Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis
Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynam...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 2556 - 13 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.03.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N
2
coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N
2
instead of the typical Pt-N
4
coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments.
In addition to maximizing atomic utilization, single-atom catalysts with defined structures can be used to investigate catalytic mechanisms and structure-activity relationships. Here, authors study a non-thermodynamically stable Pt-N
2
active site for the electrochemical hydrogen evolution reaction. |
---|---|
AbstractList | Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N
2
coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N
2
instead of the typical Pt-N
4
coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments. Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N 2 coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N 2 instead of the typical Pt-N 4 coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments. In addition to maximizing atomic utilization, single-atom catalysts with defined structures can be used to investigate catalytic mechanisms and structure-activity relationships. Here, authors study a non-thermodynamically stable Pt-N 2 active site for the electrochemical hydrogen evolution reaction. Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N instead of the typical Pt-N coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments. Abstract Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N2 coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N2 instead of the typical Pt-N4 coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments. Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N2 coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N2 instead of the typical Pt-N4 coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments.In addition to maximizing atomic utilization, single-atom catalysts with defined structures can be used to investigate catalytic mechanisms and structure-activity relationships. Here, authors study a non-thermodynamically stable Pt-N2 active site for the electrochemical hydrogen evolution reaction. Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N2 coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N2 instead of the typical Pt-N4 coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments.Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N2 coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N2 instead of the typical Pt-N4 coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments. |
ArticleNumber | 2556 |
Author | Wan, Sheng Cong, Linchuan Lu, Haiyan Zhang, Zhe Han, Yu Wang, Rui Xing, Wei Chen, Cailing Zhang, Ziqi Xie, Minggang Shi, Zhan Feng, Shouhua Zhang, Ruige |
Author_xml | – sequence: 1 givenname: Ziqi orcidid: 0009-0006-5350-7886 surname: Zhang fullname: Zhang, Ziqi organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University – sequence: 2 givenname: Zhe surname: Zhang fullname: Zhang, Zhe organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University – sequence: 3 givenname: Cailing orcidid: 0000-0003-2598-1354 surname: Chen fullname: Chen, Cailing organization: Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Rui surname: Wang fullname: Wang, Rui organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University – sequence: 5 givenname: Minggang surname: Xie fullname: Xie, Minggang organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University – sequence: 6 givenname: Sheng surname: Wan fullname: Wan, Sheng organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University – sequence: 7 givenname: Ruige surname: Zhang fullname: Zhang, Ruige organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University – sequence: 8 givenname: Linchuan surname: Cong fullname: Cong, Linchuan organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University – sequence: 9 givenname: Haiyan surname: Lu fullname: Lu, Haiyan email: luhy@jlu.edu.cn organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University – sequence: 10 givenname: Yu orcidid: 0000-0003-1462-1118 surname: Han fullname: Han, Yu organization: Electron Microscopy Center, South China University of Technology – sequence: 11 givenname: Wei orcidid: 0000-0003-2841-7206 surname: Xing fullname: Xing, Wei email: xingwei@ciac.ac.cn organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences – sequence: 12 givenname: Zhan orcidid: 0000-0001-9717-1487 surname: Shi fullname: Shi, Zhan email: zshi@mail.jlu.edu.cn organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University – sequence: 13 givenname: Shouhua surname: Feng fullname: Feng, Shouhua organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38519497$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9u1DAQxiNUREvpC3BAkbhwCfhf4uSIKiiVKnEAztbEGS9eHHuxnbb7DLx0vbstoB7qi8ee3_dp7JmX1ZEPHqvqNSXvKeH9hySo6GRDmGhE10vW3D6rThgRtKGS8aP_4uPqLKU1KYsPtBfiRXXM-5YOYpAn1Z9v1q8cNpDDXG8cZOuXub6x-WcNaTvPmKPVtQ4hTtaXbPA1-msbg5_R57oczeLcthB-vawg41TCa3D7ZFyBL2oTYcabEH_VJsQajbHa7vLoUOcYNGRw22TTq-q5AZfw7H4_rX58_vT9_Etz9fXi8vzjVaNF3-Zm5GQc2olMo9AcmKFtr3FkrTTI2NBNUzeRkSNnxMiRcUOG8l9j21E9GAoD8NPq8uA7BVirTbQzxK0KYNX-opStIGarHSrAjmkgTHZSCMkARiEG6LicsBtIR4rXu4PXJobfC6asZps0Ogcew5IUG6QgRIp-h759hK7DEn156Y7iXOzAQr25p5ZxxulveQ8tK0B_AHQMKUU0Stu870yOYJ2iRO0GRB0GRJUBUfsBUbdFyh5JH9yfFPGDKBXYrzD-K_sJ1R3i0NC9 |
CitedBy_id | crossref_primary_10_1039_D4EE03704A crossref_primary_10_1002_anie_202418347 crossref_primary_10_1016_j_pnsc_2024_07_007 crossref_primary_10_1002_smll_202411181 crossref_primary_10_1002_advs_202501442 crossref_primary_10_1002_anie_202503434 crossref_primary_10_1039_D4CC03535F crossref_primary_10_1016_j_est_2024_112996 crossref_primary_10_1021_acs_nanolett_4c05523 crossref_primary_10_3390_nano14231907 crossref_primary_10_1002_ange_202422892 crossref_primary_10_20517_wecn_2024_79 crossref_primary_10_1021_acsami_4c11479 crossref_primary_10_1039_D4CS01031K crossref_primary_10_1002_adma_202500595 crossref_primary_10_1021_acsanm_4c01317 crossref_primary_10_1002_adfm_202425150 crossref_primary_10_1002_anie_202418790 crossref_primary_10_1016_j_cej_2025_160681 crossref_primary_10_1039_D4CS00333K crossref_primary_10_1002_adfm_202500501 crossref_primary_10_1039_D5TA00311C crossref_primary_10_1002_ange_202503434 crossref_primary_10_1002_adma_202415978 crossref_primary_10_1002_ange_202418347 crossref_primary_10_3390_molecules29184304 crossref_primary_10_1002_aenm_202403136 crossref_primary_10_1016_j_ijhydene_2024_09_365 crossref_primary_10_1016_j_ijhydene_2025_02_234 crossref_primary_10_1016_j_cej_2024_156033 crossref_primary_10_1002_anie_202422892 crossref_primary_10_1016_j_ccr_2025_216462 crossref_primary_10_20517_energymater_2024_127 crossref_primary_10_1021_acs_nanolett_4c02887 crossref_primary_10_1002_adfm_202417621 crossref_primary_10_1002_aenm_202402714 crossref_primary_10_1016_j_cej_2025_160631 crossref_primary_10_1002_ange_202418790 crossref_primary_10_1021_jacs_4c11445 |
Cites_doi | 10.1021/jacs.2c08344 10.1080/08927020802178591 10.1021/jacs.9b09502 10.1039/D2TA01414A 10.1002/anie.202006546 10.1002/smll.201905363 10.1016/0927-0256(96)00008-0 10.1107/S0909049507031901 10.1107/S0909049505012719 10.1002/anie.202105186 10.1126/science.aau6716 10.1038/s41467-023-38964-x 10.1038/s41560-020-00710-8 10.1038/s41467-022-29076-z 10.1021/acscatal.9b02609 10.1103/PhysRevLett.86.1642 10.1021/jacs.2c07575 10.1021/acscatal.7b04466 10.1038/s41467-020-14848-2 10.1149/1.1856988 10.1103/PhysRevB.13.5188 10.1021/jacs.1c06986 10.1038/s41467-021-24079-8 10.1021/acscatal.0c03747 10.1103/PhysRevLett.77.3865 10.1002/smtd.202200459 10.1002/anie.202202519 10.1002/adma.201605838 10.1021/jacs.2c07596 10.1021/acscatal.9b05470 10.1021/jacs.2c10717 10.1016/j.mtener.2020.100387 10.1002/anie.202112775 10.1039/C9CC04036F 10.1021/acsami.7b06968 10.1038/s41929-018-0195-1 10.1002/anie.201607741 10.1021/acsenergylett.1c00246 10.1021/jacs.2c01814 10.1038/s41560-018-0132-1 10.1021/jacs.2c12284 10.1002/jcc.21759 10.1016/j.apsusc.2021.149425 10.1038/s41565-018-0089-z 10.1126/sciadv.aaw2322 10.1002/anie.201814182 10.1016/j.cclet.2021.11.041 10.1038/s41467-019-09765-y 10.1126/science.aaw7493 10.1039/C6CS00727A 10.1021/acsnano.9b00184 10.1021/acssuschemeng.9b00567 10.1021/jacs.2c11071 10.1039/D2SC02845J 10.1016/j.xcrp.2021.100495 10.1002/anie.202216751 10.1002/anie.202212341 10.1021/acscatal.7b03464 10.1021/acscatal.1c03441 10.1021/acscatal.8b04741 10.1021/acsenergylett.9b01691 10.1016/j.mattod.2020.07.002 10.1038/s41578-020-0225-x 10.1038/nchem.1095 10.1021/acs.jpcc.6b10159 10.1103/PhysRevB.71.094110 10.1103/PhysRevB.50.17953 10.1016/j.apsusc.2019.07.181 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-024-46872-x |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Chemistry |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_ae62ca027674472aab449a637de69060 38519497 10_1038_s41467_024_46872_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China (22271114); the Foundation of Science and Technology Development of Jilin Province, China (20200801004GH); 111 Project (B17020) |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-b30b95d0db4c3a2f158ceb257fe2296dd6d0b3e320f7b23f09038b561c9f1a9a3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:26:49 EDT 2025 Fri Jul 11 11:30:02 EDT 2025 Wed Aug 13 05:10:26 EDT 2025 Mon Jul 21 05:56:48 EDT 2025 Tue Jul 01 02:11:03 EDT 2025 Thu Apr 24 23:44:04 EDT 2025 Fri Feb 21 02:37:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-b30b95d0db4c3a2f158ceb257fe2296dd6d0b3e320f7b23f09038b561c9f1a9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0006-5350-7886 0000-0001-9717-1487 0000-0003-2598-1354 0000-0003-2841-7206 0000-0003-1462-1118 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-46872-x |
PMID | 38519497 |
PQID | 2973344007 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ae62ca027674472aab449a637de69060 proquest_miscellaneous_2974007480 proquest_journals_2973344007 pubmed_primary_38519497 crossref_citationtrail_10_1038_s41467_024_46872_x crossref_primary_10_1038_s41467_024_46872_x springer_journals_10_1038_s41467_024_46872_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-22 |
PublicationDateYYYYMMDD | 2024-03-22 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Monkhorst, Pack (CR68) 1976; 13 Bhunia (CR23) 2017; 9 Meng (CR61) 2019; 55 Grimme, Ehrlich, Goerigk (CR69) 2011; 32 Zhang (CR62) 2021; 551 Xu (CR35) 2020; 5 Kamai, Kamiya, Hashimoto, Nakanishi (CR29) 2016; 55 Sun (CR14) 2018; 8 Han (CR43) 2021; 60 Zhuang (CR63) 2020; 59 van Lent (CR60) 2019; 363 Jati (CR36) 2022; 144 Gao, Wang, Xu, Xiong (CR11) 2017; 46 Liu (CR52) 2019; 141 Ankudinov, Rehr, Low, Bare (CR57) 2001; 86 Wang (CR32) 2021; 143 Dong (CR42) 2021; 11 Wang, Sofer, Pumera (CR17) 2020; 14 Sun (CR12) 2022; 61 Mondal, Chatterjee, Mondal, Bhaumik (CR25) 2019; 7 Ji (CR45) 2019; 58 Meng (CR37) 2019; 55 Qi (CR34) 2022; 145 Shi (CR18) 2022; 61 Zhang (CR6) 2018; 1 Blöchl (CR67) 1994; 50 Laursen (CR3) 2018; 8 Wang (CR27) 2022; 144 Perdew, Burke, Ernzerhof (CR66) 1996; 77 Zhang, Lei, Huang (CR13) 2022; 33 Cho (CR20) 2023; 14 Funke, Scheinost, Chukalina (CR47) 2005; 71 Li (CR9) 2018; 13 Zhang, Cong, Yu, Qu, Huang (CR64) 2020; 16 Peng (CR50) 2019; 5 Xie (CR5) 2019; 9 Guan, Zhou, Dong (CR21) 2023; 145 Mateo, Tryk, Cabrera, Ishikawa (CR59) 2008; 34 Qi, Chhowalla, Voiry (CR41) 2020; 40 Zhang (CR40) 2022; 13 Kresse, Furthmüller (CR65) 1996; 6 Seo (CR38) 2022; 144 Fang (CR46) 2020; 11 Tian (CR58) 2019; 366 Xu, Yan, Wei (CR15) 2017; 121 Yang (CR30) 2019; 4 Qiao (CR10) 2011; 3 Gao (CR4) 2019; 494 Li (CR8) 2022; 13 Yu (CR19) 2019; 9 Xie (CR54) 2022; 10 Niether (CR1) 2018; 3 Mondal (CR24) 2020; 10 Xu (CR28) 2019; 15 Zhou (CR7) 2021; 12 Funke, Chukalina, Scheinost (CR48) 2007; 14 Liu (CR26) 2022; 144 Kuo (CR51) 2021; 2 Peng (CR39) 2021; 11 Bao (CR33) 2022; 62 Ye (CR31) 2022; 6 Wang, Xu, Jin, Chen, Wang (CR56) 2017; 29 Nørskov (CR55) 2005; 152 Jiang (CR49) 2019; 10 McCrum, Koper (CR2) 2020; 5 Cheng, Wu, Luan, Zang, Lou (CR16) 2021; 60 Ravel, Newville (CR44) 2005; 12 Liu (CR22) 2023; 145 Hansen (CR53) 2021; 6 Z Zhang (46872_CR64) 2020; 16 Q Guan (46872_CR21) 2023; 145 ZP Shi (46872_CR18) 2022; 61 R Kamai (46872_CR29) 2016; 55 P Peng (46872_CR50) 2019; 5 Q Xu (46872_CR28) 2019; 15 F Ye (46872_CR31) 2022; 6 K Jiang (46872_CR49) 2019; 10 YM Li (46872_CR8) 2022; 13 M Qi (46872_CR34) 2022; 145 J Wang (46872_CR56) 2017; 29 C Niether (46872_CR1) 2018; 3 W Liu (46872_CR52) 2019; 141 S Mondal (46872_CR24) 2020; 10 A Jati (46872_CR36) 2022; 144 JP Perdew (46872_CR66) 1996; 77 KL Zhou (46872_CR7) 2021; 12 T Liu (46872_CR22) 2023; 145 H Li (46872_CR9) 2018; 13 AB Laursen (46872_CR3) 2018; 8 PE Blöchl (46872_CR67) 1994; 50 S Grimme (46872_CR69) 2011; 32 HJ Monkhorst (46872_CR68) 1976; 13 WT Xu (46872_CR35) 2020; 5 ZQ Zhang (46872_CR62) 2021; 551 J Cho (46872_CR20) 2023; 14 S Bhunia (46872_CR23) 2017; 9 S Mondal (46872_CR25) 2019; 7 WB Liu (46872_CR26) 2022; 144 C Gao (46872_CR11) 2017; 46 WR Cheng (46872_CR16) 2021; 60 B Ravel (46872_CR44) 2005; 12 IT McCrum (46872_CR2) 2020; 5 S Fang (46872_CR46) 2020; 11 JM Seo (46872_CR38) 2022; 144 JK Nørskov (46872_CR55) 2005; 152 HW Gao (46872_CR4) 2019; 494 B Qiao (46872_CR10) 2011; 3 SM Xu (46872_CR15) 2017; 121 JQ Zhang (46872_CR6) 2018; 1 AQ Wang (46872_CR27) 2022; 144 LK Meng (46872_CR61) 2019; 55 XH Xie (46872_CR5) 2019; 9 G Kresse (46872_CR65) 1996; 6 LZ Zhuang (46872_CR63) 2020; 59 K Qi (46872_CR41) 2020; 40 MG Xie (46872_CR54) 2022; 10 AL Ankudinov (46872_CR57) 2001; 86 L Wang (46872_CR17) 2020; 14 CH Yang (46872_CR30) 2019; 4 SF Ji (46872_CR45) 2019; 58 PY Dong (46872_CR42) 2021; 11 SC Sun (46872_CR12) 2022; 61 NF Yu (46872_CR19) 2019; 9 JN Hansen (46872_CR53) 2021; 6 XL Tian (46872_CR58) 2019; 366 R van Lent (46872_CR60) 2019; 363 YY Sun (46872_CR14) 2018; 8 ZQ Zhang (46872_CR13) 2022; 33 L Meng (46872_CR37) 2019; 55 Y Peng (46872_CR39) 2021; 11 C-T Kuo (46872_CR51) 2021; 2 A Han (46872_CR43) 2021; 60 ZQ Zhang (46872_CR40) 2022; 13 H Funke (46872_CR47) 2005; 71 JJ Mateo (46872_CR59) 2008; 34 S Wang (46872_CR32) 2021; 143 R Bao (46872_CR33) 2022; 62 H Funke (46872_CR48) 2007; 14 |
References_xml | – volume: 144 start-page: 19973 year: 2022 end-page: 19980 ident: CR38 article-title: Conductive and ultrastable covalent organic framework/carbon hybrid as an ideal electrocatalytic platform publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c08344 – volume: 34 start-page: 1065 year: 2008 end-page: 1072 ident: CR59 article-title: Underpotential deposition of hydrogen on Pt(111): a combined direct molecular dynamics/density functional theory study publication-title: Mol. Simul. doi: 10.1080/08927020802178591 – volume: 141 start-page: 17431 year: 2019 end-page: 17440 ident: CR52 article-title: A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic co2 reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09502 – volume: 10 start-page: 15089 year: 2022 end-page: 15100 ident: CR54 article-title: Ultrafine Sb nanoparticles in situ confined in covalent organic frameworks for high-performance sodium-ion battery anodes publication-title: J. Mater. Chem. A doi: 10.1039/D2TA01414A – volume: 59 start-page: 14664 year: 2020 end-page: 14670 ident: CR63 article-title: Sulfur-modified oxygen vacancies in iron-cobalt oxide nanosheets: enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202006546 – volume: 15 year: 2019 ident: CR28 article-title: Standing carbon-supported trace levels of metal derived from covalent organic framework for electrocatalysis publication-title: Small doi: 10.1002/smll.201905363 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR65 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 14 start-page: 426 year: 2007 end-page: 432 ident: CR48 article-title: A new FEFF-based wavelet for EXAFS data analysis publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049507031901 – volume: 12 start-page: 537 year: 2005 end-page: 541 ident: CR44 article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 60 start-page: 19262 year: 2021 end-page: 19271 ident: CR43 article-title: An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105186 – volume: 363 start-page: 155 year: 2019 end-page: 157 ident: CR60 article-title: Site-specific reactivity of molecules with surface defects—the case of H2 dissociation on Pt publication-title: Science doi: 10.1126/science.aau6716 – volume: 14 year: 2023 ident: CR20 article-title: Importance of broken geometric symmetry of single-atom Pt sites for efficient electrocatalysis publication-title: Nat. Commun. doi: 10.1038/s41467-023-38964-x – volume: 5 start-page: 891 year: 2020 end-page: 899 ident: CR2 article-title: The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum publication-title: Nat. Energy doi: 10.1038/s41560-020-00710-8 – volume: 13 year: 2022 ident: CR8 article-title: In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production publication-title: Nat. Commun. doi: 10.1038/s41467-022-29076-z – volume: 9 start-page: 8712 year: 2019 end-page: 8718 ident: CR5 article-title: Electrocatalytic hydrogen evolution in neutral ph solutions: dual-phase synergy publication-title: ACS Catal. doi: 10.1021/acscatal.9b02609 – volume: 86 start-page: 1642 year: 2001 end-page: 1645 ident: CR57 article-title: Effect of hydrogen adsorption on the x-ray absorption spectra of small Pt clusters publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.1642 – volume: 144 start-page: 17198 year: 2022 end-page: 17208 ident: CR27 article-title: Solution-processable redox-active polymers of intrinsic microporosity for electrochemical energy storage publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c07575 – volume: 8 start-page: 4408 year: 2018 end-page: 4419 ident: CR3 article-title: Climbing the volcano of electrocatalytic activity while avoiding catalyst corrosion: ni3p, a hydrogen evolution electrocatalyst stable in both acid and alkali publication-title: ACS Catal. doi: 10.1021/acscatal.7b04466 – volume: 11 year: 2020 ident: CR46 article-title: Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-020-14848-2 – volume: 152 start-page: J23 year: 2005 ident: CR55 article-title: Trends in the exchange current for hydrogen evolution publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: CR68 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 143 start-page: 15562 year: 2021 end-page: 15566 ident: CR32 article-title: A three-dimensional sp2 carbon-conjugated covalent organic framework publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c06986 – volume: 12 year: 2021 ident: CR7 article-title: Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-021-24079-8 – volume: 11 start-page: 1179 year: 2021 end-page: 1188 ident: CR39 article-title: Organically capped iridium nanoparticles as high-performance bifunctional electrocatalysts for full water splitting in both acidic and alkaline media: impacts of metal-ligand interfacial interactions publication-title: ACS Catal. doi: 10.1021/acscatal.0c03747 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR66 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 6 year: 2022 ident: CR31 article-title: Realizing interfacial electron/hole redistribution and superhydrophilic surface through building heterostructural 2 nm co0.85se‐nise nanograins for efficient overall water splittings publication-title: Small Methods doi: 10.1002/smtd.202200459 – volume: 61 start-page: e202202519 year: 2022 ident: CR12 article-title: Bifunctional WC‐supported RuO2 nanoparticles for robust water splitting in acidic media publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202202519 – volume: 29 start-page: 1605838 year: 2017 ident: CR56 article-title: Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications publication-title: Adv. Mater. doi: 10.1002/adma.201605838 – volume: 144 start-page: 17209 year: 2022 end-page: 17218 ident: CR26 article-title: Conjugated three-dimensional high-connected covalent organic frameworks for lithium-sulfur batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c07596 – volume: 10 start-page: 5623 year: 2020 end-page: 5630 ident: CR24 article-title: A thiadiazole-based covalent organic framework: a metal-free electrocatalyst toward oxygen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.9b05470 – volume: 145 start-page: 2739 year: 2022 end-page: 2744 ident: CR34 article-title: Direct construction of 2d conductive metal–organic frameworks from a nonplanar ligand: in situ scholl reaction and topological modulation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c10717 – volume: 16 start-page: 100387 year: 2020 ident: CR64 article-title: Facile synthesis of Fe–Ni bimetallic N-doped carbon framework for efficient electrochemical hydrogen evolution reaction publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2020.100387 – volume: 60 start-page: 26397 year: 2021 end-page: 26402 ident: CR16 article-title: Synergetic cobalt-copper-based bimetal-organic framework nanoboxes toward efficient electrochemical oxygen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202112775 – volume: 55 start-page: 9491 year: 2019 end-page: 9494 ident: CR61 article-title: Synthesis of a 2D nitrogen-rich pi-conjugated microporous polymer for high performance lithium-ion batteries publication-title: Chem. Commun. doi: 10.1039/C9CC04036F – volume: 9 start-page: 23843 year: 2017 end-page: 23851 ident: CR23 article-title: Electrochemical stimuli-driven facile metal-free hydrogen evolution from pyrene-porphyrin-based crystalline covalent organic framework publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b06968 – volume: 1 start-page: 985 year: 2018 end-page: 992 ident: CR6 article-title: Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction publication-title: Nat. Catal. doi: 10.1038/s41929-018-0195-1 – volume: 55 start-page: 13184 year: 2016 end-page: 13188 ident: CR29 article-title: Oxygen-tolerant electrodes with platinum-loaded covalent triazine frameworks for the hydrogen oxidation reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201607741 – volume: 6 start-page: 1175 year: 2021 end-page: 1180 ident: CR53 article-title: Is There Anything Better than Pt for HER? publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00246 – volume: 144 start-page: 7822 year: 2022 end-page: 7833 ident: CR36 article-title: Dual metalation in a two-dimensional covalent organic framework for photocatalytic c-n cross-coupling reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c01814 – volume: 3 start-page: 476 year: 2018 end-page: 483 ident: CR1 article-title: Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles publication-title: Nat. Energy doi: 10.1038/s41560-018-0132-1 – volume: 145 start-page: 2544 year: 2023 end-page: 2552 ident: CR22 article-title: Ordered macro-microporous single crystals of covalent organic frameworks with efficient sorption of iodine publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c12284 – volume: 32 start-page: 1456 year: 2011 end-page: 1465 ident: CR69 article-title: Effect of the damping function in dispersion corrected density functional theory publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 551 start-page: 149425 year: 2021 ident: CR62 article-title: A novel La3+ doped MIL spherical analogue used as antibacterial and anticorrosive additives for hydroxyapatite coating on titanium dioxide nanotube array publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149425 – volume: 13 start-page: 411 year: 2018 end-page: 417 ident: CR9 article-title: Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0089-z – volume: 5 start-page: eaaw2322 year: 2019 ident: CR50 article-title: A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw2322 – volume: 58 start-page: 4271 year: 2019 end-page: 4275 ident: CR45 article-title: Atomically dispersed ruthenium species inside metal-organic frameworks: combining the high activity of atomic sites and the molecular sieving effect of MOFs publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201814182 – volume: 33 start-page: 3623 year: 2022 end-page: 3631 ident: CR13 article-title: Recent progress in carbon-based materials boosting electrochemical water splitting publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.11.041 – volume: 10 year: 2019 ident: CR49 article-title: Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-019-09765-y – volume: 366 start-page: 850 year: 2019 ident: CR58 article-title: Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells publication-title: Science doi: 10.1126/science.aaw7493 – volume: 55 start-page: 9491 year: 2019 end-page: 9494 ident: CR37 article-title: Synthesis of a 2D nitrogen-rich π-conjugated microporous polymer for high performance lithium-ion batteries publication-title: Chem. Commun. doi: 10.1039/C9CC04036F – volume: 46 start-page: 2799 year: 2017 end-page: 2823 ident: CR11 article-title: Coordination chemistry in the design of heterogeneous photocatalysts publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00727A – volume: 14 start-page: 21 year: 2020 end-page: 25 ident: CR17 article-title: Will any crap we put into graphene increase its electrocatalytic effect publication-title: ACS Nano doi: 10.1021/acsnano.9b00184 – volume: 7 start-page: 7353 year: 2019 end-page: 7361 ident: CR25 article-title: Thioether-functionalized covalent triazine nanospheres: a robust adsorbent for mercury removal publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b00567 – volume: 145 start-page: 1475 year: 2023 end-page: 1496 ident: CR21 article-title: Construction of covalent organic frameworks via multicomponent reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c11071 – volume: 13 start-page: 8876 year: 2022 end-page: 8884 ident: CR40 article-title: An electrochemical modification strategy to fabricate NiFeCuPt polymetallic carbon matrices on nickel foam as stable electrocatalysts for water splitting publication-title: Chem. Sci. doi: 10.1039/D2SC02845J – volume: 2 start-page: 100495 year: 2021 ident: CR51 article-title: 18.1% single palladium atom catalysts on mesoporous covalent organic framework for gas phase hydrogenation of ethylene publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2021.100495 – volume: 62 start-page: e202216751 year: 2022 ident: CR33 article-title: Designing thiophene‐enriched fully conjugated 3d covalent organic framework as metal‐free oxygen reduction catalyst for hydrogen fuel cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202216751 – volume: 61 start-page: e202212341 year: 2022 ident: CR18 article-title: Enhanced acidic water oxidation by dynamic migration of oxygen species at the ir/nb2o5-x catalyst/support interfaces publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202212341 – volume: 8 start-page: 2844 year: 2018 end-page: 2856 ident: CR14 article-title: Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.7b03464 – volume: 11 start-page: 13266 year: 2021 end-page: 13279 ident: CR42 article-title: Platinum single atoms anchored on a covalent organic framework: boosting active sites for photocatalytic hydrogen evolution publication-title: ACS Catal. doi: 10.1021/acscatal.1c03441 – volume: 9 start-page: 3144 year: 2019 end-page: 3152 ident: CR19 article-title: Pd nanocrystals with continuously tunable high-index facets as a model nanocatalyst publication-title: ACS Catal. doi: 10.1021/acscatal.8b04741 – volume: 4 start-page: 2251 year: 2019 end-page: 2258 ident: CR30 article-title: Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2d covalent organic framework for metal-free electrocatalytic OER publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01691 – volume: 40 start-page: 173 year: 2020 end-page: 192 ident: CR41 article-title: Single atom is not alone: Metal–support interactions in single-atom catalysis publication-title: Mater. Today doi: 10.1016/j.mattod.2020.07.002 – volume: 5 start-page: 764 year: 2020 end-page: 779 ident: CR35 article-title: Anisotropic reticular chemistry publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0225-x – volume: 3 start-page: 634 year: 2011 end-page: 641 ident: CR10 article-title: Single-atom catalysis of CO oxidation using Pt1/FeOx publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 121 start-page: 2683 year: 2017 end-page: 2695 ident: CR15 article-title: Band structure engineering of transition-metal-based layered double hydroxides toward photocatalytic oxygen evolution from water: a theoretical-experimental combination study publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.6b10159 – volume: 71 start-page: 094110 year: 2005 ident: CR47 article-title: Wavelet analysis of extended x-ray absorption fine structure data publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.094110 – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR67 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 494 start-page: 101 year: 2019 end-page: 110 ident: CR4 article-title: Ruthenium and cobalt bimetal encapsulated in nitrogen-doped carbon material derived of ZIF-67 as enhanced hydrogen evolution electrocatalyst publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.181 – volume: 145 start-page: 2739 year: 2022 ident: 46872_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c10717 – volume: 15 year: 2019 ident: 46872_CR28 publication-title: Small doi: 10.1002/smll.201905363 – volume: 10 start-page: 15089 year: 2022 ident: 46872_CR54 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA01414A – volume: 12 start-page: 537 year: 2005 ident: 46872_CR44 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 60 start-page: 19262 year: 2021 ident: 46872_CR43 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105186 – volume: 11 start-page: 13266 year: 2021 ident: 46872_CR42 publication-title: ACS Catal. doi: 10.1021/acscatal.1c03441 – volume: 13 start-page: 5188 year: 1976 ident: 46872_CR68 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 29 start-page: 1605838 year: 2017 ident: 46872_CR56 publication-title: Adv. Mater. doi: 10.1002/adma.201605838 – volume: 1 start-page: 985 year: 2018 ident: 46872_CR6 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0195-1 – volume: 152 start-page: J23 year: 2005 ident: 46872_CR55 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 34 start-page: 1065 year: 2008 ident: 46872_CR59 publication-title: Mol. Simul. doi: 10.1080/08927020802178591 – volume: 16 start-page: 100387 year: 2020 ident: 46872_CR64 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2020.100387 – volume: 9 start-page: 23843 year: 2017 ident: 46872_CR23 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b06968 – volume: 366 start-page: 850 year: 2019 ident: 46872_CR58 publication-title: Science doi: 10.1126/science.aaw7493 – volume: 71 start-page: 094110 year: 2005 ident: 46872_CR47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.094110 – volume: 14 start-page: 426 year: 2007 ident: 46872_CR48 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049507031901 – volume: 6 year: 2022 ident: 46872_CR31 publication-title: Small Methods doi: 10.1002/smtd.202200459 – volume: 61 start-page: e202212341 year: 2022 ident: 46872_CR18 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202212341 – volume: 9 start-page: 3144 year: 2019 ident: 46872_CR19 publication-title: ACS Catal. doi: 10.1021/acscatal.8b04741 – volume: 13 year: 2022 ident: 46872_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29076-z – volume: 11 start-page: 1179 year: 2021 ident: 46872_CR39 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03747 – volume: 46 start-page: 2799 year: 2017 ident: 46872_CR11 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00727A – volume: 50 start-page: 17953 year: 1994 ident: 46872_CR67 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 10 year: 2019 ident: 46872_CR49 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09765-y – volume: 145 start-page: 2544 year: 2023 ident: 46872_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c12284 – volume: 13 start-page: 8876 year: 2022 ident: 46872_CR40 publication-title: Chem. Sci. doi: 10.1039/D2SC02845J – volume: 60 start-page: 26397 year: 2021 ident: 46872_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202112775 – volume: 58 start-page: 4271 year: 2019 ident: 46872_CR45 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201814182 – volume: 144 start-page: 17209 year: 2022 ident: 46872_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c07596 – volume: 61 start-page: e202202519 year: 2022 ident: 46872_CR12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202202519 – volume: 77 start-page: 3865 year: 1996 ident: 46872_CR66 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 55 start-page: 9491 year: 2019 ident: 46872_CR37 publication-title: Chem. Commun. doi: 10.1039/C9CC04036F – volume: 5 start-page: 891 year: 2020 ident: 46872_CR2 publication-title: Nat. Energy doi: 10.1038/s41560-020-00710-8 – volume: 40 start-page: 173 year: 2020 ident: 46872_CR41 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.07.002 – volume: 494 start-page: 101 year: 2019 ident: 46872_CR4 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.181 – volume: 14 year: 2023 ident: 46872_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38964-x – volume: 10 start-page: 5623 year: 2020 ident: 46872_CR24 publication-title: ACS Catal. doi: 10.1021/acscatal.9b05470 – volume: 11 year: 2020 ident: 46872_CR46 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14848-2 – volume: 363 start-page: 155 year: 2019 ident: 46872_CR60 publication-title: Science doi: 10.1126/science.aau6716 – volume: 5 start-page: eaaw2322 year: 2019 ident: 46872_CR50 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw2322 – volume: 55 start-page: 9491 year: 2019 ident: 46872_CR61 publication-title: Chem. Commun. doi: 10.1039/C9CC04036F – volume: 62 start-page: e202216751 year: 2022 ident: 46872_CR33 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202216751 – volume: 5 start-page: 764 year: 2020 ident: 46872_CR35 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0225-x – volume: 9 start-page: 8712 year: 2019 ident: 46872_CR5 publication-title: ACS Catal. doi: 10.1021/acscatal.9b02609 – volume: 6 start-page: 1175 year: 2021 ident: 46872_CR53 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00246 – volume: 86 start-page: 1642 year: 2001 ident: 46872_CR57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.1642 – volume: 12 year: 2021 ident: 46872_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24079-8 – volume: 145 start-page: 1475 year: 2023 ident: 46872_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c11071 – volume: 144 start-page: 17198 year: 2022 ident: 46872_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c07575 – volume: 6 start-page: 15 year: 1996 ident: 46872_CR65 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 8 start-page: 4408 year: 2018 ident: 46872_CR3 publication-title: ACS Catal. doi: 10.1021/acscatal.7b04466 – volume: 143 start-page: 15562 year: 2021 ident: 46872_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c06986 – volume: 144 start-page: 19973 year: 2022 ident: 46872_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c08344 – volume: 2 start-page: 100495 year: 2021 ident: 46872_CR51 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2021.100495 – volume: 551 start-page: 149425 year: 2021 ident: 46872_CR62 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149425 – volume: 33 start-page: 3623 year: 2022 ident: 46872_CR13 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.11.041 – volume: 3 start-page: 476 year: 2018 ident: 46872_CR1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0132-1 – volume: 13 start-page: 411 year: 2018 ident: 46872_CR9 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0089-z – volume: 8 start-page: 2844 year: 2018 ident: 46872_CR14 publication-title: ACS Catal. doi: 10.1021/acscatal.7b03464 – volume: 59 start-page: 14664 year: 2020 ident: 46872_CR63 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202006546 – volume: 141 start-page: 17431 year: 2019 ident: 46872_CR52 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09502 – volume: 32 start-page: 1456 year: 2011 ident: 46872_CR69 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 14 start-page: 21 year: 2020 ident: 46872_CR17 publication-title: ACS Nano doi: 10.1021/acsnano.9b00184 – volume: 7 start-page: 7353 year: 2019 ident: 46872_CR25 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b00567 – volume: 55 start-page: 13184 year: 2016 ident: 46872_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201607741 – volume: 144 start-page: 7822 year: 2022 ident: 46872_CR36 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c01814 – volume: 4 start-page: 2251 year: 2019 ident: 46872_CR30 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01691 – volume: 121 start-page: 2683 year: 2017 ident: 46872_CR15 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.6b10159 – volume: 3 start-page: 634 year: 2011 ident: 46872_CR10 publication-title: Nat. Chem. doi: 10.1038/nchem.1095 |
SSID | ssj0000391844 |
Score | 2.6326013 |
Snippet | Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore... Abstract Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2556 |
SubjectTerms | 119/118 140/131 140/133 140/146 140/58 147/135 147/143 639/638/161/886 639/638/675 639/638/77/884 639/638/77/886 Adsorption Catalysts Chemistry Coordination Electrocatalysis Electrocatalysts Electrochemistry Electron transport Energy Graphene Humanities and Social Sciences Hydrogen Hydrogen evolution reactions Intermediates Maximization Microscopy multidisciplinary Optimization Periodic structures Platinum Porous materials Pyrolysis Science Science (multidisciplinary) Single atom catalysts Structural stability Structure-activity relationships |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYQUiUuCOgrFCpX6g0sNvasH0eoilCl9tIicbNsxytRkQ0iiUR-Q_80M95NmgraXrjtrsdeP8aeh-35GPuYozV2lLWg4GMCNDQihFyLpGOWOYJKBXnu6zd9cQlfruqrNagvOhPWhQfuOu4kZC1TQONJGwAjQ4gALmhl8Aeu0sVaR5m3ZkyVNVg5NF2gvyVTKXsyhbImoEjCGlkjxf0fkqgE7H9Ky3y0Q1oEz_kO2-41Rn7a1XSXbeR2j73oMCQXL9mv75jrJgs0nsf8lk62tfMxJ_cqD9PFeEyIWYmnCRqZ153nj69dbuP4Sh74BVK0P-fkUxvhI7JfSSwXNRNvlie4OKq4PJeoE5TeY-gUFxBFNnnFLs8___h0IXqEBZHA1jMRVRVdPapGEZIKshnWNqGpXZsmS-k0oU1VUWUlq8ZEqRpy6tiIKldyzTC4oF6zzXbS5reMJ9AqGR2ClQqyoXWgIdvPWRdwVQwDNlz2tk99-HFCwbjxZRtcWd-NkMcR8mWE_P2AHa3y3HbBN_5JfUaDuKKkwNnlA3aW79nJ_4-dBuxgyQK-n81TT_heCghBfsA-rJJxHtLmSmjzZF5oiAAsFvGmY51VTRSqtQ4c5j5e8tLvwv_eoP3naNA7tiWJ6cuxuAO2Obub50PUo2bxfZkyDxZ1GeE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagCMGlKuUVKMhI3MDqxvb6caqgIlRIcIFKvVm21ytRNZtAEqn5DfxpZrzeLajQWxLPWs7OeDzz2Z6PkNcpGG2apBgWH2NSyZZ5n2oWVUg8BSliZp77_EWdnMpPZ_VZAdxW5Vjl4BOzo24WETHyQ-RYEhJZvI-WPxiyRuHuaqHQuE3uTGGlwSNdZvZxxFiw-rmRstyVqYQ5XMnsGWBhgnEZzdnlX-tRLtv_r1jz2j5pXn5me2S3xI30Xa_oB-RW6vbJ3Z5JcrtP7h0PxG0Pya-v0MNFYpBOz-kSz7p1mzlFwJX61XY-Rw6tSOMC0s7vPRZI_7juRuErYvJbkOjON4iyNfARDDI35qubkbbDmS4KQS9NuQ4FthdWnQwKYa2TR-R09uHb8QkrnAssSlOvWRBVsHVTNUFG4Xk7rU2E5LvWbeLcKuSfqoJIgletDly0CPOYAEFYtO3UWy8ek51u0aWnhEapRNTKe8OFTBo9Q4vZoDXWg5_0EzId3ryLpSA58mJcuLwxLozrteVAWy5ry11OyJvxmWVfjuNG6feo0FESS2nnH-BluTIznU-KRw_ZudJSau59kNJ6JTRYsK1UNSEHgzm4Mr9X7soaJ-TV2Ax6xu0W36XFJsuggDTQxZPejMaRCAh0rbTw9NvBrq46__8fenbzWJ6T-xxNuxKM8wOys_65SS8gZlqHl3li_AaAJBXe priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lRfBFtH6d1pKCbxrcS2bz8XiKpRzYl1roW0hyWVB6e6V3B97f4D_tTPZDxSr4truZhGwySWYmye_H2OscrbGLrAWBjwnQ0IgQci2SjlnmCCoV5rlP5_rsEuZX9dUek8NdmHJov0Balml6OB32bg1lSOOKggVaIwXajQcE1Y66fTCbzS_mY2SFMM8tQH9DplL2jsy_rUIFrP8uC_OP3dGy6Jw-ZA96a5HPuvo9Ynu5PWT3Ov7I3WP2_QJzXWeBjvOS39Cptna75BRa5WG9Wy6JLSvxtEIH80sX9eO_XGzj-ErR9x1KtF-3FE9b4COqXkkslzQTb4bTWxzNW54L4gSl9_w5JfxDqCZP2OXpx88fzkTPriAS2HojoqqiqxfVIkJSQTbT2iZ0s2vTZCmdJqapKqqsZNWYKFVDAR0b0dxKrpkGF9RTtt-u2vyc8QRaJaNDsFJBNjQHNOT3OesCzohhwqZDa_vUQ48TA8a1L1vgyvquhzz2kC895L9N2Jsxz00HvPFP6ffUiaMkgWaXD9hYvlciH7KWKaAfrg2AkSFEABe0MqirrtLVhB0NKuD7kbz2xO2lgNjjJ-xkTMYxSBsroc2rbZEhAbBYxLNOdcaaKDRpHTjM_XbQpZ-F__2HXvyf-Et2X5J6V0pIecT2N7fb_AqtpU087ofHD35XEc0 priority: 102 providerName: Springer Nature |
Title | Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis |
URI | https://link.springer.com/article/10.1038/s41467-024-46872-x https://www.ncbi.nlm.nih.gov/pubmed/38519497 https://www.proquest.com/docview/2973344007 https://www.proquest.com/docview/2974007480 https://doaj.org/article/ae62ca027674472aab449a637de69060 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZKKyQuiDdpS2QkbrCwsb1-HBBKo4YqUitEiZSbZTteqSjZlCaRmt_An2bGuxtABE5c9uXxPjwz9sx4PR8hr6LXSk-jzDD5WCakKDPnYpEF6SOLXvCQkOfOL-TZWIwmxWSPtHBHTQMud7p2iCc1vpm9vf22-QAK_75eMq7fLUVSdxht4GFasQxsygMYmRQiGpw35n7qmbkBh0Y0a2d2V_1tfEpp_HfZnn_Mm6bhaPiA3G_sSNqvGf-Q7MXqEblbI0tuHpPvl1BrFjNwqef0Gv93q9ZzikFX6pab-RxxtAINC3A9r-p4IP1lyRuFU4zLb4Ci-rrGSNsUDkEoU2Favhlo2f7XRcHwpTHlosDyBlknBYYw38kTMh6efhmcZQ3uQhaELlaZ57k3xTSfehG4Y2Wv0AEc8EKVkTEjEYMq9zxylpfKM15iqEd7MMSCKXvOOP6U7FeLKj4nNAjJg5LOacZFVNg7lOgRGm0c9JWuQ3pta9vQJCVHbIyZTZPjXNuaQxY4ZBOH7G2HvN7Wua5TcvyT-gSZuKXEdNrpAjSWbbTTuihZcOChSyWEYs55IYyTXIEUm1zmHXLcioBtRdQi6hcXiCvfIS-3xaCdOOXiqrhYJxokEBpu8awWne2bcDB2jTBQ-00rSz9v_vcPOvwfH3RE7jEU-pxnjB2T_dXNOr4A62rlu-SOmijY6uHHLjno90eXI9ifnF58-gxXB3LQTXGLblKtH-QQKPc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKESoXBOUvUMBIcAKrG9vrtQ8IQSGk9OdCK_Xm2l6vRNVsUpKI5hl4F56RGe9uCgJ6622zHlsbz3g8nvHMR8iL6HWhy6gYFh9jUsmKORdzFpSPPHopQkKe29tXw0P5-Sg_WiE_u1wYvFbZ6cSkqMtxQB_5JmIsCYko3m8nZwxRozC62kFoNGKxExff4cg2fbP9Afj7kvPBx4OtIWtRBViQOp8xLzJv8jIrvQzC8aqf6wDHy7yoIudGIcJS5kUUPKsKz0WFjgztwcwIpuo74wSMe41clwJ2csxMH3xa-nSw2rqWss3NgW6bU5k0EWyEMA-64Oz8j_0vwQT8y7b9Ky6btrvBbXKrtVPpu0aw7pCVWK-TGw1y5WKdrG11QHF3yY8vMMJpZHB8H9EJ3q2r5yOKDl7qpovRCDG7Ag1jmLOvje-R_pZeR-EnxgAWQFGfzNGrV8IjLIDUmFJFA626O2QUjGwaU90LbG9RfJITCmur3COHV8KN-2S1HtfxIaFBKhEK5ZzmQsYCNVGFp0-jjQO97Hqk3828DW0BdMThOLUpEC-0bbhlgVs2ccue98irZZ9JU_7jUur3yNAlJZbuTi9gsmyrCayLigeXcayiJAvunJfSOCUKWDEmU1mPbHTiYFt9MrUX0t8jz5fNwGcM77g6jueJBgmkhiEeNGK0_BIBhrWRBnq_7uTqYvD__6FHl3_LM7I2PNjbtbvb-zuPyU2OYp4JxvkGWZ19m8cnYK_N_NO0SCg5vupV-QsjEVMs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVDwuCMorUMBIcAIrG9u76z0gRB9RSyGqgEq9GdvxSqBmE0gimt_AP-LXMePdTUFAb71t1g9t5uWZsT0fwNPgdK5HIeNUfIyrTJXc2pByn7kgglPSR-S5d8Ns70i9OU6P1-BnexeGjlW2NjEa6tHEU468RxhLUhGKd69sjkUc7gxeTb9yQpCindYWTqMWkYOw_I7h2-zl_g7y-pkQg92P23u8QRjgXul0zp1MXJGOkpFTXlpR9lPtMdRM8zIIUWSEtpQ4GaRIytwJWVJSQzt0OXxR9m1hJc57CdZzioo6sL61Ozx8v8rwUO11rVRzUwcH9mYq2iVcFpEqOhf89I_VMIIG_MvT_WuXNi5-gxtwvfFa2etazG7CWqg24HKNY7ncgKvbLWzcLfjxAWc4CRyD-TGb0km7ajFmlO5ldrYcjwnByzM_Qap9rjOR7LfLdgx_EuGX2KP6sqAc3wgfUR1iY7w46lnZnihj6HKzEKtgUHuD6RNTUlRp5TYcXQg_7kCnmlThHjCvMunzzFotpAo52aWSYtFCFxattO1Cv6W88U05dELlODFxW15qU3PLILdM5JY57cLz1ZhpXQzk3N5bxNBVTyrkHV8gsUxjF4wNmfA2EVRTSeXCWqdUYTOZo_4USZZ0YbMVB9NYl5k504UuPFk1I59ps8dWYbKIfaiD0jjF3VqMVl8i0c0uVIGjX7RydTb5___Q_fO_5TFcQY00b_eHBw_gmiApTyQXYhM682-L8BCdt7l71GgJg08XrZi_AJBuWL4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-atom+platinum+with+asymmetric+coordination+environment+on+fully+conjugated+covalent+organic+framework+for+efficient+electrocatalysis&rft.jtitle=Nature+communications&rft.au=Ziqi+Zhang&rft.au=Zhe+Zhang&rft.au=Cailing+Chen&rft.au=Rui+Wang&rft.date=2024-03-22&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs41467-024-46872-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ae62ca027674472aab449a637de69060 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |