Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification
Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and fun...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 2924 - 15 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.04.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic
Bradyrhizobium
isolates. Peanut plant root metabolites interact with
Bradyrhizobium
isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions.
Sustainability in agriculture can be improved harnessing biological N
2
fixation in legumes. Here, the authors combine different crops with peanut plants finding that maize and oilseed rape are the most successful combinations which have potential to enhance rhizosphere microbiota N
2
fixation. |
---|---|
AbstractList | Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic
Bradyrhizobium
isolates. Peanut plant root metabolites interact with
Bradyrhizobium
isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions.
Sustainability in agriculture can be improved harnessing biological N
2
fixation in legumes. Here, the authors combine different crops with peanut plants finding that maize and oilseed rape are the most successful combinations which have potential to enhance rhizosphere microbiota N
2
fixation. Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions. Abstract Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions. Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions.Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions. Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions.Sustainability in agriculture can be improved harnessing biological N2 fixation in legumes. Here, the authors combine different crops with peanut plants finding that maize and oilseed rape are the most successful combinations which have potential to enhance rhizosphere microbiota N2 fixation. Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions. |
ArticleNumber | 2924 |
Author | Bonkowski, Michael Wang, Ertao Zhou, Jizhong Sun, Bo Dumack, Kenneth Dai, Chuanchao Xie, Xingguang Qiao, Mengjie Sun, Ruibo Wang, Zixuan Chen, Yan Peng, Xinhua |
Author_xml | – sequence: 1 givenname: Mengjie orcidid: 0000-0003-3638-2402 surname: Qiao fullname: Qiao, Mengjie organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Ruibo surname: Sun fullname: Sun, Ruibo organization: Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, College of Resources and Environment, Anhui Agricultural University – sequence: 3 givenname: Zixuan surname: Wang fullname: Wang, Zixuan organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, College of Land Resource and Environment, Jiangxi Agricultural University – sequence: 4 givenname: Kenneth orcidid: 0000-0001-8798-0483 surname: Dumack fullname: Dumack, Kenneth organization: Terrestrial Ecology, Institute of Zoology, University of Cologne – sequence: 5 givenname: Xingguang surname: Xie fullname: Xie, Xingguang organization: National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences – sequence: 6 givenname: Chuanchao orcidid: 0000-0002-0980-0018 surname: Dai fullname: Dai, Chuanchao organization: College of Life Sciences, Nanjing Normal University – sequence: 7 givenname: Ertao orcidid: 0000-0002-5178-3530 surname: Wang fullname: Wang, Ertao organization: National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences – sequence: 8 givenname: Jizhong orcidid: 0000-0003-2014-0564 surname: Zhou fullname: Zhou, Jizhong organization: Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma – sequence: 9 givenname: Bo orcidid: 0000-0002-4514-787X surname: Sun fullname: Sun, Bo organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences – sequence: 10 givenname: Xinhua surname: Peng fullname: Peng, Xinhua organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences – sequence: 11 givenname: Michael orcidid: 0000-0003-2656-1183 surname: Bonkowski fullname: Bonkowski, Michael organization: Terrestrial Ecology, Institute of Zoology, University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne – sequence: 12 givenname: Yan orcidid: 0000-0001-8354-940X surname: Chen fullname: Chen, Yan email: chenyan@issas.ac.cn organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38575565$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS3UipbSP8ACRWLDJtSvJM4SVTwqjdRNWVt-XA8eJfZgJ2jaX48nKQV1UW_8-s719Tlv0EmIARB6R_Angpm4ypzwtqsx5TXvSNPXh1fonGJOatJRdvLf-gxd5rzDZbCeCM5fozMmmq5p2uYcyQ1s5xGq9NM_RAv7mP3kY6j2KY5xglwFP6W4hVA5f1DLlb6vcvRDNXqTovZxUtUcLKSqbPeV9b8hZe-8Wei36NSpIcPl43yBfnz9cnf9vd7cfru5_rypDRfNVFvbMGIwI063GgwWuu1BufIvI6jquWXOYUu1Y0BZh4V1mlmNu9Z1nWEa2AW6WevaqHZyn_yo0r2MysvlIKatVGnyZgAplO0Jp8YZAVwQ1StlydHNtjNGkKbU-rjWKib8miFPcvTZwDCoAHHOkmHGKW9KDAX98AzdxTmF8tMjRUXLaNsX6v0jNesR7FN7f2MoAF2BYmHOCdwTQrA8xi3XuGWJWy5xy0MRiWci46fF9CkpP7wsZas0l3fCFtK_tl9Q_QHdFMDA |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2025_106013 crossref_primary_10_1016_j_still_2025_106502 crossref_primary_10_1016_j_scitotenv_2024_176051 crossref_primary_10_1021_acs_jafc_4c05009 crossref_primary_10_1016_j_scienta_2024_113904 crossref_primary_10_1016_j_scitotenv_2024_176307 crossref_primary_10_3390_microorganisms13030471 crossref_primary_10_1016_j_scitotenv_2024_176148 crossref_primary_10_1093_ismeco_ycae157 crossref_primary_10_1016_j_agee_2024_109360 crossref_primary_10_3390_agronomy14071410 crossref_primary_10_3390_agronomy14112529 crossref_primary_10_1016_j_jhazmat_2025_137323 crossref_primary_10_1186_s12866_025_03761_7 crossref_primary_10_1016_j_scitotenv_2024_177592 crossref_primary_10_1360_SSV_2024_0014 crossref_primary_10_3390_agronomy14092111 crossref_primary_10_3390_agronomy15020355 crossref_primary_10_1186_s12870_024_05999_1 crossref_primary_10_1007_s11104_025_07214_y crossref_primary_10_1007_s11104_024_07102_x crossref_primary_10_1016_j_plantsci_2025_112431 crossref_primary_10_1016_j_jece_2024_114283 crossref_primary_10_1016_j_scitotenv_2024_174858 crossref_primary_10_3389_fmicb_2025_1531875 |
Cites_doi | 10.1016/j.mib.2019.10.003 10.1111/ele.13497 10.1126/science.aau6389 10.1071/FP19007 10.1111/nph.13312 10.3390/molecules26175377 10.1038/s41396-017-0035-3 10.1038/s41467-019-12999-5 10.1093/bioinformatics/btu638 10.1038/s41477-018-0261-3 10.1007/s11104-016-2823-3 10.1007/s11306-020-01725-8 10.1111/tpj.12288 10.1186/s40168-022-01420-x 10.1126/science.abg5945 10.1111/nph.18192 10.1105/tpc.106.048264 10.1002/jms.4270 10.1104/pp.112.4.1437 10.1146/annurev.arplant.57.032905.105159 10.1016/j.geoderma.2010.07.012 10.1111/j.1574-6941.2005.00037.x 10.1126/science.1111025 10.1073/pnas.0910081107 10.1111/pce.13999 10.1128/JB.00003-15 10.1073/pnas.1912130117 10.1111/1365-2745.12789 10.1126/science.aba0196 10.1016/j.micres.2017.01.005 10.1104/pp.15.01831 10.1038/s41588-017-0012-9 10.1093/plcell/koac039 10.1016/j.tplants.2020.09.008 10.1016/j.soilbio.2022.108654 10.3389/fpls.2022.830666 10.1038/s41477-023-01524-8 10.1126/science.aam9970 10.1038/nmeth.3317 10.1038/nbt.1621 10.1038/nmeth.3869 10.1016/j.tplants.2015.06.007 10.1016/j.tplants.2004.09.005 10.1093/mp/sst080 10.1111/nph.18644 10.1890/0012-9658(2003)084[0838:CITRAT]2.0.CO;2 10.1038/s41564-018-0129-3 10.1016/j.tplants.2022.02.004 10.1039/C7CS00343A 10.1038/s41396-019-0469-x 10.1038/s41893-021-00767-7 10.3389/fmicb.2021.619499 10.1111/ele.13755 10.1016/j.tplants.2021.07.014 10.1016/j.tplants.2016.01.008 10.1186/s13321-016-0174-y 10.1016/j.tplants.2016.01.005 10.1038/s41467-018-06429-1 10.1038/s41467-022-32464-0 10.1039/C7NP00062F 10.1186/s40168-019-0775-6 10.1104/pp.17.01542 10.1073/pnas.1722335115 10.1128/AEM.00062-07 10.1038/nature00842 10.1111/gcb.12318 10.1038/nrmicro2990 10.14806/ej.17.1.200 10.1021/bi300826m 10.1111/j.1365-313X.2010.04415.x 10.1016/j.molp.2023.03.009 10.1073/pnas.2111321118 10.1073/pnas.1523580113 10.1046/j.1365-2672.2002.01768.x 10.1093/bioinformatics/btu170 10.1186/s40168-020-00878-x 10.1038/ncomms12636 10.1038/s41559-018-0623-2 10.1111/jipb.13207 10.1111/pce.13117 10.2136/sssaj1958.03615995002200030025x 10.3390/molecules191016240 10.1111/insr.12011_21 10.2134/agronmonogr9.2.2ed.c24 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. corrected publication 2024 2024. The Author(s). The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024. corrected publication 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-024-47159-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_8ad9142cfc8e481a9aad1414667cc815 38575565 10_1038_s41467_024_47159_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 41977098 funderid: https://doi.org/10.13039/501100001809 – fundername: National Key R&D Program 2022YFD1900600 Science Foundation of the Chinese Academy of Sciences ISSASIP2211 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 41977098 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-dd531c031fb6bec08b69eaf159c82a94d3ff0d2bf3e23708dfb3db076f77c3be3 |
IEDL.DBID | C6C |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:56 EDT 2025 Tue Aug 05 10:48:12 EDT 2025 Wed Aug 13 04:34:06 EDT 2025 Mon Jul 21 06:04:25 EDT 2025 Tue Jul 01 02:11:04 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Fri Feb 21 02:40:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-dd531c031fb6bec08b69eaf159c82a94d3ff0d2bf3e23708dfb3db076f77c3be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3638-2402 0000-0002-5178-3530 0000-0002-4514-787X 0000-0003-2014-0564 0000-0001-8354-940X 0000-0003-2656-1183 0000-0001-8798-0483 0000-0002-0980-0018 |
OpenAccessLink | https://www.nature.com/articles/s41467-024-47159-x |
PMID | 38575565 |
PQID | 3032863269 |
PQPubID | 546298 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8ad9142cfc8e481a9aad1414667cc815 proquest_miscellaneous_3034245103 proquest_journals_3032863269 pubmed_primary_38575565 crossref_primary_10_1038_s41467_024_47159_x crossref_citationtrail_10_1038_s41467_024_47159_x springer_journals_10_1038_s41467_024_47159_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-04 |
PublicationDateYYYYMMDD | 2024-04-04 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Chen (CR17) 2020; 8 Trapnell (CR70) 2010; 28 Bais, Weir, Perry, Gilroy, Vivanco (CR9) 2019; 13 Gao, Liu, Wang, Li, Han (CR43) 2019; 46 Sharma (CR44) 2016; 171 Haney, Long (CR86) 2010; 107 Dias, Pinto, Silva (CR37) 2021; 26 Li (CR36) 2021; 4 Isbell (CR52) 2017; 105 Chagas, Pessotti, Caraballo-Rodríguez, Pupo (CR1) 2018; 47 Anders, Pyl, Huber (CR71) 2015; 31 CR31 CR72 Liu (CR73) 2023; 9 Gantner (CR40) 2006; 56 Callahan (CR60) 2016; 13 van Dam, Bouwmeester (CR12) 2016; 21 Bhatia, Dogra, Sharma (CR66) 2002; 93 Goormachtig, Capoen, Holsters (CR30) 2004; 9 Furey, Tilman (CR35) 2021; 118 Venturi, Keel (CR10) 2016; 21 Murray (CR80) 2011; 65 Zhalnina (CR11) 2018; 3 Peng, Dreyer, VandenBosch, Cook (CR85) 1996; 112 Bonkowski (CR2) 2021; 12 Feunang (CR29) 2016; 8 Middleton (CR83) 2007; 19 Li (CR21) 2016; 113 Wang, Dong, Murray, Wang (CR32) 2022; 34 CR89 Delory (CR19) 2021; 44 Zhou (CR22) 2023; 16 CR42 Martin (CR59) 2011; 17 Smit (CR81) 2005; 308 Vandenkoornhuyse, Quaiser, Duhamel, Le Van, Dufresne (CR49) 2015; 206 Wang, Garrity, Tiedje, Cole (CR61) 2007; 73 Cocconi, Franceschini, Previdi (CR62) 2018; 53 Wang (CR48) 2022; 10 Lin (CR79) 2018; 4 Stringlis (CR47) 2018; 115 Tang (CR88) 2017; 198 Cook (CR84) 1995; 7 Denison (CR24) 2003; 84 Brooker (CR45) 2022; 27 Schulz-Bohm (CR41) 2018; 12 Fonouni-Farde (CR82) 2016; 7 Zhao (CR23) 2022; 13 Petipas, Geber, Lau (CR50) 2021; 24 Bolger, Lohse, Usadel (CR68) 2014; 30 Routray, Miller, Du, Oldroyd, Poovaiah (CR76) 2013; 76 Stringlis, Zhang, Pieterse, Bolton, de Jonge (CR4) 2018; 5 CR56 CR55 Chiewattanakul (CR57) 2022; 169 CR54 Swainsbury, Zhou, Oldroyd, Bornemann (CR77) 2012; 51 Heinen (CR18) 2020; 23 CR53 Korenblum (CR27) 2020; 117 Duan (CR58) 2020; 8 Jiang (CR13) 2017; 356 CR51 CR92 CR91 CR90 Levy (CR5) 2018; 50 Oldroyd, Leyser (CR7) 2020; 368 Rolfe, Griffiths, Ton (CR14) 2019; 49 Bais, Weir, Perry, Gilroy, Vivanco (CR8) 2006; 57 Endre (CR75) 2002; 417 Chen (CR63) 2013; 6 Yu, Lambers, Callaway, Wright, Li (CR34) 2021; 26 Schöb, Brooker, Zuppinger-Dingley (CR33) 2018; 2 Zheng (CR67) 2015; 197 Jiang (CR78) 2021; 374 Schaeffer, Sharp, Schimel, Welker (CR26) 2013; 19 Zhang (CR46) 2022; 235 Huang (CR3) 2019; 364 Oldroyd (CR6) 2013; 11 Muelas (CR28) 2020; 16 Chen (CR64) 2022; 13 Riaz, Mian, Cresser (CR25) 2010; 159 Zhao (CR39) 2015; 20 Pan, Stonoha-Arther, Wang (CR74) 2018; 177 Li, Li, Lou, Meiners, Kong (CR20) 2022; 238 Stassen, Hsu, Pieterse, Stringlis (CR38) 2021; 26 Kong (CR16) 2018; 9 Feng (CR87) 2019; 10 Zhang (CR65) 2018; 41 Kim, Landmead, Salzberg (CR69) 2015; 12 Delory, Delaplace, Fauconnier, du Jardin (CR15) 2016; 402 LX Wang (47159_CR48) 2022; 10 D Cook (47159_CR84) 1995; 7 Q Wang (47159_CR61) 2007; 73 V Venturi (47159_CR10) 2016; 21 MW Muelas (47159_CR28) 2020; 16 M Chiewattanakul (47159_CR57) 2022; 169 W Zhang (47159_CR65) 2018; 41 YD Feunang (47159_CR29) 2016; 8 GED Oldroyd (47159_CR7) 2020; 368 E Korenblum (47159_CR27) 2020; 117 YN Jiang (47159_CR13) 2017; 356 Y Chen (47159_CR17) 2020; 8 PH Middleton (47159_CR83) 2007; 19 BJ Callahan (47159_CR60) 2016; 13 JS Lin (47159_CR79) 2018; 4 F Isbell (47159_CR52) 2017; 105 NM van Dam (47159_CR12) 2016; 21 47159_CR42 S Gantner (47159_CR40) 2006; 56 47159_CR89 C Trapnell (47159_CR70) 2010; 28 JD Murray (47159_CR80) 2011; 65 GED Oldroyd (47159_CR6) 2013; 11 SM Schaeffer (47159_CR26) 2013; 19 RH Petipas (47159_CR50) 2021; 24 P Routray (47159_CR76) 2013; 76 HR Pan (47159_CR74) 2018; 177 F Feng (47159_CR87) 2019; 10 RP Yu (47159_CR34) 2021; 26 HM Zheng (47159_CR67) 2015; 197 HM Peng (47159_CR85) 1996; 112 CH Haney (47159_CR86) 2010; 107 B Li (47159_CR21) 2016; 113 47159_CR90 IA Stringlis (47159_CR4) 2018; 5 XG Zhou (47159_CR22) 2023; 16 47159_CR92 47159_CR91 R Brooker (47159_CR45) 2022; 27 P Smit (47159_CR81) 2005; 308 47159_CR51 47159_CR54 C Schöb (47159_CR33) 2018; 2 MJJ Stassen (47159_CR38) 2021; 26 47159_CR53 47159_CR56 47159_CR55 W Zhang (47159_CR46) 2022; 235 M Bonkowski (47159_CR2) 2021; 12 AM Bolger (47159_CR68) 2014; 30 CH Kong (47159_CR16) 2018; 9 XZ Duan (47159_CR58) 2020; 8 S Goormachtig (47159_CR30) 2004; 9 C Fonouni-Farde (47159_CR82) 2016; 7 R Bhatia (47159_CR66) 2002; 93 GR Tang (47159_CR88) 2017; 198 P Vandenkoornhuyse (47159_CR49) 2015; 206 R Heinen (47159_CR18) 2020; 23 HP Bais (47159_CR9) 2019; 13 P Chen (47159_CR64) 2022; 13 W Chen (47159_CR63) 2013; 6 BM Delory (47159_CR19) 2021; 44 M Riaz (47159_CR25) 2010; 159 LM Gao (47159_CR43) 2019; 46 IA Stringlis (47159_CR47) 2018; 115 E Cocconi (47159_CR62) 2018; 53 D Sharma (47159_CR44) 2016; 171 RF Denison (47159_CR24) 2003; 84 J Zhao (47159_CR23) 2022; 13 G Endre (47159_CR75) 2002; 417 XF Li (47159_CR36) 2021; 4 DJK Swainsbury (47159_CR77) 2012; 51 SA Rolfe (47159_CR14) 2019; 49 S Anders (47159_CR71) 2015; 31 ACC Huang (47159_CR3) 2019; 364 SY Jiang (47159_CR78) 2021; 374 J Zhao (47159_CR39) 2015; 20 K Zhalnina (47159_CR11) 2018; 3 LL Li (47159_CR20) 2022; 238 D Kim (47159_CR69) 2015; 12 HP Bais (47159_CR8) 2006; 57 DP Wang (47159_CR32) 2022; 34 K Schulz-Bohm (47159_CR41) 2018; 12 47159_CR72 BM Delory (47159_CR15) 2016; 402 MC Dias (47159_CR37) 2021; 26 M Martin (47159_CR59) 2011; 17 ZJ Liu (47159_CR73) 2023; 9 47159_CR31 A Levy (47159_CR5) 2018; 50 FO Chagas (47159_CR1) 2018; 47 GN Furey (47159_CR35) 2021; 118 38671042 - Nat Commun. 2024 Apr 26;15(1):3535 |
References_xml | – volume: 49 start-page: 73 year: 2019 end-page: 82 ident: CR14 article-title: Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2019.10.003 – volume: 23 start-page: 973 year: 2020 end-page: 982 ident: CR18 article-title: Plant community composition steers grassland vegetation via soil legacy effect publication-title: Ecol. Lett. doi: 10.1111/ele.13497 – volume: 364 start-page: 546 year: 2019 ident: CR3 article-title: A specialized metabolic network selectively modulates Arabidopsis root microbiota publication-title: Science doi: 10.1126/science.aau6389 – volume: 46 start-page: 896 year: 2019 end-page: 906 ident: CR43 article-title: Lower levels of UV-B light trigger the adaptive responses by inducing plant antioxidant metabolism and flavonoid biosynthesis in Medicago sativa seedlings publication-title: Funct. Plant Biol. doi: 10.1071/FP19007 – volume: 206 start-page: 1196 year: 2015 end-page: 1206 ident: CR49 article-title: The importance of the microbiome of the plant holobiont publication-title: New Phytol doi: 10.1111/nph.13312 – volume: 26 start-page: 5377 year: 2021 ident: CR37 article-title: Plant Flavonoids: Chemical Characteristics and Biological Activity publication-title: Molecules doi: 10.3390/molecules26175377 – volume: 12 start-page: 1252 year: 2018 end-page: 1262 ident: CR41 article-title: Calling from distance: attraction of soil bacteria by plant root volatiles publication-title: ISME J doi: 10.1038/s41396-017-0035-3 – ident: CR51 – volume: 10 start-page: 1 year: 2019 end-page: 12 ident: CR87 article-title: A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in publication-title: Nat. Commun. doi: 10.1038/s41467-019-12999-5 – volume: 31 start-page: 166 year: 2015 end-page: 169 ident: CR71 article-title: HTSeq—a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 4 start-page: 942 year: 2018 end-page: 952 ident: CR79 article-title: NIN interacts with NLPs to mediate nitrate inhibition of nodulation in publication-title: Nat. Plants doi: 10.1038/s41477-018-0261-3 – volume: 402 start-page: 1 year: 2016 end-page: 26 ident: CR15 article-title: Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions? publication-title: Plant Soil doi: 10.1007/s11104-016-2823-3 – volume: 16 year: 2020 ident: CR28 article-title: An untargeted metabolomics strategy to measure differences in metabolite uptake and excretion by mammalian cell lines publication-title: Metabolomics doi: 10.1007/s11306-020-01725-8 – volume: 76 start-page: 287 year: 2013 end-page: 296 ident: CR76 article-title: Phosphorylation of S344 in the calmodulin-binding domain negatively affects function during bacterial and fungal symbioses publication-title: Plant J doi: 10.1111/tpj.12288 – ident: CR54 – volume: 10 year: 2022 ident: CR48 article-title: Multifaceted roles of flavonoids mediating plant-microbe interactions publication-title: Microbiome doi: 10.1186/s40168-022-01420-x – volume: 374 start-page: 625 year: 2021 end-page: 628 ident: CR78 article-title: -like protein transcription factors regulate leghemoglobin genes in legume nodules publication-title: Science doi: 10.1126/science.abg5945 – ident: CR42 – volume: 235 start-page: 1212 year: 2022 end-page: 1230 ident: CR46 article-title: Priming of rhizobial nodulation signaling in the mycosphere accelerates nodulation of legume hosts publication-title: New Phytol doi: 10.1111/nph.18192 – volume: 19 start-page: 1221 year: 2007 end-page: 1234 ident: CR83 article-title: An ERF transcription factor in that is essential for Nod factor signal transduction publication-title: Plant Cell doi: 10.1105/tpc.106.048264 – volume: 53 start-page: 903 year: 2018 end-page: 910 ident: CR62 article-title: Identification of spoilage by Alicyclobacillus bacteria in tomato-based products by UHPLC-MS/MS publication-title: J. Mass Spectrom. doi: 10.1002/jms.4270 – volume: 112 start-page: 1437 year: 1996 end-page: 1446 ident: CR85 article-title: Gene structure and differential regulation of the rhizobium-induced peroxidase Gene rip1 publication-title: Plant Physiol doi: 10.1104/pp.112.4.1437 – volume: 57 start-page: 233 year: 2006 end-page: 266 ident: CR8 article-title: The role of root exudates in rhizosphere interactions with plants and other organism publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105159 – volume: 41 start-page: 2093 year: 2018 end-page: 2108 ident: CR65 article-title: Auxin signalling of Arachis hypogaea activated by colonization of mutualistic fungus enhances nodulation and N -fixation publication-title: Plant Cell Environ. – volume: 159 start-page: 198 year: 2010 end-page: 208 ident: CR25 article-title: Litter effects on ammonium dynamics in an acid soil under grassland publication-title: Geoderma doi: 10.1016/j.geoderma.2010.07.012 – volume: 56 start-page: 188 year: 2006 end-page: 194 ident: CR40 article-title: Quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots publication-title: FEMs Microbiol. Ecol. doi: 10.1111/j.1574-6941.2005.00037.x – volume: 308 start-page: 1789 year: 2005 end-page: 1791 ident: CR81 article-title: NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription publication-title: Science doi: 10.1126/science.1111025 – volume: 107 start-page: 478 year: 2010 end-page: 483 ident: CR86 article-title: Plant flotillins are required for infection by nitrogen-fixing bacteria publication-title: Proc. Natl Acad. Sci. USA. doi: 10.1073/pnas.0910081107 – ident: CR92 – volume: 44 start-page: 1215 year: 2021 end-page: 1230 ident: CR19 article-title: Soil chemical legacies trigger species-specific and context-dependent root responses in later arriving plants publication-title: Plant Cell Environ doi: 10.1111/pce.13999 – volume: 197 start-page: 1573 year: 2015 end-page: 1581 ident: CR67 article-title: The quorum sensing regulator hierarchically regulates two other quorum sensing pathways in ligand-dependent and -independent fashions in publication-title: J. Bacteriol. doi: 10.1128/JB.00003-15 – volume: 117 start-page: 3874 year: 2020 end-page: 3883 ident: CR27 article-title: Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signalling publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1912130117 – volume: 105 start-page: 871 year: 2017 end-page: 879 ident: CR52 article-title: Benefits of increasing plant diversity in sustainable agroecosystems publication-title: J. Ecol. doi: 10.1111/1365-2745.12789 – volume: 368 start-page: eaba0196 year: 2020 ident: CR7 article-title: A plant’s diet, surviving in a variable nutrient environment publication-title: Science doi: 10.1126/science.aba0196 – volume: 198 start-page: 1 year: 2017 end-page: 7 ident: CR88 article-title: Two-component regulatory system ActS/ActR is required for adaptation to oxidative stress publication-title: Microbiol. Res. doi: 10.1016/j.micres.2017.01.005 – volume: 171 start-page: 944 year: 2016 end-page: 959 ident: CR44 article-title: MicroRNA858 is a potential regulator of phenylpropanoid pathway and plant development publication-title: Plant Physiol doi: 10.1104/pp.15.01831 – volume: 50 start-page: 138 year: 2018 end-page: 150 ident: CR5 article-title: Genomic features of bacterial adaptation to plants publication-title: Nat. Genet. doi: 10.1038/s41588-017-0012-9 – volume: 34 start-page: 1573 year: 2022 end-page: 1599 ident: CR32 article-title: Innovation and appropriation in mycorrhizal and rhizobial symbiosis publication-title: Plant Cell doi: 10.1093/plcell/koac039 – volume: 26 start-page: 169 year: 2021 end-page: 182 ident: CR38 article-title: Coumarin communication along the microbiome-root-shoot axis publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2020.09.008 – volume: 169 start-page: 108654 year: 2022 ident: CR57 article-title: Compound-specific amino acid N-stable isotope probing for the quantification of biological nitrogen fixation in soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2022.108654 – volume: 13 start-page: 830666 year: 2022 ident: CR64 article-title: Interspecific neighbor stimulates peanut growth through modulating root endophytic microbial community construction publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.830666 – volume: 9 start-page: 1734 year: 2023 ident: CR73 article-title: Single-nucleus transcriptomes reveal spatiotemporal symbiotic perception and early response in Medicago publication-title: Nat. Plants doi: 10.1038/s41477-023-01524-8 – volume: 356 start-page: 1172 year: 2017 end-page: 1175 ident: CR13 article-title: Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi publication-title: Science doi: 10.1126/science.aam9970 – volume: 12 start-page: 357 year: 2015 end-page: 360 ident: CR69 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods. doi: 10.1038/nmeth.3317 – volume: 28 start-page: 511 year: 2010 end-page: 515 ident: CR70 article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1621 – volume: 13 start-page: 581 year: 2016 end-page: 583 ident: CR60 article-title: DADA2: High-resolution sample inference from Illumina amplicon data publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – volume: 20 start-page: 576 year: 2015 end-page: 585 ident: CR39 article-title: Flavonoid transport mechanisms: how to go, and with whom publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.06.007 – volume: 9 start-page: 518 year: 2004 end-page: 522 ident: CR30 article-title: Rhizobium infection: lessons from the versatile nodulation behaviour of water-tolerant legumes publication-title: Trends Plant. Sci doi: 10.1016/j.tplants.2004.09.005 – volume: 6 start-page: 1769 year: 2013 end-page: 1780 ident: CR63 article-title: A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics publication-title: Mol. Plant doi: 10.1093/mp/sst080 – ident: CR91 – volume: 238 start-page: 2099 year: 2022 end-page: 2112 ident: CR20 article-title: (-)-Loliolide is a general signal of plant stress that activates jasmonate-related responses publication-title: New Phytol doi: 10.1111/nph.18644 – ident: CR72 – volume: 84 start-page: 838 year: 2003 end-page: 845 ident: CR24 article-title: Cooperation in the rhizosphere and the “free-rider” problem publication-title: Ecology doi: 10.1890/0012-9658(2003)084[0838:CITRAT]2.0.CO;2 – volume: 3 start-page: 470 year: 2018 end-page: 480 ident: CR11 article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0129-3 – ident: CR53 – ident: CR89 – volume: 27 start-page: 717 year: 2022 end-page: 728 ident: CR45 article-title: Active and adaptive plasticity in a changing climate publication-title: Trends Plant. Sci. doi: 10.1016/j.tplants.2022.02.004 – volume: 7 start-page: 43 year: 1995 end-page: 55 ident: CR84 article-title: Transient induction of a peroxidase gene in precedes infection by publication-title: Plant Cell – volume: 47 start-page: 1652 year: 2018 end-page: 1704 ident: CR1 article-title: Chemical signaling involved in plant-microbe interactions publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00343A – volume: 13 start-page: 2656 year: 2019 end-page: 2663 ident: CR9 article-title: Microbe-driven chemical ecology: past, present and future publication-title: ISME J. doi: 10.1038/s41396-019-0469-x – volume: 4 start-page: 943 year: 2021 end-page: 950 ident: CR36 article-title: Long-term increased grain yield and soil fertility from intercropping publication-title: Nat. Sustain. doi: 10.1038/s41893-021-00767-7 – volume: 12 year: 2021 ident: CR2 article-title: Spatiotemporal dynamics of maize ( L.) root growth and its potential consequences for the assembly of the rhizosphere microbiota publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.619499 – volume: 24 start-page: 1302 year: 2021 end-page: 1317 ident: CR50 article-title: Microbe-mediated adaptation in plants publication-title: Ecol. Lett. doi: 10.1111/ele.13755 – volume: 26 start-page: 1227 year: 2021 end-page: 1235 ident: CR34 article-title: Belowground facilitation and trait matching: two or three to tango? publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2021.07.014 – ident: CR56 – volume: 21 start-page: 256 year: 2016 end-page: 265 ident: CR12 article-title: Metabolomics in the rhizosphere: Tapping into belowground chemical communication publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2016.01.008 – volume: 8 start-page: 61 year: 2016 ident: CR29 article-title: ClassyFire: automated chemical classification with a comprehensive, computable taxonomy publication-title: J. Cheminform. doi: 10.1186/s13321-016-0174-y – volume: 21 start-page: 187 year: 2016 end-page: 198 ident: CR10 article-title: Signaling in the rhizosphere publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2016.01.005 – volume: 9 year: 2018 ident: CR16 article-title: Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals publication-title: Nat. Commun. doi: 10.1038/s41467-018-06429-1 – volume: 13 start-page: 4926 year: 2022 ident: CR23 article-title: Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers publication-title: Nat. Comms. doi: 10.1038/s41467-022-32464-0 – volume: 5 start-page: 410 year: 2018 end-page: 433 ident: CR4 article-title: Microbial small molecules - weapons of plant subversion publication-title: Nat. Prod. Rep. doi: 10.1039/C7NP00062F – volume: 8 year: 2020 ident: CR17 article-title: Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants publication-title: Microbiome doi: 10.1186/s40168-019-0775-6 – volume: 177 start-page: 792 year: 2018 end-page: 802 ident: CR74 article-title: Medicago plants control nodulation by regulating proteolysis of the receptor-like kinase DMI2 publication-title: Plant Physiol doi: 10.1104/pp.17.01542 – ident: CR90 – volume: 115 start-page: E5213 year: 2018 end-page: E5222 ident: CR47 article-title: MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1722335115 – volume: 73 start-page: 5261 year: 2007 end-page: 5267 ident: CR61 article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00062-07 – volume: 417 start-page: 962 year: 2002 end-page: 966 ident: CR75 article-title: A receptor kinase gene regulating symbiotic nodule development publication-title: Nature doi: 10.1038/nature00842 – volume: 19 start-page: 3529 year: 2013 end-page: 3539 ident: CR26 article-title: Soil-plant N processes in a high Arctic ecosystem, NW Greenland are altered by long-term experimental warming and higher rainfall publication-title: Glob. Change Biol. doi: 10.1111/gcb.12318 – ident: CR31 – volume: 11 start-page: 252 year: 2013 end-page: 263 ident: CR6 article-title: Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2990 – volume: 17 start-page: 10 year: 2011 end-page: 12 ident: CR59 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: Embnet J doi: 10.14806/ej.17.1.200 – volume: 51 start-page: 6895 year: 2012 end-page: 6907 ident: CR77 article-title: Calcium Ion Binding Properties Of Medicago Truncatula Calcium/calmodulin-dependent Protein Kinase publication-title: Biochemistry doi: 10.1021/bi300826m – volume: 65 start-page: 244 year: 2011 end-page: 252 ident: CR80 article-title: Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04415.x – volume: 16 start-page: 849 year: 2023 end-page: 864 ident: CR22 article-title: Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes publication-title: Mol. Plant doi: 10.1016/j.molp.2023.03.009 – volume: 118 year: 2021 ident: CR35 article-title: Plant biodiversity and the regeneration of soil fertility publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.2111321118 – ident: CR55 – volume: 113 start-page: 6496 year: 2016 end-page: 6501 ident: CR21 article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N fixation publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1523580113 – volume: 93 start-page: 835 year: 2002 end-page: 839 ident: CR66 article-title: Construction of green fluorescent protein (GFP)-marked strains of for ecological studies publication-title: J. Appl. Microbiol. doi: 10.1046/j.1365-2672.2002.01768.x – volume: 30 start-page: 2114 year: 2014 ident: CR68 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btu170 – volume: 8 year: 2020 ident: CR58 article-title: Recent infection by Wolbachia alters microbial communities in wild populations publication-title: Microbiome doi: 10.1186/s40168-020-00878-x – volume: 7 start-page: 1 year: 2016 end-page: 13 ident: CR82 article-title: DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection publication-title: Nat. Commun. doi: 10.1038/ncomms12636 – volume: 2 start-page: 1381 year: 2018 end-page: 1385 ident: CR33 article-title: Evolution of facilitation requires diverse communities publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-018-0623-2 – volume: 9 start-page: 1734 year: 2023 ident: 47159_CR73 publication-title: Nat. Plants doi: 10.1038/s41477-023-01524-8 – volume: 9 year: 2018 ident: 47159_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06429-1 – volume: 107 start-page: 478 year: 2010 ident: 47159_CR86 publication-title: Proc. Natl Acad. Sci. USA. doi: 10.1073/pnas.0910081107 – volume: 198 start-page: 1 year: 2017 ident: 47159_CR88 publication-title: Microbiol. Res. doi: 10.1016/j.micres.2017.01.005 – ident: 47159_CR31 doi: 10.1111/jipb.13207 – volume: 19 start-page: 3529 year: 2013 ident: 47159_CR26 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12318 – volume: 84 start-page: 838 year: 2003 ident: 47159_CR24 publication-title: Ecology doi: 10.1890/0012-9658(2003)084[0838:CITRAT]2.0.CO;2 – volume: 16 year: 2020 ident: 47159_CR28 publication-title: Metabolomics doi: 10.1007/s11306-020-01725-8 – volume: 171 start-page: 944 year: 2016 ident: 47159_CR44 publication-title: Plant Physiol doi: 10.1104/pp.15.01831 – ident: 47159_CR56 – volume: 368 start-page: eaba0196 year: 2020 ident: 47159_CR7 publication-title: Science doi: 10.1126/science.aba0196 – volume: 56 start-page: 188 year: 2006 ident: 47159_CR40 publication-title: FEMs Microbiol. Ecol. doi: 10.1111/j.1574-6941.2005.00037.x – volume: 7 start-page: 43 year: 1995 ident: 47159_CR84 publication-title: Plant Cell – volume: 9 start-page: 518 year: 2004 ident: 47159_CR30 publication-title: Trends Plant. Sci doi: 10.1016/j.tplants.2004.09.005 – volume: 11 start-page: 252 year: 2013 ident: 47159_CR6 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2990 – volume: 13 start-page: 2656 year: 2019 ident: 47159_CR9 publication-title: ISME J. doi: 10.1038/s41396-019-0469-x – volume: 57 start-page: 233 year: 2006 ident: 47159_CR8 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105159 – volume: 12 start-page: 1252 year: 2018 ident: 47159_CR41 publication-title: ISME J doi: 10.1038/s41396-017-0035-3 – volume: 4 start-page: 942 year: 2018 ident: 47159_CR79 publication-title: Nat. Plants doi: 10.1038/s41477-018-0261-3 – volume: 21 start-page: 187 year: 2016 ident: 47159_CR10 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2016.01.005 – volume: 47 start-page: 1652 year: 2018 ident: 47159_CR1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00343A – volume: 13 start-page: 4926 year: 2022 ident: 47159_CR23 publication-title: Nat. Comms. doi: 10.1038/s41467-022-32464-0 – volume: 23 start-page: 973 year: 2020 ident: 47159_CR18 publication-title: Ecol. Lett. doi: 10.1111/ele.13497 – volume: 31 start-page: 166 year: 2015 ident: 47159_CR71 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 159 start-page: 198 year: 2010 ident: 47159_CR25 publication-title: Geoderma doi: 10.1016/j.geoderma.2010.07.012 – volume: 117 start-page: 3874 year: 2020 ident: 47159_CR27 publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1912130117 – ident: 47159_CR51 – volume: 46 start-page: 896 year: 2019 ident: 47159_CR43 publication-title: Funct. Plant Biol. doi: 10.1071/FP19007 – volume: 49 start-page: 73 year: 2019 ident: 47159_CR14 publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2019.10.003 – volume: 93 start-page: 835 year: 2002 ident: 47159_CR66 publication-title: J. Appl. Microbiol. doi: 10.1046/j.1365-2672.2002.01768.x – volume: 2 start-page: 1381 year: 2018 ident: 47159_CR33 publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-018-0623-2 – volume: 73 start-page: 5261 year: 2007 ident: 47159_CR61 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00062-07 – volume: 10 start-page: 1 year: 2019 ident: 47159_CR87 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12999-5 – ident: 47159_CR72 – volume: 21 start-page: 256 year: 2016 ident: 47159_CR12 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2016.01.008 – volume: 44 start-page: 1215 year: 2021 ident: 47159_CR19 publication-title: Plant Cell Environ doi: 10.1111/pce.13999 – volume: 41 start-page: 2093 year: 2018 ident: 47159_CR65 publication-title: Plant Cell Environ. doi: 10.1111/pce.13117 – volume: 27 start-page: 717 year: 2022 ident: 47159_CR45 publication-title: Trends Plant. Sci. doi: 10.1016/j.tplants.2022.02.004 – volume: 5 start-page: 410 year: 2018 ident: 47159_CR4 publication-title: Nat. Prod. Rep. doi: 10.1039/C7NP00062F – volume: 177 start-page: 792 year: 2018 ident: 47159_CR74 publication-title: Plant Physiol doi: 10.1104/pp.17.01542 – volume: 51 start-page: 6895 year: 2012 ident: 47159_CR77 publication-title: Biochemistry doi: 10.1021/bi300826m – volume: 356 start-page: 1172 year: 2017 ident: 47159_CR13 publication-title: Science doi: 10.1126/science.aam9970 – volume: 105 start-page: 871 year: 2017 ident: 47159_CR52 publication-title: J. Ecol. doi: 10.1111/1365-2745.12789 – ident: 47159_CR53 doi: 10.2136/sssaj1958.03615995002200030025x – volume: 30 start-page: 2114 year: 2014 ident: 47159_CR68 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btu170 – volume: 20 start-page: 576 year: 2015 ident: 47159_CR39 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.06.007 – volume: 308 start-page: 1789 year: 2005 ident: 47159_CR81 publication-title: Science doi: 10.1126/science.1111025 – volume: 3 start-page: 470 year: 2018 ident: 47159_CR11 publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0129-3 – volume: 402 start-page: 1 year: 2016 ident: 47159_CR15 publication-title: Plant Soil doi: 10.1007/s11104-016-2823-3 – volume: 169 start-page: 108654 year: 2022 ident: 47159_CR57 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2022.108654 – volume: 7 start-page: 1 year: 2016 ident: 47159_CR82 publication-title: Nat. Commun. doi: 10.1038/ncomms12636 – volume: 12 start-page: 357 year: 2015 ident: 47159_CR69 publication-title: Nat. Methods. doi: 10.1038/nmeth.3317 – volume: 24 start-page: 1302 year: 2021 ident: 47159_CR50 publication-title: Ecol. Lett. doi: 10.1111/ele.13755 – volume: 13 start-page: 830666 year: 2022 ident: 47159_CR64 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.830666 – volume: 8 year: 2020 ident: 47159_CR58 publication-title: Microbiome doi: 10.1186/s40168-020-00878-x – ident: 47159_CR42 doi: 10.3390/molecules191016240 – volume: 76 start-page: 287 year: 2013 ident: 47159_CR76 publication-title: Plant J doi: 10.1111/tpj.12288 – volume: 6 start-page: 1769 year: 2013 ident: 47159_CR63 publication-title: Mol. Plant doi: 10.1093/mp/sst080 – volume: 113 start-page: 6496 year: 2016 ident: 47159_CR21 publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1523580113 – ident: 47159_CR54 – volume: 16 start-page: 849 year: 2023 ident: 47159_CR22 publication-title: Mol. Plant doi: 10.1016/j.molp.2023.03.009 – volume: 28 start-page: 511 year: 2010 ident: 47159_CR70 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1621 – ident: 47159_CR92 – volume: 118 year: 2021 ident: 47159_CR35 publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.2111321118 – volume: 4 start-page: 943 year: 2021 ident: 47159_CR36 publication-title: Nat. Sustain. doi: 10.1038/s41893-021-00767-7 – volume: 115 start-page: E5213 year: 2018 ident: 47159_CR47 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1722335115 – volume: 65 start-page: 244 year: 2011 ident: 47159_CR80 publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04415.x – volume: 34 start-page: 1573 year: 2022 ident: 47159_CR32 publication-title: Plant Cell doi: 10.1093/plcell/koac039 – volume: 112 start-page: 1437 year: 1996 ident: 47159_CR85 publication-title: Plant Physiol doi: 10.1104/pp.112.4.1437 – volume: 26 start-page: 169 year: 2021 ident: 47159_CR38 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2020.09.008 – volume: 26 start-page: 1227 year: 2021 ident: 47159_CR34 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2021.07.014 – volume: 364 start-page: 546 year: 2019 ident: 47159_CR3 publication-title: Science doi: 10.1126/science.aau6389 – volume: 17 start-page: 10 year: 2011 ident: 47159_CR59 publication-title: Embnet J doi: 10.14806/ej.17.1.200 – volume: 10 year: 2022 ident: 47159_CR48 publication-title: Microbiome doi: 10.1186/s40168-022-01420-x – volume: 12 year: 2021 ident: 47159_CR2 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.619499 – ident: 47159_CR90 doi: 10.1111/insr.12011_21 – ident: 47159_CR91 – volume: 19 start-page: 1221 year: 2007 ident: 47159_CR83 publication-title: Plant Cell doi: 10.1105/tpc.106.048264 – volume: 53 start-page: 903 year: 2018 ident: 47159_CR62 publication-title: J. Mass Spectrom. doi: 10.1002/jms.4270 – volume: 8 year: 2020 ident: 47159_CR17 publication-title: Microbiome doi: 10.1186/s40168-019-0775-6 – ident: 47159_CR55 doi: 10.2134/agronmonogr9.2.2ed.c24 – volume: 206 start-page: 1196 year: 2015 ident: 47159_CR49 publication-title: New Phytol doi: 10.1111/nph.13312 – volume: 238 start-page: 2099 year: 2022 ident: 47159_CR20 publication-title: New Phytol doi: 10.1111/nph.18644 – volume: 13 start-page: 581 year: 2016 ident: 47159_CR60 publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – volume: 235 start-page: 1212 year: 2022 ident: 47159_CR46 publication-title: New Phytol doi: 10.1111/nph.18192 – volume: 374 start-page: 625 year: 2021 ident: 47159_CR78 publication-title: Science doi: 10.1126/science.abg5945 – volume: 26 start-page: 5377 year: 2021 ident: 47159_CR37 publication-title: Molecules doi: 10.3390/molecules26175377 – volume: 50 start-page: 138 year: 2018 ident: 47159_CR5 publication-title: Nat. Genet. doi: 10.1038/s41588-017-0012-9 – ident: 47159_CR89 – volume: 8 start-page: 61 year: 2016 ident: 47159_CR29 publication-title: J. Cheminform. doi: 10.1186/s13321-016-0174-y – volume: 197 start-page: 1573 year: 2015 ident: 47159_CR67 publication-title: J. Bacteriol. doi: 10.1128/JB.00003-15 – volume: 417 start-page: 962 year: 2002 ident: 47159_CR75 publication-title: Nature doi: 10.1038/nature00842 – reference: 38671042 - Nat Commun. 2024 Apr 26;15(1):3535 |
SSID | ssj0000391844 |
Score | 2.6213138 |
Snippet | Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how... Abstract Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2924 |
SubjectTerms | 101/28 101/58 38 38/61 38/77 45 45/23 631/158/2456 631/326/2565/855 631/45/320 64 96 96/34 Agricultural practices Arachis Bacteria Biosynthesis Bradyrhizobium Corn Crop diversification Crop production Crops Fabaceae - microbiology Flavonoids Humanities and Social Sciences Intercropping Legumes Metabolites Microbiomes Microbiota Microorganisms multidisciplinary Nitrogen Nitrogen Fixation Nitrogen-fixing bacteria Nitrogenation Nodulation Oilseed crops Oilseeds Peanuts Plant Root Nodulation Plant roots Rape plants Rapeseed Rhizosphere Root Nodules, Plant - microbiology Science Science (multidisciplinary) Soil Soil improvement Soil Microbiology Soils Sustainable agriculture Sustainable production Symbiosis Vegetables |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1NaxQx9CEFwYv47WiVCN40dCbJZpKjiqWIerLQW0heElmou2V3C9t_70syu1b8unjNZELyvpP3BfCSRouWFhwNIlda99x6ablAb_1gg4lDSRT-9FmfnKoPZ7Oza62-SkxYKw_cAHdkfLSDEpjRJGUGWsHHQRF_6xHR1PRyQTrv2mWqymBp6eqipiyZXpqjtaoygVQSJ3k8s3z7kyaqBft_Z2X-4iGtiuf4DtyeLEb2pu30LtxIi3tws_WQvLoP7mP6SvKFrUrwXEy7ICx2UePs0poRz66WRCYsz7cVDSxcsfVyfs6-zVsVpo1nJZVsxUo7LxZbpEaeHvMewOnx-y_vTvjUNYGjMrMNj5HYColXc9CEoN4EbZPPdGQ0wlsVZc59FCHLJOTYm5iDjKEfdR5HlCHJh3CwWC7SY2AzHCImLT1iVgpF6DHYmHqLZLYkGzoYdhB0OJUUL50tzl11bUvjGtQdQd1VqLttB6_2_1y0ghp_nf22IGY_sxTDrgNEIm4iEfcvEungcIdWN3Ho2slSSFCT8Wo7eLH_TLxVHCZ-kZaXdU5xDNPeOnjUyGG_E1lam5I13MHrHX38WPzPB3ryPw70FG6JQsg1hugQDjary_SMbKNNeF7Z4DuhyAwF priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA86EXwRv61OieCbhrVN2iZPouIYoj45uG8hOUnGhe322t7B3X9vTpp2iLrXNA3J-Sbn5HcIeRtH0UvXDCQAE21bMmW4YjUYZSplpavwofD3H-3Jqfi6alb5wm3MZZWzTUyG2vWAd-RHHIHf2hhsqA_bXwy7RmF2NbfQuE3uIHQZlnR1q265Y0H0cylEfitTcnk0imQZomNi0So3iu3_8EcJtv9fseZfedLkfo4fkPs5bqQfJ0Y_JLf85hG5O3WSvHpM9Dd_Fq0MHbCEzvm5FItuU7WdH2nU3KGPwkLDep-YQe0VHfv1Ob1YT1hMO0PxQdlAsakXdVO9RshXek_I6fGXn59PWO6dwEDIZseci8oFUWODbSObSmlb5U2IRwZZGyUcD6F0tQ3c17wrpQuWO1t2beg64Nbzp-Rg02_8c0IbqBz4lhuAIATUtgSrnC8VxODFK1uQaqaghgwsjv0tznVKcHOpJ6rrSHWdqK73BXm3_LOdYDVunP0JGbPMREjsNNAPZzprmJbGqUrUEEB6IasoasZVuFTbAciqKcjhzFad9XTU11JVkDfL56hhmDYxG99fpjmYHo57K8izSRyWnXBscBpj4oK8n-XjevH_H-jFzXt5Se7VKKKpRuiQHOyGS_8qxj47-zoJ-G8NhANs priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1di9QwMBwngi_i-Vk9JYJvGm2bNE0eRFQ8DvF8cuHeQjJJjoW97dndg91_f5O0XRFXwdd0EpL5yEw6X4S8wtGkpWsGCoAJKUumLdesBqttpZ3yVUoUPvsuT2fi63lzfkCmdkcjAld7n3apn9SsX7zd_Nx-QIF_P6SMq3crkcUdtQ3Dq7bRDG3KW6iZ2iSoZ6O5n29mrvFBI8bcmf1Tf9NPuYz_PtvzD79pVkcn98jd0Y6kHwfCH5GDsLxPbg-dJbcPiPkWLvDWoX0KqfNhCs2iVzn6LqwoSnLfIfPQON9k4lC3patuvqCX86E209rSlGDW09Tki_ohfiOOv_gektnJlx-fT9nYS4GBUM2aeY_CBijB0UkkW6mc1MFGPDKo2mrheYylr13koeZtqXx03LuylbFtgbvAH5HDZbcMTwhtoPIQJLcAUQioXQlO-1BqQGMmaFeQasKggbHQeOp3sTDZ4c2VGbBuEOsmY91sCvJ6N-dqKLPxT-hPiTA7yFQiOw90_YUZJc4o63UlaoigglAVsp71VVpKtgCqagpyPJHVTGxneCovKNGk1QV5ufuMEpfcKHYZuusMk9zFuLeCPB7YYbcTnhqeoo1ckDcTf_xa_O8Hevp_4M_InTqxbI4hOiaH6_46PEfbaO1eZIa_AZieC2Y priority: 102 providerName: Scholars Portal |
Title | Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification |
URI | https://link.springer.com/article/10.1038/s41467-024-47159-x https://www.ncbi.nlm.nih.gov/pubmed/38575565 https://www.proquest.com/docview/3032863269 https://www.proquest.com/docview/3034245103 https://doaj.org/article/8ad9142cfc8e481a9aad1414667cc815 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CL-O1qPSL4pou7m2w2ebwePcthi6iFewv5LAf1tuxdof3vnWR3T8Qq-JKF7CQkmZlkSGZ-A_AOa-MpXeVWWJszzotcairzymqpS2mEK2Og8OkZPzlni2W93INqjIVJTvsJ0jJt06N32McNSyqNJ0qO22ktc7QbDyJ0e5TqGZ_t7lUi4rlgbIiPKai4o-lvZ1CC6r_LvvzjbTQdOfNH8HCwFcm0H91j2PPrJ3C_zx55-xTUZ3-BOwvpotuc86P7FblKHnZ-Q1BbuxYFhITVTWIAMbdk064uyY9Vj7-01SQGkXUkJvIirvfRCMM13jM4nx9_n53kQ76E3DJRb3PnUKEsamkwHFlTCMOl1wGnbEWlJXM0hMJVJlBf0aYQLhjqTNHw0DSWGk-fw_66XfuXQGpbOus51dYGxmxlCmuk84W0aLB4aTIoxxVUdgATjzktLlV61KZC9auucNVVWnV1k8H7XZurHkrjn9RHkTE7ygiDnSra7kINYqGEdrJklQ1WeCZKFC_tytgVb6wVZZ3B4chWNejmRtEIIcjRbJUZvN39Rq2KTyV67dvrRBOfhHFsGbzoxWE3EhqTmqIdnMGHUT5-df73Cb36P_LX8KCKIpv8hA5hf9td-zdo_2zNBO41ywZLMf80gYPpdPFtgd-j47MvXydJGSbpZgHLUyZ-AnpACIo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQviG8CA4wETxAtid3EfkCIr6lj3Z42qW8mPttTpdGUthPtP8XfyNlJOiFgb3t1HMu--_nu7DvfAbyi1qClixQlYirKMktVzVVaYK3qXBlp8_BQ-PCoHJ6Ir-PBeAt-9W9hQlhlLxOjoLYNhjvyXR4Sv5VkbKj3sx9pqBoVvKt9CY0WFgdu_ZOObIt3-5-Jv6-LYu_L8adh2lUVSFHIwTK1lmCHhGVvSlpAJk2pXO1JraMsaiUs9z6zhfHcFbzKpPWGW0PHfV9VyI3jNO41uE6KNws7qhpXmzudkG1dCtG9zcm43F2IKIlIEaakBQYqXf2h_2KZgH_Ztn_5ZaO627sDtzs7lX1ogXUXttz0HtxoK1eu74MeuVOSamweQvas60O_2CxG97kFI0kxbwiczE9WkfnMrNmimZyx75M299OyZuEB25yFImLMtvEhvrtCfAAnV0LVh7A9babuMbAB5hZdyWtELwQWJkOjrMsUkrHklEkg7ymosUtkHuppnOnoUOdSt1TXRHUdqa5XCbzZ_DNr03hc2vtjYMymZ0jBHRua-anudrSWtVW5KNCjdELmBO3a5mGoskKU-SCBnZ6tupMLC32B4gRebj7Tjg5umnrqmvPYJ7ijaW4JPGrhsJkJDwVVyQZP4G2Pj4vB_7-gJ5fP5QXcHB4fjvRo_-jgKdwqAlxjfNIObC_n5-4Z2V1L8zyCncG3q95dvwE2aEJJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNEmsZPYB4SAsmppqThQaW8mHtvVSmWzJFux-9f4dYydR4WA3np1HMsef_OwZzxDyAts9Vo6i0EAxLwoklhWTMYZVLJKpRYm9Q-FPx8Ve8f80yyfbZFfw1sYH1Y5yMQgqE0N_o58wnzitwKNDTlxfVjEl93p2-WP2FeQ8p7WoZxGB5EDu_mJx7f2zf4u7vXLLJt-_PphL-4rDMTARb6KjUEIAuLa6QIXkwhdSFs5VPEgskpyw5xLTKYdsxkrE2GcZkbj0d-VJTBtGY57hVwtWZ56Hitn5Xi_4zOvC877dzoJE5OWB6mESjFGjZDLeP2HLgwlA_5l5_7low2qb3qL3OxtVvquA9ltsmUXd8i1rorl5i5Rh_YEJRxtfPiesUMYGF2GSD_bUpQaTY1ApW6-DkCgekPben5Kv8-7PFCrivrHbA31BcWo6WJFXH-deI8cXwpV75PtRb2wDwnNITVgC1YBOM4h0wloaWwiAQ0nK3VE0oGCCvqk5r62xqkKznUmVEd1hVRXgepqHZFX4z_LLqXHhb3f-40Ze_p03KGhbk5Uz91KVEamPAMHwnKRIswrk_qhihJApHlEdoZtVb2MaNU5oiPyfPyM3O1dNtXC1mehj3dN49wi8qCDwzgT5ouroj0ekdcDPs4H__-CHl08l2fkOvKVOtw_OnhMbmQerSFUaYdsr5oz-wRNsJV-GrBOybfLZq7fCjhGfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Legume+rhizodeposition+promotes+nitrogen+fixation+by+soil+microbiota+under+crop+diversification&rft.jtitle=Nature+communications&rft.au=Qiao%2C+Mengjie&rft.au=Sun%2C+Ruibo&rft.au=Wang%2C+Zixuan&rft.au=Dumack%2C+Kenneth&rft.date=2024-04-04&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-47159-x&rft.externalDocID=10_1038_s41467_024_47159_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |