Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis

Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynam...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 2556 - 13
Main Authors Zhang, Ziqi, Zhang, Zhe, Chen, Cailing, Wang, Rui, Xie, Minggang, Wan, Sheng, Zhang, Ruige, Cong, Linchuan, Lu, Haiyan, Han, Yu, Xing, Wei, Shi, Zhan, Feng, Shouhua
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.03.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N 2 coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N 2 instead of the typical Pt-N 4 coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments. In addition to maximizing atomic utilization, single-atom catalysts with defined structures can be used to investigate catalytic mechanisms and structure-activity relationships. Here, authors study a non-thermodynamically stable Pt-N 2 active site for the electrochemical hydrogen evolution reaction.
AbstractList Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N 2 coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N 2 instead of the typical Pt-N 4 coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments.
Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N 2 coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N 2 instead of the typical Pt-N 4 coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments. In addition to maximizing atomic utilization, single-atom catalysts with defined structures can be used to investigate catalytic mechanisms and structure-activity relationships. Here, authors study a non-thermodynamically stable Pt-N 2 active site for the electrochemical hydrogen evolution reaction.
Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N instead of the typical Pt-N coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments.
Abstract Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N2 coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N2 instead of the typical Pt-N4 coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments.
Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N2 coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N2 instead of the typical Pt-N4 coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments.In addition to maximizing atomic utilization, single-atom catalysts with defined structures can be used to investigate catalytic mechanisms and structure-activity relationships. Here, authors study a non-thermodynamically stable Pt-N2 active site for the electrochemical hydrogen evolution reaction.
Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N2 coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N2 instead of the typical Pt-N4 coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments.Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N2 coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N2 instead of the typical Pt-N4 coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments.
ArticleNumber 2556
Author Wan, Sheng
Cong, Linchuan
Lu, Haiyan
Zhang, Zhe
Han, Yu
Wang, Rui
Xing, Wei
Chen, Cailing
Zhang, Ziqi
Xie, Minggang
Shi, Zhan
Feng, Shouhua
Zhang, Ruige
Author_xml – sequence: 1
  givenname: Ziqi
  orcidid: 0009-0006-5350-7886
  surname: Zhang
  fullname: Zhang, Ziqi
  organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University
– sequence: 2
  givenname: Zhe
  surname: Zhang
  fullname: Zhang, Zhe
  organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University
– sequence: 3
  givenname: Cailing
  orcidid: 0000-0003-2598-1354
  surname: Chen
  fullname: Chen, Cailing
  organization: Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University
– sequence: 5
  givenname: Minggang
  surname: Xie
  fullname: Xie, Minggang
  organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University
– sequence: 6
  givenname: Sheng
  surname: Wan
  fullname: Wan, Sheng
  organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University
– sequence: 7
  givenname: Ruige
  surname: Zhang
  fullname: Zhang, Ruige
  organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University
– sequence: 8
  givenname: Linchuan
  surname: Cong
  fullname: Cong, Linchuan
  organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University
– sequence: 9
  givenname: Haiyan
  surname: Lu
  fullname: Lu, Haiyan
  email: luhy@jlu.edu.cn
  organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University
– sequence: 10
  givenname: Yu
  orcidid: 0000-0003-1462-1118
  surname: Han
  fullname: Han, Yu
  organization: Electron Microscopy Center, South China University of Technology
– sequence: 11
  givenname: Wei
  orcidid: 0000-0003-2841-7206
  surname: Xing
  fullname: Xing, Wei
  email: xingwei@ciac.ac.cn
  organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
– sequence: 12
  givenname: Zhan
  orcidid: 0000-0001-9717-1487
  surname: Shi
  fullname: Shi, Zhan
  email: zshi@mail.jlu.edu.cn
  organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University
– sequence: 13
  givenname: Shouhua
  surname: Feng
  fullname: Feng, Shouhua
  organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38519497$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9u1DAQxiNUREvpC3BAkbhwCfhf4uSIKiiVKnEAztbEGS9eHHuxnbb7DLx0vbstoB7qi8ee3_dp7JmX1ZEPHqvqNSXvKeH9hySo6GRDmGhE10vW3D6rThgRtKGS8aP_4uPqLKU1KYsPtBfiRXXM-5YOYpAn1Z9v1q8cNpDDXG8cZOuXub6x-WcNaTvPmKPVtQ4hTtaXbPA1-msbg5_R57oczeLcthB-vawg41TCa3D7ZFyBL2oTYcabEH_VJsQajbHa7vLoUOcYNGRw22TTq-q5AZfw7H4_rX58_vT9_Etz9fXi8vzjVaNF3-Zm5GQc2olMo9AcmKFtr3FkrTTI2NBNUzeRkSNnxMiRcUOG8l9j21E9GAoD8NPq8uA7BVirTbQzxK0KYNX-opStIGarHSrAjmkgTHZSCMkARiEG6LicsBtIR4rXu4PXJobfC6asZps0Ogcew5IUG6QgRIp-h759hK7DEn156Y7iXOzAQr25p5ZxxulveQ8tK0B_AHQMKUU0Stu870yOYJ2iRO0GRB0GRJUBUfsBUbdFyh5JH9yfFPGDKBXYrzD-K_sJ1R3i0NC9
CitedBy_id crossref_primary_10_1039_D4EE03704A
crossref_primary_10_1002_anie_202418347
crossref_primary_10_1016_j_pnsc_2024_07_007
crossref_primary_10_1002_smll_202411181
crossref_primary_10_1002_advs_202501442
crossref_primary_10_1002_anie_202503434
crossref_primary_10_1039_D4CC03535F
crossref_primary_10_1016_j_est_2024_112996
crossref_primary_10_1021_acs_nanolett_4c05523
crossref_primary_10_3390_nano14231907
crossref_primary_10_1002_ange_202422892
crossref_primary_10_20517_wecn_2024_79
crossref_primary_10_1021_acsami_4c11479
crossref_primary_10_1039_D4CS01031K
crossref_primary_10_1002_adma_202500595
crossref_primary_10_1021_acsanm_4c01317
crossref_primary_10_1002_adfm_202425150
crossref_primary_10_1002_anie_202418790
crossref_primary_10_1016_j_cej_2025_160681
crossref_primary_10_1039_D4CS00333K
crossref_primary_10_1002_adfm_202500501
crossref_primary_10_1039_D5TA00311C
crossref_primary_10_1002_ange_202503434
crossref_primary_10_1002_adma_202415978
crossref_primary_10_1002_ange_202418347
crossref_primary_10_3390_molecules29184304
crossref_primary_10_1002_aenm_202403136
crossref_primary_10_1016_j_ijhydene_2024_09_365
crossref_primary_10_1016_j_ijhydene_2025_02_234
crossref_primary_10_1016_j_cej_2024_156033
crossref_primary_10_1002_anie_202422892
crossref_primary_10_1016_j_ccr_2025_216462
crossref_primary_10_20517_energymater_2024_127
crossref_primary_10_1021_acs_nanolett_4c02887
crossref_primary_10_1002_adfm_202417621
crossref_primary_10_1002_aenm_202402714
crossref_primary_10_1016_j_cej_2025_160631
crossref_primary_10_1002_ange_202418790
crossref_primary_10_1021_jacs_4c11445
Cites_doi 10.1021/jacs.2c08344
10.1080/08927020802178591
10.1021/jacs.9b09502
10.1039/D2TA01414A
10.1002/anie.202006546
10.1002/smll.201905363
10.1016/0927-0256(96)00008-0
10.1107/S0909049507031901
10.1107/S0909049505012719
10.1002/anie.202105186
10.1126/science.aau6716
10.1038/s41467-023-38964-x
10.1038/s41560-020-00710-8
10.1038/s41467-022-29076-z
10.1021/acscatal.9b02609
10.1103/PhysRevLett.86.1642
10.1021/jacs.2c07575
10.1021/acscatal.7b04466
10.1038/s41467-020-14848-2
10.1149/1.1856988
10.1103/PhysRevB.13.5188
10.1021/jacs.1c06986
10.1038/s41467-021-24079-8
10.1021/acscatal.0c03747
10.1103/PhysRevLett.77.3865
10.1002/smtd.202200459
10.1002/anie.202202519
10.1002/adma.201605838
10.1021/jacs.2c07596
10.1021/acscatal.9b05470
10.1021/jacs.2c10717
10.1016/j.mtener.2020.100387
10.1002/anie.202112775
10.1039/C9CC04036F
10.1021/acsami.7b06968
10.1038/s41929-018-0195-1
10.1002/anie.201607741
10.1021/acsenergylett.1c00246
10.1021/jacs.2c01814
10.1038/s41560-018-0132-1
10.1021/jacs.2c12284
10.1002/jcc.21759
10.1016/j.apsusc.2021.149425
10.1038/s41565-018-0089-z
10.1126/sciadv.aaw2322
10.1002/anie.201814182
10.1016/j.cclet.2021.11.041
10.1038/s41467-019-09765-y
10.1126/science.aaw7493
10.1039/C6CS00727A
10.1021/acsnano.9b00184
10.1021/acssuschemeng.9b00567
10.1021/jacs.2c11071
10.1039/D2SC02845J
10.1016/j.xcrp.2021.100495
10.1002/anie.202216751
10.1002/anie.202212341
10.1021/acscatal.7b03464
10.1021/acscatal.1c03441
10.1021/acscatal.8b04741
10.1021/acsenergylett.9b01691
10.1016/j.mattod.2020.07.002
10.1038/s41578-020-0225-x
10.1038/nchem.1095
10.1021/acs.jpcc.6b10159
10.1103/PhysRevB.71.094110
10.1103/PhysRevB.50.17953
10.1016/j.apsusc.2019.07.181
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-024-46872-x
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Chemistry
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_ae62ca027674472aab449a637de69060
38519497
10_1038_s41467_024_46872_x
Genre Journal Article
GrantInformation_xml – fundername: the National Natural Science Foundation of China (22271114); the Foundation of Science and Technology Development of Jilin Province, China (20200801004GH); 111 Project (B17020)
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c485t-b30b95d0db4c3a2f158ceb257fe2296dd6d0b3e320f7b23f09038b561c9f1a9a3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:26:49 EDT 2025
Fri Jul 11 11:30:02 EDT 2025
Wed Aug 13 05:10:26 EDT 2025
Mon Jul 21 05:56:48 EDT 2025
Tue Jul 01 02:11:03 EDT 2025
Thu Apr 24 23:44:04 EDT 2025
Fri Feb 21 02:37:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-b30b95d0db4c3a2f158ceb257fe2296dd6d0b3e320f7b23f09038b561c9f1a9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0006-5350-7886
0000-0001-9717-1487
0000-0003-2598-1354
0000-0003-2841-7206
0000-0003-1462-1118
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-46872-x
PMID 38519497
PQID 2973344007
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_ae62ca027674472aab449a637de69060
proquest_miscellaneous_2974007480
proquest_journals_2973344007
pubmed_primary_38519497
crossref_citationtrail_10_1038_s41467_024_46872_x
crossref_primary_10_1038_s41467_024_46872_x
springer_journals_10_1038_s41467_024_46872_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-22
PublicationDateYYYYMMDD 2024-03-22
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Monkhorst, Pack (CR68) 1976; 13
Bhunia (CR23) 2017; 9
Meng (CR61) 2019; 55
Grimme, Ehrlich, Goerigk (CR69) 2011; 32
Zhang (CR62) 2021; 551
Xu (CR35) 2020; 5
Kamai, Kamiya, Hashimoto, Nakanishi (CR29) 2016; 55
Sun (CR14) 2018; 8
Han (CR43) 2021; 60
Zhuang (CR63) 2020; 59
van Lent (CR60) 2019; 363
Jati (CR36) 2022; 144
Gao, Wang, Xu, Xiong (CR11) 2017; 46
Liu (CR52) 2019; 141
Ankudinov, Rehr, Low, Bare (CR57) 2001; 86
Wang (CR32) 2021; 143
Dong (CR42) 2021; 11
Wang, Sofer, Pumera (CR17) 2020; 14
Sun (CR12) 2022; 61
Mondal, Chatterjee, Mondal, Bhaumik (CR25) 2019; 7
Ji (CR45) 2019; 58
Meng (CR37) 2019; 55
Qi (CR34) 2022; 145
Shi (CR18) 2022; 61
Zhang (CR6) 2018; 1
Blöchl (CR67) 1994; 50
Laursen (CR3) 2018; 8
Wang (CR27) 2022; 144
Perdew, Burke, Ernzerhof (CR66) 1996; 77
Zhang, Lei, Huang (CR13) 2022; 33
Cho (CR20) 2023; 14
Funke, Scheinost, Chukalina (CR47) 2005; 71
Li (CR9) 2018; 13
Zhang, Cong, Yu, Qu, Huang (CR64) 2020; 16
Peng (CR50) 2019; 5
Xie (CR5) 2019; 9
Guan, Zhou, Dong (CR21) 2023; 145
Mateo, Tryk, Cabrera, Ishikawa (CR59) 2008; 34
Qi, Chhowalla, Voiry (CR41) 2020; 40
Zhang (CR40) 2022; 13
Kresse, Furthmüller (CR65) 1996; 6
Seo (CR38) 2022; 144
Fang (CR46) 2020; 11
Tian (CR58) 2019; 366
Xu, Yan, Wei (CR15) 2017; 121
Yang (CR30) 2019; 4
Qiao (CR10) 2011; 3
Gao (CR4) 2019; 494
Li (CR8) 2022; 13
Yu (CR19) 2019; 9
Xie (CR54) 2022; 10
Niether (CR1) 2018; 3
Mondal (CR24) 2020; 10
Xu (CR28) 2019; 15
Zhou (CR7) 2021; 12
Funke, Chukalina, Scheinost (CR48) 2007; 14
Liu (CR26) 2022; 144
Kuo (CR51) 2021; 2
Peng (CR39) 2021; 11
Bao (CR33) 2022; 62
Ye (CR31) 2022; 6
Wang, Xu, Jin, Chen, Wang (CR56) 2017; 29
Nørskov (CR55) 2005; 152
Jiang (CR49) 2019; 10
McCrum, Koper (CR2) 2020; 5
Cheng, Wu, Luan, Zang, Lou (CR16) 2021; 60
Ravel, Newville (CR44) 2005; 12
Liu (CR22) 2023; 145
Hansen (CR53) 2021; 6
Z Zhang (46872_CR64) 2020; 16
Q Guan (46872_CR21) 2023; 145
ZP Shi (46872_CR18) 2022; 61
R Kamai (46872_CR29) 2016; 55
P Peng (46872_CR50) 2019; 5
Q Xu (46872_CR28) 2019; 15
F Ye (46872_CR31) 2022; 6
K Jiang (46872_CR49) 2019; 10
YM Li (46872_CR8) 2022; 13
M Qi (46872_CR34) 2022; 145
J Wang (46872_CR56) 2017; 29
C Niether (46872_CR1) 2018; 3
W Liu (46872_CR52) 2019; 141
S Mondal (46872_CR24) 2020; 10
A Jati (46872_CR36) 2022; 144
JP Perdew (46872_CR66) 1996; 77
KL Zhou (46872_CR7) 2021; 12
T Liu (46872_CR22) 2023; 145
H Li (46872_CR9) 2018; 13
AB Laursen (46872_CR3) 2018; 8
PE Blöchl (46872_CR67) 1994; 50
S Grimme (46872_CR69) 2011; 32
HJ Monkhorst (46872_CR68) 1976; 13
WT Xu (46872_CR35) 2020; 5
ZQ Zhang (46872_CR62) 2021; 551
J Cho (46872_CR20) 2023; 14
S Bhunia (46872_CR23) 2017; 9
S Mondal (46872_CR25) 2019; 7
WB Liu (46872_CR26) 2022; 144
C Gao (46872_CR11) 2017; 46
WR Cheng (46872_CR16) 2021; 60
B Ravel (46872_CR44) 2005; 12
IT McCrum (46872_CR2) 2020; 5
S Fang (46872_CR46) 2020; 11
JM Seo (46872_CR38) 2022; 144
JK Nørskov (46872_CR55) 2005; 152
HW Gao (46872_CR4) 2019; 494
B Qiao (46872_CR10) 2011; 3
SM Xu (46872_CR15) 2017; 121
JQ Zhang (46872_CR6) 2018; 1
AQ Wang (46872_CR27) 2022; 144
LK Meng (46872_CR61) 2019; 55
XH Xie (46872_CR5) 2019; 9
G Kresse (46872_CR65) 1996; 6
LZ Zhuang (46872_CR63) 2020; 59
K Qi (46872_CR41) 2020; 40
MG Xie (46872_CR54) 2022; 10
AL Ankudinov (46872_CR57) 2001; 86
L Wang (46872_CR17) 2020; 14
CH Yang (46872_CR30) 2019; 4
SF Ji (46872_CR45) 2019; 58
PY Dong (46872_CR42) 2021; 11
SC Sun (46872_CR12) 2022; 61
NF Yu (46872_CR19) 2019; 9
JN Hansen (46872_CR53) 2021; 6
XL Tian (46872_CR58) 2019; 366
R van Lent (46872_CR60) 2019; 363
YY Sun (46872_CR14) 2018; 8
ZQ Zhang (46872_CR13) 2022; 33
L Meng (46872_CR37) 2019; 55
Y Peng (46872_CR39) 2021; 11
C-T Kuo (46872_CR51) 2021; 2
A Han (46872_CR43) 2021; 60
ZQ Zhang (46872_CR40) 2022; 13
H Funke (46872_CR47) 2005; 71
JJ Mateo (46872_CR59) 2008; 34
S Wang (46872_CR32) 2021; 143
R Bao (46872_CR33) 2022; 62
H Funke (46872_CR48) 2007; 14
References_xml – volume: 144
  start-page: 19973
  year: 2022
  end-page: 19980
  ident: CR38
  article-title: Conductive and ultrastable covalent organic framework/carbon hybrid as an ideal electrocatalytic platform
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c08344
– volume: 34
  start-page: 1065
  year: 2008
  end-page: 1072
  ident: CR59
  article-title: Underpotential deposition of hydrogen on Pt(111): a combined direct molecular dynamics/density functional theory study
  publication-title: Mol. Simul.
  doi: 10.1080/08927020802178591
– volume: 141
  start-page: 17431
  year: 2019
  end-page: 17440
  ident: CR52
  article-title: A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic co2 reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09502
– volume: 10
  start-page: 15089
  year: 2022
  end-page: 15100
  ident: CR54
  article-title: Ultrafine Sb nanoparticles in situ confined in covalent organic frameworks for high-performance sodium-ion battery anodes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA01414A
– volume: 59
  start-page: 14664
  year: 2020
  end-page: 14670
  ident: CR63
  article-title: Sulfur-modified oxygen vacancies in iron-cobalt oxide nanosheets: enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202006546
– volume: 15
  year: 2019
  ident: CR28
  article-title: Standing carbon-supported trace levels of metal derived from covalent organic framework for electrocatalysis
  publication-title: Small
  doi: 10.1002/smll.201905363
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR65
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 14
  start-page: 426
  year: 2007
  end-page: 432
  ident: CR48
  article-title: A new FEFF-based wavelet for EXAFS data analysis
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049507031901
– volume: 12
  start-page: 537
  year: 2005
  end-page: 541
  ident: CR44
  article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049505012719
– volume: 60
  start-page: 19262
  year: 2021
  end-page: 19271
  ident: CR43
  article-title: An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202105186
– volume: 363
  start-page: 155
  year: 2019
  end-page: 157
  ident: CR60
  article-title: Site-specific reactivity of molecules with surface defects—the case of H2 dissociation on Pt
  publication-title: Science
  doi: 10.1126/science.aau6716
– volume: 14
  year: 2023
  ident: CR20
  article-title: Importance of broken geometric symmetry of single-atom Pt sites for efficient electrocatalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38964-x
– volume: 5
  start-page: 891
  year: 2020
  end-page: 899
  ident: CR2
  article-title: The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00710-8
– volume: 13
  year: 2022
  ident: CR8
  article-title: In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29076-z
– volume: 9
  start-page: 8712
  year: 2019
  end-page: 8718
  ident: CR5
  article-title: Electrocatalytic hydrogen evolution in neutral ph solutions: dual-phase synergy
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02609
– volume: 86
  start-page: 1642
  year: 2001
  end-page: 1645
  ident: CR57
  article-title: Effect of hydrogen adsorption on the x-ray absorption spectra of small Pt clusters
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.1642
– volume: 144
  start-page: 17198
  year: 2022
  end-page: 17208
  ident: CR27
  article-title: Solution-processable redox-active polymers of intrinsic microporosity for electrochemical energy storage
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c07575
– volume: 8
  start-page: 4408
  year: 2018
  end-page: 4419
  ident: CR3
  article-title: Climbing the volcano of electrocatalytic activity while avoiding catalyst corrosion: ni3p, a hydrogen evolution electrocatalyst stable in both acid and alkali
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04466
– volume: 11
  year: 2020
  ident: CR46
  article-title: Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14848-2
– volume: 152
  start-page: J23
  year: 2005
  ident: CR55
  article-title: Trends in the exchange current for hydrogen evolution
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: CR68
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 143
  start-page: 15562
  year: 2021
  end-page: 15566
  ident: CR32
  article-title: A three-dimensional sp2 carbon-conjugated covalent organic framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c06986
– volume: 12
  year: 2021
  ident: CR7
  article-title: Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24079-8
– volume: 11
  start-page: 1179
  year: 2021
  end-page: 1188
  ident: CR39
  article-title: Organically capped iridium nanoparticles as high-performance bifunctional electrocatalysts for full water splitting in both acidic and alkaline media: impacts of metal-ligand interfacial interactions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03747
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR66
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 6
  year: 2022
  ident: CR31
  article-title: Realizing interfacial electron/hole redistribution and superhydrophilic surface through building heterostructural 2 nm co0.85se‐nise nanograins for efficient overall water splittings
  publication-title: Small Methods
  doi: 10.1002/smtd.202200459
– volume: 61
  start-page: e202202519
  year: 2022
  ident: CR12
  article-title: Bifunctional WC‐supported RuO2 nanoparticles for robust water splitting in acidic media
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202202519
– volume: 29
  start-page: 1605838
  year: 2017
  ident: CR56
  article-title: Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605838
– volume: 144
  start-page: 17209
  year: 2022
  end-page: 17218
  ident: CR26
  article-title: Conjugated three-dimensional high-connected covalent organic frameworks for lithium-sulfur batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c07596
– volume: 10
  start-page: 5623
  year: 2020
  end-page: 5630
  ident: CR24
  article-title: A thiadiazole-based covalent organic framework: a metal-free electrocatalyst toward oxygen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05470
– volume: 145
  start-page: 2739
  year: 2022
  end-page: 2744
  ident: CR34
  article-title: Direct construction of 2d conductive metal–organic frameworks from a nonplanar ligand: in situ scholl reaction and topological modulation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c10717
– volume: 16
  start-page: 100387
  year: 2020
  ident: CR64
  article-title: Facile synthesis of Fe–Ni bimetallic N-doped carbon framework for efficient electrochemical hydrogen evolution reaction
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2020.100387
– volume: 60
  start-page: 26397
  year: 2021
  end-page: 26402
  ident: CR16
  article-title: Synergetic cobalt-copper-based bimetal-organic framework nanoboxes toward efficient electrochemical oxygen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202112775
– volume: 55
  start-page: 9491
  year: 2019
  end-page: 9494
  ident: CR61
  article-title: Synthesis of a 2D nitrogen-rich pi-conjugated microporous polymer for high performance lithium-ion batteries
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC04036F
– volume: 9
  start-page: 23843
  year: 2017
  end-page: 23851
  ident: CR23
  article-title: Electrochemical stimuli-driven facile metal-free hydrogen evolution from pyrene-porphyrin-based crystalline covalent organic framework
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b06968
– volume: 1
  start-page: 985
  year: 2018
  end-page: 992
  ident: CR6
  article-title: Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0195-1
– volume: 55
  start-page: 13184
  year: 2016
  end-page: 13188
  ident: CR29
  article-title: Oxygen-tolerant electrodes with platinum-loaded covalent triazine frameworks for the hydrogen oxidation reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201607741
– volume: 6
  start-page: 1175
  year: 2021
  end-page: 1180
  ident: CR53
  article-title: Is There Anything Better than Pt for HER?
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00246
– volume: 144
  start-page: 7822
  year: 2022
  end-page: 7833
  ident: CR36
  article-title: Dual metalation in a two-dimensional covalent organic framework for photocatalytic c-n cross-coupling reactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c01814
– volume: 3
  start-page: 476
  year: 2018
  end-page: 483
  ident: CR1
  article-title: Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0132-1
– volume: 145
  start-page: 2544
  year: 2023
  end-page: 2552
  ident: CR22
  article-title: Ordered macro-microporous single crystals of covalent organic frameworks with efficient sorption of iodine
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c12284
– volume: 32
  start-page: 1456
  year: 2011
  end-page: 1465
  ident: CR69
  article-title: Effect of the damping function in dispersion corrected density functional theory
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 551
  start-page: 149425
  year: 2021
  ident: CR62
  article-title: A novel La3+ doped MIL spherical analogue used as antibacterial and anticorrosive additives for hydroxyapatite coating on titanium dioxide nanotube array
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149425
– volume: 13
  start-page: 411
  year: 2018
  end-page: 417
  ident: CR9
  article-title: Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0089-z
– volume: 5
  start-page: eaaw2322
  year: 2019
  ident: CR50
  article-title: A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw2322
– volume: 58
  start-page: 4271
  year: 2019
  end-page: 4275
  ident: CR45
  article-title: Atomically dispersed ruthenium species inside metal-organic frameworks: combining the high activity of atomic sites and the molecular sieving effect of MOFs
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201814182
– volume: 33
  start-page: 3623
  year: 2022
  end-page: 3631
  ident: CR13
  article-title: Recent progress in carbon-based materials boosting electrochemical water splitting
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.11.041
– volume: 10
  year: 2019
  ident: CR49
  article-title: Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09765-y
– volume: 366
  start-page: 850
  year: 2019
  ident: CR58
  article-title: Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells
  publication-title: Science
  doi: 10.1126/science.aaw7493
– volume: 55
  start-page: 9491
  year: 2019
  end-page: 9494
  ident: CR37
  article-title: Synthesis of a 2D nitrogen-rich π-conjugated microporous polymer for high performance lithium-ion batteries
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC04036F
– volume: 46
  start-page: 2799
  year: 2017
  end-page: 2823
  ident: CR11
  article-title: Coordination chemistry in the design of heterogeneous photocatalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00727A
– volume: 14
  start-page: 21
  year: 2020
  end-page: 25
  ident: CR17
  article-title: Will any crap we put into graphene increase its electrocatalytic effect
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00184
– volume: 7
  start-page: 7353
  year: 2019
  end-page: 7361
  ident: CR25
  article-title: Thioether-functionalized covalent triazine nanospheres: a robust adsorbent for mercury removal
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b00567
– volume: 145
  start-page: 1475
  year: 2023
  end-page: 1496
  ident: CR21
  article-title: Construction of covalent organic frameworks via multicomponent reactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c11071
– volume: 13
  start-page: 8876
  year: 2022
  end-page: 8884
  ident: CR40
  article-title: An electrochemical modification strategy to fabricate NiFeCuPt polymetallic carbon matrices on nickel foam as stable electrocatalysts for water splitting
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC02845J
– volume: 2
  start-page: 100495
  year: 2021
  ident: CR51
  article-title: 18.1% single palladium atom catalysts on mesoporous covalent organic framework for gas phase hydrogenation of ethylene
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2021.100495
– volume: 62
  start-page: e202216751
  year: 2022
  ident: CR33
  article-title: Designing thiophene‐enriched fully conjugated 3d covalent organic framework as metal‐free oxygen reduction catalyst for hydrogen fuel cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202216751
– volume: 61
  start-page: e202212341
  year: 2022
  ident: CR18
  article-title: Enhanced acidic water oxidation by dynamic migration of oxygen species at the ir/nb2o5-x catalyst/support interfaces
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202212341
– volume: 8
  start-page: 2844
  year: 2018
  end-page: 2856
  ident: CR14
  article-title: Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03464
– volume: 11
  start-page: 13266
  year: 2021
  end-page: 13279
  ident: CR42
  article-title: Platinum single atoms anchored on a covalent organic framework: boosting active sites for photocatalytic hydrogen evolution
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03441
– volume: 9
  start-page: 3144
  year: 2019
  end-page: 3152
  ident: CR19
  article-title: Pd nanocrystals with continuously tunable high-index facets as a model nanocatalyst
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04741
– volume: 4
  start-page: 2251
  year: 2019
  end-page: 2258
  ident: CR30
  article-title: Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2d covalent organic framework for metal-free electrocatalytic OER
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01691
– volume: 40
  start-page: 173
  year: 2020
  end-page: 192
  ident: CR41
  article-title: Single atom is not alone: Metal–support interactions in single-atom catalysis
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.07.002
– volume: 5
  start-page: 764
  year: 2020
  end-page: 779
  ident: CR35
  article-title: Anisotropic reticular chemistry
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0225-x
– volume: 3
  start-page: 634
  year: 2011
  end-page: 641
  ident: CR10
  article-title: Single-atom catalysis of CO oxidation using Pt1/FeOx
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 121
  start-page: 2683
  year: 2017
  end-page: 2695
  ident: CR15
  article-title: Band structure engineering of transition-metal-based layered double hydroxides toward photocatalytic oxygen evolution from water: a theoretical-experimental combination study
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.6b10159
– volume: 71
  start-page: 094110
  year: 2005
  ident: CR47
  article-title: Wavelet analysis of extended x-ray absorption fine structure data
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.094110
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR67
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 494
  start-page: 101
  year: 2019
  end-page: 110
  ident: CR4
  article-title: Ruthenium and cobalt bimetal encapsulated in nitrogen-doped carbon material derived of ZIF-67 as enhanced hydrogen evolution electrocatalyst
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.07.181
– volume: 145
  start-page: 2739
  year: 2022
  ident: 46872_CR34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c10717
– volume: 15
  year: 2019
  ident: 46872_CR28
  publication-title: Small
  doi: 10.1002/smll.201905363
– volume: 10
  start-page: 15089
  year: 2022
  ident: 46872_CR54
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA01414A
– volume: 12
  start-page: 537
  year: 2005
  ident: 46872_CR44
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049505012719
– volume: 60
  start-page: 19262
  year: 2021
  ident: 46872_CR43
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202105186
– volume: 11
  start-page: 13266
  year: 2021
  ident: 46872_CR42
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03441
– volume: 13
  start-page: 5188
  year: 1976
  ident: 46872_CR68
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 29
  start-page: 1605838
  year: 2017
  ident: 46872_CR56
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605838
– volume: 1
  start-page: 985
  year: 2018
  ident: 46872_CR6
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0195-1
– volume: 152
  start-page: J23
  year: 2005
  ident: 46872_CR55
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 34
  start-page: 1065
  year: 2008
  ident: 46872_CR59
  publication-title: Mol. Simul.
  doi: 10.1080/08927020802178591
– volume: 16
  start-page: 100387
  year: 2020
  ident: 46872_CR64
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2020.100387
– volume: 9
  start-page: 23843
  year: 2017
  ident: 46872_CR23
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b06968
– volume: 366
  start-page: 850
  year: 2019
  ident: 46872_CR58
  publication-title: Science
  doi: 10.1126/science.aaw7493
– volume: 71
  start-page: 094110
  year: 2005
  ident: 46872_CR47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.094110
– volume: 14
  start-page: 426
  year: 2007
  ident: 46872_CR48
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049507031901
– volume: 6
  year: 2022
  ident: 46872_CR31
  publication-title: Small Methods
  doi: 10.1002/smtd.202200459
– volume: 61
  start-page: e202212341
  year: 2022
  ident: 46872_CR18
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202212341
– volume: 9
  start-page: 3144
  year: 2019
  ident: 46872_CR19
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04741
– volume: 13
  year: 2022
  ident: 46872_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29076-z
– volume: 11
  start-page: 1179
  year: 2021
  ident: 46872_CR39
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03747
– volume: 46
  start-page: 2799
  year: 2017
  ident: 46872_CR11
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00727A
– volume: 50
  start-page: 17953
  year: 1994
  ident: 46872_CR67
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 10
  year: 2019
  ident: 46872_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09765-y
– volume: 145
  start-page: 2544
  year: 2023
  ident: 46872_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c12284
– volume: 13
  start-page: 8876
  year: 2022
  ident: 46872_CR40
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC02845J
– volume: 60
  start-page: 26397
  year: 2021
  ident: 46872_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202112775
– volume: 58
  start-page: 4271
  year: 2019
  ident: 46872_CR45
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201814182
– volume: 144
  start-page: 17209
  year: 2022
  ident: 46872_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c07596
– volume: 61
  start-page: e202202519
  year: 2022
  ident: 46872_CR12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202202519
– volume: 77
  start-page: 3865
  year: 1996
  ident: 46872_CR66
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 55
  start-page: 9491
  year: 2019
  ident: 46872_CR37
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC04036F
– volume: 5
  start-page: 891
  year: 2020
  ident: 46872_CR2
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00710-8
– volume: 40
  start-page: 173
  year: 2020
  ident: 46872_CR41
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.07.002
– volume: 494
  start-page: 101
  year: 2019
  ident: 46872_CR4
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.07.181
– volume: 14
  year: 2023
  ident: 46872_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38964-x
– volume: 10
  start-page: 5623
  year: 2020
  ident: 46872_CR24
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05470
– volume: 11
  year: 2020
  ident: 46872_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14848-2
– volume: 363
  start-page: 155
  year: 2019
  ident: 46872_CR60
  publication-title: Science
  doi: 10.1126/science.aau6716
– volume: 5
  start-page: eaaw2322
  year: 2019
  ident: 46872_CR50
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw2322
– volume: 55
  start-page: 9491
  year: 2019
  ident: 46872_CR61
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC04036F
– volume: 62
  start-page: e202216751
  year: 2022
  ident: 46872_CR33
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202216751
– volume: 5
  start-page: 764
  year: 2020
  ident: 46872_CR35
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0225-x
– volume: 9
  start-page: 8712
  year: 2019
  ident: 46872_CR5
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02609
– volume: 6
  start-page: 1175
  year: 2021
  ident: 46872_CR53
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00246
– volume: 86
  start-page: 1642
  year: 2001
  ident: 46872_CR57
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.1642
– volume: 12
  year: 2021
  ident: 46872_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24079-8
– volume: 145
  start-page: 1475
  year: 2023
  ident: 46872_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c11071
– volume: 144
  start-page: 17198
  year: 2022
  ident: 46872_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c07575
– volume: 6
  start-page: 15
  year: 1996
  ident: 46872_CR65
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 8
  start-page: 4408
  year: 2018
  ident: 46872_CR3
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04466
– volume: 143
  start-page: 15562
  year: 2021
  ident: 46872_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c06986
– volume: 144
  start-page: 19973
  year: 2022
  ident: 46872_CR38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c08344
– volume: 2
  start-page: 100495
  year: 2021
  ident: 46872_CR51
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2021.100495
– volume: 551
  start-page: 149425
  year: 2021
  ident: 46872_CR62
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149425
– volume: 33
  start-page: 3623
  year: 2022
  ident: 46872_CR13
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.11.041
– volume: 3
  start-page: 476
  year: 2018
  ident: 46872_CR1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0132-1
– volume: 13
  start-page: 411
  year: 2018
  ident: 46872_CR9
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0089-z
– volume: 8
  start-page: 2844
  year: 2018
  ident: 46872_CR14
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03464
– volume: 59
  start-page: 14664
  year: 2020
  ident: 46872_CR63
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202006546
– volume: 141
  start-page: 17431
  year: 2019
  ident: 46872_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09502
– volume: 32
  start-page: 1456
  year: 2011
  ident: 46872_CR69
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 14
  start-page: 21
  year: 2020
  ident: 46872_CR17
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00184
– volume: 7
  start-page: 7353
  year: 2019
  ident: 46872_CR25
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b00567
– volume: 55
  start-page: 13184
  year: 2016
  ident: 46872_CR29
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201607741
– volume: 144
  start-page: 7822
  year: 2022
  ident: 46872_CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c01814
– volume: 4
  start-page: 2251
  year: 2019
  ident: 46872_CR30
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01691
– volume: 121
  start-page: 2683
  year: 2017
  ident: 46872_CR15
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.6b10159
– volume: 3
  start-page: 634
  year: 2011
  ident: 46872_CR10
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
SSID ssj0000391844
Score 2.6326013
Snippet Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore...
Abstract Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2556
SubjectTerms 119/118
140/131
140/133
140/146
140/58
147/135
147/143
639/638/161/886
639/638/675
639/638/77/884
639/638/77/886
Adsorption
Catalysts
Chemistry
Coordination
Electrocatalysis
Electrocatalysts
Electrochemistry
Electron transport
Energy
Graphene
Humanities and Social Sciences
Hydrogen
Hydrogen evolution reactions
Intermediates
Maximization
Microscopy
multidisciplinary
Optimization
Periodic structures
Platinum
Porous materials
Pyrolysis
Science
Science (multidisciplinary)
Single atom catalysts
Structural stability
Structure-activity relationships
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYQUiUuCOgrFCpX6g0sNvasH0eoilCl9tIicbNsxytRkQ0iiUR-Q_80M95NmgraXrjtrsdeP8aeh-35GPuYozV2lLWg4GMCNDQihFyLpGOWOYJKBXnu6zd9cQlfruqrNagvOhPWhQfuOu4kZC1TQONJGwAjQ4gALmhl8Aeu0sVaR5m3ZkyVNVg5NF2gvyVTKXsyhbImoEjCGlkjxf0fkqgE7H9Ky3y0Q1oEz_kO2-41Rn7a1XSXbeR2j73oMCQXL9mv75jrJgs0nsf8lk62tfMxJ_cqD9PFeEyIWYmnCRqZ153nj69dbuP4Sh74BVK0P-fkUxvhI7JfSSwXNRNvlie4OKq4PJeoE5TeY-gUFxBFNnnFLs8___h0IXqEBZHA1jMRVRVdPapGEZIKshnWNqGpXZsmS-k0oU1VUWUlq8ZEqRpy6tiIKldyzTC4oF6zzXbS5reMJ9AqGR2ClQqyoXWgIdvPWRdwVQwDNlz2tk99-HFCwbjxZRtcWd-NkMcR8mWE_P2AHa3y3HbBN_5JfUaDuKKkwNnlA3aW79nJ_4-dBuxgyQK-n81TT_heCghBfsA-rJJxHtLmSmjzZF5oiAAsFvGmY51VTRSqtQ4c5j5e8tLvwv_eoP3naNA7tiWJ6cuxuAO2Obub50PUo2bxfZkyDxZ1GeE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagCMGlKuUVKMhI3MDqxvb6caqgIlRIcIFKvVm21ytRNZtAEqn5DfxpZrzeLajQWxLPWs7OeDzz2Z6PkNcpGG2apBgWH2NSyZZ5n2oWVUg8BSliZp77_EWdnMpPZ_VZAdxW5Vjl4BOzo24WETHyQ-RYEhJZvI-WPxiyRuHuaqHQuE3uTGGlwSNdZvZxxFiw-rmRstyVqYQ5XMnsGWBhgnEZzdnlX-tRLtv_r1jz2j5pXn5me2S3xI30Xa_oB-RW6vbJ3Z5JcrtP7h0PxG0Pya-v0MNFYpBOz-kSz7p1mzlFwJX61XY-Rw6tSOMC0s7vPRZI_7juRuErYvJbkOjON4iyNfARDDI35qubkbbDmS4KQS9NuQ4FthdWnQwKYa2TR-R09uHb8QkrnAssSlOvWRBVsHVTNUFG4Xk7rU2E5LvWbeLcKuSfqoJIgletDly0CPOYAEFYtO3UWy8ek51u0aWnhEapRNTKe8OFTBo9Q4vZoDXWg5_0EzId3ryLpSA58mJcuLwxLozrteVAWy5ry11OyJvxmWVfjuNG6feo0FESS2nnH-BluTIznU-KRw_ZudJSau59kNJ6JTRYsK1UNSEHgzm4Mr9X7soaJ-TV2Ax6xu0W36XFJsuggDTQxZPejMaRCAh0rbTw9NvBrq46__8fenbzWJ6T-xxNuxKM8wOys_65SS8gZlqHl3li_AaAJBXe
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lRfBFtH6d1pKCbxrcS2bz8XiKpRzYl1roW0hyWVB6e6V3B97f4D_tTPZDxSr4truZhGwySWYmye_H2OscrbGLrAWBjwnQ0IgQci2SjlnmCCoV5rlP5_rsEuZX9dUek8NdmHJov0Balml6OB32bg1lSOOKggVaIwXajQcE1Y66fTCbzS_mY2SFMM8tQH9DplL2jsy_rUIFrP8uC_OP3dGy6Jw-ZA96a5HPuvo9Ynu5PWT3Ov7I3WP2_QJzXWeBjvOS39Cptna75BRa5WG9Wy6JLSvxtEIH80sX9eO_XGzj-ErR9x1KtF-3FE9b4COqXkkslzQTb4bTWxzNW54L4gSl9_w5JfxDqCZP2OXpx88fzkTPriAS2HojoqqiqxfVIkJSQTbT2iZ0s2vTZCmdJqapKqqsZNWYKFVDAR0b0dxKrpkGF9RTtt-u2vyc8QRaJaNDsFJBNjQHNOT3OesCzohhwqZDa_vUQ48TA8a1L1vgyvquhzz2kC895L9N2Jsxz00HvPFP6ffUiaMkgWaXD9hYvlciH7KWKaAfrg2AkSFEABe0MqirrtLVhB0NKuD7kbz2xO2lgNjjJ-xkTMYxSBsroc2rbZEhAbBYxLNOdcaaKDRpHTjM_XbQpZ-F__2HXvyf-Et2X5J6V0pIecT2N7fb_AqtpU087ofHD35XEc0
  priority: 102
  providerName: Springer Nature
Title Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis
URI https://link.springer.com/article/10.1038/s41467-024-46872-x
https://www.ncbi.nlm.nih.gov/pubmed/38519497
https://www.proquest.com/docview/2973344007
https://www.proquest.com/docview/2974007480
https://doaj.org/article/ae62ca027674472aab449a637de69060
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZKKyQuiDdpS2QkbrCwsb1-HBBKo4YqUitEiZSbZTteqSjZlCaRmt_An2bGuxtABE5c9uXxPjwz9sx4PR8hr6LXSk-jzDD5WCakKDPnYpEF6SOLXvCQkOfOL-TZWIwmxWSPtHBHTQMud7p2iCc1vpm9vf22-QAK_75eMq7fLUVSdxht4GFasQxsygMYmRQiGpw35n7qmbkBh0Y0a2d2V_1tfEpp_HfZnn_Mm6bhaPiA3G_sSNqvGf-Q7MXqEblbI0tuHpPvl1BrFjNwqef0Gv93q9ZzikFX6pab-RxxtAINC3A9r-p4IP1lyRuFU4zLb4Ci-rrGSNsUDkEoU2Favhlo2f7XRcHwpTHlosDyBlknBYYw38kTMh6efhmcZQ3uQhaELlaZ57k3xTSfehG4Y2Wv0AEc8EKVkTEjEYMq9zxylpfKM15iqEd7MMSCKXvOOP6U7FeLKj4nNAjJg5LOacZFVNg7lOgRGm0c9JWuQ3pta9vQJCVHbIyZTZPjXNuaQxY4ZBOH7G2HvN7Wua5TcvyT-gSZuKXEdNrpAjSWbbTTuihZcOChSyWEYs55IYyTXIEUm1zmHXLcioBtRdQi6hcXiCvfIS-3xaCdOOXiqrhYJxokEBpu8awWne2bcDB2jTBQ-00rSz9v_vcPOvwfH3RE7jEU-pxnjB2T_dXNOr4A62rlu-SOmijY6uHHLjno90eXI9ifnF58-gxXB3LQTXGLblKtH-QQKPc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKESoXBOUvUMBIcAKrG9vrtQ8IQSGk9OdCK_Xm2l6vRNVsUpKI5hl4F56RGe9uCgJ6622zHlsbz3g8nvHMR8iL6HWhy6gYFh9jUsmKORdzFpSPPHopQkKe29tXw0P5-Sg_WiE_u1wYvFbZ6cSkqMtxQB_5JmIsCYko3m8nZwxRozC62kFoNGKxExff4cg2fbP9Afj7kvPBx4OtIWtRBViQOp8xLzJv8jIrvQzC8aqf6wDHy7yoIudGIcJS5kUUPKsKz0WFjgztwcwIpuo74wSMe41clwJ2csxMH3xa-nSw2rqWss3NgW6bU5k0EWyEMA-64Oz8j_0vwQT8y7b9Ky6btrvBbXKrtVPpu0aw7pCVWK-TGw1y5WKdrG11QHF3yY8vMMJpZHB8H9EJ3q2r5yOKDl7qpovRCDG7Ag1jmLOvje-R_pZeR-EnxgAWQFGfzNGrV8IjLIDUmFJFA626O2QUjGwaU90LbG9RfJITCmur3COHV8KN-2S1HtfxIaFBKhEK5ZzmQsYCNVGFp0-jjQO97Hqk3828DW0BdMThOLUpEC-0bbhlgVs2ccue98irZZ9JU_7jUur3yNAlJZbuTi9gsmyrCayLigeXcayiJAvunJfSOCUKWDEmU1mPbHTiYFt9MrUX0t8jz5fNwGcM77g6jueJBgmkhiEeNGK0_BIBhrWRBnq_7uTqYvD__6FHl3_LM7I2PNjbtbvb-zuPyU2OYp4JxvkGWZ19m8cnYK_N_NO0SCg5vupV-QsjEVMs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVDwuCMorUMBIcAIrG9u76z0gRB9RSyGqgEq9GdvxSqBmE0gimt_AP-LXMePdTUFAb71t1g9t5uWZsT0fwNPgdK5HIeNUfIyrTJXc2pByn7kgglPSR-S5d8Ns70i9OU6P1-BnexeGjlW2NjEa6tHEU468RxhLUhGKd69sjkUc7gxeTb9yQpCindYWTqMWkYOw_I7h2-zl_g7y-pkQg92P23u8QRjgXul0zp1MXJGOkpFTXlpR9lPtMdRM8zIIUWSEtpQ4GaRIytwJWVJSQzt0OXxR9m1hJc57CdZzioo6sL61Ozx8v8rwUO11rVRzUwcH9mYq2iVcFpEqOhf89I_VMIIG_MvT_WuXNi5-gxtwvfFa2etazG7CWqg24HKNY7ncgKvbLWzcLfjxAWc4CRyD-TGb0km7ajFmlO5ldrYcjwnByzM_Qap9rjOR7LfLdgx_EuGX2KP6sqAc3wgfUR1iY7w46lnZnihj6HKzEKtgUHuD6RNTUlRp5TYcXQg_7kCnmlThHjCvMunzzFotpAo52aWSYtFCFxattO1Cv6W88U05dELlODFxW15qU3PLILdM5JY57cLz1ZhpXQzk3N5bxNBVTyrkHV8gsUxjF4wNmfA2EVRTSeXCWqdUYTOZo_4USZZ0YbMVB9NYl5k504UuPFk1I59ps8dWYbKIfaiD0jjF3VqMVl8i0c0uVIGjX7RydTb5___Q_fO_5TFcQY00b_eHBw_gmiApTyQXYhM682-L8BCdt7l71GgJg08XrZi_AJBuWL4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-atom+platinum+with+asymmetric+coordination+environment+on+fully+conjugated+covalent+organic+framework+for+efficient+electrocatalysis&rft.jtitle=Nature+communications&rft.au=Ziqi+Zhang&rft.au=Zhe+Zhang&rft.au=Cailing+Chen&rft.au=Rui+Wang&rft.date=2024-03-22&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs41467-024-46872-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ae62ca027674472aab449a637de69060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon