-J Emsens (47879_CR72) 2018; 220 C Qiu (47879_CR5) 2020; 29 M Graf (47879_CR31) 2008; 28 GA Wheeler (47879_CR63) 1983; 110 KA Nugent (47879_CR24) 2018; 24 AK Borkenhagen (47879_CR68) 2019; 130 47879_CR73 JM Waddington (47879_CR9) 2000; 21 J Müller (47879_CR6) 2020; 17 M Poulin (47879_CR18) 2005; 83 A Priede (47879_CR35) 2016; 18 MS Mahmood (47879_CR39) 2011; 37 C Lavoie (47879_CR19) 2003; 11 S Payette (47879_CR52) 2001 M Strack (47879_CR33) 2013; 10 JK Jeglum (47879_CR51) 1991; 28 J Bubier (47879_CR59) 2003 J Couwenberg (47879_CR80) 2012; 10 T Rankin (47879_CR11) 2018; 122 |
References_xml | – volume: 9 start-page: 1071 year: 2018 ident: CR7 article-title: The underappreciated potential of peatlands in global climate change mitigation strategies publication-title: Nat. Commun. doi: 10.1038/s41467-018-03406-6 – ident: CR45 – volume: 69 start-page: 38 year: 2014 end-page: 45 ident: CR40 article-title: Environmental factors determining spontaneous recovery of industrially mined peat bogs: A multi-site analysis publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2014.03.090 – volume: 34 start-page: 117 year: 2014 end-page: 127 ident: CR71 article-title: Effects of water level via controlling water chemistry on revegetation patterns after peat mining publication-title: Wetlands doi: 10.1007/s13157-013-0490-1 – volume: 53 start-page: 73 year: 2002 end-page: 85 ident: CR16 article-title: Nursing plants in peatland restoration: On their potential use to alleviate frost heaving problems publication-title: Suo – volume: 151 start-page: 19 year: 2018 end-page: 24 ident: CR28 article-title: Response of plant diversity to moss, Carex or Scirpus revegetation strategies of wet depressions in restored fens publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2018.07.006 – volume: 104 start-page: 27663 year: 1999 end-page: 27672 ident: CR88 article-title: Interannual variability in carbon dioxide exchanges at a boreal wetland in the BOREAS northern study area publication-title: J. Geophys. Res. Atmos. doi: 10.1029/1999JD900136 – volume: 7 start-page: 1092 year: 2015 end-page: 1106 ident: CR48 article-title: The effect of biomass harvesting on greenhouse gas emissions from a rewetted temperate fen publication-title: GCB Bioenergy doi: 10.1111/gcbb.12214 – year: 2003 ident: CR59 article-title: Peatland responses to varying interannual moisture conditions as measured by automatic CO chambers publication-title: Glob. Biogeochem. Cy. doi: 10.1029/2002GB001946 – volume: 13 start-page: 1079 year: 2007 end-page: 1088 ident: CR4 article-title: Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2007.01339.x – volume: 94 start-page: 1041 year: 2016 end-page: 1051 ident: CR29 article-title: Reintroduction of fen plant communities on a degraded minerotrophic peatland publication-title: Botany doi: 10.1139/cjb-2016-0023 – start-page: 259 year: 2012 end-page: 280 ident: CR15 article-title: Restoration of peatlands after peat extraction: Impacts, restoration goals, and techniques publication-title: Restoration and Reclamation of Boreal Ecosystems – volume: 11 start-page: 97 year: 2003 end-page: 107 ident: CR19 article-title: Spontaneous revegetation of mined peatlands: An useful restoration tool? publication-title: Wetl. Ecol. Manag. doi: 10.1023/a:1022069808489 – ident: CR58 – volume: 130 start-page: 11 year: 2019 end-page: 22 ident: CR68 article-title: Establishing vegetation on a constructed fen in a post-mined landscape in Alberta’s oil sands region: A four-year evaluation after species introduction publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2019.01.023 – volume: 160 start-page: 134 year: 2018 end-page: 140 ident: CR3 article-title: PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis publication-title: Catena doi: 10.1016/j.catena.2017.09.010 – volume: 18 start-page: 7 year: 2004 ident: CR79 article-title: Effect of water table drawdown on northern peatland methane dynamics: Implications for climate change publication-title: Glob. Biogeochem. Cy. doi: 10.1029/2003gb002209 – volume: 28 start-page: 28 year: 2008 end-page: 39 ident: CR31 article-title: Spontaneous revegetation of cutaway peatlands of North America publication-title: Wetlands doi: 10.1672/06-136.1 – start-page: 621 year: 2001 ident: CR52 publication-title: Écologie des Tourbières du Québec-Labrador – year: 2001 ident: CR8 – ident: CR42 – volume: 64 start-page: 231 year: 2014 end-page: 239 ident: CR47 article-title: Growing season carbon dioxide and methane exchange at a restored peatland on the Western Boreal Plain publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2013.12.013 – volume: 28 start-page: 175 year: 1991 end-page: 192 ident: CR51 article-title: Definition of trophic classes in wooded peatlands by means of vegetation types and plant indicator publication-title: Ann. Bot. Fenn. – volume: 4 start-page: 17 year: 2020 ident: CR83 article-title: Methane and nitrous oxide emission fluxes along water level gradients in littoral zones of constructed surface water bodies in a rewetted extracted Peatland in Sweden publication-title: Soil Syst. doi: 10.3390/soilsystems4010017 – volume: 52 start-page: 587 year: 1995 end-page: 606 ident: CR46 article-title: Seasonal variation in water chemistry over a bog-rich fen gradient in continental Western Canada publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/f95-059 – volume: 23 start-page: 13706 year: 2016 end-page: 13717 ident: CR26 article-title: Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-5396-4 – volume: 29 start-page: 956 year: 2020 end-page: 973 ident: CR5 article-title: The role of northern peatlands in the global carbon cycle for the 21st century publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.13081 – volume: 153 start-page: 108077 year: 2021 ident: CR77 article-title: Abiotic and biotic drivers of microbial respiration in peat and its sensitivity to temperature change publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.108077 – volume: 96 start-page: 779 year: 2018 end-page: 791 ident: CR36 article-title: Spontaneous revegetation of a peatland in Manitoba after peat extraction: Diversity of plant assemblages and restoration perspectives publication-title: Botany doi: 10.1139/cjb-2018-0109 – volume: 83 start-page: 403 year: 1995 end-page: 420 ident: CR81 article-title: The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands publication-title: J. Ecol. doi: 10.2307/2261594 – volume: 674 start-page: 67 year: 2011 end-page: 89 ident: CR86 article-title: Assessing greenhouse gas emissions from peatlands using vegetation as a proxy publication-title: Hydrobiologia doi: 10.1007/s10750-011-0729-x – volume: 147 start-page: 60 year: 2012 end-page: 67 ident: CR37 article-title: Vegetation recovery after multiple-site experimental fen restorations publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2012.01.039 – ident: CR60 – volume: 90 start-page: 182 year: 2015 end-page: 203 ident: CR41 article-title: Ecological restoration of rich fens in Europe and North America: From trial and error to an evidence-based approach publication-title: Biol. Rev. doi: 10.1111/brv.12102 – volume: 7 start-page: 161 year: 1996 end-page: 181 ident: CR70 article-title: Water and peat chemistry comparisons of natural and post-harvested peatlands across Canada and their relevance to peatland restoration publication-title: Ecol. Eng. doi: 10.1016/0925-8574(96)00004-3 – volume: 10 start-page: 1 issue: 3 year: 2012 end-page: 17 ident: CR80 article-title: Towards developing IPCC methane 'emission factors' for peatlands (organic soils) publication-title: Mires Peat – volume: 19 start-page: 402 year: 1987 end-page: 413 ident: CR65 article-title: The development of streamlined bog islands in the continental interior of North America publication-title: Arctic Alpine Res. doi: 10.1080/00040851.1987.12002621 – volume: 13 start-page: 74 year: 2005 end-page: 82 ident: CR17 article-title: as a solution to frost heaving in disturbed ecosystems: A case study with milled peatlands publication-title: Restor. Ecol. doi: 10.1111/j.1526-100X.2005.00009.x – volume: 11 start-page: 3 year: 2003 end-page: 20 ident: CR20 article-title: North American approach to the restoration of dominated peatlands publication-title: Wetl. Ecol. Manag. doi: 10.1023/A:1022011027946 – volume: 11 start-page: 1 year: 2013 end-page: 22 ident: CR87 article-title: Rewetted industrial cutaway peatlands in western Ireland: A prime location for climate change mitigation publication-title: Mires Peat – year: 2014 ident: CR54 publication-title: Flore des Bryophytes du Québec-Labrador – start-page: 119 year: 2012 end-page: 134 ident: CR69 article-title: Wetland habitats of North America: Ecology and conservation concerns publication-title: Northern Peatlands – volume: 17 start-page: 380 year: 2008 end-page: 389 ident: CR56 article-title: Using visual obstruction to estimate heathland fuel load and structure publication-title: Int. J. Wildl. Fire doi: 10.1071/WF07021 – volume: 110 start-page: 62 year: 1983 end-page: 96 ident: CR63 article-title: Contributions to the flora of the Red Lake Peatland, northern Minnesota, with special attention to publication-title: Am. Midl. Nat. doi: 10.2307/2425214 – start-page: 923 year: 2021 end-page: 1054 ident: CR50 article-title: The Earth’s energy budget, climate feedbacks, and climate sensitivity publication-title: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 17 start-page: 4797 year: 2020 end-page: 4813 ident: CR85 article-title: Vascular plants affect properties and decomposition of moss-dominated peat, particularly at elevated temperatures publication-title: Biogeosciences doi: 10.5194/bg-17-4797-2020 – volume: 18 start-page: 1 year: 2016 end-page: 14 ident: CR35 article-title: Spontaneous revegetation of cutaway fens: Can it result in valuable habitats? publication-title: Mires Peat doi: 10.19189/MaP.2016.OMB.220 – ident: CR43 – volume: 11 start-page: 65 year: 2003 end-page: 83 ident: CR14 article-title: Hydrological processes in abandoned and restored peatlands: An overview of management approaches publication-title: Wetl. Ecol. Manag. doi: 10.1023/a:1022046409485 – volume: 2 start-page: 95 year: 1999 end-page: 106 ident: CR61 article-title: Wetland restoration in Central Europe: Aims and methods publication-title: Appl. Veg. Sci. doi: 10.2307/1478886 – volume: 410 start-page: 231 year: 2017 end-page: 246 ident: CR84 article-title: Effect of plant functional type on methane dynamics in a restored minerotrophic peatland publication-title: Plant Soil doi: 10.1007/s11104-016-2999-6 – volume: 10 start-page: 718 year: 2007 end-page: 733 ident: CR76 article-title: Sensitivity of CO exchange of fen ecosystem components to water level variation publication-title: Ecosystems doi: 10.1007/s10021-007-9046-7 – volume: 36 start-page: 482 year: 2010 end-page: 488 ident: CR34 article-title: Organic matter accumulation in a restored peatland: Evaluating restoration success publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2009.11.017 – volume: 19 start-page: 1 issue: 9 year: 2017 end-page: 9 ident: CR49 article-title: Using 'snapshot' measurements of CH fluxes from an ombrotrophic peatland to estimate annual budgets: Interpolation versus modelling publication-title: Mires Peat – year: 2010 ident: CR75 article-title: Toward restoring the net carbon sink function of degraded peatlands: Short-term response in CO exchange to ecosystem-scale restoration publication-title: J. Geophys. Res-Biogeo. doi: 10.1029/2009JG001090 – volume: 12 start-page: 5291 year: 2015 end-page: 5308 ident: CR12 article-title: Derivation of greenhouse gas emission factors for peatlands managed for extraction in the Republic of Ireland and the United Kingdom publication-title: Biogeosciences doi: 10.5194/bg-12-5291-2015 – volume: 83 start-page: 539 year: 2005 end-page: 557 ident: CR18 article-title: Spontaneous revegetation of mined peatlands in eastern Canada publication-title: Can. J. Bot. doi: 10.1139/b05-025 – volume: 220 start-page: 76 year: 2018 end-page: 83 ident: CR72 article-title: Competition for light as a bottleneck for endangered fen species: An introduction experiment publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2018.02.002 – volume: 10 start-page: 1148 year: 2007 end-page: 1165 ident: CR78 article-title: Regulation of decomposition and methane dynamics across natural, commercially mined, and restored Northern Peatlands publication-title: Ecosystems doi: 10.1007/s10021-007-9083-2 – volume: 118 start-page: 123 year: 2015 end-page: 129 ident: CR66 article-title: Establishment of bryophytes from indigenous sources after disturbance from oil sands mining publication-title: Bryologist doi: 10.1639/0007-2745-118.2.123 – volume: 16 start-page: 1 year: 2002 end-page: 7 ident: CR10 article-title: Cutover peatlands: A persistent source of atmospheric CO publication-title: Glob. Biogeochem. Cy. doi: 10.1029/2001GB001398 – volume: 14 start-page: 12430 year: 2019 ident: CR25 article-title: Prompt active restoration of peatlands substantially reduces climate impact publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab56e6 – volume: 28 start-page: 1584 year: 2020 end-page: 1595 ident: CR27 article-title: The effect of different treatments of moss layer transfer technique on plant functional types' biomass in revegetated milled peatlands publication-title: Restor. Ecol. doi: 10.1111/rec.13246 – ident: CR44 – volume: 94 start-page: 1015 year: 2016 end-page: 1025 ident: CR67 article-title: Sandhill Fen, an initial trial for wetland species assembly on in-pit substrates: Lessons after three years publication-title: Botany doi: 10.1139/cjb-2015-0262 – ident: CR73 – volume: 68 start-page: 279 year: 2014 end-page: 290 ident: CR23 article-title: Drivers of success in 53 cutover bogs restored by a moss layer transfer technique publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2014.03.051 – volume: 122 start-page: 241 year: 2018 end-page: 251 ident: CR11 article-title: Carbon dioxide and methane exchange at a post-extraction, unrestored peatland publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2018.06.021 – volume: 37 start-page: 5 year: 2010 ident: CR2 article-title: Global peatland dynamics since the Last Glacial Maximum publication-title: Geophys. Res. Lett. doi: 10.1029/2010gl043584 – volume: 12 start-page: 5693 year: 2021 ident: CR38 article-title: Rewetting does not return drained fen peatlands to their old selves publication-title: Nat. Commun. doi: 10.1038/s41467-021-25619-y – volume: 8 start-page: 359 year: 2001 end-page: 368 ident: CR32 article-title: Atmospheric CO sequestration in restored mined peatlands publication-title: Écoscience doi: 10.1080/11956860.2001.11682664 – volume: 17 start-page: 5285 year: 2020 end-page: 5308 ident: CR6 article-title: Global peatland area and carbon dynamics from the Last Glacial Maximum to the present—A process-based model investigation publication-title: Biogeosciences doi: 10.5194/bg-17-5285-2020 – start-page: 63 year: 2016 end-page: 76 ident: CR1 article-title: The role of peatlands in climate regulation publication-title: Peatland Restoration and Ecosystem Services: Science, Policy and Practice Ecological Reviews doi: 10.1017/CBO9781139177788.005 – volume: 125 start-page: 149 year: 2018 end-page: 158 ident: CR30 article-title: Short-term effects of fen peatland restoration through the moss layer transfer technique on the soil CO and CH efflux publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2018.10.018 – volume: 19 start-page: 1325 year: 2013 end-page: 1346 ident: CR89 article-title: Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales publication-title: Glob. Change Biol. doi: 10.1111/gcb.12131 – volume: 24 start-page: 5751 year: 2018 end-page: 5768 ident: CR24 article-title: Multi-year net ecosystem carbon balance of a restored peatland reveals a return to carbon sink publication-title: Glob. Change Biol. doi: 10.1111/gcb.14449 – volume: 31 start-page: e13714 year: 2023 ident: CR64 article-title: Reestablishment of peatland vegetation following surface leveling of decommissioned in situ oil mining infrastructures publication-title: Restor. Ecol. doi: 10.1111/rec.13714 – year: 2007 ident: CR13 article-title: Methane emissions from a peatland following restoration publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2007JG000400 – year: 2000 ident: CR57 publication-title: Mix-Effects Models in S and S-Plus doi: 10.1007/978-1-4419-0318-1 – volume: 37 start-page: 1859 year: 2011 end-page: 1868 ident: CR39 article-title: Methane dynamics of recolonized cutover minerotrophic peatland: Implications for restoration publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2011.06.007 – volume: 120 start-page: 563 year: 1999 end-page: 574 ident: CR74 article-title: Restored cut-away peatland as a sink for atmospheric CO publication-title: Oecologia doi: 10.1007/s004420050891 – volume: 10 start-page: 2885 year: 2013 end-page: 2896 ident: CR33 article-title: Annual carbon balance of a peatland 10 yr following restoration publication-title: Biogeosciences doi: 10.5194/bg-10-2885-2013 – volume: 21 start-page: 433 year: 2000 end-page: 451 ident: CR9 article-title: Effect of peatland drainage, harvesting, and restoration on atmospheric water and carbon exchange publication-title: Phys. Geogr. doi: 10.1080/02723646.2000.10642719 – volume: 17 start-page: 1 year: 2016 end-page: 18 ident: CR21 article-title: Controls on plot-scale growing season CO and CH fluxes in restored peatlands: Do they differ from unrestored and natural sites? publication-title: Mires and Peat doi: 10.19189/MaP.2015.OMB.216 – ident: CR62 – volume: 31 start-page: 121 year: 2014 end-page: 158 ident: CR55 article-title: A key and review of bryophytes common in North American peatlands publication-title: Evansia doi: 10.1639/079.031.0402 – volume: 169 start-page: 106324 year: 2021 ident: CR82 article-title: Steady and ebullitive methane fluxes from active, restored and unrestored horticultural peatlands publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2021.106324 – volume: 82 start-page: 1292 year: 2004 end-page: 1313 ident: CR53 article-title: Distribution and habitat niches of 37 peatland Cyperaceae species across a broad geographic range in Canada publication-title: Can. J. Bot. doi: 10.1139/b04-081 – volume: 21 start-page: 363 year: 2013 end-page: 371 ident: CR22 article-title: A new approach for tracking vegetation change after restoration: A case study with peatlands publication-title: Restor. Ecol. doi: 10.1111/j.1526-100X.2012.00889.x – volume: 10 start-page: 2885 year: 2013 ident: 47879_CR33 publication-title: Biogeosciences doi: 10.5194/bg-10-2885-2013 – start-page: 923 volume-title: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change year: 2021 ident: 47879_CR50 – volume: 17 start-page: 380 year: 2008 ident: 47879_CR56 publication-title: Int. J. Wildl. Fire doi: 10.1071/WF07021 – volume: 9 start-page: 1071 year: 2018 ident: 47879_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03406-6 – volume: 69 start-page: 38 year: 2014 ident: 47879_CR40 publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2014.03.090 – start-page: 259 volume-title: Restoration and Reclamation of Boreal Ecosystems year: 2012 ident: 47879_CR15 – volume: 147 start-page: 60 year: 2012 ident: 47879_CR37 publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2012.01.039 – volume: 160 start-page: 134 year: 2018 ident: 47879_CR3 publication-title: Catena doi: 10.1016/j.catena.2017.09.010 – volume: 11 start-page: 1 year: 2013 ident: 47879_CR87 publication-title: Mires Peat – volume: 83 start-page: 403 year: 1995 ident: 47879_CR81 publication-title: J. Ecol. doi: 10.2307/2261594 – volume: 17 start-page: 1 year: 2016 ident: 47879_CR21 publication-title: Mires and Peat doi: 10.19189/MaP.2015.OMB.216 – volume: 94 start-page: 1041 year: 2016 ident: 47879_CR29 publication-title: Botany doi: 10.1139/cjb-2016-0023 – ident: 47879_CR43 – volume: 120 start-page: 563 year: 1999 ident: 47879_CR74 publication-title: Oecologia doi: 10.1007/s004420050891 – volume: 2 start-page: 95 year: 1999 ident: 47879_CR61 publication-title: Appl. Veg. Sci. doi: 10.2307/1478886 – year: 2007 ident: 47879_CR13 publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2007JG000400 – volume: 28 start-page: 28 year: 2008 ident: 47879_CR31 publication-title: Wetlands doi: 10.1672/06-136.1 – volume: 21 start-page: 433 year: 2000 ident: 47879_CR9 publication-title: Phys. Geogr. doi: 10.1080/02723646.2000.10642719 – volume: 68 start-page: 279 year: 2014 ident: 47879_CR23 publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2014.03.051 – volume: 31 start-page: 121 year: 2014 ident: 47879_CR55 publication-title: Evansia doi: 10.1639/079.031.0402 – volume: 118 start-page: 123 year: 2015 ident: 47879_CR66 publication-title: Bryologist doi: 10.1639/0007-2745-118.2.123 – ident: 47879_CR60 – volume: 12 start-page: 5291 year: 2015 ident: 47879_CR12 publication-title: Biogeosciences doi: 10.5194/bg-12-5291-2015 – volume: 13 start-page: 74 year: 2005 ident: 47879_CR17 publication-title: Restor. Ecol. doi: 10.1111/j.1526-100X.2005.00009.x – volume: 153 start-page: 108077 year: 2021 ident: 47879_CR77 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.108077 – volume: 18 start-page: 7 year: 2004 ident: 47879_CR79 publication-title: Glob. Biogeochem. Cy. doi: 10.1029/2003gb002209 – start-page: 621 volume-title: Écologie des Tourbières du Québec-Labrador year: 2001 ident: 47879_CR52 doi: 10.1515/9782763712222 – volume: 18 start-page: 1 year: 2016 ident: 47879_CR35 publication-title: Mires Peat doi: 10.19189/MaP.2016.OMB.220 – volume: 674 start-page: 67 year: 2011 ident: 47879_CR86 publication-title: Hydrobiologia doi: 10.1007/s10750-011-0729-x – volume: 16 start-page: 1 year: 2002 ident: 47879_CR10 publication-title: Glob. Biogeochem. Cy. doi: 10.1029/2001GB001398 – volume: 37 start-page: 5 year: 2010 ident: 47879_CR2 publication-title: Geophys. Res. Lett. doi: 10.1029/2010gl043584 – ident: 47879_CR44 – volume: 10 start-page: 1 issue: 3 year: 2012 ident: 47879_CR80 publication-title: Mires Peat – volume: 64 start-page: 231 year: 2014 ident: 47879_CR47 publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2013.12.013 – volume: 17 start-page: 4797 year: 2020 ident: 47879_CR85 publication-title: Biogeosciences doi: 10.5194/bg-17-4797-2020 – volume: 11 start-page: 65 year: 2003 ident: 47879_CR14 publication-title: Wetl. Ecol. Manag. doi: 10.1023/a:1022046409485 – volume: 24 start-page: 5751 year: 2018 ident: 47879_CR24 publication-title: Glob. Change Biol. doi: 10.1111/gcb.14449 – year: 2010 ident: 47879_CR75 publication-title: J. Geophys. Res-Biogeo. doi: 10.1029/2009JG001090 – volume: 12 start-page: 5693 year: 2021 ident: 47879_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25619-y – volume: 82 start-page: 1292 year: 2004 ident: 47879_CR53 publication-title: Can. J. Bot. doi: 10.1139/b04-081 – volume: 410 start-page: 231 year: 2017 ident: 47879_CR84 publication-title: Plant Soil doi: 10.1007/s11104-016-2999-6 – volume: 220 start-page: 76 year: 2018 ident: 47879_CR72 publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2018.02.002 – volume: 28 start-page: 175 year: 1991 ident: 47879_CR51 publication-title: Ann. Bot. Fenn. – volume: 10 start-page: 1148 year: 2007 ident: 47879_CR78 publication-title: Ecosystems doi: 10.1007/s10021-007-9083-2 – volume-title: Mix-Effects Models in S and S-Plus year: 2000 ident: 47879_CR57 doi: 10.1007/978-1-4419-0318-1 – volume: 94 start-page: 1015 year: 2016 ident: 47879_CR67 publication-title: Botany doi: 10.1139/cjb-2015-0262 – volume: 14 start-page: 12430 year: 2019 ident: 47879_CR25 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab56e6 – volume: 125 start-page: 149 year: 2018 ident: 47879_CR30 publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2018.10.018 – volume: 7 start-page: 1092 year: 2015 ident: 47879_CR48 publication-title: GCB Bioenergy doi: 10.1111/gcbb.12214 – volume: 29 start-page: 956 year: 2020 ident: 47879_CR5 publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.13081 – volume: 17 start-page: 5285 year: 2020 ident: 47879_CR6 publication-title: Biogeosciences doi: 10.5194/bg-17-5285-2020 – volume: 11 start-page: 97 year: 2003 ident: 47879_CR19 publication-title: Wetl. Ecol. Manag. doi: 10.1023/a:1022069808489 – volume: 21 start-page: 363 year: 2013 ident: 47879_CR22 publication-title: Restor. Ecol. doi: 10.1111/j.1526-100X.2012.00889.x – volume-title: Canadian Peat Harvesting and the Environment year: 2001 ident: 47879_CR8 – volume: 53 start-page: 73 year: 2002 ident: 47879_CR16 publication-title: Suo – volume: 104 start-page: 27663 year: 1999 ident: 47879_CR88 publication-title: J. Geophys. Res. Atmos. doi: 10.1029/1999JD900136 – volume: 122 start-page: 241 year: 2018 ident: 47879_CR11 publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2018.06.021 – ident: 47879_CR45 – volume: 96 start-page: 779 year: 2018 ident: 47879_CR36 publication-title: Botany doi: 10.1139/cjb-2018-0109 – volume: 19 start-page: 1 issue: 9 year: 2017 ident: 47879_CR49 publication-title: Mires Peat – volume: 11 start-page: 3 year: 2003 ident: 47879_CR20 publication-title: Wetl. Ecol. Manag. doi: 10.1023/A:1022011027946 – volume: 31 start-page: e13714 year: 2023 ident: 47879_CR64 publication-title: Restor. Ecol. doi: 10.1111/rec.13714 – volume: 7 start-page: 161 year: 1996 ident: 47879_CR70 publication-title: Ecol. Eng. doi: 10.1016/0925-8574(96)00004-3 – volume: 34 start-page: 117 year: 2014 ident: 47879_CR71 publication-title: Wetlands doi: 10.1007/s13157-013-0490-1 – volume: 151 start-page: 19 year: 2018 ident: 47879_CR28 publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2018.07.006 – volume: 19 start-page: 402 year: 1987 ident: 47879_CR65 publication-title: Arctic Alpine Res. doi: 10.1080/00040851.1987.12002621 – volume: 90 start-page: 182 year: 2015 ident: 47879_CR41 publication-title: Biol. Rev. doi: 10.1111/brv.12102 – volume: 52 start-page: 587 year: 1995 ident: 47879_CR46 publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/f95-059 – start-page: 119 volume-title: Northern Peatlands year: 2012 ident: 47879_CR69 – volume: 19 start-page: 1325 year: 2013 ident: 47879_CR89 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12131 – ident: 47879_CR62 – volume: 37 start-page: 1859 year: 2011 ident: 47879_CR39 publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2011.06.007 – volume: 10 start-page: 718 year: 2007 ident: 47879_CR76 publication-title: Ecosystems doi: 10.1007/s10021-007-9046-7 – volume: 23 start-page: 13706 year: 2016 ident: 47879_CR26 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-5396-4 – year: 2003 ident: 47879_CR59 publication-title: Glob. Biogeochem. Cy. doi: 10.1029/2002GB001946 – volume: 13 start-page: 1079 year: 2007 ident: 47879_CR4 publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2007.01339.x – volume-title: Flore des Bryophytes du Québec-Labrador year: 2014 ident: 47879_CR54 – volume: 83 start-page: 539 year: 2005 ident: 47879_CR18 publication-title: Can. J. Bot. doi: 10.1139/b05-025 – ident: 47879_CR58 doi: 10.1007/978-981-10-0077-5_1 – start-page: 63 volume-title: Peatland Restoration and Ecosystem Services: Science, Policy and Practice Ecological Reviews year: 2016 ident: 47879_CR1 doi: 10.1017/CBO9781139177788.005 – ident: 47879_CR73 – volume: 8 start-page: 359 year: 2001 ident: 47879_CR32 publication-title: Écoscience doi: 10.1080/11956860.2001.11682664 – volume: 110 start-page: 62 year: 1983 ident: 47879_CR63 publication-title: Am. Midl. Nat. doi: 10.2307/2425214 – volume: 36 start-page: 482 year: 2010 ident: 47879_CR34 publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2009.11.017 – volume: 169 start-page: 106324 year: 2021 ident: 47879_CR82 publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2021.106324 – ident: 47879_CR42 – volume: 130 start-page: 11 year: 2019 ident: 47879_CR68 publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2019.01.023 – volume: 4 start-page: 17 year: 2020 ident: 47879_CR83 publication-title: Soil Syst. doi: 10.3390/soilsystems4010017 – volume: 28 start-page: 1584 year: 2020 ident: 47879_CR27 publication-title: Restor. Ecol. doi: 10.1111/rec.13246 |
SSID | ssj0000529419 |
Score | 2.421521 |
Snippet | The moss layer transfer technique has been developed to restore the carbon sequestration function and typical vegetation of
Sphagnum
-dominated peatlands after... The moss layer transfer technique has been developed to restore the carbon sequestration function and typical vegetation of Sphagnum-dominated peatlands after... Abstract The moss layer transfer technique has been developed to restore the carbon sequestration function and typical vegetation of Sphagnum-dominated... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20588 |
SubjectTerms | 704/158/854 704/47/4113 Aquatic ecosystems Aquatic plants Canada Carbon Dioxide Carbon sequestration Carbon sinks Ecosystem Emissions Fens Growing season Humanities and Social Sciences Manitoba Methane multidisciplinary Peat Peatlands Plants Propagules Recovery of function Science Science (multidisciplinary) Seasons Soil Vegetation Vegetation cover Vegetation establishment Vegetation surveys Water Water levels Water management Wetlands |
SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na90wDDejMNhlrPvM1g4PdltDYztO7ONaWsqgO4wVejO2I5exkT7ex8b7D_pnT7Lz3jr2ddkpkMiJbcmWFMk_Mfbaxqg1QQyZxjc1aghfe5NQlltQMeHqM7lM5_n77uyifXepL2-V-qKcsAIPXCbusLVN68GjIagAlU_waF9oiE3qQOk2Rdp9UefdcqYKqre0rbDTKZlGmcMF9oNOk0lVEx6Nrdc_aaIM2P87K_OXCGlWPKcP2P3JYuRvS0932R0YH7K7pYbk-hG7-QDfICcv808jmYALWPCvcDWlEfJIOZrcjwMfYcmv0OsmUvo1SA_9POBlNVv6z8DpPNmcJ6BGFMkmieS5iDif4ZZd4z4-L-cg8FP8fALOOOAZ4cA_ZhenJx-Pz-qpvEIdW6OxkbAxQW-S1h76Lgy97CyoIUAjI4QYjO30gCYYmKCESk3ovYigB1T6qPqEesJ2xusRnjE-dDbFGAYTIrlQxsTUic6YEHA7GKSpmNhMtYsT9jiVwPjicgxcGVfY45A9LrPHrSv2ZttmVpA3_kp9RBzcUhJqdr6BsuQmWXL_kqWK7W3476alvHDokUqDTrJsK_Zq-xgXIUVW_AjXq0yDnn4rpKzY0yI3256oHl1K3YuKHWwE6cfL_zyg5_9jQC_YPUkSL0Qt1R7bWc5XsI9G1DK8zOvlO-wPGJE priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYJvXrkmadr0SVQ8DuF8EA_2LSTpdBGlu7a7d-x_4J_tTJrtIeo9Fdqkze58Zya_Yex1E4LWBDFkClfkaCFc7kyHvFyCCh1Kn4ltOs8-V6fn5aeFXqQNtzGVVe51YlTU7SrQHvkxBgbSYKwiy7frnzl1jaLsamqhcZPdIugyKumqF_W8x0JZrFI06axMoczxiKuhM2VS5YRK0-S7P-xRhO3_l6_5V540mp-Te-xu8hv5u4nQ99kN6B-w21Mnyd1D9usLXEIsYebfenIERxj5BSxTMSEPVKnJXd_yHjZ8ibE3DaUNQnroBo-X7XrjvgOnU2UD74AmUT6b-JLHVuJ8jYo7R20-TKch8FP8LMFnHPGIc-AesfOTj18_nOapyUIeSqNxkmhCB7XptHZQV76tZdWAaj0UMoAP3jSVbtERA-OVUF3haycC6BZNPxpAoR6zg37Vw1PG26rpQvCt8YECKWNCV4nKGO9RKbTSZEzs_2obEgI5NcL4YWMmXBk7kccieWwkj91l7M08Zz3hb1w7-j1RcB5J2NnxxmpY2iSKtmyK0oHD0EIBujPeoceqIRRdBUqXXcjY4Z7-Ngn0aK_YL2Ov5scoipRfcT2stnEMxvulkDJjTya-mVeiagwsdS0ydrRnpKuX__8HPbt-Lc_ZHUm8LEQu1SE72AxbeIFO0sa_jJLwG0nRD_w priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCL-H29OyWCb16xSZo2fdTF4xDOB_Hg3kKSThZRukt3V9n_wD_bmfRDxFPwqdBO2rQzycx0Zn7D2MsmBK0JYsgUrshRQ7jcmYiyXIIKEVefSW06Lz9UF1fl-2t9fcDkVAuTkvYTpGXapqfssNcbvA0Vg0mVE5xMk-9vsdsE3U5SvagW838VilyVohnrYwplbhj6mw5KUP032Zd_xEaTyjm_z-6NtiJ_M8zuATuA7iG7M3SP3D9iPz7Cd0hpy_xzR8bfBjb8GyzHBEIeKDuTu67lHWz5Ev1tIqWfgnTR9R4Pu_XWfQFOlWQ9j0CDKIZNsshT-3C-xs06xx28Hyog8FH8coTMOOMJ28A9Zlfn7z4tLvKxsUIeSqNxkGhChNpErR3UlW9rWTWgWg-FDOCDN02lWzS-wHglVCx87UQA3aK6R6Un1BN22K06OGK8rZoYgm-ND-Q8GRNiJSpjvMeNoJUmY2L61DaMqOPU_OKrTdFvZezAHovssYk9dp-xV_OY9YC58U_qt8TBmZLwstOJVb-0o_zYsilKBw7dCQVowniHVqqGUMQKlC5jyNjpxH87LuKNRV9UGnSPZZmxF_NlXH4UU3EdrHaJBn38UkiZsaeD3MwzUTU6k7oWGTubBOnXzf_-Qsf_R37C7kqSbSFyqU7Z4bbfwTM0lLb-eVoZPwHnVw5y priority: 102 providerName: Springer Nature |
Title | Rewetting increases vegetation cover and net growing season carbon uptake under fen conditions after peat-extraction in Manitoba, Canada |
URI | https://link.springer.com/article/10.1038/s41598-023-47879-y https://www.ncbi.nlm.nih.gov/pubmed/37996571 https://www.proquest.com/docview/2892810724 https://www.proquest.com/docview/2893834122 https://doaj.org/article/4904aea8823e406ba5755ec0f6e354fc |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7tQ0hcEG8CS2UkbmwgsePEOSDUrXa1qtQVWqjUW2Q7kwqxSkvaAv0H_GzGTlKEKIhTpMSOW8-M55vY8w3Ay9xaKR3FkIp0FJKH0KFWFelygsJWZH3Kl-mcXKWX02Q8k7MD6MsddRO42hvauXpS0-bm9fcv23dk8G_blHH1ZkVDuEQxLkJHNZOH20M4Js-UOUOddHC_5frmeeJrfTgS9pDABO_yaPa_5jdf5Sn99-HQP_ZQvWu6uAt3OkzJhq0S3IMDrO_DrbbK5PYB_LjGb-iPN7NPtQOJK1yxrzjvDhoy605xMl2XrMY1m1Nc7pq6j4fuoW4MXTbLtf6MzGWcNaxC18ntdTudZb7MOFvSoh7SSt-0mRI0FJt01BqnzHMg6IcwvTj_OLoMuwIMoU2UpE5xbivMVCWlxiw1ZcbTHEVpMOIWjTUqT2VJIA2VEbGoIpPp2KIsafLJOcbiERzVixqfACvTvLLWlMpYF2QpZas0TpUyhhaMkqsA4n6qC9uxk7siGTeF3yUXqmjFU5B4Ci-eYhvAq12fZcvN8c_WZ06Cu5aOV9vfWDTzojPTIsmjRKOmsEMgQR2jCc1KtFGVopBJZQM46eVf9LpaUMzKFYXRPAngxe4xmanbe9E1Lja-jVCEGDgP4HGrN7tfIjIKOmUWB3DaK9Kvl__9Dz39j8GewW3uFDqOSdtP4GjdbPA5oai1GcBhNssGcDwcjj-M6Xp2fvX-mu6O0tHAf5kYeOP5CVGKHTY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbIbgg3gQKGAlONGpix4lzQIhCqy3trlDVSr0Z25msECi7ZHep9g_4Gr6RmTy2QkBvPUWKH7Ezb49nhrGXufdKUYohHdkoRAlhQ6tLxOUEpC-R-nRTpnM0ToenycczdbbBfvWxMHStsueJDaMupp7OyHfQMBAabRWRvJ19D6lqFHlX-xIaLVocwuocTbb5m4MPCN9XQuzvnbwfhl1VgdAnWi1CiHNfQqZLpSxkqSsykeYgCweR8OC803mqCtQ8QDsZyzJymY09qAJlHXL8WOK819hmItGUGbDN3b3xp-P1qQ75zZI476JzIql35rh_imITMqQ8OHm4-kMCNoUC_qXd_uWZbQTe_m12q9NU-bsWte6wDajusutt7crVPfbzGM6huTTNv1Skes5hzn_ApLu-yD3dDeW2KngFCz5Ba5-60pEkNdra4WM5W9ivwCmOreYl0CDyoBMl8KZ4OZ-hqAhRftRt_AV-io-6hB3bvMmsYO-z0ysBwAM2qKYVPGK8SPPSe1do58l009qXaZxq7RyyoULogMX9rza-y3lOpTe-mcb3LrVpwWMQPKYBj1kF7PV6zKzN-HFp712C4LonZetuXkzriemI3yR5lFiwaMxIQAXKWdSRFfioTEGqpPQB2-rhbzoWMjcXCB-wF-tmJH7y6NgKpsumj9SohwgRsIct3qxXIjM0ZVUWB2y7R6SLyf-_oceXr-U5uzE8GR2Zo4Px4RN2UxBex3Eo5BYbLOolPEUVbeGedXTB2eerJsXftkhPLw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFIC6IN4ECRoITjTax48Q5IASUVUtphRCV9pbazniFWmWXfVDtH_BNfB0zTrIVAnrrKVLsOInn7Xkx9qJ0TikqMaQTk8QoIUxstEdczkA6j9SnQ5vOg8N89yj7OFKjDfarz4WhsMqeJwZGXU8cnZEP0DAQGm0VkQ18FxbxeWf4Zvo9pg5S5Gnt22m0KLIPqzM03-av93YQ1i-FGH74-n437joMxC7TahFDWjoPhfZKGShyWxciL0HWFhLhwDqry1zVqIWAtjKVPrGFSR2oGuUecv9U4rpX2NVCqpRorBgV6_Md8qBladnl6SRSD-a4E5TPJmRMFXHKePWHLAwtA_6l5_7low2ib3iL3ex0Vv62RbLbbAOaO-xa28VydZf9_AJnEMKn-beGlNA5zPkPGHeBjNxRlCg3Tc0bWPAx2v00lQ4nadDMLF6W04U5AU4ZbTPugR4iXzrRBA9tzPkUhUaM4Ji1mRj4Kn7Qle7Y5qHGgrnHji5l---zzWbSwEPG67z0ztlaW0dGnNbO52mutbXIkGqhI5b2W125rvo5NeE4rYIXXuqqBU-F4KkCeKpVxF6tn5m2tT8unP2OILieSXW7w43JbFx1bKDKyiQzYNCskYCqlDWoLStwic9Bqsy7iG318K86ZjKvzlE_Ys_Xw8gGyLdjGpgswxypUSMRImIPWrxZf4ks0KhVRRqx7R6Rzhf__w89uvhbnrHrSIDVp73D_cfshiC0TtNYyC22uZgt4Qnqagv7NBAFZ8eXTYW_AYojUf8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rewetting+increases+vegetation+cover+and+net+growing+season+carbon+uptake+under+fen+conditions+after+peat-extraction+in+Manitoba%2C+Canada&rft.jtitle=Scientific+reports&rft.au=Turmel-Courchesne%2C+Laurence&rft.au=Davies%2C+Marissa+A&rft.au=Gu%C3%AAn%C3%A9-Nanchen%2C+M%C3%A9lina&rft.au=Strack%2C+Maria&rft.date=2023-11-23&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=20588&rft_id=info:doi/10.1038%2Fs41598-023-47879-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |