Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors
The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular...
Saved in:
Published in | Nature biomedical engineering Vol. 5; no. 7; pp. 666 - 677 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody–SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 μl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads.
Organic electrochemical transistors functionalized with antigen-specific nanobodies can rapidly detect attomolar-to-nanomolar levels of the antigens in complex bodily fluids. |
---|---|
AbstractList | The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody-SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 μl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads.The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody-SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 μl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads. The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody–SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 μl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads.Organic electrochemical transistors functionalized with antigen-specific nanobodies can rapidly detect attomolar-to-nanomolar levels of the antigens in complex bodily fluids. The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody–SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 μl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads. Organic electrochemical transistors functionalized with antigen-specific nanobodies can rapidly detect attomolar-to-nanomolar levels of the antigens in complex bodily fluids. The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody-SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 μl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads. |
Author | Wustoni, Shofarul Pain, Arnab Hama, Adel McCulloch, Iain Alqahtani, Ahmed A. Moser, Maximilian Díaz-Galicia, Escarlet Ahmad, Adeel Nazir Inal, Sahika Shuaib, Muhammad Guo, Keying Alhamlan, Fatimah Saeed Koklu, Anil Arold, Stefan T. Grünberg, Raik |
Author_xml | – sequence: 1 givenname: Keying orcidid: 0000-0001-6383-6321 surname: Guo fullname: Guo, Keying organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Shofarul orcidid: 0000-0002-3059-4503 surname: Wustoni fullname: Wustoni, Shofarul organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Anil surname: Koklu fullname: Koklu, Anil organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Escarlet orcidid: 0000-0003-1065-1029 surname: Díaz-Galicia fullname: Díaz-Galicia, Escarlet organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering Division, KAUST – sequence: 5 givenname: Maximilian orcidid: 0000-0002-3293-9309 surname: Moser fullname: Moser, Maximilian organization: Department of Chemistry, University of Oxford – sequence: 6 givenname: Adel surname: Hama fullname: Hama, Adel organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Ahmed A. surname: Alqahtani fullname: Alqahtani, Ahmed A. organization: Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center – sequence: 8 givenname: Adeel Nazir orcidid: 0000-0002-1146-4324 surname: Ahmad fullname: Ahmad, Adeel Nazir organization: KAUST Health – sequence: 9 givenname: Fatimah Saeed surname: Alhamlan fullname: Alhamlan, Fatimah Saeed organization: Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center – sequence: 10 givenname: Muhammad surname: Shuaib fullname: Shuaib, Muhammad organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) – sequence: 11 givenname: Arnab surname: Pain fullname: Pain, Arnab organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) – sequence: 12 givenname: Iain surname: McCulloch fullname: McCulloch, Iain organization: Department of Chemistry, University of Oxford, KAUST Solar Center (KSC), Physical Science and Engineering Division, KAUST – sequence: 13 givenname: Stefan T. orcidid: 0000-0001-5278-0668 surname: Arold fullname: Arold, Stefan T. email: stefan.arold@kaust.edu.sa organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering Division, KAUST, Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier – sequence: 14 givenname: Raik orcidid: 0000-0001-9532-6043 surname: Grünberg fullname: Grünberg, Raik email: raik.grunberg@kaust.edu.sa organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering Division, KAUST – sequence: 15 givenname: Sahika orcidid: 0000-0002-1166-1512 surname: Inal fullname: Inal, Sahika email: sahika.inal@kaust.edu.sa organization: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34031558$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rFTEUhoNUbK39Ay4k4MbN2HzOx1KuVQsthbaKu3Amc3JNmUmuyYxQwf9ubm-L0kUXIYfwPIec874keyEGJOQ1Z-85k-1xVlxrXjFRDmukqrpn5EBw3VStqr_v_Vfvk6OcbxhjvJOqa_QLsi8Vk0VvD8ifS9j4gWYf1iNWUxzRLiPSAWe0s4-BRkdXF99OP1a8oxAGen5yeVWK2a8xZPrLAw0QYh-H28ot4c6B0f_Ggca0huAtxdJzTtH-wMlbGOmcIGSf55jyK_LcwZjx6P4-JF8_nVyvvlRnF59PVx_OKqtaPVd9g1ZrBG3rznFUnQbeKyV5g0LUKCTU4CTqgSno0ZaXBriDBp0d0LUoD8m7Xd9Nij8XzLOZfLY4jhAwLtkILYVQutayoG8foTdxSWWmLaUFb4VumkK9uaeWfsLBbJKfIN2ah8UWoN0BNsWcEzpj_Qzb7ZTx_Wg4M9sYzS5GU2I0dzGarqjikfrQ_UlJ7qRc4LDG9O_bT1h_Ae56sMo |
CitedBy_id | crossref_primary_10_1002_admi_202201736 crossref_primary_10_1016_j_talanta_2021_123197 crossref_primary_10_1002_admi_202300017 crossref_primary_10_1016_j_bios_2024_116807 crossref_primary_10_1016_j_bios_2024_116928 crossref_primary_10_1126_sciadv_adi9710 crossref_primary_10_6023_A24080248 crossref_primary_10_1038_s41467_022_32676_4 crossref_primary_10_1021_acsanm_2c01105 crossref_primary_10_1021_acsbiomaterials_1c00727 crossref_primary_10_1109_OJNANO_2022_3215135 crossref_primary_10_1016_j_biosx_2022_100105 crossref_primary_10_1021_acsinfecdis_1c00478 crossref_primary_10_1360_SSC_2022_0044 crossref_primary_10_1016_j_snb_2024_135601 crossref_primary_10_1016_j_matt_2023_05_001 crossref_primary_10_1021_acsami_3c00331 crossref_primary_10_1016_j_talanta_2023_124973 crossref_primary_10_1016_j_nanoen_2024_110062 crossref_primary_10_1021_acssensors_3c01728 crossref_primary_10_1002_adma_202208757 crossref_primary_10_1002_advs_202205429 crossref_primary_10_1021_acs_nanolett_2c01584 crossref_primary_10_1002_adfm_202302205 crossref_primary_10_1039_D3TC00108C crossref_primary_10_1016_j_talanta_2023_125394 crossref_primary_10_1021_acsami_5c00981 crossref_primary_10_1021_acssensors_4c03207 crossref_primary_10_1039_D2SD00087C crossref_primary_10_1063_5_0079011 crossref_primary_10_1021_acs_chemrev_1c00266 crossref_primary_10_1039_D1TC02546E crossref_primary_10_1557_s43579_023_00511_6 crossref_primary_10_1002_admi_202300391 crossref_primary_10_46670_JSST_2022_31_6_403 crossref_primary_10_1002_adfm_202310852 crossref_primary_10_1002_elsa_202100215 crossref_primary_10_1002_elsa_202100216 crossref_primary_10_1039_D2NR06485E crossref_primary_10_1002_adma_202304102 crossref_primary_10_1007_s42242_024_00297_z crossref_primary_10_1021_acs_analchem_1c02889 crossref_primary_10_1186_s12951_024_02900_y crossref_primary_10_1016_j_medntd_2022_100116 crossref_primary_10_1016_j_bios_2023_115543 crossref_primary_10_1080_10408347_2024_2343853 crossref_primary_10_3390_cells11213355 crossref_primary_10_1002_advs_202204246 crossref_primary_10_1007_s12274_022_5049_0 crossref_primary_10_1109_ACCESS_2021_3136550 crossref_primary_10_1039_D2TA00683A crossref_primary_10_1002_admi_202102526 crossref_primary_10_1021_acs_analchem_2c00062 crossref_primary_10_1039_D2TB02031A crossref_primary_10_1002_adma_202308952 crossref_primary_10_1016_j_heliyon_2024_e30077 crossref_primary_10_1002_advs_202301222 crossref_primary_10_3390_s23208488 crossref_primary_10_1002_adhm_202100955 crossref_primary_10_1016_j_bios_2023_115359 crossref_primary_10_1038_s41467_024_50792_1 crossref_primary_10_1002_smll_202403899 crossref_primary_10_1038_s41467_024_45759_1 crossref_primary_10_3390_mi14081486 crossref_primary_10_1002_adma_202200274 crossref_primary_10_1002_advs_202104381 crossref_primary_10_1002_aelm_202200868 crossref_primary_10_1021_acsami_2c15373 crossref_primary_10_1002_adma_202200393 crossref_primary_10_3390_bios11120496 crossref_primary_10_1002_adfm_202105482 crossref_primary_10_1002_adfm_202109046 crossref_primary_10_1021_acssensors_4c01717 crossref_primary_10_1039_D2NR05444B crossref_primary_10_1021_acs_chemrev_1c00395 crossref_primary_10_1016_j_bios_2022_114411 crossref_primary_10_1002_adfm_202108510 crossref_primary_10_1002_adfm_202420701 crossref_primary_10_1016_j_bios_2021_113958 crossref_primary_10_1016_j_coelec_2023_101319 crossref_primary_10_1038_s41377_024_01734_5 crossref_primary_10_3390_bios12100836 crossref_primary_10_1039_D2CS00920J crossref_primary_10_1016_j_wees_2024_03_002 crossref_primary_10_1039_D2RA01293F crossref_primary_10_1007_s12274_023_5606_1 crossref_primary_10_1016_j_bios_2024_117011 crossref_primary_10_3390_bios14030146 crossref_primary_10_1016_j_polymer_2023_125916 crossref_primary_10_1002_aelm_202300235 crossref_primary_10_1021_acs_analchem_1c04454 crossref_primary_10_1021_acsmaterialslett_2c00095 crossref_primary_10_1038_s41467_024_48294_1 crossref_primary_10_1016_j_snr_2024_100211 crossref_primary_10_1016_j_bios_2024_116506 crossref_primary_10_1021_acssensors_4c02037 crossref_primary_10_1002_aelm_202200846 crossref_primary_10_1002_aelm_202400222 crossref_primary_10_1126_sciadv_adt5186 crossref_primary_10_3390_polym15183739 crossref_primary_10_1021_acs_analchem_3c02258 crossref_primary_10_1038_s41467_024_46069_2 crossref_primary_10_3390_diagnostics12061388 crossref_primary_10_1002_admi_202102040 crossref_primary_10_1002_admi_202202256 crossref_primary_10_1016_j_aca_2024_342209 crossref_primary_10_1002_mame_202100880 crossref_primary_10_1038_s41551_021_00765_2 crossref_primary_10_7498_aps_71_20220241 crossref_primary_10_1016_j_nanoen_2024_110522 crossref_primary_10_1126_sciadv_adl1856 crossref_primary_10_1063_5_0077027 crossref_primary_10_1016_j_bios_2022_114752 crossref_primary_10_1088_2631_7990_acfd69 crossref_primary_10_1021_acsaelm_1c01171 crossref_primary_10_1002_anie_202204134 crossref_primary_10_1021_acs_analchem_2c00897 crossref_primary_10_1021_acs_chemrev_1c00290 crossref_primary_10_1038_s41551_021_00841_7 crossref_primary_10_1007_s00253_022_11981_4 crossref_primary_10_3390_mi15050621 crossref_primary_10_1002_advs_202306716 crossref_primary_10_1038_s41928_024_01237_6 crossref_primary_10_1080_02678292_2023_2297269 crossref_primary_10_3389_fimmu_2022_978513 crossref_primary_10_1038_s43246_022_00226_6 crossref_primary_10_1002_adfm_202313871 crossref_primary_10_1088_2053_1583_ac7339 crossref_primary_10_1126_sciadv_abo0881 crossref_primary_10_1021_acssensors_2c01990 crossref_primary_10_1038_s41565_023_01415_1 crossref_primary_10_1002_sstr_202100087 crossref_primary_10_1016_j_talanta_2023_124569 crossref_primary_10_1186_s40580_023_00410_5 crossref_primary_10_1002_advs_202308281 crossref_primary_10_1002_ange_202204134 crossref_primary_10_1021_acs_jafc_4c04191 crossref_primary_10_1039_D3NR06190F crossref_primary_10_1016_j_bios_2022_114224 crossref_primary_10_1021_acsnano_3c07707 crossref_primary_10_1038_s44222_023_00050_8 crossref_primary_10_1007_s00604_023_05814_y crossref_primary_10_3390_ijms24065994 crossref_primary_10_3390_mi13091395 crossref_primary_10_1016_j_jhazmat_2023_131033 crossref_primary_10_3390_chemosensors11020074 crossref_primary_10_1038_s41578_024_00652_7 crossref_primary_10_1002_adom_202102687 crossref_primary_10_1002_EXP_20210232 crossref_primary_10_1002_adma_202303079 crossref_primary_10_1016_j_snb_2022_131764 crossref_primary_10_3390_bioengineering9100571 crossref_primary_10_1002_smsc_202300058 crossref_primary_10_3762_bjnano_15_80 crossref_primary_10_1016_j_bios_2022_114691 crossref_primary_10_1021_acsami_2c06169 crossref_primary_10_1126_sciadv_add9627 crossref_primary_10_3390_bios12110984 crossref_primary_10_1038_s41928_024_01297_8 crossref_primary_10_1039_D4NR03481C crossref_primary_10_1021_acsaelm_4c00260 crossref_primary_10_1002_adma_202201178 crossref_primary_10_1002_aelm_202101186 crossref_primary_10_7555_JBR_35_20210108 crossref_primary_10_1016_j_aca_2021_338907 crossref_primary_10_1002_admi_202102039 crossref_primary_10_1038_s41563_024_02001_z crossref_primary_10_1038_s42256_024_00940_5 crossref_primary_10_1021_acsnano_2c12418 crossref_primary_10_1038_s41563_024_01875_3 crossref_primary_10_1039_D3SC03509C crossref_primary_10_3389_fmats_2024_1354635 crossref_primary_10_1021_acsami_4c11042 crossref_primary_10_1002_adma_202405556 crossref_primary_10_1038_s41467_024_54743_8 crossref_primary_10_3390_bios13070739 crossref_primary_10_1021_acsnano_2c04364 crossref_primary_10_3390_mi14122184 crossref_primary_10_1021_acssensors_4c02877 crossref_primary_10_1007_s11426_022_1425_9 crossref_primary_10_1002_admi_202201914 crossref_primary_10_3390_chemosensors10070269 crossref_primary_10_1038_s41467_024_51883_9 crossref_primary_10_1002_smll_202108077 crossref_primary_10_1021_acsabm_4c01263 crossref_primary_10_20517_evcna_2023_72 crossref_primary_10_1002_adma_202312254 crossref_primary_10_1016_j_biosx_2023_100324 crossref_primary_10_1002_adfm_202410788 crossref_primary_10_1002_adma_202103646 crossref_primary_10_1021_acssensors_3c00453 crossref_primary_10_1109_TED_2023_3271960 crossref_primary_10_1002_adma_202300034 crossref_primary_10_1002_advs_202306191 crossref_primary_10_1007_s00216_023_04760_1 crossref_primary_10_1002_adma_202413951 crossref_primary_10_3390_polym16162287 crossref_primary_10_1021_acsami_1c18778 crossref_primary_10_3390_bios13050565 crossref_primary_10_1088_2399_1984_ad36ff crossref_primary_10_1038_s41467_023_43189_z crossref_primary_10_1007_s00604_023_05671_9 crossref_primary_10_1109_OJSSCS_2022_3217231 crossref_primary_10_1021_acsanm_1c02949 crossref_primary_10_1039_D3AN00328K crossref_primary_10_1016_j_mtelec_2023_100028 crossref_primary_10_1016_j_jfutfo_2023_05_004 crossref_primary_10_1002_adma_202306252 crossref_primary_10_1021_acs_analchem_4c02619 crossref_primary_10_1016_j_trac_2022_116750 crossref_primary_10_1016_j_matt_2022_08_020 crossref_primary_10_1007_s12668_023_01266_z crossref_primary_10_1126_sciadv_adg8659 crossref_primary_10_1016_j_lanmic_2024_101029 crossref_primary_10_1021_jacs_3c10321 crossref_primary_10_1002_adma_202313121 crossref_primary_10_1021_acsami_3c01054 crossref_primary_10_1002_adma_202202972 crossref_primary_10_1002_smll_202406522 crossref_primary_10_1021_acssensors_3c00029 crossref_primary_10_1007_s42765_022_00179_y crossref_primary_10_1016_j_snr_2024_100268 crossref_primary_10_1021_acsami_3c09452 crossref_primary_10_1002_adma_202201085 crossref_primary_10_1016_j_microc_2025_113338 crossref_primary_10_1021_acsami_1c23626 crossref_primary_10_1021_acsnano_2c12606 crossref_primary_10_1016_j_bios_2024_116210 crossref_primary_10_1016_j_snb_2024_135922 crossref_primary_10_1126_science_adg8758 crossref_primary_10_1021_acssensors_2c01250 crossref_primary_10_1021_acssensors_2c01493 crossref_primary_10_1002_pi_6520 crossref_primary_10_1016_j_bios_2022_114496 crossref_primary_10_1002_aelm_202200573 crossref_primary_10_1021_acsaelm_4c02084 crossref_primary_10_1016_j_bpj_2022_12_019 crossref_primary_10_1016_j_cej_2024_158532 crossref_primary_10_1002_adsr_202300188 crossref_primary_10_1021_acsami_3c06073 crossref_primary_10_1021_acssensors_2c00967 crossref_primary_10_1016_j_aca_2022_340757 crossref_primary_10_1016_j_bios_2024_117098 crossref_primary_10_1038_s41598_024_77336_3 crossref_primary_10_1016_j_bcp_2022_115401 crossref_primary_10_3389_fmicb_2022_977673 crossref_primary_10_1016_j_cej_2024_148980 crossref_primary_10_1002_admi_202202409 crossref_primary_10_1021_acsnano_3c01629 crossref_primary_10_1016_j_bios_2024_116229 crossref_primary_10_3390_bios14010010 crossref_primary_10_1039_D4TA05288A crossref_primary_10_3389_fddsv_2022_927164 crossref_primary_10_1002_adma_202412379 crossref_primary_10_1080_02678292_2023_2188615 crossref_primary_10_1002_adfm_202301268 crossref_primary_10_1038_s41551_021_00833_7 crossref_primary_10_1146_annurev_anchem_061020_123817 crossref_primary_10_3389_fsens_2024_1430958 crossref_primary_10_3390_bios12010024 crossref_primary_10_34133_2022_9823578 crossref_primary_10_1016_j_snr_2022_100124 crossref_primary_10_1016_j_tifs_2024_104556 crossref_primary_10_1021_acsnano_4c02130 crossref_primary_10_1021_acs_chemmater_4c00989 crossref_primary_10_1038_s41467_023_43004_9 crossref_primary_10_1002_smll_202410499 crossref_primary_10_1021_acsnano_2c04337 crossref_primary_10_1038_s44222_024_00180_7 crossref_primary_10_1039_D1TC05229B crossref_primary_10_1016_j_xcrp_2023_101673 crossref_primary_10_1146_annurev_anchem_061622_012029 crossref_primary_10_34133_adi_0008 crossref_primary_10_1021_acs_chemmater_3c00180 crossref_primary_10_3390_bios13040448 crossref_primary_10_1016_j_xcrp_2022_100844 crossref_primary_10_1007_s00604_021_05048_w crossref_primary_10_1002_advs_202305347 crossref_primary_10_1016_j_bios_2025_117170 crossref_primary_10_1021_acsmaterialsau_2c00072 crossref_primary_10_1126_sciadv_adf1402 crossref_primary_10_1038_s43856_022_00113_8 crossref_primary_10_1038_s41467_022_35573_y crossref_primary_10_3390_bios15030198 crossref_primary_10_3892_mmr_2022_12779 crossref_primary_10_1002_aelm_202300653 |
Cites_doi | 10.1007/s00216-020-02540-9 10.1056/NEJMc2016359 10.1126/sciadv.aas9667 10.1126/science.aao6750 10.1002/adma.202002748 10.1038/s41591-020-0965-6 10.1039/C9MH01544B 10.1038/s41467-018-05235-z 10.1002/pro.519 10.1021/ac00259a060 10.1039/C8TB01697F 10.1039/C3AN01835K 10.1007/978-1-60761-670-2_2 10.1038/s41467-020-18174-5 10.1001/jamainternmed.2020.8876 10.1038/s41467-020-19883-7 10.1038/ncomms3133 10.1126/science.abb6936 10.1373/clinchem.2007.091181 10.1021/acs.accounts.7b00624 10.1074/mcp.M700342-MCP200 10.1126/science.abb5793 10.1002/adma.201900422 10.1073/pnas.1115485109 10.1038/natrevmats.2017.86 10.1002/adfm.201807033 10.1002/advs.201800453 10.1016/j.drudis.2016.04.003 10.1038/s41563-019-0556-4 10.1016/j.idc.2019.08.001 10.1002/anie.201506686 10.1073/pnas.0406368102 10.1038/nmeth.2404 10.1038/363446a0 10.1002/adma.202001439 10.1021/acs.chemmater.8b04414 10.1038/d41586-020-02058-1 10.1021/la970815u 10.1016/j.tibtech.2011.01.007 10.1016/S0169-4332(02)00608-6 10.1038/s41467-017-00549-w 10.1016/j.cmi.2020.05.001 10.1039/c2an36787d 10.1016/j.snb.2017.08.164 10.1146/annurev-biochem-063011-092449 10.1002/admi.201800928 10.1093/bioinformatics/btaa558 10.1016/j.bios.2020.112052 10.1021/cr0300789 10.1016/j.jmb.2013.10.021 10.1016/j.cell.2020.04.031 10.1021/jp908821b 10.1088/2058-8585/aad0cb 10.1016/j.cell.2020.02.058 10.1016/j.tibtech.2014.03.001 10.1021/nl050298x 10.1016/bs.mie.2018.12.010 10.7326/M20-3012 10.1101/2020.10.01.20203836 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 2021. The Author(s), under exclusive licence to Springer Nature Limited. The Author(s), under exclusive licence to Springer Nature Limited 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited. – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FG 8FH ABJCF AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/s41551-021-00734-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Collection (ProQuest) ProQuest Engineering Collection Biological Sciences Biological Science Database (ProQuest) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2157-846X |
EndPage | 677 |
ExternalDocumentID | 34031558 10_1038_s41551_021_00734_9 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/G037515/1; EP/M005143/1 funderid: https://doi.org/10.13039/501100000266 – fundername: King Abdullah University of Science and Technology (KAUST) grantid: OSR-2018-CARF/CCF-3079; OSR-2015-CRG4-2572; OSR-4106 CPF2019; REI/1/4204-01; REI/1/4204-01; REI/1/4229-01 funderid: https://doi.org/10.13039/501100004052 – fundername: KAUST | Global Collaborative Research, King Abdullah University of Science and Technology (GCR, KAUST) grantid: OSR-2018-CRG7-3709 funderid: https://doi.org/10.13039/501100003422 – fundername: King Abdullah University of Science and Technology (KAUST) grantid: OSR-2015-CRG4-2572 – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/G037515/1 – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/M005143/1 – fundername: King Abdullah University of Science and Technology (KAUST) grantid: REI/1/4204-01 – fundername: King Abdullah University of Science and Technology (KAUST) grantid: REI/1/4229-01 – fundername: KAUST | Global Collaborative Research, King Abdullah University of Science and Technology (GCR, KAUST) grantid: OSR-2018-CRG7-3709 – fundername: King Abdullah University of Science and Technology (KAUST) grantid: OSR-2018-CARF/CCF-3079 – fundername: King Abdullah University of Science and Technology (KAUST) grantid: OSR-4106 CPF2019 |
GroupedDBID | 0R~ 53G AARCD AAYZH ABJCF ABJNI ABLJU ACBWK ACGFS AFANA AFKRA AFSHS AFWHJ AHSBF AIBTJ ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ATHPR AXYYD BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU EBS EJD FSGXE FZEXT HCIFZ M7P M7S NFIDA NNMJJ O9- ODYON PHGZM PHGZT PQGLB PTHSS PUEGO RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FG 8FH AZQEC DWQXO GNUQQ L6V LK8 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c485t-b7ec55ea5c69f1e495a1b44317e226e23a6af3e5d04abec6e27a1fa7efcdef8e3 |
IEDL.DBID | BENPR |
ISSN | 2157-846X |
IngestDate | Thu Jul 10 18:21:13 EDT 2025 Sat Aug 23 12:41:29 EDT 2025 Mon Jul 21 06:05:47 EDT 2025 Sun Aug 31 08:57:44 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Sun Aug 31 08:58:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-b7ec55ea5c69f1e495a1b44317e226e23a6af3e5d04abec6e27a1fa7efcdef8e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1146-4324 0000-0002-3293-9309 0000-0001-9532-6043 0000-0001-6383-6321 0000-0003-1065-1029 0000-0001-5278-0668 0000-0002-1166-1512 0000-0002-3059-4503 |
OpenAccessLink | https://www.nature.com/articles/s41551-021-00734-9.pdf |
PMID | 34031558 |
PQID | 2552182577 |
PQPubID | 4669717 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2532245653 proquest_journals_2552182577 pubmed_primary_34031558 crossref_citationtrail_10_1038_s41551_021_00734_9 crossref_primary_10_1038_s41551_021_00734_9 springer_journals_10_1038_s41551_021_00734_9 |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature biomedical engineering |
PublicationTitleAbbrev | Nat Biomed Eng |
PublicationTitleAlternate | Nat Biomed Eng |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Ferretti (CR7) 2020; 368 Spitzberg, Zrehen, van Kooten, Meller (CR52) 2019; 31 Wrapp (CR43) 2020; 181 Wyllie (CR48) 2020; 383 Todd (CR51) 2007; 53 Khodagholy (CR15) 2013; 4 Long, Winefordner (CR62) 1983; 55 Macchia (CR20) 2018; 3 Kubala, Kovtun, Alexandrov, Collins (CR39) 2010; 19 Raj (CR44) 2018; 4 Ohayon, Inal (CR18) 2020; 32 CR33 Zhang, Garcia-D’Angeli, Brennan, Huo (CR34) 2013; 139 Moser, Ponder, Wadsworth, Giovannitti, McCulloch (CR35) 2019; 29 Wang, Chen, Lin, Fang, Lieber (CR10) 2005; 102 De Meyer, Muyldermans, Depicker (CR25) 2014; 32 Muyldermans (CR22) 2013; 82 Zulkower, Rosser (CR60) 2020; 36 Niemz, Ferguson, Boyle (CR9) 2011; 29 Love, Estroff, Kriebel, Nuzzo, Whitesides (CR32) 2005; 105 Macchia (CR13) 2018; 9 Nakatsuka (CR12) 2018; 362 Schuck, Zhao (CR40) 2010; 627 CR3 Filipiak (CR26) 2018; 255 CR5 CR8 Keeble, Howarth (CR29) 2019; 617 Ren (CR11) 2017; 8 Rivnay (CR17) 2018; 3 Macchia, Manoli, Di Franco, Scamarcio, Torsi (CR42) 2020; 412 Eshaghi (CR58) 2015; 54 Hanke (CR46) 2020; 11 Inal, Rivnay, Suiu, Malliaras, McCulloch (CR16) 2018; 51 Venkatraman (CR37) 2018; 5 Höök, Rodahl, Brzezinski, Kasemo (CR57) 1998; 14 Wustoni, Savva, Sun, Bihar, Inal (CR55) 2019; 6 Trilling, Beekwilder, Zuilhof (CR21) 2013; 138 Macchia (CR14) 2020; 7 Gentili (CR19) 2018; 6 Steeland, Vandenbroucke, Libert (CR24) 2016; 21 Qu (CR56) 2010; 114 Azhar, Hui, Memish, Drosten, Zumla (CR50) 2019; 33 Zakeri (CR28) 2012; 109 Alexandersen, Chamings, Bhatta (CR53) 2020; 11 Corman (CR6) 2020; 25 Pasomsub (CR47) 2021; 27 Kissler, Tedijanto, Goldstein, Grad, Lipsitch (CR1) 2020; 368 Long (CR4) 2020; 26 Esplandiu, Noeske (CR31) 2002; 199 Rothbauer (CR27) 2008; 7 Mutalik (CR61) 2013; 10 Sheehan, Whitman (CR41) 2005; 5 Ohayon (CR54) 2020; 19 Macchia (CR38) 2019; 31 Lewis (CR2) 2020; 583 Hamers-Casterman (CR23) 1993; 363 Butler-Laporte (CR49) 2021; 181 Moser (CR36) 2020; 32 Li, Fierer, Rapoport, Howarth (CR59) 2014; 426 Walls (CR45) 2020; 181 Oloketuyi (CR30) 2020; 154 AK Trilling (734_CR21) 2013; 138 S Muyldermans (734_CR22) 2013; 82 S Inal (734_CR16) 2018; 51 AH Keeble (734_CR29) 2019; 617 M Eshaghi (734_CR58) 2015; 54 M Moser (734_CR36) 2020; 32 MS Filipiak (734_CR26) 2018; 255 E Pasomsub (734_CR47) 2021; 27 V Venkatraman (734_CR37) 2018; 5 D Qu (734_CR56) 2010; 114 SV Raj (734_CR44) 2018; 4 E Macchia (734_CR42) 2020; 412 S Wustoni (734_CR55) 2019; 6 U Rothbauer (734_CR27) 2008; 7 T De Meyer (734_CR25) 2014; 32 S Alexandersen (734_CR53) 2020; 11 B Zakeri (734_CR28) 2012; 109 M Moser (734_CR35) 2019; 29 E Macchia (734_CR14) 2020; 7 L Ferretti (734_CR7) 2020; 368 D Gentili (734_CR19) 2018; 6 E Macchia (734_CR38) 2019; 31 VM Corman (734_CR6) 2020; 25 E Macchia (734_CR13) 2018; 9 S Zhang (734_CR34) 2013; 139 GL Long (734_CR62) 1983; 55 734_CR5 J Rivnay (734_CR17) 2018; 3 EI Azhar (734_CR50) 2019; 33 734_CR3 D Ohayon (734_CR54) 2020; 19 734_CR33 734_CR8 C Hamers-Casterman (734_CR23) 1993; 363 MJ Esplandiu (734_CR31) 2002; 199 F Höök (734_CR57) 1998; 14 S Oloketuyi (734_CR30) 2020; 154 D Ohayon (734_CR18) 2020; 32 P Schuck (734_CR40) 2010; 627 JD Spitzberg (734_CR52) 2019; 31 N Nakatsuka (734_CR12) 2018; 362 J Todd (734_CR51) 2007; 53 G Butler-Laporte (734_CR49) 2021; 181 AL Wyllie (734_CR48) 2020; 383 V Zulkower (734_CR60) 2020; 36 Q-X Long (734_CR4) 2020; 26 A Niemz (734_CR9) 2011; 29 D Lewis (734_CR2) 2020; 583 SM Kissler (734_CR1) 2020; 368 D Wrapp (734_CR43) 2020; 181 E Macchia (734_CR20) 2018; 3 MH Kubala (734_CR39) 2010; 19 AC Walls (734_CR45) 2020; 181 L Hanke (734_CR46) 2020; 11 L Li (734_CR59) 2014; 426 VK Mutalik (734_CR61) 2013; 10 WU Wang (734_CR10) 2005; 102 S Steeland (734_CR24) 2016; 21 R Ren (734_CR11) 2017; 8 D Khodagholy (734_CR15) 2013; 4 JC Love (734_CR32) 2005; 105 PE Sheehan (734_CR41) 2005; 5 34272521 - Nat Biomed Eng. 2021 Jul;5(7):639-640 |
References_xml | – volume: 412 start-page: 5005 year: 2020 end-page: 5014 ident: CR42 article-title: New trends in single-molecule bioanalytical detection publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-020-02540-9 – volume: 383 start-page: 1283 year: 2020 end-page: 1286 ident: CR48 article-title: Saliva or nasopharyngeal swab specimens for detection of SARS-CoV-2 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2016359 – volume: 25 start-page: 2000045 year: 2020 ident: CR6 article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR publication-title: Eurosurveillance – volume: 4 start-page: eaas9667 year: 2018 ident: CR44 article-title: Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection publication-title: Sci. Adv. doi: 10.1126/sciadv.aas9667 – volume: 362 start-page: 319 year: 2018 end-page: 324 ident: CR12 article-title: Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing publication-title: Science doi: 10.1126/science.aao6750 – volume: 32 start-page: 2002748 year: 2020 ident: CR36 article-title: Side chain redistribution as a strategy to boost organic electrochemical transistor performance and stability publication-title: Adv. Mater. doi: 10.1002/adma.202002748 – volume: 26 start-page: 1200 year: 2020 end-page: 1204 ident: CR4 article-title: Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections publication-title: Nat. Med. doi: 10.1038/s41591-020-0965-6 – volume: 7 start-page: 999 year: 2020 end-page: 1013 ident: CR14 article-title: About the amplification factors in organic bioelectronic sensors publication-title: Mater. Horiz. doi: 10.1039/C9MH01544B – volume: 9 year: 2018 ident: CR13 article-title: Single-molecule detection with a millimetre-sized transistor publication-title: Nat. Commun. doi: 10.1038/s41467-018-05235-z – ident: CR8 – volume: 19 start-page: 2389 year: 2010 end-page: 2401 ident: CR39 article-title: Structural and thermodynamic analysis of the GFP:GFP-nanobody complex publication-title: Protein Sci. doi: 10.1002/pro.519 – volume: 55 start-page: 712A year: 1983 end-page: 724A ident: CR62 article-title: Limit of detection. A closer look at the IUPAC definition publication-title: Anal. Chem. doi: 10.1021/ac00259a060 – volume: 6 start-page: 5400 year: 2018 end-page: 5406 ident: CR19 article-title: Integration of organic electrochemical transistors and immuno-affinity membranes for label-free detection of interleukin-6 in the physiological concentration range through antibody–antigen recognition publication-title: J. Mater. Chem. B doi: 10.1039/C8TB01697F – volume: 139 start-page: 439 year: 2013 end-page: 445 ident: CR34 article-title: Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general publication-title: Analyst doi: 10.1039/C3AN01835K – volume: 627 start-page: 15 year: 2010 end-page: 54 ident: CR40 article-title: The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60761-670-2_2 – volume: 11 year: 2020 ident: CR46 article-title: An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction publication-title: Nat. Commun. doi: 10.1038/s41467-020-18174-5 – volume: 181 start-page: 353 year: 2021 end-page: 360 ident: CR49 article-title: Comparison of saliva and nasopharyngeal swab nucleic acid amplification testing for detection of SARS-CoV-2: a systematic review and meta-analysis publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2020.8876 – volume: 11 start-page: 6059 year: 2020 ident: CR53 article-title: SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication publication-title: Nat. Commun. doi: 10.1038/s41467-020-19883-7 – volume: 4 year: 2013 ident: CR15 article-title: High transconductance organic electrochemical transistors publication-title: Nat. Commun. doi: 10.1038/ncomms3133 – volume: 368 start-page: eabb6936 year: 2020 ident: CR7 article-title: Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing publication-title: Science doi: 10.1126/science.abb6936 – volume: 53 start-page: 1990 year: 2007 end-page: 1995 ident: CR51 article-title: Ultrasensitive flow-based immunoassays using single-molecule counting publication-title: Clin. Chem. doi: 10.1373/clinchem.2007.091181 – volume: 51 start-page: 1368 year: 2018 end-page: 1376 ident: CR16 article-title: Conjugated polymers in bioelectronics publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00624 – volume: 7 start-page: 282 year: 2008 end-page: 289 ident: CR27 article-title: A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.M700342-MCP200 – volume: 368 start-page: 860 year: 2020 end-page: 868 ident: CR1 article-title: Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period publication-title: Science doi: 10.1126/science.abb5793 – ident: CR5 – volume: 31 start-page: 1900422 year: 2019 ident: CR52 article-title: Plasmonic-nanopore biosensors for superior single-molecule detection publication-title: Adv. Mater. doi: 10.1002/adma.201900422 – volume: 109 start-page: E690 year: 2012 end-page: E697 ident: CR28 article-title: Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1115485109 – volume: 3 start-page: 17086 year: 2018 ident: CR17 article-title: Organic electrochemical transistors publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.86 – volume: 29 start-page: 1807033 year: 2019 ident: CR35 article-title: Materials in organic electrochemical transistors for bioelectronic applications: past, present, and future publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807033 – volume: 5 start-page: 1800453 year: 2018 ident: CR37 article-title: Subthreshold operation of organic electrochemical transistors for biosignal amplification publication-title: Adv. Sci. doi: 10.1002/advs.201800453 – volume: 21 start-page: 1076 year: 2016 end-page: 1113 ident: CR24 article-title: Nanobodies as therapeutics: big opportunities for small antibodies publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2016.04.003 – volume: 19 start-page: 456 year: 2020 end-page: 463 ident: CR54 article-title: Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer publication-title: Nat. Mater. doi: 10.1038/s41563-019-0556-4 – volume: 33 start-page: 891 year: 2019 end-page: 905 ident: CR50 article-title: The Middle East respiratory syndrome (MERS) publication-title: Infect. Dis. Clin. doi: 10.1016/j.idc.2019.08.001 – volume: 54 start-page: 13952 year: 2015 end-page: 13956 ident: CR58 article-title: Rational structure-based design of bright GFP-based complexes with tunable dimerization publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201506686 – volume: 102 start-page: 3208 year: 2005 end-page: 3212 ident: CR10 article-title: Label-free detection of small-molecule–protein interactions by using nanowire nanosensors publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0406368102 – volume: 10 start-page: 354 year: 2013 end-page: 360 ident: CR61 article-title: Precise and reliable gene expression via standard transcription and translation initiation elements publication-title: Nat. Methods doi: 10.1038/nmeth.2404 – volume: 363 start-page: 446 year: 1993 end-page: 448 ident: CR23 article-title: Naturally occurring antibodies devoid of light chains publication-title: Nature doi: 10.1038/363446a0 – volume: 32 start-page: 2001439 year: 2020 ident: CR18 article-title: Organic bioelectronics: from functional materials to next-generation devices and power sources publication-title: Adv. Mater. doi: 10.1002/adma.202001439 – ident: CR33 – volume: 31 start-page: 6476 year: 2019 end-page: 6483 ident: CR38 article-title: Label-free and selective single-molecule bioelectronic sensing with a millimeter-wide self-assembled monolayer of anti-immunoglobulins publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04414 – volume: 583 start-page: 510 year: 2020 end-page: 513 ident: CR2 article-title: Mounting evidence suggests coronavirus is airborne—but health advice has not caught up publication-title: Nature doi: 10.1038/d41586-020-02058-1 – volume: 14 start-page: 729 year: 1998 end-page: 734 ident: CR57 article-title: Energy dissipation kinetics for protein and antibody–antigen adsorption under shear oscillation on a quartz crystal microbalance publication-title: Langmuir doi: 10.1021/la970815u – volume: 29 start-page: 240 year: 2011 end-page: 250 ident: CR9 article-title: Point-of-care nucleic acid testing for infectious diseases publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2011.01.007 – volume: 199 start-page: 166 year: 2002 end-page: 182 ident: CR31 article-title: XPS investigations on the interactions of 1,6-hexanedithiol/Au(111) layers with metallic and ionic silver species publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(02)00608-6 – volume: 8 year: 2017 ident: CR11 article-title: Nanopore extended field-effect transistor for selective single-molecule biosensing publication-title: Nat. Commun. doi: 10.1038/s41467-017-00549-w – volume: 27 start-page: 285.E1 year: 2021 end-page: 285.E4 ident: CR47 article-title: Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease 2019: a cross-sectional study publication-title: Clin. Microbiol. Infect. doi: 10.1016/j.cmi.2020.05.001 – volume: 138 start-page: 1619 year: 2013 end-page: 1627 ident: CR21 article-title: Antibody orientation on biosensor surfaces: a minireview publication-title: Analyst doi: 10.1039/c2an36787d – volume: 255 start-page: 1507 year: 2018 end-page: 1516 ident: CR26 article-title: Highly sensitive, selective and label-free protein detection in physiological solutions using carbon nanotube transistors with nanobody receptors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.08.164 – volume: 82 start-page: 775 year: 2013 end-page: 797 ident: CR22 article-title: Nanobodies: natural single-domain antibodies publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-063011-092449 – volume: 6 start-page: 1800928 year: 2019 ident: CR55 article-title: Enzyme-free detection of glucose with a hybrid conductive gel electrode publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201800928 – volume: 36 start-page: 4508 year: 2020 end-page: 4509 ident: CR60 article-title: DNA Chisel, a versatile sequence optimizer publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa558 – volume: 154 start-page: 112052 year: 2020 ident: CR30 article-title: Electrochemical immunosensor functionalized with nanobodies for the detection of the toxic microalgae using glassy carbon electrode modified with gold nanoparticles publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112052 – volume: 105 start-page: 1103 year: 2005 end-page: 1170 ident: CR32 article-title: Self-assembled monolayers of thiolates on metals as a form of nanotechnology publication-title: Chem. Rev. doi: 10.1021/cr0300789 – ident: CR3 – volume: 426 start-page: 309 year: 2014 end-page: 317 ident: CR59 article-title: Structural analysis and optimization of the covalent association between SpyCatcher and a peptide Tag publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2013.10.021 – volume: 181 start-page: 1004 year: 2020 end-page: 1015.e15 ident: CR43 article-title: Structural basis for potent neutralization of betacoronaviruses by single-domain Camelid antibodies publication-title: Cell doi: 10.1016/j.cell.2020.04.031 – volume: 114 start-page: 497 year: 2010 end-page: 505 ident: CR56 article-title: 1,6-Hexanedithiol self-assembled monolayers on Au(111) investigated by electrochemical, spectroscopic, and molecular mechanics methods publication-title: J. Phys. Chem. C. doi: 10.1021/jp908821b – volume: 3 start-page: 034002 year: 2018 ident: CR20 article-title: Ultra-sensitive protein detection with organic electrochemical transistors printed on plastic substrates publication-title: Flex. Print. Electron. doi: 10.1088/2058-8585/aad0cb – volume: 181 start-page: 281 year: 2020 end-page: 292.e6 ident: CR45 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 32 start-page: 263 year: 2014 end-page: 270 ident: CR25 article-title: Nanobody-based products as research and diagnostic tools publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2014.03.001 – volume: 5 start-page: 803 year: 2005 end-page: 807 ident: CR41 article-title: Detection limits for nanoscale biosensors publication-title: Nano Lett. doi: 10.1021/nl050298x – volume: 617 start-page: 443 year: 2019 end-page: 461 ident: CR29 article-title: Insider information on successful covalent protein coupling with help from SpyBank publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2018.12.010 – volume: 26 start-page: 1200 year: 2020 ident: 734_CR4 publication-title: Nat. Med. doi: 10.1038/s41591-020-0965-6 – volume: 27 start-page: 285.E1 year: 2021 ident: 734_CR47 publication-title: Clin. Microbiol. Infect. doi: 10.1016/j.cmi.2020.05.001 – volume: 583 start-page: 510 year: 2020 ident: 734_CR2 publication-title: Nature doi: 10.1038/d41586-020-02058-1 – volume: 181 start-page: 281 year: 2020 ident: 734_CR45 publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 29 start-page: 240 year: 2011 ident: 734_CR9 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2011.01.007 – volume: 51 start-page: 1368 year: 2018 ident: 734_CR16 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00624 – volume: 82 start-page: 775 year: 2013 ident: 734_CR22 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-063011-092449 – volume: 32 start-page: 2001439 year: 2020 ident: 734_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.202001439 – volume: 29 start-page: 1807033 year: 2019 ident: 734_CR35 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807033 – volume: 36 start-page: 4508 year: 2020 ident: 734_CR60 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa558 – volume: 105 start-page: 1103 year: 2005 ident: 734_CR32 publication-title: Chem. Rev. doi: 10.1021/cr0300789 – volume: 8 year: 2017 ident: 734_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00549-w – volume: 5 start-page: 1800453 year: 2018 ident: 734_CR37 publication-title: Adv. Sci. doi: 10.1002/advs.201800453 – volume: 6 start-page: 1800928 year: 2019 ident: 734_CR55 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201800928 – volume: 426 start-page: 309 year: 2014 ident: 734_CR59 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2013.10.021 – volume: 11 year: 2020 ident: 734_CR46 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18174-5 – volume: 6 start-page: 5400 year: 2018 ident: 734_CR19 publication-title: J. Mater. Chem. B doi: 10.1039/C8TB01697F – volume: 617 start-page: 443 year: 2019 ident: 734_CR29 publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2018.12.010 – volume: 54 start-page: 13952 year: 2015 ident: 734_CR58 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201506686 – volume: 109 start-page: E690 year: 2012 ident: 734_CR28 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1115485109 – ident: 734_CR5 – volume: 7 start-page: 282 year: 2008 ident: 734_CR27 publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.M700342-MCP200 – volume: 25 start-page: 2000045 year: 2020 ident: 734_CR6 publication-title: Eurosurveillance – volume: 412 start-page: 5005 year: 2020 ident: 734_CR42 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-020-02540-9 – volume: 3 start-page: 17086 year: 2018 ident: 734_CR17 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.86 – volume: 114 start-page: 497 year: 2010 ident: 734_CR56 publication-title: J. Phys. Chem. C. doi: 10.1021/jp908821b – volume: 4 year: 2013 ident: 734_CR15 publication-title: Nat. Commun. doi: 10.1038/ncomms3133 – volume: 363 start-page: 446 year: 1993 ident: 734_CR23 publication-title: Nature doi: 10.1038/363446a0 – volume: 55 start-page: 712A year: 1983 ident: 734_CR62 publication-title: Anal. Chem. doi: 10.1021/ac00259a060 – volume: 138 start-page: 1619 year: 2013 ident: 734_CR21 publication-title: Analyst doi: 10.1039/c2an36787d – volume: 33 start-page: 891 year: 2019 ident: 734_CR50 publication-title: Infect. Dis. Clin. doi: 10.1016/j.idc.2019.08.001 – ident: 734_CR33 – volume: 32 start-page: 2002748 year: 2020 ident: 734_CR36 publication-title: Adv. Mater. doi: 10.1002/adma.202002748 – volume: 14 start-page: 729 year: 1998 ident: 734_CR57 publication-title: Langmuir doi: 10.1021/la970815u – volume: 102 start-page: 3208 year: 2005 ident: 734_CR10 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0406368102 – volume: 9 year: 2018 ident: 734_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05235-z – volume: 362 start-page: 319 year: 2018 ident: 734_CR12 publication-title: Science doi: 10.1126/science.aao6750 – volume: 368 start-page: eabb6936 year: 2020 ident: 734_CR7 publication-title: Science doi: 10.1126/science.abb6936 – volume: 383 start-page: 1283 year: 2020 ident: 734_CR48 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2016359 – volume: 32 start-page: 263 year: 2014 ident: 734_CR25 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2014.03.001 – volume: 21 start-page: 1076 year: 2016 ident: 734_CR24 publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2016.04.003 – volume: 31 start-page: 1900422 year: 2019 ident: 734_CR52 publication-title: Adv. Mater. doi: 10.1002/adma.201900422 – ident: 734_CR3 doi: 10.7326/M20-3012 – volume: 181 start-page: 353 year: 2021 ident: 734_CR49 publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2020.8876 – volume: 53 start-page: 1990 year: 2007 ident: 734_CR51 publication-title: Clin. Chem. doi: 10.1373/clinchem.2007.091181 – volume: 3 start-page: 034002 year: 2018 ident: 734_CR20 publication-title: Flex. Print. Electron. doi: 10.1088/2058-8585/aad0cb – volume: 199 start-page: 166 year: 2002 ident: 734_CR31 publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(02)00608-6 – volume: 11 start-page: 6059 year: 2020 ident: 734_CR53 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19883-7 – volume: 10 start-page: 354 year: 2013 ident: 734_CR61 publication-title: Nat. Methods doi: 10.1038/nmeth.2404 – volume: 368 start-page: 860 year: 2020 ident: 734_CR1 publication-title: Science doi: 10.1126/science.abb5793 – volume: 31 start-page: 6476 year: 2019 ident: 734_CR38 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04414 – volume: 5 start-page: 803 year: 2005 ident: 734_CR41 publication-title: Nano Lett. doi: 10.1021/nl050298x – volume: 139 start-page: 439 year: 2013 ident: 734_CR34 publication-title: Analyst doi: 10.1039/C3AN01835K – volume: 154 start-page: 112052 year: 2020 ident: 734_CR30 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112052 – volume: 7 start-page: 999 year: 2020 ident: 734_CR14 publication-title: Mater. Horiz. doi: 10.1039/C9MH01544B – volume: 627 start-page: 15 year: 2010 ident: 734_CR40 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60761-670-2_2 – volume: 255 start-page: 1507 year: 2018 ident: 734_CR26 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.08.164 – volume: 4 start-page: eaas9667 year: 2018 ident: 734_CR44 publication-title: Sci. Adv. doi: 10.1126/sciadv.aas9667 – ident: 734_CR8 doi: 10.1101/2020.10.01.20203836 – volume: 181 start-page: 1004 year: 2020 ident: 734_CR43 publication-title: Cell doi: 10.1016/j.cell.2020.04.031 – volume: 19 start-page: 456 year: 2020 ident: 734_CR54 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0556-4 – volume: 19 start-page: 2389 year: 2010 ident: 734_CR39 publication-title: Protein Sci. doi: 10.1002/pro.519 – reference: 34272521 - Nat Biomed Eng. 2021 Jul;5(7):639-640 |
SSID | ssj0001934975 |
Score | 2.608128 |
Snippet | The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 666 |
SubjectTerms | 631/61/338/552 639/301/1005/1007 82/1 82/83 9/10 96 Antigens Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biosensing Techniques - methods Body fluids Coronaviruses COVID-19 COVID-19 - virology Fluorescence Green fluorescent protein Humans Middle East respiratory syndrome Middle East Respiratory Syndrome Coronavirus - pathogenicity Nanobodies Nanotechnology - methods Pandemics Polymers Proteins Respiratory diseases Saliva Semiconductor devices Sensors Severe acute respiratory syndrome coronavirus 2 Severe acute respiratory syndrome-related coronavirus - pathogenicity Single-Domain Antibodies - immunology Transistors Viral diseases |
Title | Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors |
URI | https://link.springer.com/article/10.1038/s41551-021-00734-9 https://www.ncbi.nlm.nih.gov/pubmed/34031558 https://www.proquest.com/docview/2552182577 https://www.proquest.com/docview/2532245653 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9wwEB5yvLQPoUkv50KFvrUitiX5eCo5dpsWkpZtU_JmZGkMC6m9iZ1AC_3vHdna3YbQPBiMLR94RjPfzMjzAbyVmrwyOXZeooy5VJrmnDKWm1QIiUmoZZ_TPTtPTi_k50t16RNurV9WObeJvaG2jXE58gOCvq7ZuErTD7Nr7lijXHXVU2iswjqZ4IyCr_Wj0fnXyTLLkguZp8r_LROK7KB1HpQi6Jg2Um_J8_se6QHMfFAi7T3P-BlseMjIDgcZb8IK1lvw9J9Ggs_hz0TPppa5uP8K-c-B8haZxa5faVWzpmLHX358OuFRznRt2dlo8o12OteLs2V3U81qXTdlY39x5-mGBOH0N1o20D4Z5vlyjG8wwDrn5PoeI-0LuBiPvh-fck-swI3MVMfLFI1SqJVJ8ipCipF0VEoHJZDQGMZCJ7oSqGwoNcmYjqQ6qnSKlbFYZShewlrd1PgamBVWJSkFXSYUNDgvMxsT6ggrVSmldRlANP-4hfFdxx35xVXRV79FVgwCKUggRS-QIg_g3eKa2dBz49HRu3OZFX7-tcVSWwJ4szhNM8eVQ3SNza0bQ8bMAVoRwKtB1ovHCenYL1QWwPu58Jc3__-7bD_-LjvwJO4Vz6323YW17uYW9wjTdOU-rGbjj_teff8CtEP1UQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEG8CBYwEJ7CaxHYeB4RQ22WXdotUWtRb6tgTaaU2WUgKKhJ_id_IOI9dUEVvPUSKEidxPDP-5mHPALyUmlCZgJ3nKEMulSaZU8ZyEwshMfK1bH26071ofCg_HqmjFfg97IVxyyqHObGdqG1lnI98g1Rfl2xcxfG7-Vfuqka56OpQQqNjix08_0EmW_12skX0fRWGo-2DzTHvqwpwIxPV8DxGoxRqZaK0CJAMBB3k0uEokiqCodCRLgQq60tNP0hXYh0UOsbCWCwSFPTea3BdCpE6iUpGH5Y-nVTINFb93hxfJBu1w2uy10M6SJgkT__FvwtK7YWAbItzo9twq1dQ2fuOo-7ACpZ3Ye2vtIX34Ne-ns8sc16GE-SnXYFdZBabdl1XyaqCbX76MtniQcp0adl0e_8znTQu82fNvs80K3VZ5ZU95w5XO3fk7Cda1hWZMqyvzmP6dAascZDaZjSp78PhlQz4A1gtqxIfAbPCqigmE8_4ghqneWJD0nH8QhVKaZ17EAyDm5k-x7krtXGStbF2kWQdQTIiSNYSJEs9eL14Zt5l-Li09fpAs6yX9jpb8qYHLxa3SU5d8EWXWJ25NjR1OvVZePCwo_Xic0K6Whsq8eDNQPzly__fl8eX9-U53BgfTHez3cnezhO4GbZM6NYZr8Nq8-0Mn5I21eTPWhZmcHzVMvMHkNoyxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+single-molecule+detection+of+COVID-19+and+MERS+antigens+via+nanobody-functionalized+organic+electrochemical+transistors&rft.jtitle=Nature+biomedical+engineering&rft.au=Guo%2C+Keying&rft.au=Wustoni%2C+Shofarul&rft.au=Koklu%2C+Anil&rft.au=D%C3%ADaz-Galicia%2C+Escarlet&rft.date=2021-07-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2157-846X&rft.volume=5&rft.issue=7&rft.spage=666&rft.epage=677&rft_id=info:doi/10.1038%2Fs41551-021-00734-9&rft.externalDocID=10_1038_s41551_021_00734_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-846X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-846X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-846X&client=summon |