Use of artificial intelligence to develop predictive algorithms of cough and PCR-confirmed COVID-19 infections based on inputs from clinical-grade wearable sensors
There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detectio...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 8072 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.04.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detection and (2) early detection of COVID-19, through the retrospective analysis of prospectively collected physiological data from longitudinal wear of ANNE sensors in a multicenter single arm study of subjects at high risk for COVID-19 due to occupational or home exposures. The study employed a two-fold approach: cough detection algorithm development and COVID-19 detection algorithm development. For cough detection, healthy individuals wore an ANNE One chest sensor during scripted activity. The final performance of the algorithm achieved an F-1 score of 83.3% in twenty-seven healthy subjects during biomarker validation. In the COVID-19 detection algorithm, individuals at high-risk for developing COVID-19 because of recent exposures received ANNE One sensors and completed daily symptom surveys. An algorithm analyzing vital parameters (heart rate, respiratory rate, cough count, etc.) for early COVID-19 detection was developed. The COVID-19 detection algorithm exhibited a sensitivity of 0.47 and specificity of 0.72 for detecting COVID-19 in 325 individuals with recent exposures. Participants demonstrated high adherence (≥ 4 days of wear per week). ANNE One shows promise for detection of COVID-19. Inclusion of respiratory biomarkers (e.g., cough count) enhanced the algorithm's predictive ability. These findings highlight the potential value of wearable devices in early disease detection and monitoring. |
---|---|
AbstractList | There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detection and (2) early detection of COVID-19, through the retrospective analysis of prospectively collected physiological data from longitudinal wear of ANNE sensors in a multicenter single arm study of subjects at high risk for COVID-19 due to occupational or home exposures. The study employed a two-fold approach: cough detection algorithm development and COVID-19 detection algorithm development. For cough detection, healthy individuals wore an ANNE One chest sensor during scripted activity. The final performance of the algorithm achieved an F-1 score of 83.3% in twenty-seven healthy subjects during biomarker validation. In the COVID-19 detection algorithm, individuals at high-risk for developing COVID-19 because of recent exposures received ANNE One sensors and completed daily symptom surveys. An algorithm analyzing vital parameters (heart rate, respiratory rate, cough count, etc.) for early COVID-19 detection was developed. The COVID-19 detection algorithm exhibited a sensitivity of 0.47 and specificity of 0.72 for detecting COVID-19 in 325 individuals with recent exposures. Participants demonstrated high adherence (≥ 4 days of wear per week). ANNE One shows promise for detection of COVID-19. Inclusion of respiratory biomarkers (e.g., cough count) enhanced the algorithm's predictive ability. These findings highlight the potential value of wearable devices in early disease detection and monitoring.There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detection and (2) early detection of COVID-19, through the retrospective analysis of prospectively collected physiological data from longitudinal wear of ANNE sensors in a multicenter single arm study of subjects at high risk for COVID-19 due to occupational or home exposures. The study employed a two-fold approach: cough detection algorithm development and COVID-19 detection algorithm development. For cough detection, healthy individuals wore an ANNE One chest sensor during scripted activity. The final performance of the algorithm achieved an F-1 score of 83.3% in twenty-seven healthy subjects during biomarker validation. In the COVID-19 detection algorithm, individuals at high-risk for developing COVID-19 because of recent exposures received ANNE One sensors and completed daily symptom surveys. An algorithm analyzing vital parameters (heart rate, respiratory rate, cough count, etc.) for early COVID-19 detection was developed. The COVID-19 detection algorithm exhibited a sensitivity of 0.47 and specificity of 0.72 for detecting COVID-19 in 325 individuals with recent exposures. Participants demonstrated high adherence (≥ 4 days of wear per week). ANNE One shows promise for detection of COVID-19. Inclusion of respiratory biomarkers (e.g., cough count) enhanced the algorithm's predictive ability. These findings highlight the potential value of wearable devices in early disease detection and monitoring. There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detection and (2) early detection of COVID-19, through the retrospective analysis of prospectively collected physiological data from longitudinal wear of ANNE sensors in a multicenter single arm study of subjects at high risk for COVID-19 due to occupational or home exposures. The study employed a two-fold approach: cough detection algorithm development and COVID-19 detection algorithm development. For cough detection, healthy individuals wore an ANNE One chest sensor during scripted activity. The final performance of the algorithm achieved an F-1 score of 83.3% in twenty-seven healthy subjects during biomarker validation. In the COVID-19 detection algorithm, individuals at high-risk for developing COVID-19 because of recent exposures received ANNE One sensors and completed daily symptom surveys. An algorithm analyzing vital parameters (heart rate, respiratory rate, cough count, etc.) for early COVID-19 detection was developed. The COVID-19 detection algorithm exhibited a sensitivity of 0.47 and specificity of 0.72 for detecting COVID-19 in 325 individuals with recent exposures. Participants demonstrated high adherence (≥ 4 days of wear per week). ANNE One shows promise for detection of COVID-19. Inclusion of respiratory biomarkers (e.g., cough count) enhanced the algorithm's predictive ability. These findings highlight the potential value of wearable devices in early disease detection and monitoring. Abstract There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detection and (2) early detection of COVID-19, through the retrospective analysis of prospectively collected physiological data from longitudinal wear of ANNE sensors in a multicenter single arm study of subjects at high risk for COVID-19 due to occupational or home exposures. The study employed a two-fold approach: cough detection algorithm development and COVID-19 detection algorithm development. For cough detection, healthy individuals wore an ANNE One chest sensor during scripted activity. The final performance of the algorithm achieved an F-1 score of 83.3% in twenty-seven healthy subjects during biomarker validation. In the COVID-19 detection algorithm, individuals at high-risk for developing COVID-19 because of recent exposures received ANNE One sensors and completed daily symptom surveys. An algorithm analyzing vital parameters (heart rate, respiratory rate, cough count, etc.) for early COVID-19 detection was developed. The COVID-19 detection algorithm exhibited a sensitivity of 0.47 and specificity of 0.72 for detecting COVID-19 in 325 individuals with recent exposures. Participants demonstrated high adherence (≥ 4 days of wear per week). ANNE One shows promise for detection of COVID-19. Inclusion of respiratory biomarkers (e.g., cough count) enhanced the algorithm's predictive ability. These findings highlight the potential value of wearable devices in early disease detection and monitoring. There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detection and (2) early detection of COVID-19, through the retrospective analysis of prospectively collected physiological data from longitudinal wear of ANNE sensors in a multicenter single arm study of subjects at high risk for COVID-19 due to occupational or home exposures. The study employed a two-fold approach: cough detection algorithm development and COVID-19 detection algorithm development. For cough detection, healthy individuals wore an ANNE One chest sensor during scripted activity. The final performance of the algorithm achieved an F-1 score of 83.3% in twenty-seven healthy subjects during biomarker validation. In the COVID-19 detection algorithm, individuals at high-risk for developing COVID-19 because of recent exposures received ANNE One sensors and completed daily symptom surveys. An algorithm analyzing vital parameters (heart rate, respiratory rate, cough count, etc.) for early COVID-19 detection was developed. The COVID-19 detection algorithm exhibited a sensitivity of 0.47 and specificity of 0.72 for detecting COVID-19 in 325 individuals with recent exposures. Participants demonstrated high adherence (≥ 4 days of wear per week). ANNE One shows promise for detection of COVID-19. Inclusion of respiratory biomarkers (e.g., cough count) enhanced the algorithm's predictive ability. These findings highlight the potential value of wearable devices in early disease detection and monitoring. |
ArticleNumber | 8072 |
Author | Edel, Claire Opdycke, Anita Yu, Lian Rangel, Stephanie Felsl, Ingrid Xu, Shuai Serao, Alexa Martell, Knute Bharat, Ankit Lee, Jong Yoon Kim, Brandon Walter, Jessica R. Patel, Soham Scheffel, Jenny |
Author_xml | – sequence: 1 givenname: Jessica R. surname: Walter fullname: Walter, Jessica R. organization: Department of Obstetrics and Gynecology, Northwestern University – sequence: 2 givenname: Jong Yoon surname: Lee fullname: Lee, Jong Yoon organization: Sibel Health, Querrey Simpson Institute for Bioelectronics, Northwestern University – sequence: 3 givenname: Lian surname: Yu fullname: Yu, Lian organization: Sibel Health, Querrey Simpson Institute for Bioelectronics, Northwestern University – sequence: 4 givenname: Brandon surname: Kim fullname: Kim, Brandon organization: Sibel Health, Querrey Simpson Institute for Bioelectronics, Northwestern University – sequence: 5 givenname: Knute surname: Martell fullname: Martell, Knute organization: Department of Dermatology, Northwestern University Feinberg School of Medicine – sequence: 6 givenname: Anita surname: Opdycke fullname: Opdycke, Anita organization: Northwestern University – sequence: 7 givenname: Jenny surname: Scheffel fullname: Scheffel, Jenny organization: Northwestern University – sequence: 8 givenname: Ingrid surname: Felsl fullname: Felsl, Ingrid organization: Northwestern University – sequence: 9 givenname: Soham surname: Patel fullname: Patel, Soham organization: Department of Dermatology, Northwestern University Feinberg School of Medicine – sequence: 10 givenname: Stephanie surname: Rangel fullname: Rangel, Stephanie organization: Department of Dermatology, Northwestern University Feinberg School of Medicine – sequence: 11 givenname: Alexa surname: Serao fullname: Serao, Alexa organization: Department of Dermatology, Northwestern University Feinberg School of Medicine – sequence: 12 givenname: Claire surname: Edel fullname: Edel, Claire organization: Department of Dermatology, Northwestern University Feinberg School of Medicine – sequence: 13 givenname: Ankit surname: Bharat fullname: Bharat, Ankit organization: Department of Surgery, Northwestern University – sequence: 14 givenname: Shuai surname: Xu fullname: Xu, Shuai email: stevexu@northwestern.edu organization: Sibel Health, Querrey Simpson Institute for Bioelectronics, Northwestern University, Department of Dermatology, Northwestern University Feinberg School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38580712$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNUREvpC7BAltiwCfgvE2eJpvyMVKkIUbbWjX2depSxBzsp4nl4UZxOC6iLemPr-jtH18f3eXUUYsCqesnoW0aFepclazpVUy7rplWC1vJJdcKpbGouOD_673xcneW8pWU1vJOse1YdC9Uo2jJ-Uv2-ykiiI5Am77zxMBIfJhxHP2AwSKZILN7gGPdkn9B6M_kbJDAOMfnpepcXrYnzcE0gWPJl_bU2MTifdmjJ-vL75rxmXXF0WIQxZNJDLjcxlNp-njJxKe6IGX3wBsZ6SGCR_ERI0I9IMoYcU35RPXUwZjy720-rq48fvq0_1xeXnzbr9xe1kaqZatuytgO64hwpAwEr6B1FCsZS6BGMkq3hxqHqQTB02FrHgTLZlHoLvBen1ebgayNs9T75HaRfOoLXt4WYBr3EZEbUDVInrVwZ6crOOlAORNdaayR0ql8VrzcHr32KP2bMk975bEquEDDOWQsqJJeSKlXQ1w_QbZxTKC9dKNGuBKcL9eqOmvsS7t_27r-yAOoAmBRzTui08RMsqU8J_KgZ1cvg6MPg6DI4-nZwtCxS_kB67_6oSBxEucBhwPSv7UdUfwBG1teJ |
CitedBy_id | crossref_primary_10_1038_s41746_024_01287_2 crossref_primary_10_1007_s42452_024_06307_0 crossref_primary_10_1016_j_cej_2025_159478 |
Cites_doi | 10.1038/s41551-019-0480-6 10.1016/j.cobme.2019.01.001 10.1073/pnas.2026610118 10.1038/s41591-020-1123-x 10.1038/s41591-020-0792-9 10.1038/s41746-020-00363-7 10.1371/journal.pbio.2001402 10.1038/s41591-021-01593-2 10.1126/science.aax2342 10.1073/pnas.2100466118 10.3390/vaccines10020264 10.1109/JBHI.2013.2239303 10.1056/NEJMe2009758 10.1016/j.compbiomed.2022.105682 10.3389/fdgth.2020.00008 10.1038/s41598-021-89457-0 10.1126/science.aau0780 10.7196/SAMJ.2021.v111i10.15880 10.1038/s41598-022-07314-0 10.1001/jamanetworkopen.2021.28534 10.1177/0004563220981106 10.1101/2021.01.08.21249474 10.1371/journal.pone.0243693 10.1038/s41551-020-00640-6 10.7326/M22-0308 10.3201/eid2607.201595 10.1016/j.coemr.2021.01.002 10.5664/jcsm.10194 10.1016/S2589-7500(19)30222-5 10.1109/OJEMB.2020.3026928 10.2217/pme-2018-0044 10.1038/s41591-020-0869-5 10.1093/sleep/zsab072.402 10.1038/s41746-022-00591-z 10.1088/1361-6579/ab3be0 10.1001/jama.2020.8259 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 DOA |
DOI | 10.1038/s41598-024-57830-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_5e0f4d46c4ff4d19a8fa397ddc4a98b6 38580712 10_1038_s41598_024_57830_4 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-d7179a0622e01a3a6abf0e0acd0abeac847c2cfe8ba31efe7df2a014547c7a2b3 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:00 EDT 2025 Thu Jul 10 18:24:20 EDT 2025 Wed Aug 13 04:10:53 EDT 2025 Mon Jul 21 05:50:48 EDT 2025 Tue Jul 01 00:51:45 EDT 2025 Thu Apr 24 22:55:37 EDT 2025 Fri Feb 21 02:39:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-d7179a0622e01a3a6abf0e0acd0abeac847c2cfe8ba31efe7df2a014547c7a2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/5e0f4d46c4ff4d19a8fa397ddc4a98b6 |
PMID | 38580712 |
PQID | 3033763208 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5e0f4d46c4ff4d19a8fa397ddc4a98b6 proquest_miscellaneous_3034244088 proquest_journals_3033763208 pubmed_primary_38580712 crossref_citationtrail_10_1038_s41598_024_57830_4 crossref_primary_10_1038_s41598_024_57830_4 springer_journals_10_1038_s41598_024_57830_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-05 |
PublicationDateYYYYMMDD | 2024-04-05 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | RadinJMWineingerNETopolEJSteinhublSRHarnessing wearable device data to improve state-level real-time surveillance of influenza-like illness in the USA: A population-based studyLancet Digit. Health202022e85e9310.1016/S2589-7500(19)30222-5333345658048388 Davies, J.Y.L.C., Walter, J., Kim, D., Yu, L., Park, J., Blake, S., Kalluri, L., Cziraky, M., Stanek, E., Miller, J., Harty, B. J., Chung, H. U., Ryu, D., Schauer, J., Rangel, S., Serao, A., Eid, C., Ran, D. S., Olagbenro, M. O., Lim, A., Gill, K., Cooksey, J., Power, T., Xu, S. & Zee, P. A single arm, open-label, multi-center, and comparative study of the ANNE sleep system versus polysomnography to diagnose obstructive sleep apnea. Under Consideration (2022). LeeJYKimDBlakeSKalluriLWalterJDaviesCZeePXuSPowerTComparative study of wireless sensors versus type iii home sleep apnea test for home-based diagnosis of obstructive sleep apneaSleep2021442A16010.1093/sleep/zsab072.402 DaviesCLeeJYWalterJA single-arm, open-label, multicenter, and comparative study of the ANNE sleep system vs polysomnography to diagnose obstructive sleep apneaJ. Clin. Sleep Med.202218122703271210.5664/jcsm.10194359349269713912 Furukawa, N. W., Brooks, J. T. & Sobel, J. Evidence supporting transmission of severe acute respiratory syndrome coronavirus 2 while presymptomatic or asymptomatic. Emerg Infect Dis.26(7) (2020). WittDKelloggRSnyderMDunnJWindows into human health through wearables data analyticsCurr. Opin. Biomed. Eng.20199284610.1016/j.cobme.2019.01.001318325666907085 WHO Coronavirus Disease Dashboard. OtoshiTNaganoTIzumiSA novel automatic cough frequency monitoring system combining a triaxial accelerometer and a stretchable strain sensorSci. Rep.202111199732021NatSR..11.9973O1:CAS:528:DC%2BB3MXhtFWgtbrJ10.1038/s41598-021-89457-0339762868113562 AbirFFAlyafeiKChowdhuryMEHPCovNet: A presymptomatic COVID-19 detection framework using deep learning model using wearables dataComput Biol Med.20221471056821:CAS:528:DC%2BB38XhsFOku7zF10.1016/j.compbiomed.2022.105682357145049170596 RyuDKimDHPriceJTComprehensive pregnancy monitoring with a network of wireless, soft, and flexible sensors in high- and low-resource health settingsProc. Natl. Acad. Sci. U S A.202111820e21004661181:CAS:528:DC%2BB3MXhtFaqtrjE10.1073/pnas.2100466118339724458157941 BouzidDVisseauxBKassasseyaCComparison of patients infected with delta versus omicron COVID-19 variants presenting to Paris emergency departments: A retrospective cohort studyAnn. Intern. Med.2022175683183710.7326/M22-030835286147 MasonAEKaslPHartogensisWMetrics from wearable devices as candidate predictors of antibody response following vaccination against COVID-19: Data from the second TemPredict studyVaccines Basel20221022641:CAS:528:DC%2BB38Xmt1Cht7Y%3D10.3390/vaccines10020264352147238877860 MasonAEHechtFMDavisSKDetection of COVID-19 using multimodal data from a wearable device: Results from the first TemPredict StudySci. Rep.202212134632022NatSR..12.3463M1:CAS:528:DC%2BB38Xls1OnsLc%3D10.1038/s41598-022-07314-0352368968891385 ObermeyerZPowersBVogeliCMullainathanSDissecting racial bias in an algorithm used to manage the health of populationsScience.201936664644474532019Sci...366..447O1:CAS:528:DC%2BC1MXitVemtrjF10.1126/science.aax234231649194 LiXDunnJSalinsDDigital health: Tracking physiomes and activity using wearable biosensors reveals useful health-related informationPLOS Biol.2017151e200140210.1371/journal.pbio.2001402280811445230763 NatarajanASuHWHeneghanCAssessment of physiological signs associated with COVID-19 measured using wearable devicesNPJ Digit. Med.20203115610.1038/s41746-020-00363-7332990957705652 ChungHUKimBHLeeJYBinodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive careScience20193636430eaau07801:CAS:528:DC%2BC1MXjs1OmtbY%3D10.1126/science.aau0780308199346510306 QuerGRadinJMGadaletaMWearable sensor data and self-reported symptoms for COVID-19 detectionNat. Med.202127173771:CAS:528:DC%2BB3cXit1ersLnM10.1038/s41591-020-1123-x33122860 LaguartaJHuetoFSubiranaBCOVID-19 artificial intelligence diagnosis using only cough recordingsIEEE Open J. Eng. Med. Biol.2020127528110.1109/OJEMB.2020.302692834812418 DrugmanTUrbainJBauwensNObjective study of sensor relevance for automatic cough detectionIEEE J. Biomed. Health Inform.201317369970710.1109/JBHI.2013.223930324592470 LeeKNiXLeeJYMechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notchNat. Biomed. Eng.2020421481582020smb3.book.....L10.1038/s41551-019-0480-631768002 HeXLauEHYWuPTemporal dynamics in viral shedding and transmissibility of COVID-19Nat. Med.20202656726751:CAS:528:DC%2BB3cXntFOltbw%3D10.1038/s41591-020-0869-532296168 DunnJRungeRSnyderMWearables and the medical revolutionPers. Med.20181554294481:CAS:528:DC%2BC1cXhvVyhtr3K10.2217/pme-2018-0044 VogelsEAAbout one-in-Five Americans Use a Smart Watch or Fitness Tracker2020Washington, DCPew Research Center SeshadriDRDaviesEVHarlowERHsuJJKnightonSCWalkerTAVoosJEDrummondCKWearable sensors for COVID-19: A call to action to harness our digital infrastructure for remote patient monitoring and virtual assessmentsFront Digit Health2020255869510.3389/fdgth.2020.00008 MillerDJCapodilupoJVLastellaMAnalyzing changes in respiratory rate to predict the risk of COVID-19 infectionPLOS One20201512e02436931:CAS:528:DC%2BB3MXhsFGjtw%3D%3D10.1371/journal.pone.0243693333014937728254 AlaviABoguGKWangMReal-time alerting system for COVID-19 and other stress events using wearable dataNat. Med.20222811751841:CAS:528:DC%2BB3MXis1WhsLfP10.1038/s41591-021-01593-234845389 HernandoAPelaez-CocaMDLozanoMTLazaroJGilEFinger and forehead PPG signal comparison for respiratory rate estimationPhysiol. Meas.20194090950071:STN:280:DC%2BB3MvptVSrsw%3D%3D10.1088/1361-6579/ab3be031422948 GrzesiakEBentBMcClainMTAssessment of the feasibility of using noninvasive wearable biometric monitoring sensors to detect influenza and the common cold before symptom onsetJAMA Netw. Open.202149e212853410.1001/jamanetworkopen.2021.28534345863648482058 NiXOuyangWJeongHAutomated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patientsProc. Natl. Acad. Sci. U S A202111819e20266101181:CAS:528:DC%2BB3MXhtVyhtb3J10.1073/pnas.2026610118338931788126790 SethuramanNJeremiahSSRyoAInterpreting diagnostic tests for SARS-CoV-2JAMA202032322224922511:CAS:528:DC%2BB3cXhtFOntr%2FJ10.1001/jama.2020.825932374370 MishraTWangMMetwallyAAPre-symptomatic detection of COVID-19 from smartwatch dataNat. Biomed. Eng.2020412120812201:CAS:528:DC%2BB3cXisVertrvN10.1038/s41551-020-00640-6332089269020268 NematsweraniNCollieSChenTThe impact of routine pulse oximetry use on outcomes in COVID-19-infected patients at increased risk of severe disease: A retrospective cohort analysisS. Afr. Med. J.2021111109509561:CAS:528:DC%2BB38Xjs1Shtb0%3D10.7196/SAMJ.2021.v111i10.1588034949288 MoatSJZelekWMCarneEDevelopment of a high-throughput SARS-CoV-2 antibody testing pathway using dried blood spot specimensAnn. Clin. Biochem.20215821231311:CAS:528:DC%2BB3MXmsFKjsrg%3D10.1177/000456322098110633269949 Bogu, G. K., & Snyder, M. P. Deep learning-based detection of COVID-19 using wearables data. MedRxiv. 2021. SamSTasaliERole of obstructive sleep apnea in metabolic risk in PCOSCurr. Opin. Endocr. Metab. Res.20211746511:CAS:528:DC%2BB3MXhvVOqt7vF10.1016/j.coemr.2021.01.002343684928341449 ChungHURweiAYHourlier-FargetteASkin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care unitsNat. Med.20202634184291:CAS:528:DC%2BB3cXkslGnt7Y%3D10.1038/s41591-020-0792-9321614117315772 GandhiMYokoeDSHavlirDVAsymptomatic transmission, the Achilles' heel of current strategies to control Covid-19N. Engl. J. Med.202038222215821601:CAS:528:DC%2BB3cXhtVGqsrfF10.1056/NEJMe200975832329972 QuerGGadaletaMRadinJMInter-individual variation in objective measure of reactogenicity following COVID-19 vaccination via smartwatches and fitness bandsNPJ Digit. Med.2022514910.1038/s41746-022-00591-z354406849019018 D Ryu (57830_CR25) 2021; 118 HU Chung (57830_CR22) 2020; 26 HU Chung (57830_CR23) 2019; 363 A Alavi (57830_CR34) 2022; 28 S Sam (57830_CR19) 2021; 17 EA Vogels (57830_CR12) 2020 X Ni (57830_CR38) 2021; 118 X He (57830_CR4) 2020; 26 FF Abir (57830_CR2) 2022; 147 D Witt (57830_CR7) 2019; 9 X Li (57830_CR8) 2017; 15 K Lee (57830_CR21) 2020; 4 N Nematswerani (57830_CR17) 2021; 111 T Drugman (57830_CR28) 2013; 17 G Quer (57830_CR35) 2022; 5 57830_CR1 57830_CR13 J Dunn (57830_CR6) 2018; 15 AE Mason (57830_CR32) 2022; 12 N Sethuraman (57830_CR5) 2020; 323 A Natarajan (57830_CR30) 2020; 3 SJ Moat (57830_CR27) 2021; 58 D Bouzid (57830_CR39) 2022; 175 57830_CR16 A Hernando (57830_CR33) 2019; 40 Z Obermeyer (57830_CR37) 2019; 366 JY Lee (57830_CR26) 2021; 44 DR Seshadri (57830_CR11) 2020; 2 T Mishra (57830_CR14) 2020; 4 J Laguarta (57830_CR18) 2020; 1 C Davies (57830_CR20) 2022; 18 G Quer (57830_CR15) 2021; 27 DJ Miller (57830_CR31) 2020; 15 JM Radin (57830_CR10) 2020; 2 57830_CR24 AE Mason (57830_CR36) 2022; 10 E Grzesiak (57830_CR9) 2021; 4 T Otoshi (57830_CR29) 2021; 11 M Gandhi (57830_CR3) 2020; 382 |
References_xml | – reference: MasonAEKaslPHartogensisWMetrics from wearable devices as candidate predictors of antibody response following vaccination against COVID-19: Data from the second TemPredict studyVaccines Basel20221022641:CAS:528:DC%2BB38Xmt1Cht7Y%3D10.3390/vaccines10020264352147238877860 – reference: ChungHUKimBHLeeJYBinodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive careScience20193636430eaau07801:CAS:528:DC%2BC1MXjs1OmtbY%3D10.1126/science.aau0780308199346510306 – reference: NiXOuyangWJeongHAutomated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patientsProc. Natl. Acad. Sci. U S A202111819e20266101181:CAS:528:DC%2BB3MXhtVyhtb3J10.1073/pnas.2026610118338931788126790 – reference: MoatSJZelekWMCarneEDevelopment of a high-throughput SARS-CoV-2 antibody testing pathway using dried blood spot specimensAnn. Clin. Biochem.20215821231311:CAS:528:DC%2BB3MXmsFKjsrg%3D10.1177/000456322098110633269949 – reference: WittDKelloggRSnyderMDunnJWindows into human health through wearables data analyticsCurr. Opin. Biomed. Eng.20199284610.1016/j.cobme.2019.01.001318325666907085 – reference: GrzesiakEBentBMcClainMTAssessment of the feasibility of using noninvasive wearable biometric monitoring sensors to detect influenza and the common cold before symptom onsetJAMA Netw. Open.202149e212853410.1001/jamanetworkopen.2021.28534345863648482058 – reference: MasonAEHechtFMDavisSKDetection of COVID-19 using multimodal data from a wearable device: Results from the first TemPredict StudySci. Rep.202212134632022NatSR..12.3463M1:CAS:528:DC%2BB38Xls1OnsLc%3D10.1038/s41598-022-07314-0352368968891385 – reference: LeeKNiXLeeJYMechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notchNat. Biomed. Eng.2020421481582020smb3.book.....L10.1038/s41551-019-0480-631768002 – reference: Davies, J.Y.L.C., Walter, J., Kim, D., Yu, L., Park, J., Blake, S., Kalluri, L., Cziraky, M., Stanek, E., Miller, J., Harty, B. J., Chung, H. U., Ryu, D., Schauer, J., Rangel, S., Serao, A., Eid, C., Ran, D. S., Olagbenro, M. O., Lim, A., Gill, K., Cooksey, J., Power, T., Xu, S. & Zee, P. A single arm, open-label, multi-center, and comparative study of the ANNE sleep system versus polysomnography to diagnose obstructive sleep apnea. Under Consideration (2022). – reference: OtoshiTNaganoTIzumiSA novel automatic cough frequency monitoring system combining a triaxial accelerometer and a stretchable strain sensorSci. Rep.202111199732021NatSR..11.9973O1:CAS:528:DC%2BB3MXhtFWgtbrJ10.1038/s41598-021-89457-0339762868113562 – reference: HeXLauEHYWuPTemporal dynamics in viral shedding and transmissibility of COVID-19Nat. Med.20202656726751:CAS:528:DC%2BB3cXntFOltbw%3D10.1038/s41591-020-0869-532296168 – reference: SeshadriDRDaviesEVHarlowERHsuJJKnightonSCWalkerTAVoosJEDrummondCKWearable sensors for COVID-19: A call to action to harness our digital infrastructure for remote patient monitoring and virtual assessmentsFront Digit Health2020255869510.3389/fdgth.2020.00008 – reference: LaguartaJHuetoFSubiranaBCOVID-19 artificial intelligence diagnosis using only cough recordingsIEEE Open J. Eng. Med. Biol.2020127528110.1109/OJEMB.2020.302692834812418 – reference: RyuDKimDHPriceJTComprehensive pregnancy monitoring with a network of wireless, soft, and flexible sensors in high- and low-resource health settingsProc. Natl. Acad. Sci. U S A.202111820e21004661181:CAS:528:DC%2BB3MXhtFaqtrjE10.1073/pnas.2100466118339724458157941 – reference: SethuramanNJeremiahSSRyoAInterpreting diagnostic tests for SARS-CoV-2JAMA202032322224922511:CAS:528:DC%2BB3cXhtFOntr%2FJ10.1001/jama.2020.825932374370 – reference: MillerDJCapodilupoJVLastellaMAnalyzing changes in respiratory rate to predict the risk of COVID-19 infectionPLOS One20201512e02436931:CAS:528:DC%2BB3MXhsFGjtw%3D%3D10.1371/journal.pone.0243693333014937728254 – reference: GandhiMYokoeDSHavlirDVAsymptomatic transmission, the Achilles' heel of current strategies to control Covid-19N. Engl. J. Med.202038222215821601:CAS:528:DC%2BB3cXhtVGqsrfF10.1056/NEJMe200975832329972 – reference: SamSTasaliERole of obstructive sleep apnea in metabolic risk in PCOSCurr. Opin. Endocr. Metab. Res.20211746511:CAS:528:DC%2BB3MXhvVOqt7vF10.1016/j.coemr.2021.01.002343684928341449 – reference: NematsweraniNCollieSChenTThe impact of routine pulse oximetry use on outcomes in COVID-19-infected patients at increased risk of severe disease: A retrospective cohort analysisS. Afr. Med. J.2021111109509561:CAS:528:DC%2BB38Xjs1Shtb0%3D10.7196/SAMJ.2021.v111i10.1588034949288 – reference: DunnJRungeRSnyderMWearables and the medical revolutionPers. Med.20181554294481:CAS:528:DC%2BC1cXhvVyhtr3K10.2217/pme-2018-0044 – reference: MishraTWangMMetwallyAAPre-symptomatic detection of COVID-19 from smartwatch dataNat. Biomed. Eng.2020412120812201:CAS:528:DC%2BB3cXisVertrvN10.1038/s41551-020-00640-6332089269020268 – reference: Furukawa, N. W., Brooks, J. T. & Sobel, J. Evidence supporting transmission of severe acute respiratory syndrome coronavirus 2 while presymptomatic or asymptomatic. Emerg Infect Dis.26(7) (2020). – reference: WHO Coronavirus Disease Dashboard. – reference: HernandoAPelaez-CocaMDLozanoMTLazaroJGilEFinger and forehead PPG signal comparison for respiratory rate estimationPhysiol. Meas.20194090950071:STN:280:DC%2BB3MvptVSrsw%3D%3D10.1088/1361-6579/ab3be031422948 – reference: AlaviABoguGKWangMReal-time alerting system for COVID-19 and other stress events using wearable dataNat. Med.20222811751841:CAS:528:DC%2BB3MXis1WhsLfP10.1038/s41591-021-01593-234845389 – reference: ChungHURweiAYHourlier-FargetteASkin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care unitsNat. Med.20202634184291:CAS:528:DC%2BB3cXkslGnt7Y%3D10.1038/s41591-020-0792-9321614117315772 – reference: QuerGGadaletaMRadinJMInter-individual variation in objective measure of reactogenicity following COVID-19 vaccination via smartwatches and fitness bandsNPJ Digit. Med.2022514910.1038/s41746-022-00591-z354406849019018 – reference: RadinJMWineingerNETopolEJSteinhublSRHarnessing wearable device data to improve state-level real-time surveillance of influenza-like illness in the USA: A population-based studyLancet Digit. Health202022e85e9310.1016/S2589-7500(19)30222-5333345658048388 – reference: LeeJYKimDBlakeSKalluriLWalterJDaviesCZeePXuSPowerTComparative study of wireless sensors versus type iii home sleep apnea test for home-based diagnosis of obstructive sleep apneaSleep2021442A16010.1093/sleep/zsab072.402 – reference: LiXDunnJSalinsDDigital health: Tracking physiomes and activity using wearable biosensors reveals useful health-related informationPLOS Biol.2017151e200140210.1371/journal.pbio.2001402280811445230763 – reference: DaviesCLeeJYWalterJA single-arm, open-label, multicenter, and comparative study of the ANNE sleep system vs polysomnography to diagnose obstructive sleep apneaJ. Clin. Sleep Med.202218122703271210.5664/jcsm.10194359349269713912 – reference: VogelsEAAbout one-in-Five Americans Use a Smart Watch or Fitness Tracker2020Washington, DCPew Research Center – reference: DrugmanTUrbainJBauwensNObjective study of sensor relevance for automatic cough detectionIEEE J. Biomed. Health Inform.201317369970710.1109/JBHI.2013.223930324592470 – reference: AbirFFAlyafeiKChowdhuryMEHPCovNet: A presymptomatic COVID-19 detection framework using deep learning model using wearables dataComput Biol Med.20221471056821:CAS:528:DC%2BB38XhsFOku7zF10.1016/j.compbiomed.2022.105682357145049170596 – reference: QuerGRadinJMGadaletaMWearable sensor data and self-reported symptoms for COVID-19 detectionNat. Med.202127173771:CAS:528:DC%2BB3cXit1ersLnM10.1038/s41591-020-1123-x33122860 – reference: ObermeyerZPowersBVogeliCMullainathanSDissecting racial bias in an algorithm used to manage the health of populationsScience.201936664644474532019Sci...366..447O1:CAS:528:DC%2BC1MXitVemtrjF10.1126/science.aax234231649194 – reference: NatarajanASuHWHeneghanCAssessment of physiological signs associated with COVID-19 measured using wearable devicesNPJ Digit. Med.20203115610.1038/s41746-020-00363-7332990957705652 – reference: Bogu, G. K., & Snyder, M. P. Deep learning-based detection of COVID-19 using wearables data. MedRxiv. 2021. – reference: BouzidDVisseauxBKassasseyaCComparison of patients infected with delta versus omicron COVID-19 variants presenting to Paris emergency departments: A retrospective cohort studyAnn. Intern. Med.2022175683183710.7326/M22-030835286147 – volume: 4 start-page: 148 issue: 2 year: 2020 ident: 57830_CR21 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0480-6 – volume: 9 start-page: 28 year: 2019 ident: 57830_CR7 publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2019.01.001 – volume: 118 start-page: e2026610118 issue: 19 year: 2021 ident: 57830_CR38 publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.2026610118 – volume: 27 start-page: 73 issue: 1 year: 2021 ident: 57830_CR15 publication-title: Nat. Med. doi: 10.1038/s41591-020-1123-x – volume: 26 start-page: 418 issue: 3 year: 2020 ident: 57830_CR22 publication-title: Nat. Med. doi: 10.1038/s41591-020-0792-9 – volume: 3 start-page: 156 issue: 1 year: 2020 ident: 57830_CR30 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-020-00363-7 – volume: 15 start-page: e2001402 issue: 1 year: 2017 ident: 57830_CR8 publication-title: PLOS Biol. doi: 10.1371/journal.pbio.2001402 – volume: 28 start-page: 175 issue: 1 year: 2022 ident: 57830_CR34 publication-title: Nat. Med. doi: 10.1038/s41591-021-01593-2 – volume: 366 start-page: 447 issue: 6464 year: 2019 ident: 57830_CR37 publication-title: Science. doi: 10.1126/science.aax2342 – volume: 118 start-page: e2100466118 issue: 20 year: 2021 ident: 57830_CR25 publication-title: Proc. Natl. Acad. Sci. U S A. doi: 10.1073/pnas.2100466118 – volume: 10 start-page: 264 issue: 2 year: 2022 ident: 57830_CR36 publication-title: Vaccines Basel doi: 10.3390/vaccines10020264 – volume: 17 start-page: 699 issue: 3 year: 2013 ident: 57830_CR28 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2013.2239303 – volume: 382 start-page: 2158 issue: 22 year: 2020 ident: 57830_CR3 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMe2009758 – volume: 147 start-page: 105682 year: 2022 ident: 57830_CR2 publication-title: Comput Biol Med. doi: 10.1016/j.compbiomed.2022.105682 – volume: 2 start-page: 558695 year: 2020 ident: 57830_CR11 publication-title: Front Digit Health doi: 10.3389/fdgth.2020.00008 – volume: 11 start-page: 9973 issue: 1 year: 2021 ident: 57830_CR29 publication-title: Sci. Rep. doi: 10.1038/s41598-021-89457-0 – volume: 363 start-page: eaau0780 issue: 6430 year: 2019 ident: 57830_CR23 publication-title: Science doi: 10.1126/science.aau0780 – volume: 111 start-page: 950 issue: 10 year: 2021 ident: 57830_CR17 publication-title: S. Afr. Med. J. doi: 10.7196/SAMJ.2021.v111i10.15880 – volume: 12 start-page: 3463 issue: 1 year: 2022 ident: 57830_CR32 publication-title: Sci. Rep. doi: 10.1038/s41598-022-07314-0 – volume: 4 start-page: e2128534 issue: 9 year: 2021 ident: 57830_CR9 publication-title: JAMA Netw. Open. doi: 10.1001/jamanetworkopen.2021.28534 – volume: 58 start-page: 123 issue: 2 year: 2021 ident: 57830_CR27 publication-title: Ann. Clin. Biochem. doi: 10.1177/0004563220981106 – ident: 57830_CR16 doi: 10.1101/2021.01.08.21249474 – ident: 57830_CR1 – volume: 15 start-page: e0243693 issue: 12 year: 2020 ident: 57830_CR31 publication-title: PLOS One doi: 10.1371/journal.pone.0243693 – volume: 4 start-page: 1208 issue: 12 year: 2020 ident: 57830_CR14 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-00640-6 – volume: 175 start-page: 831 issue: 6 year: 2022 ident: 57830_CR39 publication-title: Ann. Intern. Med. doi: 10.7326/M22-0308 – ident: 57830_CR13 doi: 10.3201/eid2607.201595 – volume-title: About one-in-Five Americans Use a Smart Watch or Fitness Tracker year: 2020 ident: 57830_CR12 – volume: 17 start-page: 46 year: 2021 ident: 57830_CR19 publication-title: Curr. Opin. Endocr. Metab. Res. doi: 10.1016/j.coemr.2021.01.002 – volume: 18 start-page: 2703 issue: 12 year: 2022 ident: 57830_CR20 publication-title: J. Clin. Sleep Med. doi: 10.5664/jcsm.10194 – volume: 2 start-page: e85 issue: 2 year: 2020 ident: 57830_CR10 publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(19)30222-5 – volume: 1 start-page: 275 year: 2020 ident: 57830_CR18 publication-title: IEEE Open J. Eng. Med. Biol. doi: 10.1109/OJEMB.2020.3026928 – volume: 15 start-page: 429 issue: 5 year: 2018 ident: 57830_CR6 publication-title: Pers. Med. doi: 10.2217/pme-2018-0044 – volume: 26 start-page: 672 issue: 5 year: 2020 ident: 57830_CR4 publication-title: Nat. Med. doi: 10.1038/s41591-020-0869-5 – volume: 44 start-page: A160 issue: 2 year: 2021 ident: 57830_CR26 publication-title: Sleep doi: 10.1093/sleep/zsab072.402 – volume: 5 start-page: 49 issue: 1 year: 2022 ident: 57830_CR35 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-022-00591-z – ident: 57830_CR24 doi: 10.5664/jcsm.10194 – volume: 40 start-page: 095007 issue: 9 year: 2019 ident: 57830_CR33 publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab3be0 – volume: 323 start-page: 2249 issue: 22 year: 2020 ident: 57830_CR5 publication-title: JAMA doi: 10.1001/jama.2020.8259 |
SSID | ssj0000529419 |
Score | 2.4480245 |
Snippet | There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use... Abstract There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8072 |
SubjectTerms | 692/1807/1809 692/308/53/2421 692/699/255/2514 692/700/478/174 Algorithms Artificial intelligence Biomarkers Cough COVID-19 Disease detection Heart rate Humanities and Social Sciences multidisciplinary Physiology Respiration Science Science (multidisciplinary) Sensors |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66Ivgi3u26SgTfNGyaprcn0dFlFbwgjsxbyHVcWNvZtoP4e_yjntOms4q6T4U0CQnnmnw55xDyRFgp0BRj1QDDZClyBl4GHFXAFhhR5sKOlznv3hfHS_l2la_ihVsfn1XOOnFU1K61eEd-CKoWZUHw6vnmjGHVKERXYwmNy-QKpi7DJ13lqtzdsSCKJdM6xsrwrDrswV5hTJmQDFg140z-YY_GtP3_8jX_wklH83N0g1yPfiN9MRH6Jrnkm1vk6lRJ8sdt8nPZe9oGioww5YSgJ78l26RDS2N4FN10iM2glqP6dA1bHL5-63GsxYI9VDeOflx8YnBODicdLIouPnx584qlNZ0fbjU9RePnaNtA22Y79BSjVOgcZcnWnXaefgchwsAs2sNRue36O2R59Prz4pjF-gvMyiofmIOjXq15IYTnqc50oU3gnmvruDagsMGwWWGDr4zOUh986YLQCFNCe6mFye6SvaZt_H1CC25ANZqy0HWAuTNTBVshIlvmeShqnZB0poKyMTk51sg4VSNInlVqopwCyqmRckom5OluzGZKzXFh75dI3F1PTKs9NrTdWkUpVbnnQTpZWBngm9a6ChocNues1HVlioQczKyhoqz36pwzE_J49xukFKEX3fh2O_bBiEJQ6Qm5N7HUbiUIzYKjJxLybOax88n_v6H9i9fygFwTyOb4yCg_IHtDt_UPwX8azKNRSH4BuBEXHg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_OE8EX8fuqp0TwTaNtmn49iOjqcQqnIq7cW0jSZF1Y27Xtovf3-I86049VcfXJp0KahLTz9ZtOZwbgvrBSkCmmrgGGy0wkHFEGuipoC4zIEmH7jzknb9LjuXx9mpzuwdTuaHyB7U7XjvpJzZvVo29fzp6iwD8ZUsbzxy0aIUoUE5Ij_8Uhl-fgPFqmjAT1ZIT7Q61vUcioGHNndi_9zT71Zfx3Yc8_4qa9OTq6DJdGHMmeDYS_AnuuugoXhs6SZ9fg-7x1rPaMGGOoEcGWvxTfZF3NxnQptm4oVkNaj-nVom6W3afPLa211MCH6apk72bvOfrNftngodjs7cdXL3hUsOlHrqplZAxLVlc4tt50LaOsFTZlXfJFo0vHvqJQUaIWa9F1rpv2OsyPXn6YHfOxHwO3Mk86XqLrV-gwFcKFkY51qo0PXahtGWqDChwNnRXWu9zoOHLeZaUXmsKWOJ5pYeIbsF_VlTsAloYGVaXJUl143Ds2ubc5RWizJPFpoQOIJiooOxYrp54ZK9UHzeNcDZRTSDnVU07JAB5s16yHUh3_nP2ciLudSWW2-4G6WahRalXiQi9LmVrp8RoVOvcaAVxZWqmL3KQBHE6soSbWVQgKSGuLMA_g3vY2Si2FYnTl6k0_hzIMUcUHcHNgqe1JKFSLwE8E8HDisZ-b__2Bbv2PB7oNFwUJA_2alBzCftds3B1EXZ2524vSD4tjKA0 priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3ZitUwNIwjgi_iuFZHieCbBtM03R5n6gyj4IJ4Zd5CkibXC2N7aXsRv8cf9Zx0UXEUfCqkJyXl7DkbIU-FlQJVMU4NMEzmImVgZYCrArrAiDwVNlzmvHmbna3k6_P0fI-IuRYmJO2HlpZBTM_ZYS96UDRYDCYkAxpLOJNXyFVs3Y5UXWXVcq-CkSsZl1N9DE-KS7b-poNCq_7L7Ms_YqNB5ZzeJDcmW5Eejac7IHuuuUWujdMjv90m31e9o62nePqxDwTd_NJgkw4tnUqi6LbDeAxKNqov1m23GT5_6XGvxSE9VDc1fV99YOAb-00Hh6LVu0-vXrK4pHOyVtNTVHg1bRtY2-6GnmJlCp0rK9m607WjX4FxsBiL9uAet11_h6xOTz5WZ2yaucCsLNKB1eDelZpnQjge60Rn2njuuLY11waENCgzK6x3hdFJ7LzLay80hiZhPdfCJHfJftM27j6hGTcgDk2e6dLDtxNTeFtgFDZPU5-VOiLxjAVlp4bkOBfjQoXAeFKoEXMKMKcC5pSMyLNlz3Zsx_FP6GNE7gKJrbTDQtut1URaKnXcy1pmVnp4xqUuvAYjra6t1GVhsogczqShJv7uFSh-lMyCFxF5srwGzsRwi25cuwswWEUIYjwi90aSWk6C4Vgw7kREns809vPjf_-hB_8H_pBcF0j2mGiUHpL9odu5R2BDDeZxYJofPMwVBA priority: 102 providerName: Springer Nature |
Title | Use of artificial intelligence to develop predictive algorithms of cough and PCR-confirmed COVID-19 infections based on inputs from clinical-grade wearable sensors |
URI | https://link.springer.com/article/10.1038/s41598-024-57830-4 https://www.ncbi.nlm.nih.gov/pubmed/38580712 https://www.proquest.com/docview/3033763208 https://www.proquest.com/docview/3034244088 https://doaj.org/article/5e0f4d46c4ff4d19a8fa397ddc4a98b6 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIkL4k2grIzEDaw6jvM6bkOrslJLVVi0N8t27HalkqySrBC_hz_KTJJdFvG6cEkkrxPZmcc3s-OZIeSVsFIgFGPXAMNkKmIGVga4KoAFRqSxsP2fOadnyclczhbxYqfVF54JG8oDDx_uIHbcy1ImVnq4h7nOvAYMLUsrdZ6Zvtg2YN6OMzVU9Ra5DPMxS4ZH2UELSIXZZEIyYNKIM_kTEvUF-39nZf4SIe2B5_geuTtajHQ6rPQ-ueGqB-T20EPy60Pybd46WnuKOxmqQdDlTplN2tV0TIyiqwajMqjfqL6-rJtld_W5xWcttuqhuirpeXHBwEP2ywYWRYv3n969ZWFON0e2qpYi7JW0rmBste5aivkpdJNfyS4bXTr6BcQHU7JoC05y3bSPyPz46GNxwsbOC8zKLO5YCU5ernkihOOhjnSijeeOa1tybUBVA6RZYb3LjI5C511aeqExQAnjqRYmekz2qrpyTwlNuAGlaNJE5x7eHZnM2wxjsWkc-yTXAQk3VFB2LEuO3TGuVR8ejzI1UE4B5VRPOSUD8nr7zGooyvHX2YdI3O1MLKjdDwCbqZHN1L_YLCD7G9ZQo5S3CuAf9bPgWUBebn8G-cSgi65cve7nYC4hKPOAPBlYarsSDMqCiScC8mbDYz9e_ucNPfsfG3pO7ggUBjyEFO-Tva5ZuxdgX3VmQm6mi3RCbk2nsw8zuB8enZ1fwGiRFJNezOB6KrPvItEmxw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVoheEG8CBYwEJ4iaOM7rgBDdttql7VJVXdSbazv2tlJJliSrqr-HO7-RmTy2IKC3niI5juXdmflmxuOZIeQN05yhKsauAcrlMQtdsDLAVQFdoFgcMt0c5uxPotGUfz4Oj1fIzz4XBq9V9pjYAHVWaDwj3wCoRVlgXvJx_t3FrlEYXe1baLRssWsuL8Blqz6Mt4C-bxnb2T4ajtyuq4CreRLWbgYOTCq9iDHj-TKQkVTWM57UmScVwBDAtWbamkTJwDfWxJllEoNvMB5LpgJY9xZZ5QG4MgOyurk9OThcnupg3Iz7aZed4wXJRgUaErPYGHdBOALP5X9owKZRwL-s278is43C27lH7naWKv3UstZ9smLyB-R227vy8iH5Ma0MLSxF1murUNCz38p70rqgXUIWnZcYDUJcpfJ8Bn9qffqtwm81tgiiMs_owfDQBc_cnpWwKTr88nW85fop7a-K5RVFdZvRIoex-aKuKObF0D6v052VMjP0AuiDqWC0Aue8KKtHZHojtHlMBnmRm6eERp4CMFZxJFMLawcqsTrBGHAchjZKpUP8ngpCd-XQsSvHuWjC8kEiWsoJoJxoKCe4Q94tv5m3xUCunb2JxF3OxELezUBRzkSHCyI0nuUZjzS38PRTmVgJJmKWaS7TREUOWe9ZQ3ToUokrWXDI6-VrwAUM9sjcFItmDuYwghJxyJOWpZY7wWAwmJbMIe97Hrta_P8_6Nn1e3lF7oyO9vfE3niy-5ysMWR5vOIUrpNBXS7MC7DeavWyExlKTm5aSn8BDQ5X0Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNYmjvM6IAS7rLoUSoVYtDdjO_ZSqSRLklXV38O_4Ncxk8cWBPTWUyTHsbw7M9_MeDwzhDzhRnBUxdg1QDOR8IiBlQGuCugCzZOIm_Yw5_1-vDsXbxfRYov8HHJh8FrlgIktUOelwTPyEUAtygL305Hrr0UcTKYvV98ZdpDCSOvQTqNjkT17cgzuW_1iNgFaP-V8-ubTeJf1HQaYEWnUsBycmUz5MefWD1SoYqWdb31lcl9pgCSAbsONs6lWYWCdTXLHFQbiYDxRXIew7gVyMQmjAGUsWSSb8x2MoIkg6_N0_DAd1aArMZ-NCwZiEvpM_KEL25YB_7Jz_4rRtqpveo1c7W1W-qpjsutkyxY3yKWui-XJTfJjXltaOopM2NWjoIe_FfqkTUn71Cy6qjAuhAhL1dES_tLm67cavzXYLIiqIqcH448MfHR3WMGm6PjD59mEBRkdLo0VNUXFm9OygLHVuqkpZsjQIcOTLSuVW3oM1MGkMFqDm15W9S0yPxfK3CbbRVnYu4TGvgZY1kmsMgdrhzp1JsVocBJFLs6UR4KBCtL0hdGxP8eRbAP0YSo7ykmgnGwpJ4VHnm2-WXVlQc6c_RqJu5mJJb3bgbJayh4hZGR9J3IRG-HgGWQqdQqMxTw3QmWpjj2yM7CG7HGmlqdS4ZHHm9eAEBj2UYUt1-0czGYEdeKROx1LbXaCYWEwMrlHng88drr4_3_QvbP38ohcBtmU72b7e_fJFY4cj3edoh2y3VRr-wDMuEY_bOWFki_nLaC_ACXnWqE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+artificial+intelligence+to+develop+predictive+algorithms+of+cough+and+PCR-confirmed+COVID-19+infections+based+on+inputs+from+clinical-grade+wearable+sensors&rft.jtitle=Scientific+reports&rft.au=Jessica+R.+Walter&rft.au=Jong+Yoon+Lee&rft.au=Lian+Yu&rft.au=Brandon+Kim&rft.date=2024-04-05&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41598-024-57830-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5e0f4d46c4ff4d19a8fa397ddc4a98b6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |