Use of artificial intelligence to develop predictive algorithms of cough and PCR-confirmed COVID-19 infections based on inputs from clinical-grade wearable sensors

There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detectio...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 8072 - 11
Main Authors Walter, Jessica R., Lee, Jong Yoon, Yu, Lian, Kim, Brandon, Martell, Knute, Opdycke, Anita, Scheffel, Jenny, Felsl, Ingrid, Patel, Soham, Rangel, Stephanie, Serao, Alexa, Edel, Claire, Bharat, Ankit, Xu, Shuai
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.04.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detection and (2) early detection of COVID-19, through the retrospective analysis of prospectively collected physiological data from longitudinal wear of ANNE sensors in a multicenter single arm study of subjects at high risk for COVID-19 due to occupational or home exposures. The study employed a two-fold approach: cough detection algorithm development and COVID-19 detection algorithm development. For cough detection, healthy individuals wore an ANNE One chest sensor during scripted activity. The final performance of the algorithm achieved an F-1 score of 83.3% in twenty-seven healthy subjects during biomarker validation. In the COVID-19 detection algorithm, individuals at high-risk for developing COVID-19 because of recent exposures received ANNE One sensors and completed daily symptom surveys. An algorithm analyzing vital parameters (heart rate, respiratory rate, cough count, etc.) for early COVID-19 detection was developed. The COVID-19 detection algorithm exhibited a sensitivity of 0.47 and specificity of 0.72 for detecting COVID-19 in 325 individuals with recent exposures. Participants demonstrated high adherence (≥ 4 days of wear per week). ANNE One shows promise for detection of COVID-19. Inclusion of respiratory biomarkers (e.g., cough count) enhanced the algorithm's predictive ability. These findings highlight the potential value of wearable devices in early disease detection and monitoring.
AbstractList There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detection and (2) early detection of COVID-19, through the retrospective analysis of prospectively collected physiological data from longitudinal wear of ANNE sensors in a multicenter single arm study of subjects at high risk for COVID-19 due to occupational or home exposures. The study employed a two-fold approach: cough detection algorithm development and COVID-19 detection algorithm development. For cough detection, healthy individuals wore an ANNE One chest sensor during scripted activity. The final performance of the algorithm achieved an F-1 score of 83.3% in twenty-seven healthy subjects during biomarker validation. In the COVID-19 detection algorithm, individuals at high-risk for developing COVID-19 because of recent exposures received ANNE One sensors and completed daily symptom surveys. An algorithm analyzing vital parameters (heart rate, respiratory rate, cough count, etc.) for early COVID-19 detection was developed. The COVID-19 detection algorithm exhibited a sensitivity of 0.47 and specificity of 0.72 for detecting COVID-19 in 325 individuals with recent exposures. Participants demonstrated high adherence (≥ 4 days of wear per week). ANNE One shows promise for detection of COVID-19. Inclusion of respiratory biomarkers (e.g., cough count) enhanced the algorithm's predictive ability. These findings highlight the potential value of wearable devices in early disease detection and monitoring.There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detection and (2) early detection of COVID-19, through the retrospective analysis of prospectively collected physiological data from longitudinal wear of ANNE sensors in a multicenter single arm study of subjects at high risk for COVID-19 due to occupational or home exposures. The study employed a two-fold approach: cough detection algorithm development and COVID-19 detection algorithm development. For cough detection, healthy individuals wore an ANNE One chest sensor during scripted activity. The final performance of the algorithm achieved an F-1 score of 83.3% in twenty-seven healthy subjects during biomarker validation. In the COVID-19 detection algorithm, individuals at high-risk for developing COVID-19 because of recent exposures received ANNE One sensors and completed daily symptom surveys. An algorithm analyzing vital parameters (heart rate, respiratory rate, cough count, etc.) for early COVID-19 detection was developed. The COVID-19 detection algorithm exhibited a sensitivity of 0.47 and specificity of 0.72 for detecting COVID-19 in 325 individuals with recent exposures. Participants demonstrated high adherence (≥ 4 days of wear per week). ANNE One shows promise for detection of COVID-19. Inclusion of respiratory biomarkers (e.g., cough count) enhanced the algorithm's predictive ability. These findings highlight the potential value of wearable devices in early disease detection and monitoring.
There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detection and (2) early detection of COVID-19, through the retrospective analysis of prospectively collected physiological data from longitudinal wear of ANNE sensors in a multicenter single arm study of subjects at high risk for COVID-19 due to occupational or home exposures. The study employed a two-fold approach: cough detection algorithm development and COVID-19 detection algorithm development. For cough detection, healthy individuals wore an ANNE One chest sensor during scripted activity. The final performance of the algorithm achieved an F-1 score of 83.3% in twenty-seven healthy subjects during biomarker validation. In the COVID-19 detection algorithm, individuals at high-risk for developing COVID-19 because of recent exposures received ANNE One sensors and completed daily symptom surveys. An algorithm analyzing vital parameters (heart rate, respiratory rate, cough count, etc.) for early COVID-19 detection was developed. The COVID-19 detection algorithm exhibited a sensitivity of 0.47 and specificity of 0.72 for detecting COVID-19 in 325 individuals with recent exposures. Participants demonstrated high adherence (≥ 4 days of wear per week). ANNE One shows promise for detection of COVID-19. Inclusion of respiratory biomarkers (e.g., cough count) enhanced the algorithm's predictive ability. These findings highlight the potential value of wearable devices in early disease detection and monitoring.
Abstract There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detection and (2) early detection of COVID-19, through the retrospective analysis of prospectively collected physiological data from longitudinal wear of ANNE sensors in a multicenter single arm study of subjects at high risk for COVID-19 due to occupational or home exposures. The study employed a two-fold approach: cough detection algorithm development and COVID-19 detection algorithm development. For cough detection, healthy individuals wore an ANNE One chest sensor during scripted activity. The final performance of the algorithm achieved an F-1 score of 83.3% in twenty-seven healthy subjects during biomarker validation. In the COVID-19 detection algorithm, individuals at high-risk for developing COVID-19 because of recent exposures received ANNE One sensors and completed daily symptom surveys. An algorithm analyzing vital parameters (heart rate, respiratory rate, cough count, etc.) for early COVID-19 detection was developed. The COVID-19 detection algorithm exhibited a sensitivity of 0.47 and specificity of 0.72 for detecting COVID-19 in 325 individuals with recent exposures. Participants demonstrated high adherence (≥ 4 days of wear per week). ANNE One shows promise for detection of COVID-19. Inclusion of respiratory biomarkers (e.g., cough count) enhanced the algorithm's predictive ability. These findings highlight the potential value of wearable devices in early disease detection and monitoring.
There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detection and (2) early detection of COVID-19, through the retrospective analysis of prospectively collected physiological data from longitudinal wear of ANNE sensors in a multicenter single arm study of subjects at high risk for COVID-19 due to occupational or home exposures. The study employed a two-fold approach: cough detection algorithm development and COVID-19 detection algorithm development. For cough detection, healthy individuals wore an ANNE One chest sensor during scripted activity. The final performance of the algorithm achieved an F-1 score of 83.3% in twenty-seven healthy subjects during biomarker validation. In the COVID-19 detection algorithm, individuals at high-risk for developing COVID-19 because of recent exposures received ANNE One sensors and completed daily symptom surveys. An algorithm analyzing vital parameters (heart rate, respiratory rate, cough count, etc.) for early COVID-19 detection was developed. The COVID-19 detection algorithm exhibited a sensitivity of 0.47 and specificity of 0.72 for detecting COVID-19 in 325 individuals with recent exposures. Participants demonstrated high adherence (≥ 4 days of wear per week). ANNE One shows promise for detection of COVID-19. Inclusion of respiratory biomarkers (e.g., cough count) enhanced the algorithm's predictive ability. These findings highlight the potential value of wearable devices in early disease detection and monitoring.
ArticleNumber 8072
Author Edel, Claire
Opdycke, Anita
Yu, Lian
Rangel, Stephanie
Felsl, Ingrid
Xu, Shuai
Serao, Alexa
Martell, Knute
Bharat, Ankit
Lee, Jong Yoon
Kim, Brandon
Walter, Jessica R.
Patel, Soham
Scheffel, Jenny
Author_xml – sequence: 1
  givenname: Jessica R.
  surname: Walter
  fullname: Walter, Jessica R.
  organization: Department of Obstetrics and Gynecology, Northwestern University
– sequence: 2
  givenname: Jong Yoon
  surname: Lee
  fullname: Lee, Jong Yoon
  organization: Sibel Health, Querrey Simpson Institute for Bioelectronics, Northwestern University
– sequence: 3
  givenname: Lian
  surname: Yu
  fullname: Yu, Lian
  organization: Sibel Health, Querrey Simpson Institute for Bioelectronics, Northwestern University
– sequence: 4
  givenname: Brandon
  surname: Kim
  fullname: Kim, Brandon
  organization: Sibel Health, Querrey Simpson Institute for Bioelectronics, Northwestern University
– sequence: 5
  givenname: Knute
  surname: Martell
  fullname: Martell, Knute
  organization: Department of Dermatology, Northwestern University Feinberg School of Medicine
– sequence: 6
  givenname: Anita
  surname: Opdycke
  fullname: Opdycke, Anita
  organization: Northwestern University
– sequence: 7
  givenname: Jenny
  surname: Scheffel
  fullname: Scheffel, Jenny
  organization: Northwestern University
– sequence: 8
  givenname: Ingrid
  surname: Felsl
  fullname: Felsl, Ingrid
  organization: Northwestern University
– sequence: 9
  givenname: Soham
  surname: Patel
  fullname: Patel, Soham
  organization: Department of Dermatology, Northwestern University Feinberg School of Medicine
– sequence: 10
  givenname: Stephanie
  surname: Rangel
  fullname: Rangel, Stephanie
  organization: Department of Dermatology, Northwestern University Feinberg School of Medicine
– sequence: 11
  givenname: Alexa
  surname: Serao
  fullname: Serao, Alexa
  organization: Department of Dermatology, Northwestern University Feinberg School of Medicine
– sequence: 12
  givenname: Claire
  surname: Edel
  fullname: Edel, Claire
  organization: Department of Dermatology, Northwestern University Feinberg School of Medicine
– sequence: 13
  givenname: Ankit
  surname: Bharat
  fullname: Bharat, Ankit
  organization: Department of Surgery, Northwestern University
– sequence: 14
  givenname: Shuai
  surname: Xu
  fullname: Xu, Shuai
  email: stevexu@northwestern.edu
  organization: Sibel Health, Querrey Simpson Institute for Bioelectronics, Northwestern University, Department of Dermatology, Northwestern University Feinberg School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38580712$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNUREvpC7BAltiwCfgvE2eJpvyMVKkIUbbWjX2depSxBzsp4nl4UZxOC6iLemPr-jtH18f3eXUUYsCqesnoW0aFepclazpVUy7rplWC1vJJdcKpbGouOD_673xcneW8pWU1vJOse1YdC9Uo2jJ-Uv2-ykiiI5Am77zxMBIfJhxHP2AwSKZILN7gGPdkn9B6M_kbJDAOMfnpepcXrYnzcE0gWPJl_bU2MTifdmjJ-vL75rxmXXF0WIQxZNJDLjcxlNp-njJxKe6IGX3wBsZ6SGCR_ERI0I9IMoYcU35RPXUwZjy720-rq48fvq0_1xeXnzbr9xe1kaqZatuytgO64hwpAwEr6B1FCsZS6BGMkq3hxqHqQTB02FrHgTLZlHoLvBen1ebgayNs9T75HaRfOoLXt4WYBr3EZEbUDVInrVwZ6crOOlAORNdaayR0ql8VrzcHr32KP2bMk975bEquEDDOWQsqJJeSKlXQ1w_QbZxTKC9dKNGuBKcL9eqOmvsS7t_27r-yAOoAmBRzTui08RMsqU8J_KgZ1cvg6MPg6DI4-nZwtCxS_kB67_6oSBxEucBhwPSv7UdUfwBG1teJ
CitedBy_id crossref_primary_10_1038_s41746_024_01287_2
crossref_primary_10_1007_s42452_024_06307_0
crossref_primary_10_1016_j_cej_2025_159478
Cites_doi 10.1038/s41551-019-0480-6
10.1016/j.cobme.2019.01.001
10.1073/pnas.2026610118
10.1038/s41591-020-1123-x
10.1038/s41591-020-0792-9
10.1038/s41746-020-00363-7
10.1371/journal.pbio.2001402
10.1038/s41591-021-01593-2
10.1126/science.aax2342
10.1073/pnas.2100466118
10.3390/vaccines10020264
10.1109/JBHI.2013.2239303
10.1056/NEJMe2009758
10.1016/j.compbiomed.2022.105682
10.3389/fdgth.2020.00008
10.1038/s41598-021-89457-0
10.1126/science.aau0780
10.7196/SAMJ.2021.v111i10.15880
10.1038/s41598-022-07314-0
10.1001/jamanetworkopen.2021.28534
10.1177/0004563220981106
10.1101/2021.01.08.21249474
10.1371/journal.pone.0243693
10.1038/s41551-020-00640-6
10.7326/M22-0308
10.3201/eid2607.201595
10.1016/j.coemr.2021.01.002
10.5664/jcsm.10194
10.1016/S2589-7500(19)30222-5
10.1109/OJEMB.2020.3026928
10.2217/pme-2018-0044
10.1038/s41591-020-0869-5
10.1093/sleep/zsab072.402
10.1038/s41746-022-00591-z
10.1088/1361-6579/ab3be0
10.1001/jama.2020.8259
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOA
DOI 10.1038/s41598-024-57830-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_5e0f4d46c4ff4d19a8fa397ddc4a98b6
38580712
10_1038_s41598_024_57830_4
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c485t-d7179a0622e01a3a6abf0e0acd0abeac847c2cfe8ba31efe7df2a014547c7a2b3
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:00 EDT 2025
Thu Jul 10 18:24:20 EDT 2025
Wed Aug 13 04:10:53 EDT 2025
Mon Jul 21 05:50:48 EDT 2025
Tue Jul 01 00:51:45 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Fri Feb 21 02:39:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-d7179a0622e01a3a6abf0e0acd0abeac847c2cfe8ba31efe7df2a014547c7a2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/5e0f4d46c4ff4d19a8fa397ddc4a98b6
PMID 38580712
PQID 3033763208
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_5e0f4d46c4ff4d19a8fa397ddc4a98b6
proquest_miscellaneous_3034244088
proquest_journals_3033763208
pubmed_primary_38580712
crossref_citationtrail_10_1038_s41598_024_57830_4
crossref_primary_10_1038_s41598_024_57830_4
springer_journals_10_1038_s41598_024_57830_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-05
PublicationDateYYYYMMDD 2024-04-05
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References RadinJMWineingerNETopolEJSteinhublSRHarnessing wearable device data to improve state-level real-time surveillance of influenza-like illness in the USA: A population-based studyLancet Digit. Health202022e85e9310.1016/S2589-7500(19)30222-5333345658048388
Davies, J.Y.L.C., Walter, J., Kim, D., Yu, L., Park, J., Blake, S., Kalluri, L., Cziraky, M., Stanek, E., Miller, J., Harty, B. J., Chung, H. U., Ryu, D., Schauer, J., Rangel, S., Serao, A., Eid, C., Ran, D. S., Olagbenro, M. O., Lim, A., Gill, K., Cooksey, J., Power, T., Xu, S. & Zee, P. A single arm, open-label, multi-center, and comparative study of the ANNE sleep system versus polysomnography to diagnose obstructive sleep apnea. Under Consideration (2022).
LeeJYKimDBlakeSKalluriLWalterJDaviesCZeePXuSPowerTComparative study of wireless sensors versus type iii home sleep apnea test for home-based diagnosis of obstructive sleep apneaSleep2021442A16010.1093/sleep/zsab072.402
DaviesCLeeJYWalterJA single-arm, open-label, multicenter, and comparative study of the ANNE sleep system vs polysomnography to diagnose obstructive sleep apneaJ. Clin. Sleep Med.202218122703271210.5664/jcsm.10194359349269713912
Furukawa, N. W., Brooks, J. T. & Sobel, J. Evidence supporting transmission of severe acute respiratory syndrome coronavirus 2 while presymptomatic or asymptomatic. Emerg Infect Dis.26(7) (2020).
WittDKelloggRSnyderMDunnJWindows into human health through wearables data analyticsCurr. Opin. Biomed. Eng.20199284610.1016/j.cobme.2019.01.001318325666907085
WHO Coronavirus Disease Dashboard.
OtoshiTNaganoTIzumiSA novel automatic cough frequency monitoring system combining a triaxial accelerometer and a stretchable strain sensorSci. Rep.202111199732021NatSR..11.9973O1:CAS:528:DC%2BB3MXhtFWgtbrJ10.1038/s41598-021-89457-0339762868113562
AbirFFAlyafeiKChowdhuryMEHPCovNet: A presymptomatic COVID-19 detection framework using deep learning model using wearables dataComput Biol Med.20221471056821:CAS:528:DC%2BB38XhsFOku7zF10.1016/j.compbiomed.2022.105682357145049170596
RyuDKimDHPriceJTComprehensive pregnancy monitoring with a network of wireless, soft, and flexible sensors in high- and low-resource health settingsProc. Natl. Acad. Sci. U S A.202111820e21004661181:CAS:528:DC%2BB3MXhtFaqtrjE10.1073/pnas.2100466118339724458157941
BouzidDVisseauxBKassasseyaCComparison of patients infected with delta versus omicron COVID-19 variants presenting to Paris emergency departments: A retrospective cohort studyAnn. Intern. Med.2022175683183710.7326/M22-030835286147
MasonAEKaslPHartogensisWMetrics from wearable devices as candidate predictors of antibody response following vaccination against COVID-19: Data from the second TemPredict studyVaccines Basel20221022641:CAS:528:DC%2BB38Xmt1Cht7Y%3D10.3390/vaccines10020264352147238877860
MasonAEHechtFMDavisSKDetection of COVID-19 using multimodal data from a wearable device: Results from the first TemPredict StudySci. Rep.202212134632022NatSR..12.3463M1:CAS:528:DC%2BB38Xls1OnsLc%3D10.1038/s41598-022-07314-0352368968891385
ObermeyerZPowersBVogeliCMullainathanSDissecting racial bias in an algorithm used to manage the health of populationsScience.201936664644474532019Sci...366..447O1:CAS:528:DC%2BC1MXitVemtrjF10.1126/science.aax234231649194
LiXDunnJSalinsDDigital health: Tracking physiomes and activity using wearable biosensors reveals useful health-related informationPLOS Biol.2017151e200140210.1371/journal.pbio.2001402280811445230763
NatarajanASuHWHeneghanCAssessment of physiological signs associated with COVID-19 measured using wearable devicesNPJ Digit. Med.20203115610.1038/s41746-020-00363-7332990957705652
ChungHUKimBHLeeJYBinodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive careScience20193636430eaau07801:CAS:528:DC%2BC1MXjs1OmtbY%3D10.1126/science.aau0780308199346510306
QuerGRadinJMGadaletaMWearable sensor data and self-reported symptoms for COVID-19 detectionNat. Med.202127173771:CAS:528:DC%2BB3cXit1ersLnM10.1038/s41591-020-1123-x33122860
LaguartaJHuetoFSubiranaBCOVID-19 artificial intelligence diagnosis using only cough recordingsIEEE Open J. Eng. Med. Biol.2020127528110.1109/OJEMB.2020.302692834812418
DrugmanTUrbainJBauwensNObjective study of sensor relevance for automatic cough detectionIEEE J. Biomed. Health Inform.201317369970710.1109/JBHI.2013.223930324592470
LeeKNiXLeeJYMechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notchNat. Biomed. Eng.2020421481582020smb3.book.....L10.1038/s41551-019-0480-631768002
HeXLauEHYWuPTemporal dynamics in viral shedding and transmissibility of COVID-19Nat. Med.20202656726751:CAS:528:DC%2BB3cXntFOltbw%3D10.1038/s41591-020-0869-532296168
DunnJRungeRSnyderMWearables and the medical revolutionPers. Med.20181554294481:CAS:528:DC%2BC1cXhvVyhtr3K10.2217/pme-2018-0044
VogelsEAAbout one-in-Five Americans Use a Smart Watch or Fitness Tracker2020Washington, DCPew Research Center
SeshadriDRDaviesEVHarlowERHsuJJKnightonSCWalkerTAVoosJEDrummondCKWearable sensors for COVID-19: A call to action to harness our digital infrastructure for remote patient monitoring and virtual assessmentsFront Digit Health2020255869510.3389/fdgth.2020.00008
MillerDJCapodilupoJVLastellaMAnalyzing changes in respiratory rate to predict the risk of COVID-19 infectionPLOS One20201512e02436931:CAS:528:DC%2BB3MXhsFGjtw%3D%3D10.1371/journal.pone.0243693333014937728254
AlaviABoguGKWangMReal-time alerting system for COVID-19 and other stress events using wearable dataNat. Med.20222811751841:CAS:528:DC%2BB3MXis1WhsLfP10.1038/s41591-021-01593-234845389
HernandoAPelaez-CocaMDLozanoMTLazaroJGilEFinger and forehead PPG signal comparison for respiratory rate estimationPhysiol. Meas.20194090950071:STN:280:DC%2BB3MvptVSrsw%3D%3D10.1088/1361-6579/ab3be031422948
GrzesiakEBentBMcClainMTAssessment of the feasibility of using noninvasive wearable biometric monitoring sensors to detect influenza and the common cold before symptom onsetJAMA Netw. Open.202149e212853410.1001/jamanetworkopen.2021.28534345863648482058
NiXOuyangWJeongHAutomated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patientsProc. Natl. Acad. Sci. U S A202111819e20266101181:CAS:528:DC%2BB3MXhtVyhtb3J10.1073/pnas.2026610118338931788126790
SethuramanNJeremiahSSRyoAInterpreting diagnostic tests for SARS-CoV-2JAMA202032322224922511:CAS:528:DC%2BB3cXhtFOntr%2FJ10.1001/jama.2020.825932374370
MishraTWangMMetwallyAAPre-symptomatic detection of COVID-19 from smartwatch dataNat. Biomed. Eng.2020412120812201:CAS:528:DC%2BB3cXisVertrvN10.1038/s41551-020-00640-6332089269020268
NematsweraniNCollieSChenTThe impact of routine pulse oximetry use on outcomes in COVID-19-infected patients at increased risk of severe disease: A retrospective cohort analysisS. Afr. Med. J.2021111109509561:CAS:528:DC%2BB38Xjs1Shtb0%3D10.7196/SAMJ.2021.v111i10.1588034949288
MoatSJZelekWMCarneEDevelopment of a high-throughput SARS-CoV-2 antibody testing pathway using dried blood spot specimensAnn. Clin. Biochem.20215821231311:CAS:528:DC%2BB3MXmsFKjsrg%3D10.1177/000456322098110633269949
Bogu, G. K., & Snyder, M. P. Deep learning-based detection of COVID-19 using wearables data. MedRxiv. 2021.
SamSTasaliERole of obstructive sleep apnea in metabolic risk in PCOSCurr. Opin. Endocr. Metab. Res.20211746511:CAS:528:DC%2BB3MXhvVOqt7vF10.1016/j.coemr.2021.01.002343684928341449
ChungHURweiAYHourlier-FargetteASkin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care unitsNat. Med.20202634184291:CAS:528:DC%2BB3cXkslGnt7Y%3D10.1038/s41591-020-0792-9321614117315772
GandhiMYokoeDSHavlirDVAsymptomatic transmission, the Achilles' heel of current strategies to control Covid-19N. Engl. J. Med.202038222215821601:CAS:528:DC%2BB3cXhtVGqsrfF10.1056/NEJMe200975832329972
QuerGGadaletaMRadinJMInter-individual variation in objective measure of reactogenicity following COVID-19 vaccination via smartwatches and fitness bandsNPJ Digit. Med.2022514910.1038/s41746-022-00591-z354406849019018
D Ryu (57830_CR25) 2021; 118
HU Chung (57830_CR22) 2020; 26
HU Chung (57830_CR23) 2019; 363
A Alavi (57830_CR34) 2022; 28
S Sam (57830_CR19) 2021; 17
EA Vogels (57830_CR12) 2020
X Ni (57830_CR38) 2021; 118
X He (57830_CR4) 2020; 26
FF Abir (57830_CR2) 2022; 147
D Witt (57830_CR7) 2019; 9
X Li (57830_CR8) 2017; 15
K Lee (57830_CR21) 2020; 4
N Nematswerani (57830_CR17) 2021; 111
T Drugman (57830_CR28) 2013; 17
G Quer (57830_CR35) 2022; 5
57830_CR1
57830_CR13
J Dunn (57830_CR6) 2018; 15
AE Mason (57830_CR32) 2022; 12
N Sethuraman (57830_CR5) 2020; 323
A Natarajan (57830_CR30) 2020; 3
SJ Moat (57830_CR27) 2021; 58
D Bouzid (57830_CR39) 2022; 175
57830_CR16
A Hernando (57830_CR33) 2019; 40
Z Obermeyer (57830_CR37) 2019; 366
JY Lee (57830_CR26) 2021; 44
DR Seshadri (57830_CR11) 2020; 2
T Mishra (57830_CR14) 2020; 4
J Laguarta (57830_CR18) 2020; 1
C Davies (57830_CR20) 2022; 18
G Quer (57830_CR15) 2021; 27
DJ Miller (57830_CR31) 2020; 15
JM Radin (57830_CR10) 2020; 2
57830_CR24
AE Mason (57830_CR36) 2022; 10
E Grzesiak (57830_CR9) 2021; 4
T Otoshi (57830_CR29) 2021; 11
M Gandhi (57830_CR3) 2020; 382
References_xml – reference: MasonAEKaslPHartogensisWMetrics from wearable devices as candidate predictors of antibody response following vaccination against COVID-19: Data from the second TemPredict studyVaccines Basel20221022641:CAS:528:DC%2BB38Xmt1Cht7Y%3D10.3390/vaccines10020264352147238877860
– reference: ChungHUKimBHLeeJYBinodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive careScience20193636430eaau07801:CAS:528:DC%2BC1MXjs1OmtbY%3D10.1126/science.aau0780308199346510306
– reference: NiXOuyangWJeongHAutomated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patientsProc. Natl. Acad. Sci. U S A202111819e20266101181:CAS:528:DC%2BB3MXhtVyhtb3J10.1073/pnas.2026610118338931788126790
– reference: MoatSJZelekWMCarneEDevelopment of a high-throughput SARS-CoV-2 antibody testing pathway using dried blood spot specimensAnn. Clin. Biochem.20215821231311:CAS:528:DC%2BB3MXmsFKjsrg%3D10.1177/000456322098110633269949
– reference: WittDKelloggRSnyderMDunnJWindows into human health through wearables data analyticsCurr. Opin. Biomed. Eng.20199284610.1016/j.cobme.2019.01.001318325666907085
– reference: GrzesiakEBentBMcClainMTAssessment of the feasibility of using noninvasive wearable biometric monitoring sensors to detect influenza and the common cold before symptom onsetJAMA Netw. Open.202149e212853410.1001/jamanetworkopen.2021.28534345863648482058
– reference: MasonAEHechtFMDavisSKDetection of COVID-19 using multimodal data from a wearable device: Results from the first TemPredict StudySci. Rep.202212134632022NatSR..12.3463M1:CAS:528:DC%2BB38Xls1OnsLc%3D10.1038/s41598-022-07314-0352368968891385
– reference: LeeKNiXLeeJYMechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notchNat. Biomed. Eng.2020421481582020smb3.book.....L10.1038/s41551-019-0480-631768002
– reference: Davies, J.Y.L.C., Walter, J., Kim, D., Yu, L., Park, J., Blake, S., Kalluri, L., Cziraky, M., Stanek, E., Miller, J., Harty, B. J., Chung, H. U., Ryu, D., Schauer, J., Rangel, S., Serao, A., Eid, C., Ran, D. S., Olagbenro, M. O., Lim, A., Gill, K., Cooksey, J., Power, T., Xu, S. & Zee, P. A single arm, open-label, multi-center, and comparative study of the ANNE sleep system versus polysomnography to diagnose obstructive sleep apnea. Under Consideration (2022).
– reference: OtoshiTNaganoTIzumiSA novel automatic cough frequency monitoring system combining a triaxial accelerometer and a stretchable strain sensorSci. Rep.202111199732021NatSR..11.9973O1:CAS:528:DC%2BB3MXhtFWgtbrJ10.1038/s41598-021-89457-0339762868113562
– reference: HeXLauEHYWuPTemporal dynamics in viral shedding and transmissibility of COVID-19Nat. Med.20202656726751:CAS:528:DC%2BB3cXntFOltbw%3D10.1038/s41591-020-0869-532296168
– reference: SeshadriDRDaviesEVHarlowERHsuJJKnightonSCWalkerTAVoosJEDrummondCKWearable sensors for COVID-19: A call to action to harness our digital infrastructure for remote patient monitoring and virtual assessmentsFront Digit Health2020255869510.3389/fdgth.2020.00008
– reference: LaguartaJHuetoFSubiranaBCOVID-19 artificial intelligence diagnosis using only cough recordingsIEEE Open J. Eng. Med. Biol.2020127528110.1109/OJEMB.2020.302692834812418
– reference: RyuDKimDHPriceJTComprehensive pregnancy monitoring with a network of wireless, soft, and flexible sensors in high- and low-resource health settingsProc. Natl. Acad. Sci. U S A.202111820e21004661181:CAS:528:DC%2BB3MXhtFaqtrjE10.1073/pnas.2100466118339724458157941
– reference: SethuramanNJeremiahSSRyoAInterpreting diagnostic tests for SARS-CoV-2JAMA202032322224922511:CAS:528:DC%2BB3cXhtFOntr%2FJ10.1001/jama.2020.825932374370
– reference: MillerDJCapodilupoJVLastellaMAnalyzing changes in respiratory rate to predict the risk of COVID-19 infectionPLOS One20201512e02436931:CAS:528:DC%2BB3MXhsFGjtw%3D%3D10.1371/journal.pone.0243693333014937728254
– reference: GandhiMYokoeDSHavlirDVAsymptomatic transmission, the Achilles' heel of current strategies to control Covid-19N. Engl. J. Med.202038222215821601:CAS:528:DC%2BB3cXhtVGqsrfF10.1056/NEJMe200975832329972
– reference: SamSTasaliERole of obstructive sleep apnea in metabolic risk in PCOSCurr. Opin. Endocr. Metab. Res.20211746511:CAS:528:DC%2BB3MXhvVOqt7vF10.1016/j.coemr.2021.01.002343684928341449
– reference: NematsweraniNCollieSChenTThe impact of routine pulse oximetry use on outcomes in COVID-19-infected patients at increased risk of severe disease: A retrospective cohort analysisS. Afr. Med. J.2021111109509561:CAS:528:DC%2BB38Xjs1Shtb0%3D10.7196/SAMJ.2021.v111i10.1588034949288
– reference: DunnJRungeRSnyderMWearables and the medical revolutionPers. Med.20181554294481:CAS:528:DC%2BC1cXhvVyhtr3K10.2217/pme-2018-0044
– reference: MishraTWangMMetwallyAAPre-symptomatic detection of COVID-19 from smartwatch dataNat. Biomed. Eng.2020412120812201:CAS:528:DC%2BB3cXisVertrvN10.1038/s41551-020-00640-6332089269020268
– reference: Furukawa, N. W., Brooks, J. T. & Sobel, J. Evidence supporting transmission of severe acute respiratory syndrome coronavirus 2 while presymptomatic or asymptomatic. Emerg Infect Dis.26(7) (2020).
– reference: WHO Coronavirus Disease Dashboard.
– reference: HernandoAPelaez-CocaMDLozanoMTLazaroJGilEFinger and forehead PPG signal comparison for respiratory rate estimationPhysiol. Meas.20194090950071:STN:280:DC%2BB3MvptVSrsw%3D%3D10.1088/1361-6579/ab3be031422948
– reference: AlaviABoguGKWangMReal-time alerting system for COVID-19 and other stress events using wearable dataNat. Med.20222811751841:CAS:528:DC%2BB3MXis1WhsLfP10.1038/s41591-021-01593-234845389
– reference: ChungHURweiAYHourlier-FargetteASkin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care unitsNat. Med.20202634184291:CAS:528:DC%2BB3cXkslGnt7Y%3D10.1038/s41591-020-0792-9321614117315772
– reference: QuerGGadaletaMRadinJMInter-individual variation in objective measure of reactogenicity following COVID-19 vaccination via smartwatches and fitness bandsNPJ Digit. Med.2022514910.1038/s41746-022-00591-z354406849019018
– reference: RadinJMWineingerNETopolEJSteinhublSRHarnessing wearable device data to improve state-level real-time surveillance of influenza-like illness in the USA: A population-based studyLancet Digit. Health202022e85e9310.1016/S2589-7500(19)30222-5333345658048388
– reference: LeeJYKimDBlakeSKalluriLWalterJDaviesCZeePXuSPowerTComparative study of wireless sensors versus type iii home sleep apnea test for home-based diagnosis of obstructive sleep apneaSleep2021442A16010.1093/sleep/zsab072.402
– reference: LiXDunnJSalinsDDigital health: Tracking physiomes and activity using wearable biosensors reveals useful health-related informationPLOS Biol.2017151e200140210.1371/journal.pbio.2001402280811445230763
– reference: DaviesCLeeJYWalterJA single-arm, open-label, multicenter, and comparative study of the ANNE sleep system vs polysomnography to diagnose obstructive sleep apneaJ. Clin. Sleep Med.202218122703271210.5664/jcsm.10194359349269713912
– reference: VogelsEAAbout one-in-Five Americans Use a Smart Watch or Fitness Tracker2020Washington, DCPew Research Center
– reference: DrugmanTUrbainJBauwensNObjective study of sensor relevance for automatic cough detectionIEEE J. Biomed. Health Inform.201317369970710.1109/JBHI.2013.223930324592470
– reference: AbirFFAlyafeiKChowdhuryMEHPCovNet: A presymptomatic COVID-19 detection framework using deep learning model using wearables dataComput Biol Med.20221471056821:CAS:528:DC%2BB38XhsFOku7zF10.1016/j.compbiomed.2022.105682357145049170596
– reference: QuerGRadinJMGadaletaMWearable sensor data and self-reported symptoms for COVID-19 detectionNat. Med.202127173771:CAS:528:DC%2BB3cXit1ersLnM10.1038/s41591-020-1123-x33122860
– reference: ObermeyerZPowersBVogeliCMullainathanSDissecting racial bias in an algorithm used to manage the health of populationsScience.201936664644474532019Sci...366..447O1:CAS:528:DC%2BC1MXitVemtrjF10.1126/science.aax234231649194
– reference: NatarajanASuHWHeneghanCAssessment of physiological signs associated with COVID-19 measured using wearable devicesNPJ Digit. Med.20203115610.1038/s41746-020-00363-7332990957705652
– reference: Bogu, G. K., & Snyder, M. P. Deep learning-based detection of COVID-19 using wearables data. MedRxiv. 2021.
– reference: BouzidDVisseauxBKassasseyaCComparison of patients infected with delta versus omicron COVID-19 variants presenting to Paris emergency departments: A retrospective cohort studyAnn. Intern. Med.2022175683183710.7326/M22-030835286147
– volume: 4
  start-page: 148
  issue: 2
  year: 2020
  ident: 57830_CR21
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0480-6
– volume: 9
  start-page: 28
  year: 2019
  ident: 57830_CR7
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2019.01.001
– volume: 118
  start-page: e2026610118
  issue: 19
  year: 2021
  ident: 57830_CR38
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.2026610118
– volume: 27
  start-page: 73
  issue: 1
  year: 2021
  ident: 57830_CR15
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-1123-x
– volume: 26
  start-page: 418
  issue: 3
  year: 2020
  ident: 57830_CR22
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0792-9
– volume: 3
  start-page: 156
  issue: 1
  year: 2020
  ident: 57830_CR30
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-020-00363-7
– volume: 15
  start-page: e2001402
  issue: 1
  year: 2017
  ident: 57830_CR8
  publication-title: PLOS Biol.
  doi: 10.1371/journal.pbio.2001402
– volume: 28
  start-page: 175
  issue: 1
  year: 2022
  ident: 57830_CR34
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01593-2
– volume: 366
  start-page: 447
  issue: 6464
  year: 2019
  ident: 57830_CR37
  publication-title: Science.
  doi: 10.1126/science.aax2342
– volume: 118
  start-page: e2100466118
  issue: 20
  year: 2021
  ident: 57830_CR25
  publication-title: Proc. Natl. Acad. Sci. U S A.
  doi: 10.1073/pnas.2100466118
– volume: 10
  start-page: 264
  issue: 2
  year: 2022
  ident: 57830_CR36
  publication-title: Vaccines Basel
  doi: 10.3390/vaccines10020264
– volume: 17
  start-page: 699
  issue: 3
  year: 2013
  ident: 57830_CR28
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2239303
– volume: 382
  start-page: 2158
  issue: 22
  year: 2020
  ident: 57830_CR3
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMe2009758
– volume: 147
  start-page: 105682
  year: 2022
  ident: 57830_CR2
  publication-title: Comput Biol Med.
  doi: 10.1016/j.compbiomed.2022.105682
– volume: 2
  start-page: 558695
  year: 2020
  ident: 57830_CR11
  publication-title: Front Digit Health
  doi: 10.3389/fdgth.2020.00008
– volume: 11
  start-page: 9973
  issue: 1
  year: 2021
  ident: 57830_CR29
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-89457-0
– volume: 363
  start-page: eaau0780
  issue: 6430
  year: 2019
  ident: 57830_CR23
  publication-title: Science
  doi: 10.1126/science.aau0780
– volume: 111
  start-page: 950
  issue: 10
  year: 2021
  ident: 57830_CR17
  publication-title: S. Afr. Med. J.
  doi: 10.7196/SAMJ.2021.v111i10.15880
– volume: 12
  start-page: 3463
  issue: 1
  year: 2022
  ident: 57830_CR32
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-07314-0
– volume: 4
  start-page: e2128534
  issue: 9
  year: 2021
  ident: 57830_CR9
  publication-title: JAMA Netw. Open.
  doi: 10.1001/jamanetworkopen.2021.28534
– volume: 58
  start-page: 123
  issue: 2
  year: 2021
  ident: 57830_CR27
  publication-title: Ann. Clin. Biochem.
  doi: 10.1177/0004563220981106
– ident: 57830_CR16
  doi: 10.1101/2021.01.08.21249474
– ident: 57830_CR1
– volume: 15
  start-page: e0243693
  issue: 12
  year: 2020
  ident: 57830_CR31
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0243693
– volume: 4
  start-page: 1208
  issue: 12
  year: 2020
  ident: 57830_CR14
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-020-00640-6
– volume: 175
  start-page: 831
  issue: 6
  year: 2022
  ident: 57830_CR39
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M22-0308
– ident: 57830_CR13
  doi: 10.3201/eid2607.201595
– volume-title: About one-in-Five Americans Use a Smart Watch or Fitness Tracker
  year: 2020
  ident: 57830_CR12
– volume: 17
  start-page: 46
  year: 2021
  ident: 57830_CR19
  publication-title: Curr. Opin. Endocr. Metab. Res.
  doi: 10.1016/j.coemr.2021.01.002
– volume: 18
  start-page: 2703
  issue: 12
  year: 2022
  ident: 57830_CR20
  publication-title: J. Clin. Sleep Med.
  doi: 10.5664/jcsm.10194
– volume: 2
  start-page: e85
  issue: 2
  year: 2020
  ident: 57830_CR10
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(19)30222-5
– volume: 1
  start-page: 275
  year: 2020
  ident: 57830_CR18
  publication-title: IEEE Open J. Eng. Med. Biol.
  doi: 10.1109/OJEMB.2020.3026928
– volume: 15
  start-page: 429
  issue: 5
  year: 2018
  ident: 57830_CR6
  publication-title: Pers. Med.
  doi: 10.2217/pme-2018-0044
– volume: 26
  start-page: 672
  issue: 5
  year: 2020
  ident: 57830_CR4
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0869-5
– volume: 44
  start-page: A160
  issue: 2
  year: 2021
  ident: 57830_CR26
  publication-title: Sleep
  doi: 10.1093/sleep/zsab072.402
– volume: 5
  start-page: 49
  issue: 1
  year: 2022
  ident: 57830_CR35
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-022-00591-z
– ident: 57830_CR24
  doi: 10.5664/jcsm.10194
– volume: 40
  start-page: 095007
  issue: 9
  year: 2019
  ident: 57830_CR33
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab3be0
– volume: 323
  start-page: 2249
  issue: 22
  year: 2020
  ident: 57830_CR5
  publication-title: JAMA
  doi: 10.1001/jama.2020.8259
SSID ssj0000529419
Score 2.4480245
Snippet There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use...
Abstract There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8072
SubjectTerms 692/1807/1809
692/308/53/2421
692/699/255/2514
692/700/478/174
Algorithms
Artificial intelligence
Biomarkers
Cough
COVID-19
Disease detection
Heart rate
Humanities and Social Sciences
multidisciplinary
Physiology
Respiration
Science
Science (multidisciplinary)
Sensors
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66Ivgi3u26SgTfNGyaprcn0dFlFbwgjsxbyHVcWNvZtoP4e_yjntOms4q6T4U0CQnnmnw55xDyRFgp0BRj1QDDZClyBl4GHFXAFhhR5sKOlznv3hfHS_l2la_ihVsfn1XOOnFU1K61eEd-CKoWZUHw6vnmjGHVKERXYwmNy-QKpi7DJ13lqtzdsSCKJdM6xsrwrDrswV5hTJmQDFg140z-YY_GtP3_8jX_wklH83N0g1yPfiN9MRH6Jrnkm1vk6lRJ8sdt8nPZe9oGioww5YSgJ78l26RDS2N4FN10iM2glqP6dA1bHL5-63GsxYI9VDeOflx8YnBODicdLIouPnx584qlNZ0fbjU9RePnaNtA22Y79BSjVOgcZcnWnXaefgchwsAs2sNRue36O2R59Prz4pjF-gvMyiofmIOjXq15IYTnqc50oU3gnmvruDagsMGwWWGDr4zOUh986YLQCFNCe6mFye6SvaZt_H1CC25ANZqy0HWAuTNTBVshIlvmeShqnZB0poKyMTk51sg4VSNInlVqopwCyqmRckom5OluzGZKzXFh75dI3F1PTKs9NrTdWkUpVbnnQTpZWBngm9a6ChocNues1HVlioQczKyhoqz36pwzE_J49xukFKEX3fh2O_bBiEJQ6Qm5N7HUbiUIzYKjJxLybOax88n_v6H9i9fygFwTyOb4yCg_IHtDt_UPwX8azKNRSH4BuBEXHg
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_OE8EX8fuqp0TwTaNtmn49iOjqcQqnIq7cW0jSZF1Y27Xtovf3-I86049VcfXJp0KahLTz9ZtOZwbgvrBSkCmmrgGGy0wkHFEGuipoC4zIEmH7jzknb9LjuXx9mpzuwdTuaHyB7U7XjvpJzZvVo29fzp6iwD8ZUsbzxy0aIUoUE5Ij_8Uhl-fgPFqmjAT1ZIT7Q61vUcioGHNndi_9zT71Zfx3Yc8_4qa9OTq6DJdGHMmeDYS_AnuuugoXhs6SZ9fg-7x1rPaMGGOoEcGWvxTfZF3NxnQptm4oVkNaj-nVom6W3afPLa211MCH6apk72bvOfrNftngodjs7cdXL3hUsOlHrqplZAxLVlc4tt50LaOsFTZlXfJFo0vHvqJQUaIWa9F1rpv2OsyPXn6YHfOxHwO3Mk86XqLrV-gwFcKFkY51qo0PXahtGWqDChwNnRXWu9zoOHLeZaUXmsKWOJ5pYeIbsF_VlTsAloYGVaXJUl143Ds2ubc5RWizJPFpoQOIJiooOxYrp54ZK9UHzeNcDZRTSDnVU07JAB5s16yHUh3_nP2ciLudSWW2-4G6WahRalXiQi9LmVrp8RoVOvcaAVxZWqmL3KQBHE6soSbWVQgKSGuLMA_g3vY2Si2FYnTl6k0_hzIMUcUHcHNgqe1JKFSLwE8E8HDisZ-b__2Bbv2PB7oNFwUJA_2alBzCftds3B1EXZ2524vSD4tjKA0
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3ZitUwNIwjgi_iuFZHieCbBtM03R5n6gyj4IJ4Zd5CkibXC2N7aXsRv8cf9Zx0UXEUfCqkJyXl7DkbIU-FlQJVMU4NMEzmImVgZYCrArrAiDwVNlzmvHmbna3k6_P0fI-IuRYmJO2HlpZBTM_ZYS96UDRYDCYkAxpLOJNXyFVs3Y5UXWXVcq-CkSsZl1N9DE-KS7b-poNCq_7L7Ms_YqNB5ZzeJDcmW5Eejac7IHuuuUWujdMjv90m31e9o62nePqxDwTd_NJgkw4tnUqi6LbDeAxKNqov1m23GT5_6XGvxSE9VDc1fV99YOAb-00Hh6LVu0-vXrK4pHOyVtNTVHg1bRtY2-6GnmJlCp0rK9m607WjX4FxsBiL9uAet11_h6xOTz5WZ2yaucCsLNKB1eDelZpnQjge60Rn2njuuLY11waENCgzK6x3hdFJ7LzLay80hiZhPdfCJHfJftM27j6hGTcgDk2e6dLDtxNTeFtgFDZPU5-VOiLxjAVlp4bkOBfjQoXAeFKoEXMKMKcC5pSMyLNlz3Zsx_FP6GNE7gKJrbTDQtut1URaKnXcy1pmVnp4xqUuvAYjra6t1GVhsogczqShJv7uFSh-lMyCFxF5srwGzsRwi25cuwswWEUIYjwi90aSWk6C4Vgw7kREns809vPjf_-hB_8H_pBcF0j2mGiUHpL9odu5R2BDDeZxYJofPMwVBA
  priority: 102
  providerName: Springer Nature
Title Use of artificial intelligence to develop predictive algorithms of cough and PCR-confirmed COVID-19 infections based on inputs from clinical-grade wearable sensors
URI https://link.springer.com/article/10.1038/s41598-024-57830-4
https://www.ncbi.nlm.nih.gov/pubmed/38580712
https://www.proquest.com/docview/3033763208
https://www.proquest.com/docview/3034244088
https://doaj.org/article/5e0f4d46c4ff4d19a8fa397ddc4a98b6
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIkL4k2grIzEDaw6jvM6bkOrslJLVVi0N8t27HalkqySrBC_hz_KTJJdFvG6cEkkrxPZmcc3s-OZIeSVsFIgFGPXAMNkKmIGVga4KoAFRqSxsP2fOadnyclczhbxYqfVF54JG8oDDx_uIHbcy1ImVnq4h7nOvAYMLUsrdZ6Zvtg2YN6OMzVU9Ra5DPMxS4ZH2UELSIXZZEIyYNKIM_kTEvUF-39nZf4SIe2B5_geuTtajHQ6rPQ-ueGqB-T20EPy60Pybd46WnuKOxmqQdDlTplN2tV0TIyiqwajMqjfqL6-rJtld_W5xWcttuqhuirpeXHBwEP2ywYWRYv3n969ZWFON0e2qpYi7JW0rmBste5aivkpdJNfyS4bXTr6BcQHU7JoC05y3bSPyPz46GNxwsbOC8zKLO5YCU5ernkihOOhjnSijeeOa1tybUBVA6RZYb3LjI5C511aeqExQAnjqRYmekz2qrpyTwlNuAGlaNJE5x7eHZnM2wxjsWkc-yTXAQk3VFB2LEuO3TGuVR8ejzI1UE4B5VRPOSUD8nr7zGooyvHX2YdI3O1MLKjdDwCbqZHN1L_YLCD7G9ZQo5S3CuAf9bPgWUBebn8G-cSgi65cve7nYC4hKPOAPBlYarsSDMqCiScC8mbDYz9e_ucNPfsfG3pO7ggUBjyEFO-Tva5ZuxdgX3VmQm6mi3RCbk2nsw8zuB8enZ1fwGiRFJNezOB6KrPvItEmxw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVoheEG8CBYwEJ4iaOM7rgBDdttql7VJVXdSbazv2tlJJliSrqr-HO7-RmTy2IKC3niI5juXdmflmxuOZIeQN05yhKsauAcrlMQtdsDLAVQFdoFgcMt0c5uxPotGUfz4Oj1fIzz4XBq9V9pjYAHVWaDwj3wCoRVlgXvJx_t3FrlEYXe1baLRssWsuL8Blqz6Mt4C-bxnb2T4ajtyuq4CreRLWbgYOTCq9iDHj-TKQkVTWM57UmScVwBDAtWbamkTJwDfWxJllEoNvMB5LpgJY9xZZ5QG4MgOyurk9OThcnupg3Iz7aZed4wXJRgUaErPYGHdBOALP5X9owKZRwL-s278is43C27lH7naWKv3UstZ9smLyB-R227vy8iH5Ma0MLSxF1murUNCz38p70rqgXUIWnZcYDUJcpfJ8Bn9qffqtwm81tgiiMs_owfDQBc_cnpWwKTr88nW85fop7a-K5RVFdZvRIoex-aKuKObF0D6v052VMjP0AuiDqWC0Aue8KKtHZHojtHlMBnmRm6eERp4CMFZxJFMLawcqsTrBGHAchjZKpUP8ngpCd-XQsSvHuWjC8kEiWsoJoJxoKCe4Q94tv5m3xUCunb2JxF3OxELezUBRzkSHCyI0nuUZjzS38PRTmVgJJmKWaS7TREUOWe9ZQ3ToUokrWXDI6-VrwAUM9sjcFItmDuYwghJxyJOWpZY7wWAwmJbMIe97Hrta_P8_6Nn1e3lF7oyO9vfE3niy-5ysMWR5vOIUrpNBXS7MC7DeavWyExlKTm5aSn8BDQ5X0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNYmjvM6IAS7rLoUSoVYtDdjO_ZSqSRLklXV38O_4Ncxk8cWBPTWUyTHsbw7M9_MeDwzhDzhRnBUxdg1QDOR8IiBlQGuCugCzZOIm_Yw5_1-vDsXbxfRYov8HHJh8FrlgIktUOelwTPyEUAtygL305Hrr0UcTKYvV98ZdpDCSOvQTqNjkT17cgzuW_1iNgFaP-V8-ubTeJf1HQaYEWnUsBycmUz5MefWD1SoYqWdb31lcl9pgCSAbsONs6lWYWCdTXLHFQbiYDxRXIew7gVyMQmjAGUsWSSb8x2MoIkg6_N0_DAd1aArMZ-NCwZiEvpM_KEL25YB_7Jz_4rRtqpveo1c7W1W-qpjsutkyxY3yKWui-XJTfJjXltaOopM2NWjoIe_FfqkTUn71Cy6qjAuhAhL1dES_tLm67cavzXYLIiqIqcH448MfHR3WMGm6PjD59mEBRkdLo0VNUXFm9OygLHVuqkpZsjQIcOTLSuVW3oM1MGkMFqDm15W9S0yPxfK3CbbRVnYu4TGvgZY1kmsMgdrhzp1JsVocBJFLs6UR4KBCtL0hdGxP8eRbAP0YSo7ykmgnGwpJ4VHnm2-WXVlQc6c_RqJu5mJJb3bgbJayh4hZGR9J3IRG-HgGWQqdQqMxTw3QmWpjj2yM7CG7HGmlqdS4ZHHm9eAEBj2UYUt1-0czGYEdeKROx1LbXaCYWEwMrlHng88drr4_3_QvbP38ohcBtmU72b7e_fJFY4cj3edoh2y3VRr-wDMuEY_bOWFki_nLaC_ACXnWqE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+artificial+intelligence+to+develop+predictive+algorithms+of+cough+and+PCR-confirmed+COVID-19+infections+based+on+inputs+from+clinical-grade+wearable+sensors&rft.jtitle=Scientific+reports&rft.au=Jessica+R.+Walter&rft.au=Jong+Yoon+Lee&rft.au=Lian+Yu&rft.au=Brandon+Kim&rft.date=2024-04-05&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41598-024-57830-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5e0f4d46c4ff4d19a8fa397ddc4a98b6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon