Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular...

Full description

Saved in:
Bibliographic Details
Published inNature biomedical engineering Vol. 5; no. 7; pp. 666 - 677
Main Authors Guo, Keying, Wustoni, Shofarul, Koklu, Anil, Díaz-Galicia, Escarlet, Moser, Maximilian, Hama, Adel, Alqahtani, Ahmed A., Ahmad, Adeel Nazir, Alhamlan, Fatimah Saeed, Shuaib, Muhammad, Pain, Arnab, McCulloch, Iain, Arold, Stefan T., Grünberg, Raik, Inal, Sahika
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody–SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 μl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads. Organic electrochemical transistors functionalized with antigen-specific nanobodies can rapidly detect attomolar-to-nanomolar levels of the antigens in complex bodily fluids.
AbstractList The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody-SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 μl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads.The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody-SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 μl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads.
The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody–SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 μl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads.Organic electrochemical transistors functionalized with antigen-specific nanobodies can rapidly detect attomolar-to-nanomolar levels of the antigens in complex bodily fluids.
The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody–SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 μl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads. Organic electrochemical transistors functionalized with antigen-specific nanobodies can rapidly detect attomolar-to-nanomolar levels of the antigens in complex bodily fluids.
The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody-SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 μl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads.
Author Wustoni, Shofarul
Pain, Arnab
Hama, Adel
McCulloch, Iain
Alqahtani, Ahmed A.
Moser, Maximilian
Díaz-Galicia, Escarlet
Ahmad, Adeel Nazir
Inal, Sahika
Shuaib, Muhammad
Guo, Keying
Alhamlan, Fatimah Saeed
Koklu, Anil
Arold, Stefan T.
Grünberg, Raik
Author_xml – sequence: 1
  givenname: Keying
  orcidid: 0000-0001-6383-6321
  surname: Guo
  fullname: Guo, Keying
  organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Shofarul
  orcidid: 0000-0002-3059-4503
  surname: Wustoni
  fullname: Wustoni, Shofarul
  organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Anil
  surname: Koklu
  fullname: Koklu, Anil
  organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Escarlet
  orcidid: 0000-0003-1065-1029
  surname: Díaz-Galicia
  fullname: Díaz-Galicia, Escarlet
  organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering Division, KAUST
– sequence: 5
  givenname: Maximilian
  orcidid: 0000-0002-3293-9309
  surname: Moser
  fullname: Moser, Maximilian
  organization: Department of Chemistry, University of Oxford
– sequence: 6
  givenname: Adel
  surname: Hama
  fullname: Hama, Adel
  organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Ahmed A.
  surname: Alqahtani
  fullname: Alqahtani, Ahmed A.
  organization: Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center
– sequence: 8
  givenname: Adeel Nazir
  orcidid: 0000-0002-1146-4324
  surname: Ahmad
  fullname: Ahmad, Adeel Nazir
  organization: KAUST Health
– sequence: 9
  givenname: Fatimah Saeed
  surname: Alhamlan
  fullname: Alhamlan, Fatimah Saeed
  organization: Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center
– sequence: 10
  givenname: Muhammad
  surname: Shuaib
  fullname: Shuaib, Muhammad
  organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 11
  givenname: Arnab
  surname: Pain
  fullname: Pain, Arnab
  organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 12
  givenname: Iain
  surname: McCulloch
  fullname: McCulloch, Iain
  organization: Department of Chemistry, University of Oxford, KAUST Solar Center (KSC), Physical Science and Engineering Division, KAUST
– sequence: 13
  givenname: Stefan T.
  orcidid: 0000-0001-5278-0668
  surname: Arold
  fullname: Arold, Stefan T.
  email: stefan.arold@kaust.edu.sa
  organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering Division, KAUST, Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier
– sequence: 14
  givenname: Raik
  orcidid: 0000-0001-9532-6043
  surname: Grünberg
  fullname: Grünberg, Raik
  email: raik.grunberg@kaust.edu.sa
  organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering Division, KAUST
– sequence: 15
  givenname: Sahika
  orcidid: 0000-0002-1166-1512
  surname: Inal
  fullname: Inal, Sahika
  email: sahika.inal@kaust.edu.sa
  organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34031558$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFTEUhoNUbK39Ay4k4MbN2HzOx1KuVQsthbaKu3Amc3JNmUmuyYxQwf9ubm-L0kUXIYfwPIec874keyEGJOQ1Z-85k-1xVlxrXjFRDmukqrpn5EBw3VStqr_v_Vfvk6OcbxhjvJOqa_QLsi8Vk0VvD8ifS9j4gWYf1iNWUxzRLiPSAWe0s4-BRkdXF99OP1a8oxAGen5yeVWK2a8xZPrLAw0QYh-H28ot4c6B0f_Ggca0huAtxdJzTtH-wMlbGOmcIGSf55jyK_LcwZjx6P4-JF8_nVyvvlRnF59PVx_OKqtaPVd9g1ZrBG3rznFUnQbeKyV5g0LUKCTU4CTqgSno0ZaXBriDBp0d0LUoD8m7Xd9Nij8XzLOZfLY4jhAwLtkILYVQutayoG8foTdxSWWmLaUFb4VumkK9uaeWfsLBbJKfIN2ah8UWoN0BNsWcEzpj_Qzb7ZTx_Wg4M9sYzS5GU2I0dzGarqjikfrQ_UlJ7qRc4LDG9O_bT1h_Ae56sMo
CitedBy_id crossref_primary_10_1002_admi_202201736
crossref_primary_10_1016_j_talanta_2021_123197
crossref_primary_10_1002_admi_202300017
crossref_primary_10_1016_j_bios_2024_116807
crossref_primary_10_1016_j_bios_2024_116928
crossref_primary_10_1126_sciadv_adi9710
crossref_primary_10_6023_A24080248
crossref_primary_10_1038_s41467_022_32676_4
crossref_primary_10_1021_acsanm_2c01105
crossref_primary_10_1021_acsbiomaterials_1c00727
crossref_primary_10_1109_OJNANO_2022_3215135
crossref_primary_10_1016_j_biosx_2022_100105
crossref_primary_10_1021_acsinfecdis_1c00478
crossref_primary_10_1360_SSC_2022_0044
crossref_primary_10_1016_j_snb_2024_135601
crossref_primary_10_1016_j_matt_2023_05_001
crossref_primary_10_1021_acsami_3c00331
crossref_primary_10_1016_j_talanta_2023_124973
crossref_primary_10_1016_j_nanoen_2024_110062
crossref_primary_10_1021_acssensors_3c01728
crossref_primary_10_1002_adma_202208757
crossref_primary_10_1002_advs_202205429
crossref_primary_10_1021_acs_nanolett_2c01584
crossref_primary_10_1002_adfm_202302205
crossref_primary_10_1039_D3TC00108C
crossref_primary_10_1016_j_talanta_2023_125394
crossref_primary_10_1021_acsami_5c00981
crossref_primary_10_1021_acssensors_4c03207
crossref_primary_10_1039_D2SD00087C
crossref_primary_10_1063_5_0079011
crossref_primary_10_1021_acs_chemrev_1c00266
crossref_primary_10_1039_D1TC02546E
crossref_primary_10_1557_s43579_023_00511_6
crossref_primary_10_1002_admi_202300391
crossref_primary_10_46670_JSST_2022_31_6_403
crossref_primary_10_1002_adfm_202310852
crossref_primary_10_1002_elsa_202100215
crossref_primary_10_1002_elsa_202100216
crossref_primary_10_1039_D2NR06485E
crossref_primary_10_1002_adma_202304102
crossref_primary_10_1007_s42242_024_00297_z
crossref_primary_10_1021_acs_analchem_1c02889
crossref_primary_10_1186_s12951_024_02900_y
crossref_primary_10_1016_j_medntd_2022_100116
crossref_primary_10_1016_j_bios_2023_115543
crossref_primary_10_1080_10408347_2024_2343853
crossref_primary_10_3390_cells11213355
crossref_primary_10_1002_advs_202204246
crossref_primary_10_1007_s12274_022_5049_0
crossref_primary_10_1109_ACCESS_2021_3136550
crossref_primary_10_1039_D2TA00683A
crossref_primary_10_1002_admi_202102526
crossref_primary_10_1021_acs_analchem_2c00062
crossref_primary_10_1039_D2TB02031A
crossref_primary_10_1002_adma_202308952
crossref_primary_10_1016_j_heliyon_2024_e30077
crossref_primary_10_1002_advs_202301222
crossref_primary_10_3390_s23208488
crossref_primary_10_1002_adhm_202100955
crossref_primary_10_1016_j_bios_2023_115359
crossref_primary_10_1038_s41467_024_50792_1
crossref_primary_10_1002_smll_202403899
crossref_primary_10_1038_s41467_024_45759_1
crossref_primary_10_3390_mi14081486
crossref_primary_10_1002_adma_202200274
crossref_primary_10_1002_advs_202104381
crossref_primary_10_1002_aelm_202200868
crossref_primary_10_1021_acsami_2c15373
crossref_primary_10_1002_adma_202200393
crossref_primary_10_3390_bios11120496
crossref_primary_10_1002_adfm_202105482
crossref_primary_10_1002_adfm_202109046
crossref_primary_10_1021_acssensors_4c01717
crossref_primary_10_1039_D2NR05444B
crossref_primary_10_1021_acs_chemrev_1c00395
crossref_primary_10_1016_j_bios_2022_114411
crossref_primary_10_1002_adfm_202108510
crossref_primary_10_1002_adfm_202420701
crossref_primary_10_1016_j_bios_2021_113958
crossref_primary_10_1016_j_coelec_2023_101319
crossref_primary_10_1038_s41377_024_01734_5
crossref_primary_10_3390_bios12100836
crossref_primary_10_1039_D2CS00920J
crossref_primary_10_1016_j_wees_2024_03_002
crossref_primary_10_1039_D2RA01293F
crossref_primary_10_1007_s12274_023_5606_1
crossref_primary_10_1016_j_bios_2024_117011
crossref_primary_10_3390_bios14030146
crossref_primary_10_1016_j_polymer_2023_125916
crossref_primary_10_1002_aelm_202300235
crossref_primary_10_1021_acs_analchem_1c04454
crossref_primary_10_1021_acsmaterialslett_2c00095
crossref_primary_10_1038_s41467_024_48294_1
crossref_primary_10_1016_j_snr_2024_100211
crossref_primary_10_1016_j_bios_2024_116506
crossref_primary_10_1021_acssensors_4c02037
crossref_primary_10_1002_aelm_202200846
crossref_primary_10_1002_aelm_202400222
crossref_primary_10_1126_sciadv_adt5186
crossref_primary_10_3390_polym15183739
crossref_primary_10_1021_acs_analchem_3c02258
crossref_primary_10_1038_s41467_024_46069_2
crossref_primary_10_3390_diagnostics12061388
crossref_primary_10_1002_admi_202102040
crossref_primary_10_1002_admi_202202256
crossref_primary_10_1016_j_aca_2024_342209
crossref_primary_10_1002_mame_202100880
crossref_primary_10_1038_s41551_021_00765_2
crossref_primary_10_7498_aps_71_20220241
crossref_primary_10_1016_j_nanoen_2024_110522
crossref_primary_10_1126_sciadv_adl1856
crossref_primary_10_1063_5_0077027
crossref_primary_10_1016_j_bios_2022_114752
crossref_primary_10_1088_2631_7990_acfd69
crossref_primary_10_1021_acsaelm_1c01171
crossref_primary_10_1002_anie_202204134
crossref_primary_10_1021_acs_analchem_2c00897
crossref_primary_10_1021_acs_chemrev_1c00290
crossref_primary_10_1038_s41551_021_00841_7
crossref_primary_10_1007_s00253_022_11981_4
crossref_primary_10_3390_mi15050621
crossref_primary_10_1002_advs_202306716
crossref_primary_10_1038_s41928_024_01237_6
crossref_primary_10_1080_02678292_2023_2297269
crossref_primary_10_3389_fimmu_2022_978513
crossref_primary_10_1038_s43246_022_00226_6
crossref_primary_10_1002_adfm_202313871
crossref_primary_10_1088_2053_1583_ac7339
crossref_primary_10_1126_sciadv_abo0881
crossref_primary_10_1021_acssensors_2c01990
crossref_primary_10_1038_s41565_023_01415_1
crossref_primary_10_1002_sstr_202100087
crossref_primary_10_1016_j_talanta_2023_124569
crossref_primary_10_1186_s40580_023_00410_5
crossref_primary_10_1002_advs_202308281
crossref_primary_10_1002_ange_202204134
crossref_primary_10_1021_acs_jafc_4c04191
crossref_primary_10_1039_D3NR06190F
crossref_primary_10_1016_j_bios_2022_114224
crossref_primary_10_1021_acsnano_3c07707
crossref_primary_10_1038_s44222_023_00050_8
crossref_primary_10_1007_s00604_023_05814_y
crossref_primary_10_3390_ijms24065994
crossref_primary_10_3390_mi13091395
crossref_primary_10_1016_j_jhazmat_2023_131033
crossref_primary_10_3390_chemosensors11020074
crossref_primary_10_1038_s41578_024_00652_7
crossref_primary_10_1002_adom_202102687
crossref_primary_10_1002_EXP_20210232
crossref_primary_10_1002_adma_202303079
crossref_primary_10_1016_j_snb_2022_131764
crossref_primary_10_3390_bioengineering9100571
crossref_primary_10_1002_smsc_202300058
crossref_primary_10_3762_bjnano_15_80
crossref_primary_10_1016_j_bios_2022_114691
crossref_primary_10_1021_acsami_2c06169
crossref_primary_10_1126_sciadv_add9627
crossref_primary_10_3390_bios12110984
crossref_primary_10_1038_s41928_024_01297_8
crossref_primary_10_1039_D4NR03481C
crossref_primary_10_1021_acsaelm_4c00260
crossref_primary_10_1002_adma_202201178
crossref_primary_10_1002_aelm_202101186
crossref_primary_10_7555_JBR_35_20210108
crossref_primary_10_1016_j_aca_2021_338907
crossref_primary_10_1002_admi_202102039
crossref_primary_10_1038_s41563_024_02001_z
crossref_primary_10_1038_s42256_024_00940_5
crossref_primary_10_1021_acsnano_2c12418
crossref_primary_10_1038_s41563_024_01875_3
crossref_primary_10_1039_D3SC03509C
crossref_primary_10_3389_fmats_2024_1354635
crossref_primary_10_1021_acsami_4c11042
crossref_primary_10_1002_adma_202405556
crossref_primary_10_1038_s41467_024_54743_8
crossref_primary_10_3390_bios13070739
crossref_primary_10_1021_acsnano_2c04364
crossref_primary_10_3390_mi14122184
crossref_primary_10_1021_acssensors_4c02877
crossref_primary_10_1007_s11426_022_1425_9
crossref_primary_10_1002_admi_202201914
crossref_primary_10_3390_chemosensors10070269
crossref_primary_10_1038_s41467_024_51883_9
crossref_primary_10_1002_smll_202108077
crossref_primary_10_1021_acsabm_4c01263
crossref_primary_10_20517_evcna_2023_72
crossref_primary_10_1002_adma_202312254
crossref_primary_10_1016_j_biosx_2023_100324
crossref_primary_10_1002_adfm_202410788
crossref_primary_10_1002_adma_202103646
crossref_primary_10_1021_acssensors_3c00453
crossref_primary_10_1109_TED_2023_3271960
crossref_primary_10_1002_adma_202300034
crossref_primary_10_1002_advs_202306191
crossref_primary_10_1007_s00216_023_04760_1
crossref_primary_10_1002_adma_202413951
crossref_primary_10_3390_polym16162287
crossref_primary_10_1021_acsami_1c18778
crossref_primary_10_3390_bios13050565
crossref_primary_10_1088_2399_1984_ad36ff
crossref_primary_10_1038_s41467_023_43189_z
crossref_primary_10_1007_s00604_023_05671_9
crossref_primary_10_1109_OJSSCS_2022_3217231
crossref_primary_10_1021_acsanm_1c02949
crossref_primary_10_1039_D3AN00328K
crossref_primary_10_1016_j_mtelec_2023_100028
crossref_primary_10_1016_j_jfutfo_2023_05_004
crossref_primary_10_1002_adma_202306252
crossref_primary_10_1021_acs_analchem_4c02619
crossref_primary_10_1016_j_trac_2022_116750
crossref_primary_10_1016_j_matt_2022_08_020
crossref_primary_10_1007_s12668_023_01266_z
crossref_primary_10_1126_sciadv_adg8659
crossref_primary_10_1016_j_lanmic_2024_101029
crossref_primary_10_1021_jacs_3c10321
crossref_primary_10_1002_adma_202313121
crossref_primary_10_1021_acsami_3c01054
crossref_primary_10_1002_adma_202202972
crossref_primary_10_1002_smll_202406522
crossref_primary_10_1021_acssensors_3c00029
crossref_primary_10_1007_s42765_022_00179_y
crossref_primary_10_1016_j_snr_2024_100268
crossref_primary_10_1021_acsami_3c09452
crossref_primary_10_1002_adma_202201085
crossref_primary_10_1016_j_microc_2025_113338
crossref_primary_10_1021_acsami_1c23626
crossref_primary_10_1021_acsnano_2c12606
crossref_primary_10_1016_j_bios_2024_116210
crossref_primary_10_1016_j_snb_2024_135922
crossref_primary_10_1126_science_adg8758
crossref_primary_10_1021_acssensors_2c01250
crossref_primary_10_1021_acssensors_2c01493
crossref_primary_10_1002_pi_6520
crossref_primary_10_1016_j_bios_2022_114496
crossref_primary_10_1002_aelm_202200573
crossref_primary_10_1021_acsaelm_4c02084
crossref_primary_10_1016_j_bpj_2022_12_019
crossref_primary_10_1016_j_cej_2024_158532
crossref_primary_10_1002_adsr_202300188
crossref_primary_10_1021_acsami_3c06073
crossref_primary_10_1021_acssensors_2c00967
crossref_primary_10_1016_j_aca_2022_340757
crossref_primary_10_1016_j_bios_2024_117098
crossref_primary_10_1038_s41598_024_77336_3
crossref_primary_10_1016_j_bcp_2022_115401
crossref_primary_10_3389_fmicb_2022_977673
crossref_primary_10_1016_j_cej_2024_148980
crossref_primary_10_1002_admi_202202409
crossref_primary_10_1021_acsnano_3c01629
crossref_primary_10_1016_j_bios_2024_116229
crossref_primary_10_3390_bios14010010
crossref_primary_10_1039_D4TA05288A
crossref_primary_10_3389_fddsv_2022_927164
crossref_primary_10_1002_adma_202412379
crossref_primary_10_1080_02678292_2023_2188615
crossref_primary_10_1002_adfm_202301268
crossref_primary_10_1038_s41551_021_00833_7
crossref_primary_10_1146_annurev_anchem_061020_123817
crossref_primary_10_3389_fsens_2024_1430958
crossref_primary_10_3390_bios12010024
crossref_primary_10_34133_2022_9823578
crossref_primary_10_1016_j_snr_2022_100124
crossref_primary_10_1016_j_tifs_2024_104556
crossref_primary_10_1021_acsnano_4c02130
crossref_primary_10_1021_acs_chemmater_4c00989
crossref_primary_10_1038_s41467_023_43004_9
crossref_primary_10_1002_smll_202410499
crossref_primary_10_1021_acsnano_2c04337
crossref_primary_10_1038_s44222_024_00180_7
crossref_primary_10_1039_D1TC05229B
crossref_primary_10_1016_j_xcrp_2023_101673
crossref_primary_10_1146_annurev_anchem_061622_012029
crossref_primary_10_34133_adi_0008
crossref_primary_10_1021_acs_chemmater_3c00180
crossref_primary_10_3390_bios13040448
crossref_primary_10_1016_j_xcrp_2022_100844
crossref_primary_10_1007_s00604_021_05048_w
crossref_primary_10_1002_advs_202305347
crossref_primary_10_1016_j_bios_2025_117170
crossref_primary_10_1021_acsmaterialsau_2c00072
crossref_primary_10_1126_sciadv_adf1402
crossref_primary_10_1038_s43856_022_00113_8
crossref_primary_10_1038_s41467_022_35573_y
crossref_primary_10_3390_bios15030198
crossref_primary_10_3892_mmr_2022_12779
crossref_primary_10_1002_aelm_202300653
Cites_doi 10.1007/s00216-020-02540-9
10.1056/NEJMc2016359
10.1126/sciadv.aas9667
10.1126/science.aao6750
10.1002/adma.202002748
10.1038/s41591-020-0965-6
10.1039/C9MH01544B
10.1038/s41467-018-05235-z
10.1002/pro.519
10.1021/ac00259a060
10.1039/C8TB01697F
10.1039/C3AN01835K
10.1007/978-1-60761-670-2_2
10.1038/s41467-020-18174-5
10.1001/jamainternmed.2020.8876
10.1038/s41467-020-19883-7
10.1038/ncomms3133
10.1126/science.abb6936
10.1373/clinchem.2007.091181
10.1021/acs.accounts.7b00624
10.1074/mcp.M700342-MCP200
10.1126/science.abb5793
10.1002/adma.201900422
10.1073/pnas.1115485109
10.1038/natrevmats.2017.86
10.1002/adfm.201807033
10.1002/advs.201800453
10.1016/j.drudis.2016.04.003
10.1038/s41563-019-0556-4
10.1016/j.idc.2019.08.001
10.1002/anie.201506686
10.1073/pnas.0406368102
10.1038/nmeth.2404
10.1038/363446a0
10.1002/adma.202001439
10.1021/acs.chemmater.8b04414
10.1038/d41586-020-02058-1
10.1021/la970815u
10.1016/j.tibtech.2011.01.007
10.1016/S0169-4332(02)00608-6
10.1038/s41467-017-00549-w
10.1016/j.cmi.2020.05.001
10.1039/c2an36787d
10.1016/j.snb.2017.08.164
10.1146/annurev-biochem-063011-092449
10.1002/admi.201800928
10.1093/bioinformatics/btaa558
10.1016/j.bios.2020.112052
10.1021/cr0300789
10.1016/j.jmb.2013.10.021
10.1016/j.cell.2020.04.031
10.1021/jp908821b
10.1088/2058-8585/aad0cb
10.1016/j.cell.2020.02.058
10.1016/j.tibtech.2014.03.001
10.1021/nl050298x
10.1016/bs.mie.2018.12.010
10.7326/M20-3012
10.1101/2020.10.01.20203836
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
2021. The Author(s), under exclusive licence to Springer Nature Limited.
The Author(s), under exclusive licence to Springer Nature Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FG
8FH
ABJCF
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/s41551-021-00734-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Biological Sciences
Biological Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2157-846X
EndPage 677
ExternalDocumentID 34031558
10_1038_s41551_021_00734_9
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/G037515/1; EP/M005143/1
  funderid: https://doi.org/10.13039/501100000266
– fundername: King Abdullah University of Science and Technology (KAUST)
  grantid: OSR-2018-CARF/CCF-3079; OSR-2015-CRG4-2572; OSR-4106 CPF2019; REI/1/4204-01; REI/1/4204-01; REI/1/4229-01
  funderid: https://doi.org/10.13039/501100004052
– fundername: KAUST | Global Collaborative Research, King Abdullah University of Science and Technology (GCR, KAUST)
  grantid: OSR-2018-CRG7-3709
  funderid: https://doi.org/10.13039/501100003422
– fundername: King Abdullah University of Science and Technology (KAUST)
  grantid: OSR-2015-CRG4-2572
– fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/G037515/1
– fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/M005143/1
– fundername: King Abdullah University of Science and Technology (KAUST)
  grantid: REI/1/4204-01
– fundername: King Abdullah University of Science and Technology (KAUST)
  grantid: REI/1/4229-01
– fundername: KAUST | Global Collaborative Research, King Abdullah University of Science and Technology (GCR, KAUST)
  grantid: OSR-2018-CRG7-3709
– fundername: King Abdullah University of Science and Technology (KAUST)
  grantid: OSR-2018-CARF/CCF-3079
– fundername: King Abdullah University of Science and Technology (KAUST)
  grantid: OSR-4106 CPF2019
GroupedDBID 0R~
53G
AARCD
AAYZH
ABJCF
ABJNI
ABLJU
ACBWK
ACGFS
AFANA
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ATHPR
AXYYD
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
M7P
M7S
NFIDA
NNMJJ
O9-
ODYON
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FG
8FH
AZQEC
DWQXO
GNUQQ
L6V
LK8
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c485t-b7ec55ea5c69f1e495a1b44317e226e23a6af3e5d04abec6e27a1fa7efcdef8e3
IEDL.DBID BENPR
ISSN 2157-846X
IngestDate Thu Jul 10 18:21:13 EDT 2025
Sat Aug 23 12:41:29 EDT 2025
Mon Jul 21 06:05:47 EDT 2025
Sun Aug 31 08:57:44 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Sun Aug 31 08:58:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-b7ec55ea5c69f1e495a1b44317e226e23a6af3e5d04abec6e27a1fa7efcdef8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1146-4324
0000-0002-3293-9309
0000-0001-9532-6043
0000-0001-6383-6321
0000-0003-1065-1029
0000-0001-5278-0668
0000-0002-1166-1512
0000-0002-3059-4503
OpenAccessLink https://www.nature.com/articles/s41551-021-00734-9.pdf
PMID 34031558
PQID 2552182577
PQPubID 4669717
PageCount 12
ParticipantIDs proquest_miscellaneous_2532245653
proquest_journals_2552182577
pubmed_primary_34031558
crossref_citationtrail_10_1038_s41551_021_00734_9
crossref_primary_10_1038_s41551_021_00734_9
springer_journals_10_1038_s41551_021_00734_9
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature biomedical engineering
PublicationTitleAbbrev Nat Biomed Eng
PublicationTitleAlternate Nat Biomed Eng
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Ferretti (CR7) 2020; 368
Spitzberg, Zrehen, van Kooten, Meller (CR52) 2019; 31
Wrapp (CR43) 2020; 181
Wyllie (CR48) 2020; 383
Todd (CR51) 2007; 53
Khodagholy (CR15) 2013; 4
Long, Winefordner (CR62) 1983; 55
Macchia (CR20) 2018; 3
Kubala, Kovtun, Alexandrov, Collins (CR39) 2010; 19
Raj (CR44) 2018; 4
Ohayon, Inal (CR18) 2020; 32
CR33
Zhang, Garcia-D’Angeli, Brennan, Huo (CR34) 2013; 139
Moser, Ponder, Wadsworth, Giovannitti, McCulloch (CR35) 2019; 29
Wang, Chen, Lin, Fang, Lieber (CR10) 2005; 102
De Meyer, Muyldermans, Depicker (CR25) 2014; 32
Muyldermans (CR22) 2013; 82
Zulkower, Rosser (CR60) 2020; 36
Niemz, Ferguson, Boyle (CR9) 2011; 29
Love, Estroff, Kriebel, Nuzzo, Whitesides (CR32) 2005; 105
Macchia (CR13) 2018; 9
Nakatsuka (CR12) 2018; 362
Schuck, Zhao (CR40) 2010; 627
CR3
Filipiak (CR26) 2018; 255
CR5
CR8
Keeble, Howarth (CR29) 2019; 617
Ren (CR11) 2017; 8
Rivnay (CR17) 2018; 3
Macchia, Manoli, Di Franco, Scamarcio, Torsi (CR42) 2020; 412
Eshaghi (CR58) 2015; 54
Hanke (CR46) 2020; 11
Inal, Rivnay, Suiu, Malliaras, McCulloch (CR16) 2018; 51
Venkatraman (CR37) 2018; 5
Höök, Rodahl, Brzezinski, Kasemo (CR57) 1998; 14
Wustoni, Savva, Sun, Bihar, Inal (CR55) 2019; 6
Trilling, Beekwilder, Zuilhof (CR21) 2013; 138
Macchia (CR14) 2020; 7
Gentili (CR19) 2018; 6
Steeland, Vandenbroucke, Libert (CR24) 2016; 21
Qu (CR56) 2010; 114
Azhar, Hui, Memish, Drosten, Zumla (CR50) 2019; 33
Zakeri (CR28) 2012; 109
Alexandersen, Chamings, Bhatta (CR53) 2020; 11
Corman (CR6) 2020; 25
Pasomsub (CR47) 2021; 27
Kissler, Tedijanto, Goldstein, Grad, Lipsitch (CR1) 2020; 368
Long (CR4) 2020; 26
Esplandiu, Noeske (CR31) 2002; 199
Rothbauer (CR27) 2008; 7
Mutalik (CR61) 2013; 10
Sheehan, Whitman (CR41) 2005; 5
Ohayon (CR54) 2020; 19
Macchia (CR38) 2019; 31
Lewis (CR2) 2020; 583
Hamers-Casterman (CR23) 1993; 363
Butler-Laporte (CR49) 2021; 181
Moser (CR36) 2020; 32
Li, Fierer, Rapoport, Howarth (CR59) 2014; 426
Walls (CR45) 2020; 181
Oloketuyi (CR30) 2020; 154
AK Trilling (734_CR21) 2013; 138
S Muyldermans (734_CR22) 2013; 82
S Inal (734_CR16) 2018; 51
AH Keeble (734_CR29) 2019; 617
M Eshaghi (734_CR58) 2015; 54
M Moser (734_CR36) 2020; 32
MS Filipiak (734_CR26) 2018; 255
E Pasomsub (734_CR47) 2021; 27
V Venkatraman (734_CR37) 2018; 5
D Qu (734_CR56) 2010; 114
SV Raj (734_CR44) 2018; 4
E Macchia (734_CR42) 2020; 412
S Wustoni (734_CR55) 2019; 6
U Rothbauer (734_CR27) 2008; 7
T De Meyer (734_CR25) 2014; 32
S Alexandersen (734_CR53) 2020; 11
B Zakeri (734_CR28) 2012; 109
M Moser (734_CR35) 2019; 29
E Macchia (734_CR14) 2020; 7
L Ferretti (734_CR7) 2020; 368
D Gentili (734_CR19) 2018; 6
E Macchia (734_CR38) 2019; 31
VM Corman (734_CR6) 2020; 25
E Macchia (734_CR13) 2018; 9
S Zhang (734_CR34) 2013; 139
GL Long (734_CR62) 1983; 55
734_CR5
J Rivnay (734_CR17) 2018; 3
EI Azhar (734_CR50) 2019; 33
734_CR3
D Ohayon (734_CR54) 2020; 19
734_CR33
734_CR8
C Hamers-Casterman (734_CR23) 1993; 363
MJ Esplandiu (734_CR31) 2002; 199
F Höök (734_CR57) 1998; 14
S Oloketuyi (734_CR30) 2020; 154
D Ohayon (734_CR18) 2020; 32
P Schuck (734_CR40) 2010; 627
JD Spitzberg (734_CR52) 2019; 31
N Nakatsuka (734_CR12) 2018; 362
J Todd (734_CR51) 2007; 53
G Butler-Laporte (734_CR49) 2021; 181
AL Wyllie (734_CR48) 2020; 383
V Zulkower (734_CR60) 2020; 36
Q-X Long (734_CR4) 2020; 26
A Niemz (734_CR9) 2011; 29
D Lewis (734_CR2) 2020; 583
SM Kissler (734_CR1) 2020; 368
D Wrapp (734_CR43) 2020; 181
E Macchia (734_CR20) 2018; 3
MH Kubala (734_CR39) 2010; 19
AC Walls (734_CR45) 2020; 181
L Hanke (734_CR46) 2020; 11
L Li (734_CR59) 2014; 426
VK Mutalik (734_CR61) 2013; 10
WU Wang (734_CR10) 2005; 102
S Steeland (734_CR24) 2016; 21
R Ren (734_CR11) 2017; 8
D Khodagholy (734_CR15) 2013; 4
JC Love (734_CR32) 2005; 105
PE Sheehan (734_CR41) 2005; 5
34272521 - Nat Biomed Eng. 2021 Jul;5(7):639-640
References_xml – volume: 412
  start-page: 5005
  year: 2020
  end-page: 5014
  ident: CR42
  article-title: New trends in single-molecule bioanalytical detection
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-020-02540-9
– volume: 383
  start-page: 1283
  year: 2020
  end-page: 1286
  ident: CR48
  article-title: Saliva or nasopharyngeal swab specimens for detection of SARS-CoV-2
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2016359
– volume: 25
  start-page: 2000045
  year: 2020
  ident: CR6
  article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
  publication-title: Eurosurveillance
– volume: 4
  start-page: eaas9667
  year: 2018
  ident: CR44
  article-title: Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aas9667
– volume: 362
  start-page: 319
  year: 2018
  end-page: 324
  ident: CR12
  article-title: Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing
  publication-title: Science
  doi: 10.1126/science.aao6750
– volume: 32
  start-page: 2002748
  year: 2020
  ident: CR36
  article-title: Side chain redistribution as a strategy to boost organic electrochemical transistor performance and stability
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002748
– volume: 26
  start-page: 1200
  year: 2020
  end-page: 1204
  ident: CR4
  article-title: Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0965-6
– volume: 7
  start-page: 999
  year: 2020
  end-page: 1013
  ident: CR14
  article-title: About the amplification factors in organic bioelectronic sensors
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01544B
– volume: 9
  year: 2018
  ident: CR13
  article-title: Single-molecule detection with a millimetre-sized transistor
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05235-z
– ident: CR8
– volume: 19
  start-page: 2389
  year: 2010
  end-page: 2401
  ident: CR39
  article-title: Structural and thermodynamic analysis of the GFP:GFP-nanobody complex
  publication-title: Protein Sci.
  doi: 10.1002/pro.519
– volume: 55
  start-page: 712A
  year: 1983
  end-page: 724A
  ident: CR62
  article-title: Limit of detection. A closer look at the IUPAC definition
  publication-title: Anal. Chem.
  doi: 10.1021/ac00259a060
– volume: 6
  start-page: 5400
  year: 2018
  end-page: 5406
  ident: CR19
  article-title: Integration of organic electrochemical transistors and immuno-affinity membranes for label-free detection of interleukin-6 in the physiological concentration range through antibody–antigen recognition
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB01697F
– volume: 139
  start-page: 439
  year: 2013
  end-page: 445
  ident: CR34
  article-title: Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general
  publication-title: Analyst
  doi: 10.1039/C3AN01835K
– volume: 627
  start-page: 15
  year: 2010
  end-page: 54
  ident: CR40
  article-title: The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60761-670-2_2
– volume: 11
  year: 2020
  ident: CR46
  article-title: An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18174-5
– volume: 181
  start-page: 353
  year: 2021
  end-page: 360
  ident: CR49
  article-title: Comparison of saliva and nasopharyngeal swab nucleic acid amplification testing for detection of SARS-CoV-2: a systematic review and meta-analysis
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2020.8876
– volume: 11
  start-page: 6059
  year: 2020
  ident: CR53
  article-title: SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19883-7
– volume: 4
  year: 2013
  ident: CR15
  article-title: High transconductance organic electrochemical transistors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3133
– volume: 368
  start-page: eabb6936
  year: 2020
  ident: CR7
  article-title: Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing
  publication-title: Science
  doi: 10.1126/science.abb6936
– volume: 53
  start-page: 1990
  year: 2007
  end-page: 1995
  ident: CR51
  article-title: Ultrasensitive flow-based immunoassays using single-molecule counting
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2007.091181
– volume: 51
  start-page: 1368
  year: 2018
  end-page: 1376
  ident: CR16
  article-title: Conjugated polymers in bioelectronics
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00624
– volume: 7
  start-page: 282
  year: 2008
  end-page: 289
  ident: CR27
  article-title: A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.M700342-MCP200
– volume: 368
  start-page: 860
  year: 2020
  end-page: 868
  ident: CR1
  article-title: Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period
  publication-title: Science
  doi: 10.1126/science.abb5793
– ident: CR5
– volume: 31
  start-page: 1900422
  year: 2019
  ident: CR52
  article-title: Plasmonic-nanopore biosensors for superior single-molecule detection
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900422
– volume: 109
  start-page: E690
  year: 2012
  end-page: E697
  ident: CR28
  article-title: Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1115485109
– volume: 3
  start-page: 17086
  year: 2018
  ident: CR17
  article-title: Organic electrochemical transistors
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.86
– volume: 29
  start-page: 1807033
  year: 2019
  ident: CR35
  article-title: Materials in organic electrochemical transistors for bioelectronic applications: past, present, and future
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807033
– volume: 5
  start-page: 1800453
  year: 2018
  ident: CR37
  article-title: Subthreshold operation of organic electrochemical transistors for biosignal amplification
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800453
– volume: 21
  start-page: 1076
  year: 2016
  end-page: 1113
  ident: CR24
  article-title: Nanobodies as therapeutics: big opportunities for small antibodies
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2016.04.003
– volume: 19
  start-page: 456
  year: 2020
  end-page: 463
  ident: CR54
  article-title: Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0556-4
– volume: 33
  start-page: 891
  year: 2019
  end-page: 905
  ident: CR50
  article-title: The Middle East respiratory syndrome (MERS)
  publication-title: Infect. Dis. Clin.
  doi: 10.1016/j.idc.2019.08.001
– volume: 54
  start-page: 13952
  year: 2015
  end-page: 13956
  ident: CR58
  article-title: Rational structure-based design of bright GFP-based complexes with tunable dimerization
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201506686
– volume: 102
  start-page: 3208
  year: 2005
  end-page: 3212
  ident: CR10
  article-title: Label-free detection of small-molecule–protein interactions by using nanowire nanosensors
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0406368102
– volume: 10
  start-page: 354
  year: 2013
  end-page: 360
  ident: CR61
  article-title: Precise and reliable gene expression via standard transcription and translation initiation elements
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2404
– volume: 363
  start-page: 446
  year: 1993
  end-page: 448
  ident: CR23
  article-title: Naturally occurring antibodies devoid of light chains
  publication-title: Nature
  doi: 10.1038/363446a0
– volume: 32
  start-page: 2001439
  year: 2020
  ident: CR18
  article-title: Organic bioelectronics: from functional materials to next-generation devices and power sources
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001439
– ident: CR33
– volume: 31
  start-page: 6476
  year: 2019
  end-page: 6483
  ident: CR38
  article-title: Label-free and selective single-molecule bioelectronic sensing with a millimeter-wide self-assembled monolayer of anti-immunoglobulins
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04414
– volume: 583
  start-page: 510
  year: 2020
  end-page: 513
  ident: CR2
  article-title: Mounting evidence suggests coronavirus is airborne—but health advice has not caught up
  publication-title: Nature
  doi: 10.1038/d41586-020-02058-1
– volume: 14
  start-page: 729
  year: 1998
  end-page: 734
  ident: CR57
  article-title: Energy dissipation kinetics for protein and antibody–antigen adsorption under shear oscillation on a quartz crystal microbalance
  publication-title: Langmuir
  doi: 10.1021/la970815u
– volume: 29
  start-page: 240
  year: 2011
  end-page: 250
  ident: CR9
  article-title: Point-of-care nucleic acid testing for infectious diseases
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2011.01.007
– volume: 199
  start-page: 166
  year: 2002
  end-page: 182
  ident: CR31
  article-title: XPS investigations on the interactions of 1,6-hexanedithiol/Au(111) layers with metallic and ionic silver species
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(02)00608-6
– volume: 8
  year: 2017
  ident: CR11
  article-title: Nanopore extended field-effect transistor for selective single-molecule biosensing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00549-w
– volume: 27
  start-page: 285.E1
  year: 2021
  end-page: 285.E4
  ident: CR47
  article-title: Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease 2019: a cross-sectional study
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1016/j.cmi.2020.05.001
– volume: 138
  start-page: 1619
  year: 2013
  end-page: 1627
  ident: CR21
  article-title: Antibody orientation on biosensor surfaces: a minireview
  publication-title: Analyst
  doi: 10.1039/c2an36787d
– volume: 255
  start-page: 1507
  year: 2018
  end-page: 1516
  ident: CR26
  article-title: Highly sensitive, selective and label-free protein detection in physiological solutions using carbon nanotube transistors with nanobody receptors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.08.164
– volume: 82
  start-page: 775
  year: 2013
  end-page: 797
  ident: CR22
  article-title: Nanobodies: natural single-domain antibodies
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-063011-092449
– volume: 6
  start-page: 1800928
  year: 2019
  ident: CR55
  article-title: Enzyme-free detection of glucose with a hybrid conductive gel electrode
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201800928
– volume: 36
  start-page: 4508
  year: 2020
  end-page: 4509
  ident: CR60
  article-title: DNA Chisel, a versatile sequence optimizer
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa558
– volume: 154
  start-page: 112052
  year: 2020
  ident: CR30
  article-title: Electrochemical immunosensor functionalized with nanobodies for the detection of the toxic microalgae using glassy carbon electrode modified with gold nanoparticles
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112052
– volume: 105
  start-page: 1103
  year: 2005
  end-page: 1170
  ident: CR32
  article-title: Self-assembled monolayers of thiolates on metals as a form of nanotechnology
  publication-title: Chem. Rev.
  doi: 10.1021/cr0300789
– ident: CR3
– volume: 426
  start-page: 309
  year: 2014
  end-page: 317
  ident: CR59
  article-title: Structural analysis and optimization of the covalent association between SpyCatcher and a peptide Tag
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2013.10.021
– volume: 181
  start-page: 1004
  year: 2020
  end-page: 1015.e15
  ident: CR43
  article-title: Structural basis for potent neutralization of betacoronaviruses by single-domain Camelid antibodies
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.031
– volume: 114
  start-page: 497
  year: 2010
  end-page: 505
  ident: CR56
  article-title: 1,6-Hexanedithiol self-assembled monolayers on Au(111) investigated by electrochemical, spectroscopic, and molecular mechanics methods
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp908821b
– volume: 3
  start-page: 034002
  year: 2018
  ident: CR20
  article-title: Ultra-sensitive protein detection with organic electrochemical transistors printed on plastic substrates
  publication-title: Flex. Print. Electron.
  doi: 10.1088/2058-8585/aad0cb
– volume: 181
  start-page: 281
  year: 2020
  end-page: 292.e6
  ident: CR45
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– volume: 32
  start-page: 263
  year: 2014
  end-page: 270
  ident: CR25
  article-title: Nanobody-based products as research and diagnostic tools
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2014.03.001
– volume: 5
  start-page: 803
  year: 2005
  end-page: 807
  ident: CR41
  article-title: Detection limits for nanoscale biosensors
  publication-title: Nano Lett.
  doi: 10.1021/nl050298x
– volume: 617
  start-page: 443
  year: 2019
  end-page: 461
  ident: CR29
  article-title: Insider information on successful covalent protein coupling with help from SpyBank
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2018.12.010
– volume: 26
  start-page: 1200
  year: 2020
  ident: 734_CR4
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0965-6
– volume: 27
  start-page: 285.E1
  year: 2021
  ident: 734_CR47
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1016/j.cmi.2020.05.001
– volume: 583
  start-page: 510
  year: 2020
  ident: 734_CR2
  publication-title: Nature
  doi: 10.1038/d41586-020-02058-1
– volume: 181
  start-page: 281
  year: 2020
  ident: 734_CR45
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– volume: 29
  start-page: 240
  year: 2011
  ident: 734_CR9
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2011.01.007
– volume: 51
  start-page: 1368
  year: 2018
  ident: 734_CR16
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00624
– volume: 82
  start-page: 775
  year: 2013
  ident: 734_CR22
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-063011-092449
– volume: 32
  start-page: 2001439
  year: 2020
  ident: 734_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001439
– volume: 29
  start-page: 1807033
  year: 2019
  ident: 734_CR35
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807033
– volume: 36
  start-page: 4508
  year: 2020
  ident: 734_CR60
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa558
– volume: 105
  start-page: 1103
  year: 2005
  ident: 734_CR32
  publication-title: Chem. Rev.
  doi: 10.1021/cr0300789
– volume: 8
  year: 2017
  ident: 734_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00549-w
– volume: 5
  start-page: 1800453
  year: 2018
  ident: 734_CR37
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800453
– volume: 6
  start-page: 1800928
  year: 2019
  ident: 734_CR55
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201800928
– volume: 426
  start-page: 309
  year: 2014
  ident: 734_CR59
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2013.10.021
– volume: 11
  year: 2020
  ident: 734_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18174-5
– volume: 6
  start-page: 5400
  year: 2018
  ident: 734_CR19
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB01697F
– volume: 617
  start-page: 443
  year: 2019
  ident: 734_CR29
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2018.12.010
– volume: 54
  start-page: 13952
  year: 2015
  ident: 734_CR58
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201506686
– volume: 109
  start-page: E690
  year: 2012
  ident: 734_CR28
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1115485109
– ident: 734_CR5
– volume: 7
  start-page: 282
  year: 2008
  ident: 734_CR27
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.M700342-MCP200
– volume: 25
  start-page: 2000045
  year: 2020
  ident: 734_CR6
  publication-title: Eurosurveillance
– volume: 412
  start-page: 5005
  year: 2020
  ident: 734_CR42
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-020-02540-9
– volume: 3
  start-page: 17086
  year: 2018
  ident: 734_CR17
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.86
– volume: 114
  start-page: 497
  year: 2010
  ident: 734_CR56
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp908821b
– volume: 4
  year: 2013
  ident: 734_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3133
– volume: 363
  start-page: 446
  year: 1993
  ident: 734_CR23
  publication-title: Nature
  doi: 10.1038/363446a0
– volume: 55
  start-page: 712A
  year: 1983
  ident: 734_CR62
  publication-title: Anal. Chem.
  doi: 10.1021/ac00259a060
– volume: 138
  start-page: 1619
  year: 2013
  ident: 734_CR21
  publication-title: Analyst
  doi: 10.1039/c2an36787d
– volume: 33
  start-page: 891
  year: 2019
  ident: 734_CR50
  publication-title: Infect. Dis. Clin.
  doi: 10.1016/j.idc.2019.08.001
– ident: 734_CR33
– volume: 32
  start-page: 2002748
  year: 2020
  ident: 734_CR36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002748
– volume: 14
  start-page: 729
  year: 1998
  ident: 734_CR57
  publication-title: Langmuir
  doi: 10.1021/la970815u
– volume: 102
  start-page: 3208
  year: 2005
  ident: 734_CR10
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0406368102
– volume: 9
  year: 2018
  ident: 734_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05235-z
– volume: 362
  start-page: 319
  year: 2018
  ident: 734_CR12
  publication-title: Science
  doi: 10.1126/science.aao6750
– volume: 368
  start-page: eabb6936
  year: 2020
  ident: 734_CR7
  publication-title: Science
  doi: 10.1126/science.abb6936
– volume: 383
  start-page: 1283
  year: 2020
  ident: 734_CR48
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2016359
– volume: 32
  start-page: 263
  year: 2014
  ident: 734_CR25
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2014.03.001
– volume: 21
  start-page: 1076
  year: 2016
  ident: 734_CR24
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2016.04.003
– volume: 31
  start-page: 1900422
  year: 2019
  ident: 734_CR52
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900422
– ident: 734_CR3
  doi: 10.7326/M20-3012
– volume: 181
  start-page: 353
  year: 2021
  ident: 734_CR49
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2020.8876
– volume: 53
  start-page: 1990
  year: 2007
  ident: 734_CR51
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2007.091181
– volume: 3
  start-page: 034002
  year: 2018
  ident: 734_CR20
  publication-title: Flex. Print. Electron.
  doi: 10.1088/2058-8585/aad0cb
– volume: 199
  start-page: 166
  year: 2002
  ident: 734_CR31
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(02)00608-6
– volume: 11
  start-page: 6059
  year: 2020
  ident: 734_CR53
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19883-7
– volume: 10
  start-page: 354
  year: 2013
  ident: 734_CR61
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2404
– volume: 368
  start-page: 860
  year: 2020
  ident: 734_CR1
  publication-title: Science
  doi: 10.1126/science.abb5793
– volume: 31
  start-page: 6476
  year: 2019
  ident: 734_CR38
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04414
– volume: 5
  start-page: 803
  year: 2005
  ident: 734_CR41
  publication-title: Nano Lett.
  doi: 10.1021/nl050298x
– volume: 139
  start-page: 439
  year: 2013
  ident: 734_CR34
  publication-title: Analyst
  doi: 10.1039/C3AN01835K
– volume: 154
  start-page: 112052
  year: 2020
  ident: 734_CR30
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112052
– volume: 7
  start-page: 999
  year: 2020
  ident: 734_CR14
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01544B
– volume: 627
  start-page: 15
  year: 2010
  ident: 734_CR40
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60761-670-2_2
– volume: 255
  start-page: 1507
  year: 2018
  ident: 734_CR26
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.08.164
– volume: 4
  start-page: eaas9667
  year: 2018
  ident: 734_CR44
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aas9667
– ident: 734_CR8
  doi: 10.1101/2020.10.01.20203836
– volume: 181
  start-page: 1004
  year: 2020
  ident: 734_CR43
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.031
– volume: 19
  start-page: 456
  year: 2020
  ident: 734_CR54
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0556-4
– volume: 19
  start-page: 2389
  year: 2010
  ident: 734_CR39
  publication-title: Protein Sci.
  doi: 10.1002/pro.519
– reference: 34272521 - Nat Biomed Eng. 2021 Jul;5(7):639-640
SSID ssj0001934975
Score 2.608128
Snippet The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 666
SubjectTerms 631/61/338/552
639/301/1005/1007
82/1
82/83
9/10
96
Antigens
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biosensing Techniques - methods
Body fluids
Coronaviruses
COVID-19
COVID-19 - virology
Fluorescence
Green fluorescent protein
Humans
Middle East respiratory syndrome
Middle East Respiratory Syndrome Coronavirus - pathogenicity
Nanobodies
Nanotechnology - methods
Pandemics
Polymers
Proteins
Respiratory diseases
Saliva
Semiconductor devices
Sensors
Severe acute respiratory syndrome coronavirus 2
Severe acute respiratory syndrome-related coronavirus - pathogenicity
Single-Domain Antibodies - immunology
Transistors
Viral diseases
Title Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors
URI https://link.springer.com/article/10.1038/s41551-021-00734-9
https://www.ncbi.nlm.nih.gov/pubmed/34031558
https://www.proquest.com/docview/2552182577
https://www.proquest.com/docview/2532245653
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9wwEB5yvLQPoUkv50KFvrUitiX5eCo5dpsWkpZtU_JmZGkMC6m9iZ1AC_3vHdna3YbQPBiMLR94RjPfzMjzAbyVmrwyOXZeooy5VJrmnDKWm1QIiUmoZZ_TPTtPTi_k50t16RNurV9WObeJvaG2jXE58gOCvq7ZuErTD7Nr7lijXHXVU2iswjqZ4IyCr_Wj0fnXyTLLkguZp8r_LROK7KB1HpQi6Jg2Um_J8_se6QHMfFAi7T3P-BlseMjIDgcZb8IK1lvw9J9Ggs_hz0TPppa5uP8K-c-B8haZxa5faVWzpmLHX358OuFRznRt2dlo8o12OteLs2V3U81qXTdlY39x5-mGBOH0N1o20D4Z5vlyjG8wwDrn5PoeI-0LuBiPvh-fck-swI3MVMfLFI1SqJVJ8ipCipF0VEoHJZDQGMZCJ7oSqGwoNcmYjqQ6qnSKlbFYZShewlrd1PgamBVWJSkFXSYUNDgvMxsT6ggrVSmldRlANP-4hfFdxx35xVXRV79FVgwCKUggRS-QIg_g3eKa2dBz49HRu3OZFX7-tcVSWwJ4szhNM8eVQ3SNza0bQ8bMAVoRwKtB1ovHCenYL1QWwPu58Jc3__-7bD_-LjvwJO4Vz6323YW17uYW9wjTdOU-rGbjj_teff8CtEP1UQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEG8CBYwEJ7CaxHYeB4RQ22WXdotUWtRb6tgTaaU2WUgKKhJ_id_IOI9dUEVvPUSKEidxPDP-5mHPALyUmlCZgJ3nKEMulSaZU8ZyEwshMfK1bH26071ofCg_HqmjFfg97IVxyyqHObGdqG1lnI98g1Rfl2xcxfG7-Vfuqka56OpQQqNjix08_0EmW_12skX0fRWGo-2DzTHvqwpwIxPV8DxGoxRqZaK0CJAMBB3k0uEokiqCodCRLgQq60tNP0hXYh0UOsbCWCwSFPTea3BdCpE6iUpGH5Y-nVTINFb93hxfJBu1w2uy10M6SJgkT__FvwtK7YWAbItzo9twq1dQ2fuOo-7ACpZ3Ye2vtIX34Ne-ns8sc16GE-SnXYFdZBabdl1XyaqCbX76MtniQcp0adl0e_8znTQu82fNvs80K3VZ5ZU95w5XO3fk7Cda1hWZMqyvzmP6dAascZDaZjSp78PhlQz4A1gtqxIfAbPCqigmE8_4ghqneWJD0nH8QhVKaZ17EAyDm5k-x7krtXGStbF2kWQdQTIiSNYSJEs9eL14Zt5l-Li09fpAs6yX9jpb8qYHLxa3SU5d8EWXWJ25NjR1OvVZePCwo_Xic0K6Whsq8eDNQPzly__fl8eX9-U53BgfTHez3cnezhO4GbZM6NYZr8Nq8-0Mn5I21eTPWhZmcHzVMvMHkNoyxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+single-molecule+detection+of+COVID-19+and+MERS+antigens+via+nanobody-functionalized+organic+electrochemical+transistors&rft.jtitle=Nature+biomedical+engineering&rft.au=Guo%2C+Keying&rft.au=Wustoni%2C+Shofarul&rft.au=Koklu%2C+Anil&rft.au=D%C3%ADaz-Galicia%2C+Escarlet&rft.date=2021-07-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2157-846X&rft.volume=5&rft.issue=7&rft.spage=666&rft.epage=677&rft_id=info:doi/10.1038%2Fs41551-021-00734-9&rft.externalDocID=10_1038_s41551_021_00734_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-846X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-846X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-846X&client=summon