Hydrogels with tunable mechanical plasticity regulate endothelial cell outgrowth in vasculogenesis and angiogenesis
The endothelial cell (EC) outgrowth in both vasculogenesis and angiogenesis starts with remodeling surrounding matrix and proceeds with the crosstalk between cells for the multicellular vasculature formation. The mechanical plasticity of matrix, defined as the ability to permanently deform by extern...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 8307 - 16 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.12.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The endothelial cell (EC) outgrowth in both vasculogenesis and angiogenesis starts with remodeling surrounding matrix and proceeds with the crosstalk between cells for the multicellular vasculature formation. The mechanical plasticity of matrix, defined as the ability to permanently deform by external traction, is pivotal in modulating cell behaviors. Nevertheless, the implications of matrix plasticity on cell-to-cell interactions during EC outgrowth, along with the molecular pathways involved, remain elusive. Here we develop a collagen-hyaluronic acid based hydrogel platform with tunable plasticity by using compositing strategy of dynamic and covalent networks. We show that although the increasing plasticity of the hydrogel facilitates the matrix remodeling by ECs, the largest tubular lumens and the longest invading distance unexpectedly appear in hydrogels with medium plasticity instead of the highest ones. We unravel that the high plasticity of the hydrogels promotes stable integrin cluster of ECs and recruitment of focal adhesion kinase with an overenhanced contractility which downregulates the vascular endothelial cadherin expression and destabilizes the adherens junctions between individual ECs. Our results, further validated with mathematical simulations and in vivo angiogenic tests, demonstrate that a balance of matrix plasticity facilitates both cell-matrix binding and cell-to-cell adherens, for promoting vascular assembly and invasion.
It is vital to unveil the effects of extracellular matrix cues on endothelial cell (EC) outgrowth for desirably governing vasculature formation, but the role of matrix plasticity on EC outgrowth is elusive. Here, the authors develop hydrogels with tunable mechanical plasticity independent of stiffness, and elucidate the plasticity-mediated responses of ECs during vasculogenesis and angiogenesis. |
---|---|
AbstractList | The endothelial cell (EC) outgrowth in both vasculogenesis and angiogenesis starts with remodeling surrounding matrix and proceeds with the crosstalk between cells for the multicellular vasculature formation. The mechanical plasticity of matrix, defined as the ability to permanently deform by external traction, is pivotal in modulating cell behaviors. Nevertheless, the implications of matrix plasticity on cell-to-cell interactions during EC outgrowth, along with the molecular pathways involved, remain elusive. Here we develop a collagen-hyaluronic acid based hydrogel platform with tunable plasticity by using compositing strategy of dynamic and covalent networks. We show that although the increasing plasticity of the hydrogel facilitates the matrix remodeling by ECs, the largest tubular lumens and the longest invading distance unexpectedly appear in hydrogels with medium plasticity instead of the highest ones. We unravel that the high plasticity of the hydrogels promotes stable integrin cluster of ECs and recruitment of focal adhesion kinase with an overenhanced contractility which downregulates the vascular endothelial cadherin expression and destabilizes the adherens junctions between individual ECs. Our results, further validated with mathematical simulations and in vivo angiogenic tests, demonstrate that a balance of matrix plasticity facilitates both cell-matrix binding and cell-to-cell adherens, for promoting vascular assembly and invasion. The endothelial cell (EC) outgrowth in both vasculogenesis and angiogenesis starts with remodeling surrounding matrix and proceeds with the crosstalk between cells for the multicellular vasculature formation. The mechanical plasticity of matrix, defined as the ability to permanently deform by external traction, is pivotal in modulating cell behaviors. Nevertheless, the implications of matrix plasticity on cell-to-cell interactions during EC outgrowth, along with the molecular pathways involved, remain elusive. Here we develop a collagen-hyaluronic acid based hydrogel platform with tunable plasticity by using compositing strategy of dynamic and covalent networks. We show that although the increasing plasticity of the hydrogel facilitates the matrix remodeling by ECs, the largest tubular lumens and the longest invading distance unexpectedly appear in hydrogels with medium plasticity instead of the highest ones. We unravel that the high plasticity of the hydrogels promotes stable integrin cluster of ECs and recruitment of focal adhesion kinase with an overenhanced contractility which downregulates the vascular endothelial cadherin expression and destabilizes the adherens junctions between individual ECs. Our results, further validated with mathematical simulations and in vivo angiogenic tests, demonstrate that a balance of matrix plasticity facilitates both cell-matrix binding and cell-to-cell adherens, for promoting vascular assembly and invasion. It is vital to unveil the effects of extracellular matrix cues on endothelial cell (EC) outgrowth for desirably governing vasculature formation, but the role of matrix plasticity on EC outgrowth is elusive. Here, the authors develop hydrogels with tunable mechanical plasticity independent of stiffness, and elucidate the plasticity-mediated responses of ECs during vasculogenesis and angiogenesis. Abstract The endothelial cell (EC) outgrowth in both vasculogenesis and angiogenesis starts with remodeling surrounding matrix and proceeds with the crosstalk between cells for the multicellular vasculature formation. The mechanical plasticity of matrix, defined as the ability to permanently deform by external traction, is pivotal in modulating cell behaviors. Nevertheless, the implications of matrix plasticity on cell-to-cell interactions during EC outgrowth, along with the molecular pathways involved, remain elusive. Here we develop a collagen-hyaluronic acid based hydrogel platform with tunable plasticity by using compositing strategy of dynamic and covalent networks. We show that although the increasing plasticity of the hydrogel facilitates the matrix remodeling by ECs, the largest tubular lumens and the longest invading distance unexpectedly appear in hydrogels with medium plasticity instead of the highest ones. We unravel that the high plasticity of the hydrogels promotes stable integrin cluster of ECs and recruitment of focal adhesion kinase with an overenhanced contractility which downregulates the vascular endothelial cadherin expression and destabilizes the adherens junctions between individual ECs. Our results, further validated with mathematical simulations and in vivo angiogenic tests, demonstrate that a balance of matrix plasticity facilitates both cell-matrix binding and cell-to-cell adherens, for promoting vascular assembly and invasion. The endothelial cell (EC) outgrowth in both vasculogenesis and angiogenesis starts with remodeling surrounding matrix and proceeds with the crosstalk between cells for the multicellular vasculature formation. The mechanical plasticity of matrix, defined as the ability to permanently deform by external traction, is pivotal in modulating cell behaviors. Nevertheless, the implications of matrix plasticity on cell-to-cell interactions during EC outgrowth, along with the molecular pathways involved, remain elusive. Here we develop a collagen-hyaluronic acid based hydrogel platform with tunable plasticity by using compositing strategy of dynamic and covalent networks. We show that although the increasing plasticity of the hydrogel facilitates the matrix remodeling by ECs, the largest tubular lumens and the longest invading distance unexpectedly appear in hydrogels with medium plasticity instead of the highest ones. We unravel that the high plasticity of the hydrogels promotes stable integrin cluster of ECs and recruitment of focal adhesion kinase with an overenhanced contractility which downregulates the vascular endothelial cadherin expression and destabilizes the adherens junctions between individual ECs. Our results, further validated with mathematical simulations and in vivo angiogenic tests, demonstrate that a balance of matrix plasticity facilitates both cell-matrix binding and cell-to-cell adherens, for promoting vascular assembly and invasion.It is vital to unveil the effects of extracellular matrix cues on endothelial cell (EC) outgrowth for desirably governing vasculature formation, but the role of matrix plasticity on EC outgrowth is elusive. Here, the authors develop hydrogels with tunable mechanical plasticity independent of stiffness, and elucidate the plasticity-mediated responses of ECs during vasculogenesis and angiogenesis. The endothelial cell (EC) outgrowth in both vasculogenesis and angiogenesis starts with remodeling surrounding matrix and proceeds with the crosstalk between cells for the multicellular vasculature formation. The mechanical plasticity of matrix, defined as the ability to permanently deform by external traction, is pivotal in modulating cell behaviors. Nevertheless, the implications of matrix plasticity on cell-to-cell interactions during EC outgrowth, along with the molecular pathways involved, remain elusive. Here we develop a collagen-hyaluronic acid based hydrogel platform with tunable plasticity by using compositing strategy of dynamic and covalent networks. We show that although the increasing plasticity of the hydrogel facilitates the matrix remodeling by ECs, the largest tubular lumens and the longest invading distance unexpectedly appear in hydrogels with medium plasticity instead of the highest ones. We unravel that the high plasticity of the hydrogels promotes stable integrin cluster of ECs and recruitment of focal adhesion kinase with an overenhanced contractility which downregulates the vascular endothelial cadherin expression and destabilizes the adherens junctions between individual ECs. Our results, further validated with mathematical simulations and in vivo angiogenic tests, demonstrate that a balance of matrix plasticity facilitates both cell-matrix binding and cell-to-cell adherens, for promoting vascular assembly and invasion.The endothelial cell (EC) outgrowth in both vasculogenesis and angiogenesis starts with remodeling surrounding matrix and proceeds with the crosstalk between cells for the multicellular vasculature formation. The mechanical plasticity of matrix, defined as the ability to permanently deform by external traction, is pivotal in modulating cell behaviors. Nevertheless, the implications of matrix plasticity on cell-to-cell interactions during EC outgrowth, along with the molecular pathways involved, remain elusive. Here we develop a collagen-hyaluronic acid based hydrogel platform with tunable plasticity by using compositing strategy of dynamic and covalent networks. We show that although the increasing plasticity of the hydrogel facilitates the matrix remodeling by ECs, the largest tubular lumens and the longest invading distance unexpectedly appear in hydrogels with medium plasticity instead of the highest ones. We unravel that the high plasticity of the hydrogels promotes stable integrin cluster of ECs and recruitment of focal adhesion kinase with an overenhanced contractility which downregulates the vascular endothelial cadherin expression and destabilizes the adherens junctions between individual ECs. Our results, further validated with mathematical simulations and in vivo angiogenic tests, demonstrate that a balance of matrix plasticity facilitates both cell-matrix binding and cell-to-cell adherens, for promoting vascular assembly and invasion. |
ArticleNumber | 8307 |
Author | Wei, Zhao Xu, Feng Lan, Dongwei Lei, Meng Ma, Yufei Cheng, Bo Xie, Yizhou Xie, Xueyong Liu, Jingyi Jia, Yuanbo Wang, Yaohui Gerecht, Sharon |
Author_xml | – sequence: 1 givenname: Zhao surname: Wei fullname: Wei, Zhao organization: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University – sequence: 2 givenname: Meng surname: Lei fullname: Lei, Meng organization: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University – sequence: 3 givenname: Yaohui surname: Wang fullname: Wang, Yaohui organization: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University – sequence: 4 givenname: Yizhou surname: Xie fullname: Xie, Yizhou organization: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University – sequence: 5 givenname: Xueyong surname: Xie fullname: Xie, Xueyong organization: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University – sequence: 6 givenname: Dongwei surname: Lan fullname: Lan, Dongwei organization: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University – sequence: 7 givenname: Yuanbo surname: Jia fullname: Jia, Yuanbo organization: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University – sequence: 8 givenname: Jingyi surname: Liu fullname: Liu, Jingyi organization: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University – sequence: 9 givenname: Yufei orcidid: 0000-0002-8467-0559 surname: Ma fullname: Ma, Yufei organization: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University – sequence: 10 givenname: Bo surname: Cheng fullname: Cheng, Bo organization: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University – sequence: 11 givenname: Sharon orcidid: 0000-0002-8542-4835 surname: Gerecht fullname: Gerecht, Sharon email: sharon.gerecht@duke.edu organization: Department of Biomedical Engineering, Duke University – sequence: 12 givenname: Feng orcidid: 0000-0003-4351-0222 surname: Xu fullname: Xu, Feng email: fengxu@mail.xjtu.edu.cn organization: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38097553$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksFu3CAQhq0qVZOmeYEeKku99OIWDBhzrKK2iRSpl_aMxnjsZcXCFnCjffuwcZJWOQQJgYbv_5nRzNvqxAePVfWeks-UsP5L4pR3siEtaziTXd-QV9VZSzhtqGzZyX_30-oipS0piynac_6mOmU9UVIIdlalq8MYw4wu1bc2b-q8eBgc1js0G_DWgKv3DlK2xuZDHXFeHGSs0Y8hb9DZ8m7QuToseY7htjhYX_-FZBZXXD0mm2rwY9mzfQy8q15P4BJePJzn1e_v335dXjU3P39cX369aQzvRW5G1hkqjFETbScjcBSSgBqUHHECMoHsjAHWUYK9IARAKMlBYD-wwSBKzs6r69V3DLDV-2h3EA86gNX3gRBnDbFU5lDLQVJGgHZ0FByUGsgw9cOkQNHiT8bi9Wn12sfwZ8GU9c6mY-XgMSxJt4q0SnDStQX9-AzdhiX6UumRopJ1gtBCfXiglmGH41N6j60pQLsCJoaUIk5PCCX6OAJ6HQFdRkDfj4AmRdQ_E5W-QbbB5wjWvSxlqzSVf_yM8V_aL6juANPGxxg |
CitedBy_id | crossref_primary_10_1021_acs_chemmater_4c00049 crossref_primary_10_1021_acsbiomaterials_3c01978 crossref_primary_10_1002_adhm_202400431 crossref_primary_10_1016_j_bbiosy_2024_100097 crossref_primary_10_1016_j_biomaterials_2025_123266 crossref_primary_10_1002_adma_202404235 crossref_primary_10_1038_s44222_024_00268_0 crossref_primary_10_1007_s11427_024_2751_6 crossref_primary_10_1002_adhm_202405097 crossref_primary_10_1016_j_plrev_2024_10_010 crossref_primary_10_1021_acsbiomaterials_4c00431 crossref_primary_10_1016_j_jmbbm_2025_106922 crossref_primary_10_1016_j_ceb_2024_102441 crossref_primary_10_1016_j_ijsolstr_2024_112938 crossref_primary_10_1088_1758_5090_ad8efd crossref_primary_10_1016_j_xcrp_2024_102366 crossref_primary_10_1002_adhm_202403734 crossref_primary_10_1016_j_actbio_2024_08_040 crossref_primary_10_1021_acsapm_5c00027 crossref_primary_10_1063_5_0227692 crossref_primary_10_1016_j_mattod_2025_02_005 crossref_primary_10_1002_adma_202410802 crossref_primary_10_1016_j_biomaterials_2024_122958 crossref_primary_10_1021_acs_biomac_4c00765 crossref_primary_10_1093_bjd_ljae483 crossref_primary_10_1088_1758_5090_ad3e30 crossref_primary_10_1016_j_bioactmat_2024_09_013 |
Cites_doi | 10.1039/C9BM00128J 10.1038/ncomms5075 10.1073/pnas.94.12.6273 10.1096/fj.201802052RRR 10.1038/s41467-021-23120-0 10.1007/s12079-019-00511-z 10.1002/mabi.201800281 10.1038/srep20989 10.1016/S1357-2725(97)00051-4 10.1126/sciadv.aau7518 10.1038/s41467-021-22988-2 10.1002/advs.202002330 10.1038/s41591-021-01279-9 10.3390/ph14040302 10.1002/adfm.202100848 10.1073/pnas.1309276110 10.1016/j.celrep.2016.04.065 10.1016/j.ceb.2010.08.010 10.1016/j.colsurfb.2016.11.012 10.1016/j.actbio.2019.07.030 10.1002/adhm.202001856 10.1016/j.actbio.2020.12.041 10.1016/j.dental.2017.11.020 10.1016/j.tibtech.2016.03.002 10.1038/s41563-019-0307-6 10.1016/j.biomaterials.2008.09.037 10.1021/acsabm.0c00353 10.1146/annurev.cb.11.110195.000445 10.3390/ijms22115779 10.1038/s41586-020-2612-2 10.1016/S0002-9440(10)65038-9 10.3389/fbioe.2019.00166 10.1016/j.actbio.2016.04.029 10.1016/j.stem.2018.02.009 10.1039/D1SM00680K 10.1038/s41467-018-06641-z 10.1038/nprot.2009.96 10.1038/s41418-018-0125-4 10.1039/c3bm60274e 10.1083/jcb.129.1.203 10.1016/j.pmatsci.2020.100738 10.1016/j.biomaterials.2017.06.039 10.1111/j.1582-4934.2009.00981.x 10.1091/mbc.E19-02-0076 10.1016/j.biomaterials.2021.120872 10.1038/s41536-022-00253-4 10.1038/s41467-018-04404-4 10.1016/j.devcel.2013.08.020 10.1016/j.actbio.2020.12.022 10.1038/nrcardio.2013.70 10.1016/j.biomaterials.2018.02.012 10.1073/pnas.2008801117 10.1080/713773584 10.1242/jcs.017897 10.1038/nrm1357 10.1016/j.addr.2019.08.005 10.1016/j.stem.2020.08.005 10.1126/scitranslmed.aau6210 10.1016/j.bpj.2016.10.002 10.1161/ATVBAHA.109.185165 10.1016/j.cell.2012.11.034 10.1096/fj.201800841R 10.1073/pnas.1613855114 10.1096/fj.202200907RR 10.1016/j.biomaterials.2018.07.013 10.1007/s10439-020-02471-7 10.1182/blood-2010-12-327338 10.1093/rb/rbz003 10.1016/j.msec.2014.04.026 10.1002/art.41536 10.3390/polym8020042 10.1038/nature04923 10.1101/2022.04.04.487052 10.1016/j.bpj.2022.11.2943 10.1038/s41467-018-07882-8 10.1002/advs.202201483 10.1007/978-3-319-99319-5_4 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. corrected publication 2024 2023. The Author(s). The Author(s) 2023. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023. corrected publication 2024 – notice: 2023. The Author(s). – notice: The Author(s) 2023. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-023-43768-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_7b7130a161d54a99b0bf8bf9a9110e0d 38097553 10_1038_s41467_023_43768_0 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 12225208, 12002263) funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 12225208, 12002263) |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-d36c15cc9f12fc5ed570a9b97defa0fa76cca3610e8500aa5974a5e8b3bcee743 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:53:37 EDT 2025 Fri Jul 11 12:31:39 EDT 2025 Wed Aug 13 04:20:06 EDT 2025 Fri May 02 01:39:47 EDT 2025 Tue Jul 01 02:10:49 EDT 2025 Thu Apr 24 22:50:23 EDT 2025 Fri Feb 21 02:39:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-d36c15cc9f12fc5ed570a9b97defa0fa76cca3610e8500aa5974a5e8b3bcee743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8467-0559 0000-0003-4351-0222 0000-0002-8542-4835 |
OpenAccessLink | https://doaj.org/article/7b7130a161d54a99b0bf8bf9a9110e0d |
PMID | 38097553 |
PQID | 2901736501 |
PQPubID | 546298 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7b7130a161d54a99b0bf8bf9a9110e0d proquest_miscellaneous_2902954062 proquest_journals_2901736501 pubmed_primary_38097553 crossref_primary_10_1038_s41467_023_43768_0 crossref_citationtrail_10_1038_s41467_023_43768_0 springer_journals_10_1038_s41467_023_43768_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-14 |
PublicationDateYYYYMMDD | 2023-12-14 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Berger, Linsmeier, Kreeger, Masters (CR38) 2017; 141 Guan (CR53) 1997; 29 Tang, Richardson, Anseth (CR20) 2021; 120 Wong (CR25) 2019; 96 Kim (CR31) 2016; 38 Plotnikov, Pasapera, Sabass, Waterman (CR56) 2012; 151 Hanjaya-Putra (CR40) 2011; 118 Kim (CR46) 2019; 10 Laib (CR48) 2009; 4 Wang, Lollis, Bordeleau, Reinhart-King (CR55) 2019; 33 McCurdy (CR64) 2022; 36 Xing (CR4) 2021; 274 CR75 Chang (CR33) 2017; 149 Wei, Volkova, Blatchley, Gerecht (CR2) 2019; 149 Wei (CR66) 2013; 110 Crosby, Zoldan (CR7) 2019; 6 Song, Rumma, Ozaki, Edelman, Chen (CR1) 2018; 22 Jia (CR21) 2021; 10 Crosby (CR12) 2021; 122 Nam, Lee, Brownfield, Chaudhuri (CR19) 2016; 111 Bayless, Salazar, Davis (CR42) 2000; 156 Risau, Flamme (CR39) 1995; 11 Blatchley, Hall, Wang, Pruitt, Gerecht (CR9) 2019; 5 Lyu (CR32) 2020; 7 CR6 Hanjaya‐Putra (CR14) 2010; 14 Park, Gerecht (CR51) 2014; 5 Bordeleau (CR5) 2017; 114 Copes, Pien (CR28) 2019; 7 Grolman, Weinand, Mooney (CR23) 2020; 117 Woroniuk (CR57) 2018; 9 Chaudhuri, Cooper-White, Janmey, Mooney, Shenoy (CR16) 2020; 584 Moreno, Baeza, Vallet-Regí (CR79) 2021; 121 Dejana (CR59) 2004; 5 Annex (CR3) 2013; 10 Sharifi (CR54) 2016; 15 Del Vento (CR71) 2021; 22 Wisdom (CR22) 2018; 9 Juliar, Keating, Kong, Botvinick, Putnam (CR10) 2018; 162 Han (CR30) 2019; 7 Giannotta, Trani, Dejana (CR60) 2013; 26 Kamei (CR43) 2006; 442 Chen (CR72) 2020; 4 Yoon (CR77) 2019; 30 Dejana, Orsenigo, Lampugnani (CR78) 2008; 121 Yang (CR35) 2021; 12 Antonova (CR69) 2021; 14 Wei, Schnellmann, Pruitt, Gerecht (CR18) 2020; 27 Tsou, Palisoc, Flavahan, Khanna (CR68) 2021; 73 Ding (CR70) 2020; 48 Li (CR11) 2019; 11 Guo (CR15) 2022; 7 Zhang (CR58) 2019; 33 De Smet, Segura, De Bock, Hohensinner, Carmeliet (CR50) 2009; 29 Pezzoli (CR27) 2018; 180 Hirano, Hirano (CR65) 2016; 6 Toh, Loh (CR17) 2014; 45 Eilken, Adams (CR49) 2010; 22 Shen (CR52) 2014; 2 Buchmann (CR67) 2021; 12 Fedorovich (CR37) 2009; 30 Lampugnani (CR62) 1995; 129 Dong, Lv (CR26) 2016; 8 Huang (CR44) 2021; 27 Mantooth, Munoz‐Robles, Webber (CR34) 2019; 19 Pulat, Gökmen, Çevik, Karaman (CR13) 2021; 17 Monteiro (CR36) 2018; 34 Ma (CR8) 2021; 31 CR29 Davis, Bayless (CR41) 2003; 10 CR24 CR63 Moreira (CR73) 2022; 7 Loebel, Mauck, Burdick (CR76) 2019; 18 Vittet, Buchou, Schweitzer, Dejana, Huber (CR61) 1997; 94 Rouwkema, Khademhosseini (CR45) 2016; 34 Chen (CR47) 2019; 13 Delgado-Bellido (CR74) 2019; 26 KM Park (43768_CR51) 2014; 5 F Bordeleau (43768_CR5) 2017; 114 WS Toh (43768_CR17) 2014; 45 F De Smet (43768_CR50) 2009; 29 HR Moreira (43768_CR73) 2022; 7 AJ Berger (43768_CR38) 2017; 141 E Dejana (43768_CR78) 2008; 121 L Wong (43768_CR25) 2019; 96 KM Wisdom (43768_CR22) 2018; 9 B Buchmann (43768_CR67) 2021; 12 H Chang (43768_CR33) 2017; 149 W Wang (43768_CR55) 2019; 33 A Woroniuk (43768_CR57) 2018; 9 YH Kim (43768_CR46) 2019; 10 N Lyu (43768_CR32) 2020; 7 CO Crosby (43768_CR12) 2021; 122 D Hanjaya‐Putra (43768_CR14) 2010; 14 Y-I Shen (43768_CR52) 2014; 2 GO Pulat (43768_CR13) 2021; 17 C Dong (43768_CR26) 2016; 8 B Yang (43768_CR35) 2021; 12 GE Davis (43768_CR41) 2003; 10 S McCurdy (43768_CR64) 2022; 36 NE Fedorovich (43768_CR37) 2009; 30 Y Wei (43768_CR66) 2013; 110 C Han (43768_CR30) 2019; 7 S Nam (43768_CR19) 2016; 111 W Chen (43768_CR47) 2019; 13 D Pezzoli (43768_CR27) 2018; 180 PS Tsou (43768_CR68) 2021; 73 M Giannotta (43768_CR60) 2013; 26 J Rouwkema (43768_CR45) 2016; 34 43768_CR75 N Monteiro (43768_CR36) 2018; 34 BH Annex (43768_CR3) 2013; 10 S Tang (43768_CR20) 2021; 120 D Hanjaya-Putra (43768_CR40) 2011; 118 C Loebel (43768_CR76) 2019; 18 Y Ma (43768_CR8) 2021; 31 H-HG Song (43768_CR1) 2018; 22 M Kamei (43768_CR43) 2006; 442 Z Wei (43768_CR2) 2019; 149 D Delgado-Bellido (43768_CR74) 2019; 26 Y Jia (43768_CR21) 2021; 10 CO Crosby (43768_CR7) 2019; 6 MG Lampugnani (43768_CR62) 1995; 129 43768_CR29 43768_CR63 W Risau (43768_CR39) 1995; 11 MR Blatchley (43768_CR9) 2019; 5 43768_CR24 D Vittet (43768_CR61) 1997; 94 BA Juliar (43768_CR10) 2018; 162 KJ Bayless (43768_CR42) 2000; 156 F Del Vento (43768_CR71) 2021; 22 43768_CR6 AM Laib (43768_CR48) 2009; 4 SM Kim (43768_CR31) 2016; 38 C Yoon (43768_CR77) 2019; 30 SM Mantooth (43768_CR34) 2019; 19 HM Eilken (43768_CR49) 2010; 22 J-L Guan (43768_CR53) 1997; 29 MN Sharifi (43768_CR54) 2016; 15 Y Guo (43768_CR15) 2022; 7 JM Grolman (43768_CR23) 2020; 117 F Copes (43768_CR28) 2019; 7 SV Plotnikov (43768_CR56) 2012; 151 S Huang (43768_CR44) 2021; 27 Y Zhang (43768_CR58) 2019; 33 E Dejana (43768_CR59) 2004; 5 M Hirano (43768_CR65) 2016; 6 Y Ding (43768_CR70) 2020; 48 H Chen (43768_CR72) 2020; 4 X Li (43768_CR11) 2019; 11 L Antonova (43768_CR69) 2021; 14 O Chaudhuri (43768_CR16) 2020; 584 Z Xing (43768_CR4) 2021; 274 Z Wei (43768_CR18) 2020; 27 VM Moreno (43768_CR79) 2021; 121 38627461 - Nat Commun. 2024 Apr 16;15(1):3274. doi: 10.1038/s41467-024-47722-6. |
References_xml | – volume: 7 start-page: 2686 year: 2019 end-page: 2701 ident: CR30 article-title: Nature-inspired extracellular matrix coating produced by micro-patterned smooth muscle and endothelial cells endows cardiovascular materials with better biocompatibility publication-title: Biomater. Sci. doi: 10.1039/C9BM00128J – volume: 5 start-page: 1 year: 2014 end-page: 12 ident: CR51 article-title: Hypoxia-inducible hydrogels publication-title: Nat. Commun. doi: 10.1038/ncomms5075 – volume: 94 start-page: 6273 year: 1997 end-page: 6278 ident: CR61 article-title: Targeted null-mutation in the vascular endothelial–cadherin gene impairs the organization of vascular-like structures in embryoid bodies publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.94.12.6273 – volume: 7 start-page: 364 year: 2022 end-page: 376 ident: CR15 article-title: Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis publication-title: Bioact. Mater. – volume: 33 start-page: 9062 year: 2019 ident: CR58 article-title: ZIPK mediates endothelial cell contraction through myosin light chain phosphorylation and is required for ischemic-reperfusion injury publication-title: FASEB J. doi: 10.1096/fj.201802052RRR – volume: 12 year: 2021 ident: CR35 article-title: Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics publication-title: Nat. Commun. doi: 10.1038/s41467-021-23120-0 – volume: 13 start-page: 291 year: 2019 end-page: 301 ident: CR47 article-title: The endothelial tip-stalk cell selection and shuffling during angiogenesis publication-title: J. Cell Commun. Signal. doi: 10.1007/s12079-019-00511-z – volume: 19 start-page: 1800281 year: 2019 ident: CR34 article-title: Dynamic hydrogels from host–guest supramolecular interactions publication-title: Macromol. Biosci. doi: 10.1002/mabi.201800281 – volume: 6 start-page: 1 year: 2016 end-page: 16 ident: CR65 article-title: Myosin di-phosphorylation and peripheral actin bundle formation as initial events during endothelial barrier disruption publication-title: Sci. Rep. doi: 10.1038/srep20989 – volume: 29 start-page: 1085 year: 1997 end-page: 1096 ident: CR53 article-title: Role of focal adhesion kinase in integrin signaling publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(97)00051-4 – volume: 10 start-page: 1 year: 2019 end-page: 17 ident: CR46 article-title: A MST1–FOXO1 cascade establishes endothelial tip cell polarity and facilitates sprouting angiogenesis publication-title: Nat. Commun. – ident: CR29 – volume: 5 start-page: eaau7518 year: 2019 ident: CR9 article-title: Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis publication-title: Sci. Adv. doi: 10.1126/sciadv.aau7518 – volume: 12 year: 2021 ident: CR67 article-title: Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids publication-title: Nat. Commun. doi: 10.1038/s41467-021-22988-2 – volume: 7 start-page: 2002330 year: 2020 ident: CR32 article-title: Mimicking the nitric oxide‐releasing and glycocalyx functions of endothelium on vascular stent surfaces publication-title: Adv. Sci. doi: 10.1002/advs.202002330 – volume: 27 start-page: 480 year: 2021 end-page: 490 ident: CR44 article-title: A perfusable, multifunctional epicardial device improves cardiac function and tissue repair publication-title: Nat. Med. doi: 10.1038/s41591-021-01279-9 – volume: 14 start-page: 302 year: 2021 ident: CR69 article-title: bFGF and SDF-1α improve in vivo performance of VEGF-incorporating small-diameter vascular grafts publication-title: Pharmaceuticals doi: 10.3390/ph14040302 – volume: 31 start-page: 2100848 year: 2021 ident: CR8 article-title: Viscoelastic cell microenvironment: hydrogel‐based strategy for recapitulating dynamic ECM mechanics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100848 – volume: 110 start-page: E3910 year: 2013 end-page: E3918 ident: CR66 article-title: Nrf2 acts cell-autonomously in endothelium to regulate tip cell formation and vascular branching publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1309276110 – volume: 15 start-page: 1660 year: 2016 end-page: 1672 ident: CR54 article-title: Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3 publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.04.065 – ident: CR75 – volume: 22 start-page: 617 year: 2010 end-page: 625 ident: CR49 article-title: Dynamics of endothelial cell behavior in sprouting angiogenesis publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2010.08.010 – volume: 149 start-page: 379 year: 2017 end-page: 387 ident: CR33 article-title: Stiffness of polyelectrolyte multilayer film influences endothelial function of endothelial cell monolayer publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2016.11.012 – volume: 96 start-page: 321 year: 2019 end-page: 329 ident: CR25 article-title: Substrate stiffness directs diverging vascular fates publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.07.030 – volume: 10 start-page: 2001856 year: 2021 ident: CR21 article-title: The plasticity of nanofibrous matrix regulates fibroblast activation in fibrosis publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202001856 – volume: 122 start-page: 133 year: 2021 end-page: 144 ident: CR12 article-title: Phototunable interpenetrating polymer network hydrogels to stimulate the vasculogenesis of stem cell-derived endothelial progenitors publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.12.041 – volume: 34 start-page: 389 year: 2018 end-page: 399 ident: CR36 article-title: Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry publication-title: Dent. Mater. doi: 10.1016/j.dental.2017.11.020 – volume: 34 start-page: 733 year: 2016 end-page: 745 ident: CR45 article-title: Vascularization and angiogenesis in tissue engineering: beyond creating static networks publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2016.03.002 – volume: 18 start-page: 883 year: 2019 end-page: 891 ident: CR76 article-title: Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels publication-title: Nat. Mater. doi: 10.1038/s41563-019-0307-6 – volume: 30 start-page: 344 year: 2009 end-page: 353 ident: CR37 article-title: The effect of photopolymerization on stem cells embedded in hydrogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.09.037 – volume: 4 start-page: 406 year: 2020 end-page: 419 ident: CR72 article-title: Construction of a silk fibroin/polyethylene glycol double network hydrogel with co-culture of HUVECs and UCMSCs for a functional vascular network publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.0c00353 – volume: 11 start-page: 73 year: 1995 end-page: 91 ident: CR39 article-title: Vasculogenesis publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cb.11.110195.000445 – volume: 22 start-page: 5779 year: 2021 ident: CR71 article-title: Accelerated and improved vascular maturity after transplantation of testicular tissue in hydrogels supplemented with VEGF-and PDGF-loaded nanoparticles publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22115779 – volume: 584 start-page: 535 year: 2020 end-page: 546 ident: CR16 article-title: Effects of extracellular matrix viscoelasticity on cellular behaviour publication-title: Nature doi: 10.1038/s41586-020-2612-2 – volume: 156 start-page: 1673 year: 2000 end-page: 1683 ident: CR42 article-title: RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the αvβ3 and α5β1 integrins publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)65038-9 – volume: 7 start-page: 166 year: 2019 ident: CR28 article-title: Van Vlierberghe, S., Boccafoschi, F. & Mantovani, D. Collagen-based tissue engineering strategies for vascular medicine publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2019.00166 – volume: 38 start-page: 143 year: 2016 end-page: 152 ident: CR31 article-title: Fabrication and characteristics of dual functionalized vascular stent by spatio-temporal coating publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.04.029 – volume: 22 start-page: 340 year: 2018 end-page: 354 ident: CR1 article-title: Vascular tissue engineering: progress, challenges, and clinical promise publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.02.009 – volume: 17 start-page: 6616 year: 2021 end-page: 6626 ident: CR13 article-title: Role of functionalized self-assembled peptide hydrogels in in vitro vasculogenesis publication-title: Soft Matter doi: 10.1039/D1SM00680K – volume: 9 start-page: 1 year: 2018 end-page: 13 ident: CR22 article-title: Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments publication-title: Nat. Commun. doi: 10.1038/s41467-018-06641-z – volume: 4 start-page: 1202 year: 2009 end-page: 1215 ident: CR48 article-title: Spheroid-based human endothelial cell microvessel formation in vivo publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.96 – volume: 26 start-page: 348 year: 2019 end-page: 361 ident: CR74 article-title: VE-cadherin promotes vasculogenic mimicry by modulating kaiso-dependent gene expression publication-title: Cell Death Differ. doi: 10.1038/s41418-018-0125-4 – volume: 2 start-page: 655 year: 2014 end-page: 665 ident: CR52 article-title: Hyaluronic acid hydrogel stiffness and oxygen tension affect cancer cell fate and endothelial sprouting publication-title: Biomater. Sci. doi: 10.1039/c3bm60274e – volume: 129 start-page: 203 year: 1995 end-page: 217 ident: CR62 article-title: The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin) publication-title: J. Cell Biol. doi: 10.1083/jcb.129.1.203 – volume: 120 start-page: 100738 year: 2021 ident: CR20 article-title: Dynamic covalent hydrogels as biomaterials to mimic the viscoelasticity of soft tissues publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100738 – volume: 141 start-page: 125 year: 2017 end-page: 135 ident: CR38 article-title: Decoupling the effects of stiffness and fiber density on cellular behaviors via an interpenetrating network of gelatin-methacrylate and collagen publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.06.039 – volume: 14 start-page: 2436 year: 2010 end-page: 2447 ident: CR14 article-title: Vascular endothelial growth factor and substrate mechanics regulate in vitro tubulogenesis of endothelial progenitor cells publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2009.00981.x – volume: 30 start-page: 1974 year: 2019 end-page: 1984 ident: CR77 article-title: Myosin IIA-mediated forces regulate multicellular integrity during vascular sprouting publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E19-02-0076 – ident: CR6 – volume: 274 start-page: 120872 year: 2021 ident: CR4 article-title: Hydrogel-based therapeutic angiogenesis: an alternative treatment strategy for critical limb ischemia publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120872 – volume: 7 start-page: 1 year: 2022 end-page: 13 ident: CR73 article-title: Integrin-specific hydrogels for growth factor-free vasculogenesis publication-title: npj Regen. Med. doi: 10.1038/s41536-022-00253-4 – volume: 9 year: 2018 ident: CR57 article-title: STEF/TIAM2-mediated Rac1 activity at the nuclear envelope regulates the perinuclear actin cap publication-title: Nat. Commun. doi: 10.1038/s41467-018-04404-4 – volume: 26 start-page: 441 year: 2013 end-page: 454 ident: CR60 article-title: VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity publication-title: Dev. Cell doi: 10.1016/j.devcel.2013.08.020 – volume: 121 start-page: 263 year: 2021 end-page: 274 ident: CR79 article-title: Evaluation of the penetration process of fluorescent collagenase nanocapsules in a 3D collagen gel publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.12.022 – ident: CR63 – volume: 10 start-page: 387 year: 2013 end-page: 396 ident: CR3 article-title: Therapeutic angiogenesis for critical limb ischaemia publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2013.70 – volume: 162 start-page: 99 year: 2018 end-page: 108 ident: CR10 article-title: Sprouting angiogenesis induces significant mechanical heterogeneities and ECM stiffening across length scales in fibrin hydrogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.02.012 – volume: 117 start-page: 25999 year: 2020 end-page: 26007 ident: CR23 article-title: Extracellular matrix plasticity as a driver of cell spreading publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2008801117 – volume: 10 start-page: 27 year: 2003 end-page: 44 ident: CR41 article-title: An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices publication-title: Microcirculation doi: 10.1080/713773584 – volume: 121 start-page: 2115 year: 2008 end-page: 2122 ident: CR78 article-title: The role of adherens junctions and VE-cadherin in the control of vascular permeability publication-title: J. cell Sci. doi: 10.1242/jcs.017897 – volume: 5 start-page: 261 year: 2004 end-page: 270 ident: CR59 article-title: Endothelial cell–cell junctions: happy together publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1357 – volume: 149 start-page: 95 year: 2019 end-page: 106 ident: CR2 article-title: Hydrogel vehicles for sequential delivery of protein drugs to promote vascular regeneration publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2019.08.005 – volume: 27 start-page: 798 year: 2020 end-page: 812.e796 ident: CR18 article-title: Hydrogel network dynamics regulate vascular morphogenesis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2020.08.005 – volume: 11 start-page: eaau6210 year: 2019 ident: CR11 article-title: Nanofiber-hydrogel composite-mediated angiogenesis for soft tissue reconstruction publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aau6210 – volume: 111 start-page: 2296 year: 2016 end-page: 2308 ident: CR19 article-title: Viscoplasticity enables mechanical remodeling of matrix by cells publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.10.002 – volume: 29 start-page: 639 year: 2009 end-page: 649 ident: CR50 article-title: Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.109.185165 – volume: 151 start-page: 1513 year: 2012 end-page: 1527 ident: CR56 article-title: Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration publication-title: Cell doi: 10.1016/j.cell.2012.11.034 – volume: 33 start-page: 1199 year: 2019 end-page: 1208 ident: CR55 article-title: Matrix stiffness regulates vascular integrity through focal adhesion kinase activity publication-title: FASEB J. doi: 10.1096/fj.201800841R – volume: 114 start-page: 492 year: 2017 end-page: 497 ident: CR5 article-title: Matrix stiffening promotes a tumor vasculature phenotype publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1613855114 – volume: 36 start-page: e22629 year: 2022 ident: CR64 article-title: β1 integrin monoclonal antibody treatment ameliorates cerebral cavernous malformations publication-title: FASEB J. doi: 10.1096/fj.202200907RR – volume: 180 start-page: 130 year: 2018 end-page: 142 ident: CR27 article-title: Fibronectin promotes elastin deposition, elasticity and mechanical strength in cellularised collagen-based scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.07.013 – volume: 48 start-page: 1511 year: 2020 end-page: 1523 ident: CR70 article-title: An injectable nanocomposite hydrogel for potential application of vascularization and tissue repair publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-020-02471-7 – volume: 118 start-page: 804 year: 2011 end-page: 815 ident: CR40 article-title: Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix publication-title: Blood doi: 10.1182/blood-2010-12-327338 – volume: 6 start-page: 61 year: 2019 end-page: 73 ident: CR7 article-title: Mimicking the physical cues of the ECM in angiogenic biomaterials publication-title: Regen. Biomater. doi: 10.1093/rb/rbz003 – volume: 45 start-page: 690 year: 2014 end-page: 697 ident: CR17 article-title: Advances in hydrogel delivery systems for tissue regeneration publication-title: Mater. Sci. Eng.: C. doi: 10.1016/j.msec.2014.04.026 – volume: 73 start-page: 520 year: 2021 end-page: 529 ident: CR68 article-title: Dissecting the cellular mechanism of prostacyclin analog iloprost in reversing vascular dysfunction in scleroderma publication-title: Arthritis Rheumatol. doi: 10.1002/art.41536 – ident: CR24 – volume: 8 start-page: 42 year: 2016 ident: CR26 article-title: Application of collagen scaffold in tissue engineering: recent advances and new perspectives publication-title: Polymers doi: 10.3390/polym8020042 – volume: 442 start-page: 453 year: 2006 end-page: 456 ident: CR43 article-title: Endothelial tubes assemble from intracellular vacuoles in vivo publication-title: Nature doi: 10.1038/nature04923 – volume: 141 start-page: 125 year: 2017 ident: 43768_CR38 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.06.039 – volume: 9 start-page: 1 year: 2018 ident: 43768_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06641-z – ident: 43768_CR6 doi: 10.1101/2022.04.04.487052 – volume: 442 start-page: 453 year: 2006 ident: 43768_CR43 publication-title: Nature doi: 10.1038/nature04923 – volume: 122 start-page: 133 year: 2021 ident: 43768_CR12 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.12.041 – volume: 14 start-page: 2436 year: 2010 ident: 43768_CR14 publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2009.00981.x – volume: 22 start-page: 340 year: 2018 ident: 43768_CR1 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.02.009 – volume: 12 year: 2021 ident: 43768_CR67 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22988-2 – volume: 11 start-page: eaau6210 year: 2019 ident: 43768_CR11 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aau6210 – volume: 111 start-page: 2296 year: 2016 ident: 43768_CR19 publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.10.002 – volume: 34 start-page: 733 year: 2016 ident: 43768_CR45 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2016.03.002 – volume: 5 start-page: eaau7518 year: 2019 ident: 43768_CR9 publication-title: Sci. Adv. doi: 10.1126/sciadv.aau7518 – volume: 180 start-page: 130 year: 2018 ident: 43768_CR27 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.07.013 – volume: 30 start-page: 1974 year: 2019 ident: 43768_CR77 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E19-02-0076 – volume: 9 year: 2018 ident: 43768_CR57 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04404-4 – volume: 18 start-page: 883 year: 2019 ident: 43768_CR76 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0307-6 – volume: 29 start-page: 1085 year: 1997 ident: 43768_CR53 publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(97)00051-4 – volume: 73 start-page: 520 year: 2021 ident: 43768_CR68 publication-title: Arthritis Rheumatol. doi: 10.1002/art.41536 – volume: 27 start-page: 798 year: 2020 ident: 43768_CR18 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2020.08.005 – volume: 7 start-page: 2002330 year: 2020 ident: 43768_CR32 publication-title: Adv. Sci. doi: 10.1002/advs.202002330 – volume: 156 start-page: 1673 year: 2000 ident: 43768_CR42 publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)65038-9 – volume: 94 start-page: 6273 year: 1997 ident: 43768_CR61 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.94.12.6273 – volume: 31 start-page: 2100848 year: 2021 ident: 43768_CR8 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100848 – ident: 43768_CR63 doi: 10.1016/j.bpj.2022.11.2943 – volume: 149 start-page: 95 year: 2019 ident: 43768_CR2 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2019.08.005 – volume: 114 start-page: 492 year: 2017 ident: 43768_CR5 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1613855114 – volume: 117 start-page: 25999 year: 2020 ident: 43768_CR23 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2008801117 – volume: 10 start-page: 1 year: 2019 ident: 43768_CR46 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – volume: 2 start-page: 655 year: 2014 ident: 43768_CR52 publication-title: Biomater. Sci. doi: 10.1039/c3bm60274e – volume: 120 start-page: 100738 year: 2021 ident: 43768_CR20 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100738 – volume: 14 start-page: 302 year: 2021 ident: 43768_CR69 publication-title: Pharmaceuticals doi: 10.3390/ph14040302 – volume: 7 start-page: 166 year: 2019 ident: 43768_CR28 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2019.00166 – volume: 149 start-page: 379 year: 2017 ident: 43768_CR33 publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2016.11.012 – volume: 12 year: 2021 ident: 43768_CR35 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23120-0 – volume: 17 start-page: 6616 year: 2021 ident: 43768_CR13 publication-title: Soft Matter doi: 10.1039/D1SM00680K – volume: 22 start-page: 5779 year: 2021 ident: 43768_CR71 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22115779 – volume: 4 start-page: 406 year: 2020 ident: 43768_CR72 publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.0c00353 – volume: 6 start-page: 61 year: 2019 ident: 43768_CR7 publication-title: Regen. Biomater. doi: 10.1093/rb/rbz003 – volume: 8 start-page: 42 year: 2016 ident: 43768_CR26 publication-title: Polymers doi: 10.3390/polym8020042 – volume: 7 start-page: 1 year: 2022 ident: 43768_CR73 publication-title: npj Regen. Med. doi: 10.1038/s41536-022-00253-4 – volume: 33 start-page: 9062 year: 2019 ident: 43768_CR58 publication-title: FASEB J. doi: 10.1096/fj.201802052RRR – volume: 151 start-page: 1513 year: 2012 ident: 43768_CR56 publication-title: Cell doi: 10.1016/j.cell.2012.11.034 – volume: 162 start-page: 99 year: 2018 ident: 43768_CR10 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.02.012 – volume: 26 start-page: 348 year: 2019 ident: 43768_CR74 publication-title: Cell Death Differ. doi: 10.1038/s41418-018-0125-4 – ident: 43768_CR29 – volume: 6 start-page: 1 year: 2016 ident: 43768_CR65 publication-title: Sci. Rep. doi: 10.1038/srep20989 – volume: 5 start-page: 1 year: 2014 ident: 43768_CR51 publication-title: Nat. Commun. doi: 10.1038/ncomms5075 – volume: 30 start-page: 344 year: 2009 ident: 43768_CR37 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.09.037 – volume: 10 start-page: 27 year: 2003 ident: 43768_CR41 publication-title: Microcirculation doi: 10.1080/713773584 – volume: 584 start-page: 535 year: 2020 ident: 43768_CR16 publication-title: Nature doi: 10.1038/s41586-020-2612-2 – volume: 5 start-page: 261 year: 2004 ident: 43768_CR59 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1357 – ident: 43768_CR24 doi: 10.1002/advs.202201483 – volume: 33 start-page: 1199 year: 2019 ident: 43768_CR55 publication-title: FASEB J. doi: 10.1096/fj.201800841R – volume: 274 start-page: 120872 year: 2021 ident: 43768_CR4 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120872 – volume: 7 start-page: 2686 year: 2019 ident: 43768_CR30 publication-title: Biomater. Sci. doi: 10.1039/C9BM00128J – volume: 96 start-page: 321 year: 2019 ident: 43768_CR25 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.07.030 – volume: 118 start-page: 804 year: 2011 ident: 43768_CR40 publication-title: Blood doi: 10.1182/blood-2010-12-327338 – volume: 22 start-page: 617 year: 2010 ident: 43768_CR49 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2010.08.010 – volume: 27 start-page: 480 year: 2021 ident: 43768_CR44 publication-title: Nat. Med. doi: 10.1038/s41591-021-01279-9 – volume: 129 start-page: 203 year: 1995 ident: 43768_CR62 publication-title: J. Cell Biol. doi: 10.1083/jcb.129.1.203 – volume: 121 start-page: 2115 year: 2008 ident: 43768_CR78 publication-title: J. cell Sci. doi: 10.1242/jcs.017897 – volume: 11 start-page: 73 year: 1995 ident: 43768_CR39 publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cb.11.110195.000445 – volume: 10 start-page: 2001856 year: 2021 ident: 43768_CR21 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202001856 – volume: 7 start-page: 364 year: 2022 ident: 43768_CR15 publication-title: Bioact. Mater. – volume: 45 start-page: 690 year: 2014 ident: 43768_CR17 publication-title: Mater. Sci. Eng.: C. doi: 10.1016/j.msec.2014.04.026 – volume: 15 start-page: 1660 year: 2016 ident: 43768_CR54 publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.04.065 – volume: 19 start-page: 1800281 year: 2019 ident: 43768_CR34 publication-title: Macromol. Biosci. doi: 10.1002/mabi.201800281 – volume: 121 start-page: 263 year: 2021 ident: 43768_CR79 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.12.022 – volume: 34 start-page: 389 year: 2018 ident: 43768_CR36 publication-title: Dent. Mater. doi: 10.1016/j.dental.2017.11.020 – volume: 13 start-page: 291 year: 2019 ident: 43768_CR47 publication-title: J. Cell Commun. Signal. doi: 10.1007/s12079-019-00511-z – volume: 36 start-page: e22629 year: 2022 ident: 43768_CR64 publication-title: FASEB J. doi: 10.1096/fj.202200907RR – volume: 38 start-page: 143 year: 2016 ident: 43768_CR31 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.04.029 – volume: 110 start-page: E3910 year: 2013 ident: 43768_CR66 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1309276110 – ident: 43768_CR75 doi: 10.1007/978-3-319-99319-5_4 – volume: 48 start-page: 1511 year: 2020 ident: 43768_CR70 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-020-02471-7 – volume: 4 start-page: 1202 year: 2009 ident: 43768_CR48 publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.96 – volume: 10 start-page: 387 year: 2013 ident: 43768_CR3 publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2013.70 – volume: 29 start-page: 639 year: 2009 ident: 43768_CR50 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.109.185165 – volume: 26 start-page: 441 year: 2013 ident: 43768_CR60 publication-title: Dev. Cell doi: 10.1016/j.devcel.2013.08.020 – reference: 38627461 - Nat Commun. 2024 Apr 16;15(1):3274. doi: 10.1038/s41467-024-47722-6. |
SSID | ssj0000391844 |
Score | 2.6031296 |
Snippet | The endothelial cell (EC) outgrowth in both vasculogenesis and angiogenesis starts with remodeling surrounding matrix and proceeds with the crosstalk between... Abstract The endothelial cell (EC) outgrowth in both vasculogenesis and angiogenesis starts with remodeling surrounding matrix and proceeds with the crosstalk... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8307 |
SubjectTerms | 13/51 14/1 14/19 631/57/2268 639/301/923/1027 64/60 692/4019/592/16 Adherens junctions Angiogenesis Cell Differentiation Cell interactions Collagen - metabolism Contractility Endothelial cells Endothelial Cells - metabolism Extracellular matrix Focal adhesion kinase Humanities and Social Sciences Hyaluronic acid Hydrogels Hydrogels - chemistry In vivo methods and tests Kinases Lumens Mathematical analysis multidisciplinary Neovascularization, Physiologic - physiology Plastic properties Plasticity Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9QwFA-6IngRv-3uKhG8adm0SZrkJCoug6AnF-YW0iQdBtZ2nHYO89_7XvqxiLqHXtpM6PT3vt_Le4S8bbAFuC-LvIqxzoWKwHMFeCkefOcgKw9UhBndb9-r1ZX4upbrKeDWT2WVs0xMgjp0HmPkF5jvUxzsieLD7leOU6MwuzqN0LhL7mHrMizpUmu1xFiw-7kWYjorw7i-6EWSDKCocgGspXP2hz5Kbfv_ZWv-lSdN6ufyEXk42Y304wj0Y3Intk_I_XGS5PEp6VfHsO82oOgoRlbpcEhnoujPiCd7EQi6AzsZS6iHI92PA-gjjW3AE1jXQIQUQ_i0OwwbcMxhh21LxypV2BXE4banrg1wbbbzjWfk6vLLj8-rfJqnkHuh5ZAHDt9eem-aomy8jEEq5kxtVIiNY41TFcDJwZ6KWjLmHPoaTkZd8xpUKZgaz8lJ27XxJaG6ANb1pXZNUKIKpY6GNVrx0sUQlSkyUsxf1fqp2TjOvLi2KenNtR2RsICETUhYlpF3y292Y6uNW1d_QrCWldgmO93o9hs7cZ1VNfjgzIFVG6RwxtSsbnTdGAcinkUWMnI-Q20n3u3tDaVl5M3yGLgOcXBt7A5pDSZIWVVm5MVIIsubcM2MkpJn5P1MMzeb__8Pnd7-LmfkAU66x0qaQpyTk2F_iK_AHhrq14nofwOsHgfq priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nq9QwEA-PJ4IX8dvqUyJ402raJE1yEFHxsQjPkwvvFvK5LOxrn90uuP-9k7RdEVdPHnpp09D0N5P5Taczg9DLmEqAu7oqmxBsyUQAnavAS3HgO3veOJCiFNG9-NosluzLJb88QXO7o-kFbo-6dqmf1LLfvPnxff8eFP7dmDIu325ZVnewPiUDfZEluPA3wDKJpKgXE93POzNV4NCwKXfm-K2_2adcxv8Y9_wjbprN0fkddHvikfjDCPxddBLae-jm2Flyfx9tF3vfdyswfDh9acXDLudI4auQMn0TMPgaeHP6pXrY435sSB9waH3KyNqAUOL0SR93u2EFjjrMsG7x-NcqzArb43qLTevhWK3nEw_Q8vzzt0-LcuqvUDom-VB6Clhw51Ss6uh48FwQo6wSPkRDohENwEuBXwXJCTEm-R6GB2mpBdMK1OMhOm27NjxGWFagyq6WJnrBGl_LoEiUgtYm-CBUVaBqfqvaTcXHUw-Mjc5BcCr1iIQGJHRGQpMCvTrccz2W3vjn6I8JrMPIVDY7n-j6lZ60UAsLPjkxwHI9Z0YpS2yUNioDWz4JxBfobIZaz6KoU6RZUGCysIoXh8ughQkH04Zul8ekgClp6gI9GkXk8CRUEiU4pwV6PcvMr8n_vqAn_2NBT9GtOgl3VZcVO0OnQ78Lz4BFDfZ5Vo2ffbMYKA priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LihQxMCwrghfxbesqEbxpY7qTdJLjOrgMgp5c2FvIq4eBtXuZ6TnM31uVfsjiKnjoSzoJSaoqVZV6EfK-xRTgoa7KJiVfCpWA5irQUgLozlE2AbAILbrfvjfrS_H1Sl6dkHqOhclO-zmlZb6mZ--wT3uRSRo4TCmAJnQJavo9TN2OWL1qVsu7CmY810JM8TGM6zuG3uJBOVX_XfLlH7bRzHIuHpGHk6xIz8fVPSYnqXtC7o_VI49PyX59jLt-A8yN4msqHQ45Dor-TBjNi4dPb0A2Rrfp4Uh3Y9H5RFMXMerqGhCP4rM97Q_DBpRxmGHb0dEzFWaFK3C7p66L8G22c8Mzcnnx5cdqXU41FMogtBzKyOG8ZQimreo2yBSlYs54o2JqHWudagCEHGSopCVjzqF-4WTSnntgnyBePCenXd-ll4TqCsg11Nq1UYkm1joZ1mrFa5diUqYqSDWfqg1TgnGsc3Fts6GbaztCwgIkbIaEZQX5sIy5GdNr_LP3ZwTW0hNTY-eGfrexE6pY5UHvZg4k2SiFM8Yz32rfGgfXOkssFuRsBrWd6HVv0ZqsOEirsIt3y2-gNISD61J_yH3QKMqauiAvRhRZVsI1M0pKXpCPM878nvzvG3r1f91fkwdY7R69aSpxRk6H3SG9AZlo8G8zEfwCVhIFyA priority: 102 providerName: Springer Nature |
Title | Hydrogels with tunable mechanical plasticity regulate endothelial cell outgrowth in vasculogenesis and angiogenesis |
URI | https://link.springer.com/article/10.1038/s41467-023-43768-0 https://www.ncbi.nlm.nih.gov/pubmed/38097553 https://www.proquest.com/docview/2901736501 https://www.proquest.com/docview/2902954062 https://doaj.org/article/7b7130a161d54a99b0bf8bf9a9110e0d |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1da9swUGwdg72UdZ_uR9Bgb5upbEmW9JiGZiHQMrYV8ib05RDonJI4D_n3PclO1rGvlz1YBlkWku5Od6fT3SH0vo4hwF1Z5FUINmciAM0VoKU40J09rxxgUbToXl1Xkxs2nfHZg1Rf8U5YFx64W7hzYUGNIgYEE8-ZUcoSW0tbKwNUSgLxcfcFnvdAmUp7MFWgurDeS4ZQeb5maU8AFpUzICqZk584UQrY_zsp8xcLaWI84-fosJcY8bAb6RF6FJoX6GmXQ3L7Eq0nW79azoHF4XimittN8obC30P06Y0gwHcgIcfL0-0Wr7rU8wGHxkffq1tAPxwP7_Fy085BJYceFg3u7qdCr7ARLtbYNB6e-WJX8QrdjC-_jSZ5n0khd0zyNvcUVp07p-qirB0PngtilFXCh9qQ2ogKAElBkgqSE2JM1DIMD9JSC0wUhIzX6KBZNuEtwrIAonWlNLUXrPKlDIrUUtDSBB-EKjJU7FZVuz7MeMx2cauTuZtK3UFCAyR0goQmGfqw_-euC7Lx19YXEVj7ljFAdqoAtNE92uh_oU2GTneg1j3VrnW0KQsKMivM4t3-M9BbhINpwnKT2kTTKKnKDL3pUGQ_EiqJEpzTDH3c4cyPzv88oeP_MaET9KyMyF2UecFO0UG72oQzkJdaO0CPxUxAKcefBujJcDj9OoX3xeX15y9QO6pGg0Q8UF4xeQ-Dbxcf |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKEFwQzxIoYCQ4QVTn4dg5IMSr2tLHqZX2ZpzYWa1UkiXJqtqf4huZyatCQG895JI4I9vz9nhmAF4XVAI8DwM_cS7zY-mQ5wL0UnL0na1IcqQiiugenySzs_jbXMy34NeYC0PXKkeZ2AlqW-V0Rr5H8T4ZoT0RfFj99KlrFEVXxxYaPVkcus0FumzN-4MviN83Ybj_9fTzzB-6Cvh5rETr2whnIPI8LYKwyIWzQnKTZqm0rjC8MDLBRUVoVTglODeGLG4jnMqiDBUKKlyEewNuouLlxFFyLqczHaq2ruJ4yM3hkdpr4k4SoWL0Y2Rl5fM_9F_XJuBftu1fcdlO3e3fg7uDnco-9oR1H7Zc-QBu9Z0rNw-hmW1sXS1QsTI6yWXtusvBYj8cZRIT4tkK7XK6st1uWN03vHfMlZYyvs6R6BmFDFi1bhd1dYEQliXrb8UiVBS_y4aZ0uKzWI4vHsHZtez0Y9guq9I9AaYCFBV5qExhZZzYULmUF0pGoXHWyTTwIBh3VedDcXPqsXGuuyB7pHSPCY2Y0B0mNPfg7fTPqi_tceXoT4SsaSSV5e5eVPVCD1yuZYY-PzdoRVsRmzTNeFaorEgNqhTuuPVgd0S1HmRFoy8p24NX02fkcsKDKV217sZQQJYnoQc7PYlMM4kUT6UQkQfvRpq5BP7_BT29ei4v4fbs9PhIHx2cHD6DOyGRcBD6QbwL2229ds_RFmuzFx0DMPh-3Rz3GxXfRss |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJuUAkaCE0TrPBw7B4SAstpSqDhQaW_GiZ3VSiXZZrOq9q_x65jJq0JAbz3kkjiW7fnmYY9nBuBlQSnA8zDwE-cyP5YOeS7AXUqOe2crkhxRRB7dr8fJ7CT-PBfzHfg1xMLQtcpBJraC2lY5nZFPyN8nI7QngknRX4v4djB9tzrzqYIUeVqHchodRI7c9hy3b-u3hwdI61dhOP30_ePM7ysM-HmsROPbCEcj8jwtgrDIhbNCcpNmqbSuMLwwMsEJRmhhOCU4N4asbyOcyqIMlQsqX-z3GlyXkQiIx-Rcjuc7lHldxXEfp8MjNVnHrVRCJenHyNbK53_owrZkwL_s3L98tK3qm96B273Nyt53ILsLO668Bze6Kpbb-7CebW1dLVDJMjrVZc2mjcdiPx1FFRMI2AptdLq-3WxZ7RZUMcwxV1qK_jpFBmDkPmDVplnU1Tn2sCxZd0MWe0VRvFwzU1p8FsvhxQM4uZKVfgi7ZVW6x8BUgGIjD5UprIwTGyqX8kLJKDTOOpkGHgTDquq8T3RO9TZOdetwj5TuKKGRErqlhOYevB7_WXVpPi5t_YGINbakFN3ti6pe6J7jtcxw_88NWtRWxCZNM54VKitSg-qFO2492B9IrXu5sdYXKPfgxfgZOZ7oYEpXbdo25JzlSejBow4i40gixVMpROTBmwEzF53_f0J7l4_lOdxEXtNfDo-PnsCtkBAchH4Q78NuU2_cUzTLmuxZi38GP66a4X4DNwZLAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogels+with+tunable+mechanical+plasticity+regulate+endothelial+cell+outgrowth+in+vasculogenesis+and+angiogenesis&rft.jtitle=Nature+communications&rft.au=Zhao+Wei&rft.au=Meng+Lei&rft.au=Yaohui+Wang&rft.au=Yizhou+Xie&rft.date=2023-12-14&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1038%2Fs41467-023-43768-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7b7130a161d54a99b0bf8bf9a9110e0d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |