Methodologies for simulating impacts of climate change on crop production
► We reviewed 221 papers that used crop models to assess impacts of climate change. ► Crops most frequently assessed were wheat, maize, soybean and rice. ► Models predominantly used radiation use efficiency-based approaches. ► Assumed low baseline [CO 2] may exaggerate projected impacts of increased...
Saved in:
Published in | Field crops research Vol. 124; no. 3; pp. 357 - 368 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
20.12.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► We reviewed 221 papers that used crop models to assess impacts of climate change. ► Crops most frequently assessed were wheat, maize, soybean and rice. ► Models predominantly used radiation use efficiency-based approaches. ► Assumed low baseline [CO
2] may exaggerate projected impacts of increased [CO
2]. ► Coordinated data resources and model intercomparisons may enhance impact studies.
Ecophysiological models are widely used to forecast potential impacts of climate change on future agricultural productivity and to examine options for adaptation by local stakeholders and policy makers. However, protocols followed in such assessments vary to such an extent that they constrain cross-study syntheses and increase the potential for bias in projected impacts. We reviewed 221 peer-reviewed papers that used crop simulation models to examine diverse aspects of how climate change might affect agricultural systems. Six subject areas were examined: target crops and regions; the crop model(s) used and their characteristics; sources and application of data on [CO
2] and climate; impact parameters evaluated; assessment of variability or risk; and adaptation strategies. Wheat, maize, soybean and rice were considered in approximately 170 papers. The USA (55 papers) and Europe (64 papers) were the dominant regions studied. The most frequent approach used to simulate response to CO
2 involved adjusting daily radiation use efficiency (RUE) and transpiration, precluding consideration of the interacting effects of CO
2, stomatal conductance and canopy temperature, which are expected to exacerbate effects of global warming. The assumed baseline [CO
2] typically corresponded to conditions 10–30 years earlier than the date the paper was accepted, exaggerating the relative impacts of increased [CO
2]. Due in part to the diverse scenarios for increases in greenhouse gas emissions, assumed future [CO
2] also varied greatly, further complicating comparisons among studies. Papers considering adaptation predominantly examined changes in planting dates and cultivars; only 20 papers tested different tillage practices or crop rotations. Risk was quantified in over half the papers, mainly in relation to variability in yield or effects of water deficits, but the limited consideration of other factors affecting risk beside climate change per se suggests that impacts of climate change were overestimated relative to background variability. A coordinated crop, climate and soil data resource would allow researchers to focus on underlying science. More extensive model intercomparison, facilitated by modular software, should strengthen the biological realism of predictions and clarify the limits of our ability to forecast agricultural impacts of climate change on crop production and associated food security as well as to evaluate potential for adaptation. |
---|---|
AbstractList | Ecophysiological models are widely used to forecast potential impacts of climate change on future agricultural productivity and to examine options for adaptation by local stakeholders and policy makers. However, protocols followed in such assessments vary to such an extent that they constrain cross-study syntheses and increase the potential for bias in projected impacts. We reviewed 221 peer-reviewed papers that used crop simulation models to examine diverse aspects of how climate change might affect agricultural systems. Six subject areas were examined: target crops and regions; the crop model(s) used and their characteristics; sources and application of data on [CO₂] and climate; impact parameters evaluated; assessment of variability or risk; and adaptation strategies. Wheat, maize, soybean and rice were considered in approximately 170 papers. The USA (55 papers) and Europe (64 papers) were the dominant regions studied. The most frequent approach used to simulate response to CO₂ involved adjusting daily radiation use efficiency (RUE) and transpiration, precluding consideration of the interacting effects of CO₂, stomatal conductance and canopy temperature, which are expected to exacerbate effects of global warming. The assumed baseline [CO₂] typically corresponded to conditions 10–30 years earlier than the date the paper was accepted, exaggerating the relative impacts of increased [CO₂]. Due in part to the diverse scenarios for increases in greenhouse gas emissions, assumed future [CO₂] also varied greatly, further complicating comparisons among studies. Papers considering adaptation predominantly examined changes in planting dates and cultivars; only 20 papers tested different tillage practices or crop rotations. Risk was quantified in over half the papers, mainly in relation to variability in yield or effects of water deficits, but the limited consideration of other factors affecting risk beside climate change per se suggests that impacts of climate change were overestimated relative to background variability. A coordinated crop, climate and soil data resource would allow researchers to focus on underlying science. More extensive model intercomparison, facilitated by modular software, should strengthen the biological realism of predictions and clarify the limits of our ability to forecast agricultural impacts of climate change on crop production and associated food security as well as to evaluate potential for adaptation. Ecophysiological models are widely used to forecast potential impacts of climate change on future agricultural productivity and to examine options for adaptation by local stakeholders and policy makers. However, protocols followed in such assessments vary to such an extent that they constrain cross-study syntheses and increase the potential for bias in projected impacts. We reviewed 221 peer-reviewed papers that used crop simulation models to examine diverse aspects of how climate change might affect agricultural systems. Six subject areas were examined: target crops and regions; the crop model(s) used and their characteristics; sources and application of data on [CO sub(2] and climate; impact parameters evaluated; assessment of variability or risk; and adaptation strategies. Wheat, maize, soybean and rice were considered in approximately 170 papers. The USA (55 papers) and Europe (64 papers) were the dominant regions studied. The most frequent approach used to simulate response to CO) sub(2) involved adjusting daily radiation use efficiency (RUE) and transpiration, precluding consideration of the interacting effects of CO sub(2, stomatal conductance and canopy temperature, which are expected to exacerbate effects of global warming. The assumed baseline [CO) sub(2)] typically corresponded to conditions 10-30 years earlier than the date the paper was accepted, exaggerating the relative impacts of increased [CO sub(2]. Due in part to the diverse scenarios for increases in greenhouse gas emissions, assumed future [CO) sub(2)] also varied greatly, further complicating comparisons among studies. Papers considering adaptation predominantly examined changes in planting dates and cultivars; only 20 papers tested different tillage practices or crop rotations. Risk was quantified in over half the papers, mainly in relation to variability in yield or effects of water deficits, but the limited consideration of other factors affecting risk beside climate change per se suggests that impacts of climate change were overestimated relative to background variability. A coordinated crop, climate and soil data resource would allow researchers to focus on underlying science. More extensive model intercomparison, facilitated by modular software, should strengthen the biological realism of predictions and clarify the limits of our ability to forecast agricultural impacts of climate change on crop production and associated food security as well as to evaluate potential for adaptation. Ecophysiological models are widely used to forecast potential impacts of climate change on future agricultural productivity and to examine options for adaptation by local stakeholders and policy makers. However, protocols followed in such assessments vary to such an extent that they constrain cross-study syntheses and increase the potential for bias in projected impacts. We reviewed 221 peer-reviewed papers that used crop simulation models to examine diverse aspects of how climate change might affect agricultural systems. Six subject areas were examined: target crops and regions; the crop model(s) used and their characteristics; sources and application of data on [CO(2)] and climate; impact parameters evaluated; assessment of variability or risk; and adaptation strategies. Wheat, maize, soybean and rice were considered in approximately 170 papers. The USA (55 papers) and Europe (64 papers) were the dominant regions studied. The most frequent approach used to simulate response to CO(2) involved adjusting daily radiation use efficiency (RUE) and transpiration, precluding consideration of the interacting effects of CO(2), stomatal conductance and canopy temperature, which are expected to exacerbate effects of global warming. The assumed baseline [CO(2)] typically corresponded to conditions 10-30 years earlier than the date the paper was accepted, exaggerating the relative impacts of increased [CO(2)]. Due in part to the diverse scenarios for increases in greenhouse gas emissions, assumed future [CO(2)] also varied greatly, further complicating comparisons among studies. Papers considering adaptation predominantly examined changes in planting dates and cultivars; only 20 papers tested different tillage practices or crop rotations. Risk was quantified in over half the papers, mainly in relation to variability in yield or effects of water deficits, but the limited consideration of other factors affecting risk beside climate change per se suggests that impacts of climate change were overestimated relative to background variability. A coordinated crop, climate and soil data resource would allow researchers to focus on underlying science. More extensive model intercomparison, facilitated by modular software, should strengthen the biological realism of predictions and clarify the limits of our ability to forecast agricultural impacts of climate change on crop production and associated food security as well as to evaluate potential for adaptation. ► We reviewed 221 papers that used crop models to assess impacts of climate change. ► Crops most frequently assessed were wheat, maize, soybean and rice. ► Models predominantly used radiation use efficiency-based approaches. ► Assumed low baseline [CO 2] may exaggerate projected impacts of increased [CO 2]. ► Coordinated data resources and model intercomparisons may enhance impact studies. Ecophysiological models are widely used to forecast potential impacts of climate change on future agricultural productivity and to examine options for adaptation by local stakeholders and policy makers. However, protocols followed in such assessments vary to such an extent that they constrain cross-study syntheses and increase the potential for bias in projected impacts. We reviewed 221 peer-reviewed papers that used crop simulation models to examine diverse aspects of how climate change might affect agricultural systems. Six subject areas were examined: target crops and regions; the crop model(s) used and their characteristics; sources and application of data on [CO 2] and climate; impact parameters evaluated; assessment of variability or risk; and adaptation strategies. Wheat, maize, soybean and rice were considered in approximately 170 papers. The USA (55 papers) and Europe (64 papers) were the dominant regions studied. The most frequent approach used to simulate response to CO 2 involved adjusting daily radiation use efficiency (RUE) and transpiration, precluding consideration of the interacting effects of CO 2, stomatal conductance and canopy temperature, which are expected to exacerbate effects of global warming. The assumed baseline [CO 2] typically corresponded to conditions 10–30 years earlier than the date the paper was accepted, exaggerating the relative impacts of increased [CO 2]. Due in part to the diverse scenarios for increases in greenhouse gas emissions, assumed future [CO 2] also varied greatly, further complicating comparisons among studies. Papers considering adaptation predominantly examined changes in planting dates and cultivars; only 20 papers tested different tillage practices or crop rotations. Risk was quantified in over half the papers, mainly in relation to variability in yield or effects of water deficits, but the limited consideration of other factors affecting risk beside climate change per se suggests that impacts of climate change were overestimated relative to background variability. A coordinated crop, climate and soil data resource would allow researchers to focus on underlying science. More extensive model intercomparison, facilitated by modular software, should strengthen the biological realism of predictions and clarify the limits of our ability to forecast agricultural impacts of climate change on crop production and associated food security as well as to evaluate potential for adaptation. |
Author | Wall, Gerard W. White, Jeffrey W. Hoogenboom, Gerrit Kimball, Bruce A. |
Author_xml | – sequence: 1 givenname: Jeffrey W. surname: White fullname: White, Jeffrey W. email: jeffrey.white@ars.usda.gov organization: ALARC, USDA-ARS, 21881 North Cardon Lane, Maricopa, AZ 85138, United States – sequence: 2 givenname: Gerrit surname: Hoogenboom fullname: Hoogenboom, Gerrit organization: Department of Biological and Agricultural Engineering, University of Georgia, Griffin, GA 30223-1797, United States – sequence: 3 givenname: Bruce A. surname: Kimball fullname: Kimball, Bruce A. organization: ALARC, USDA-ARS, 21881 North Cardon Lane, Maricopa, AZ 85138, United States – sequence: 4 givenname: Gerard W. surname: Wall fullname: Wall, Gerard W. organization: ALARC, USDA-ARS, 21881 North Cardon Lane, Maricopa, AZ 85138, United States |
BookMark | eNqNkT9vFDEQxS2USFwCH4AKd9DsMl7_XVGhiIRIQRQhteXzji8-7a0P24fEt8fHUVGcqKbw7808v3dFLpa0ICFvGPQMmPqw7YPP_QCM9aB7APaCrJjRQ6eMHC7ICrg2nRhGeEmuStkCgFJMrcj9V6zPaUpz2kQsNKRMS9wdZlfjsqFxt3e-FpoC9XPcuYrUP7tlgzQt1Oe0p_ucpoOvMS2vyGVwc8HXf-c1ebr9_P3mS_fw7e7-5tND54WRtVszxaUSRigYRzMg8CDk6PQaHZ-cBNm8r5nAAFx4jgwcd8KsA2qvdJgkvybvTnvb6R8HLNXuYvE4z27BdCh2hIFr2ZJo5PuzJNNaMw2K_wfKlYSjZdNQdkLb_0vJGOw-t2jyL8vAHruwW9u6sMcuLGgLf5zofzQ-VndMrWYX57PKtydlcMm6TY7FPj02QLRHDYPRjfh4IrCF_jNitsVHXDxOMaOvdkrxzP7fd3StoQ |
CitedBy_id | crossref_primary_10_1002_joc_6792 crossref_primary_10_1007_s10584_014_1322_x crossref_primary_10_1093_jxb_eraa310 crossref_primary_10_1007_s11027_015_9639_y crossref_primary_10_1007_s00704_022_04086_5 crossref_primary_10_1016_j_scitotenv_2017_10_038 crossref_primary_10_1007_s43621_025_00945_z crossref_primary_10_3390_jof8050542 crossref_primary_10_1016_j_envsoft_2015_12_003 crossref_primary_10_1017_S0021859618000011 crossref_primary_10_1016_j_agsy_2019_102746 crossref_primary_10_1073_pnas_1720716115 crossref_primary_10_1016_j_biosystemseng_2014_09_001 crossref_primary_10_1016_j_jclepro_2022_130870 crossref_primary_10_1016_j_rsci_2023_03_010 crossref_primary_10_1007_s13593_024_00963_7 crossref_primary_10_1016_j_eja_2016_08_012 crossref_primary_10_3354_cr01322 crossref_primary_10_1016_j_eja_2015_06_007 crossref_primary_10_1002_jsfa_7359 crossref_primary_10_1111_wej_12523 crossref_primary_10_1002_ece3_782 crossref_primary_10_1007_BF03356454 crossref_primary_10_2134_agronj2011_0220 crossref_primary_10_1016_j_agrformet_2021_108452 crossref_primary_10_1016_j_eja_2024_127456 crossref_primary_10_1016_j_crm_2021_100300 crossref_primary_10_1016_j_agrformet_2012_12_008 crossref_primary_10_1016_j_agwat_2021_107042 crossref_primary_10_1016_j_eja_2019_125961 crossref_primary_10_1016_j_agsy_2016_07_006 crossref_primary_10_1017_S0021859621000101 crossref_primary_10_1002_ird_2373 crossref_primary_10_1007_s10658_018_1494_8 crossref_primary_10_1016_j_compag_2021_106047 crossref_primary_10_1088_1748_9326_aa8da6 crossref_primary_10_3389_fsufs_2023_1176385 crossref_primary_10_1016_j_eja_2020_126153 crossref_primary_10_1111_gcb_16601 crossref_primary_10_3354_cr01335 crossref_primary_10_1016_j_fcr_2019_02_006 crossref_primary_10_1002_agg2_20453 crossref_primary_10_1016_j_indcrop_2020_112381 crossref_primary_10_3389_fenvs_2021_692959 crossref_primary_10_1016_j_agsy_2024_104242 crossref_primary_10_33245_2310_9270_2023_183_2_130_136 crossref_primary_10_3390_seeds1010005 crossref_primary_10_1016_j_eja_2023_127056 crossref_primary_10_1002_fes3_34 crossref_primary_10_1016_j_ecolmodel_2017_11_003 crossref_primary_10_1016_j_agsy_2013_01_005 crossref_primary_10_1016_j_eja_2021_126446 crossref_primary_10_1016_j_ecolind_2019_105991 crossref_primary_10_1007_s10661_015_4564_9 crossref_primary_10_1016_j_gloplacha_2013_08_010 crossref_primary_10_1016_j_scitotenv_2017_10_247 crossref_primary_10_3389_fsufs_2023_1246347 crossref_primary_10_1111_pce_12119 crossref_primary_10_1016_j_agrformet_2019_107851 crossref_primary_10_1016_j_agsy_2021_103221 crossref_primary_10_1016_j_scitotenv_2019_04_212 crossref_primary_10_1186_s40066_020_00283_5 crossref_primary_10_1016_j_agsy_2017_08_004 crossref_primary_10_3390_plants13060900 crossref_primary_10_1016_j_envsoft_2015_05_012 crossref_primary_10_3354_cr01635 crossref_primary_10_1111_gcb_12302 crossref_primary_10_3390_su14010334 crossref_primary_10_1002_agj2_21005 crossref_primary_10_1007_s11027_018_9820_1 crossref_primary_10_1016_j_fcr_2019_02_021 crossref_primary_10_1016_j_fcr_2014_02_012 crossref_primary_10_1016_j_jclepro_2022_131885 crossref_primary_10_1016_j_fcr_2015_10_012 crossref_primary_10_4141_cjss2012_053 crossref_primary_10_1016_j_geoderma_2016_07_010 crossref_primary_10_1016_j_gloplacha_2014_08_010 crossref_primary_10_1093_pcp_pcx141 crossref_primary_10_1111_gcb_12660 crossref_primary_10_1016_j_agrformet_2015_09_013 crossref_primary_10_1016_j_jclepro_2015_05_061 crossref_primary_10_1002_joc_6882 crossref_primary_10_1111_gcb_12412 crossref_primary_10_1016_j_eja_2017_10_008 crossref_primary_10_1016_j_eja_2017_10_004 crossref_primary_10_1016_j_envsoft_2024_106119 crossref_primary_10_1007_s10584_021_02999_0 crossref_primary_10_5194_gmd_9_3493_2016 crossref_primary_10_1007_s13593_014_0248_z crossref_primary_10_1007_s42106_020_00116_2 crossref_primary_10_1016_j_agsy_2017_01_016 crossref_primary_10_1007_s10584_013_0802_8 crossref_primary_10_1038_s41598_024_59151_y crossref_primary_10_1016_j_agsy_2017_11_005 crossref_primary_10_1080_00288233_2015_1018392 crossref_primary_10_1111_gcb_13411 crossref_primary_10_3390_jof10060401 crossref_primary_10_3390_w10040356 crossref_primary_10_1186_s40068_018_0107_z crossref_primary_10_2134_agronj2018_08_0537 crossref_primary_10_1016_j_jafr_2022_100480 crossref_primary_10_1016_j_envsoft_2014_08_001 crossref_primary_10_1016_j_cliser_2021_100235 crossref_primary_10_1016_j_eja_2017_11_008 crossref_primary_10_1088_1748_9326_ac61c8 crossref_primary_10_1016_j_eja_2013_02_004 crossref_primary_10_1007_s41885_021_00091_6 crossref_primary_10_1088_2515_7620_accfed crossref_primary_10_3389_fpls_2023_1249793 crossref_primary_10_1071_CP18412 crossref_primary_10_1016_j_scitotenv_2024_175038 crossref_primary_10_3354_cr01303 crossref_primary_10_1016_j_eja_2024_127279 crossref_primary_10_1016_j_envsoft_2015_05_009 crossref_primary_10_1016_j_agsy_2024_104182 crossref_primary_10_1038_s41598_020_57466_0 crossref_primary_10_1016_j_eja_2024_127165 crossref_primary_10_1016_j_agwat_2024_109028 crossref_primary_10_1016_j_fcr_2016_05_001 crossref_primary_10_1016_j_fcr_2012_03_016 crossref_primary_10_34133_plantphenomics_0185 crossref_primary_10_1038_s41598_020_76693_z crossref_primary_10_1016_j_compag_2017_04_007 crossref_primary_10_1093_jxb_erv014 crossref_primary_10_1016_j_agrformet_2015_08_263 crossref_primary_10_1007_s12517_019_4588_5 crossref_primary_10_1016_j_ecolind_2020_106804 crossref_primary_10_1007_s11099_014_0028_7 crossref_primary_10_1007_s00484_021_02189_8 crossref_primary_10_1002_ece3_2854 crossref_primary_10_5018_economics_ejournal_ja_2015_10 crossref_primary_10_1002_ldr_2363 crossref_primary_10_1007_s00704_016_1779_9 crossref_primary_10_1016_j_agsy_2014_09_010 crossref_primary_10_1016_j_agrformet_2015_08_259 crossref_primary_10_1016_j_agrformet_2018_02_008 crossref_primary_10_1007_s12517_021_08213_w crossref_primary_10_1371_journal_pone_0141218 crossref_primary_10_1007_s10584_014_1062_y crossref_primary_10_1016_j_agsy_2020_102938 crossref_primary_10_1029_2021WR031249 crossref_primary_10_1016_j_jclepro_2017_01_124 crossref_primary_10_1088_1748_9326_aa518a crossref_primary_10_5532_KJAFM_2015_17_1_1 crossref_primary_10_1016_j_agsy_2016_10_013 crossref_primary_10_1038_nclimate2228 crossref_primary_10_1080_09064702_2013_793735 crossref_primary_10_1016_j_jhydrol_2013_11_061 crossref_primary_10_1038_s41597_019_0343_8 crossref_primary_10_1111_gcb_15441 crossref_primary_10_1111_gcb_15565 crossref_primary_10_1371_journal_pone_0140490 crossref_primary_10_1093_ajae_aas034 crossref_primary_10_1016_j_agsy_2020_102906 crossref_primary_10_1016_j_agrformet_2012_09_007 crossref_primary_10_1016_j_apenergy_2017_03_006 crossref_primary_10_2134_agronj2017_02_0076 crossref_primary_10_1016_j_fcr_2021_108254 crossref_primary_10_3390_cli7090101 crossref_primary_10_2183_pjab_95_016 crossref_primary_10_1016_j_agee_2013_06_011 crossref_primary_10_1016_j_envsoft_2017_06_048 crossref_primary_10_3390_cli7090102 crossref_primary_10_1007_s00704_020_03406_x crossref_primary_10_1016_j_agsy_2016_10_006 crossref_primary_10_1111_gcb_14019 crossref_primary_10_1016_j_agrformet_2012_09_011 crossref_primary_10_1016_j_jenvman_2023_118532 crossref_primary_10_1007_s11356_020_08846_6 crossref_primary_10_1111_een_12017 crossref_primary_10_1016_j_eja_2017_01_002 crossref_primary_10_1016_j_wace_2016_10_002 crossref_primary_10_1016_j_fcr_2017_12_017 crossref_primary_10_1016_j_ecolind_2020_106935 crossref_primary_10_1016_j_scitotenv_2020_140667 crossref_primary_10_1016_j_ancene_2017_05_002 crossref_primary_10_1016_j_agwat_2019_105746 crossref_primary_10_1016_j_fcr_2016_10_004 crossref_primary_10_3390_cli8090100 crossref_primary_10_1007_s11356_019_06061_6 crossref_primary_10_2134_agronj2016_04_0247 crossref_primary_10_1080_15715124_2014_983523 crossref_primary_10_1038_s41598_023_39795_y crossref_primary_10_1016_j_eneco_2014_04_014 crossref_primary_10_1016_j_eja_2024_127426 crossref_primary_10_1016_j_agrformet_2016_07_021 crossref_primary_10_3934_environsci_2015_3_852 crossref_primary_10_1007_s00425_019_03129_y crossref_primary_10_1016_j_fcr_2012_12_020 crossref_primary_10_1016_j_eja_2012_02_005 crossref_primary_10_3390_atmos11121300 crossref_primary_10_1016_j_scitotenv_2019_136190 crossref_primary_10_3390_su16114853 crossref_primary_10_1016_j_agrformet_2024_109966 crossref_primary_10_1038_nclimate2153 crossref_primary_10_1016_j_fcr_2016_04_031 crossref_primary_10_1111_jac_12575 crossref_primary_10_1016_j_fcr_2022_108768 crossref_primary_10_1186_s40322_017_0036_4 crossref_primary_10_1007_s10661_016_5472_3 crossref_primary_10_3390_cli12030042 crossref_primary_10_1016_j_eja_2013_04_005 crossref_primary_10_1038_nclimate2181 crossref_primary_10_3390_agriculture11111029 crossref_primary_10_1016_j_biosystemseng_2017_02_007 crossref_primary_10_1016_j_fcr_2017_11_005 crossref_primary_10_1016_j_eja_2013_04_003 crossref_primary_10_1017_S0021859612000767 crossref_primary_10_3390_su14074100 crossref_primary_10_1002_agj2_20693 crossref_primary_10_1016_j_eja_2024_127328 crossref_primary_10_17221_315_2019_PSE crossref_primary_10_1016_j_agsy_2016_11_007 crossref_primary_10_1007_s11027_015_9688_2 crossref_primary_10_1007_s11027_022_09996_3 crossref_primary_10_1007_s41742_018_0074_2 crossref_primary_10_1016_j_agsy_2024_103913 crossref_primary_10_1016_j_agsy_2016_12_016 crossref_primary_10_1016_j_agrformet_2018_02_026 crossref_primary_10_3390_w16121719 crossref_primary_10_1007_s10584_015_1428_9 crossref_primary_10_3389_fpls_2016_01262 crossref_primary_10_1017_S0021859612000779 crossref_primary_10_1016_j_agrformet_2022_109148 crossref_primary_10_1088_1748_9326_ac20f4 crossref_primary_10_1016_j_agsy_2017_07_010 crossref_primary_10_4236_ajps_2014_56096 crossref_primary_10_1111_gcb_16992 crossref_primary_10_1007_s11027_015_9676_6 crossref_primary_10_1088_1748_9326_ac9242 crossref_primary_10_1007_s40808_018_0513_2 crossref_primary_10_1071_CP21279 crossref_primary_10_1016_j_agrformet_2023_109413 crossref_primary_10_1088_1748_9326_11_11_113004 crossref_primary_10_1016_j_agrformet_2023_109778 crossref_primary_10_1088_1748_9326_7_4_044014 crossref_primary_10_1007_s00122_023_04496_7 crossref_primary_10_1016_j_ecoinf_2015_09_009 crossref_primary_10_1007_s40003_018_0366_y crossref_primary_10_1016_j_agwat_2024_108881 crossref_primary_10_1088_1748_9326_ac0f26 crossref_primary_10_1016_j_fcr_2016_08_015 crossref_primary_10_1007_s11269_014_0577_3 crossref_primary_10_1007_s11829_012_9234_z crossref_primary_10_1016_j_eja_2022_126487 crossref_primary_10_1007_s13353_023_00789_1 crossref_primary_10_3390_agronomy12122927 crossref_primary_10_3390_land11091409 crossref_primary_10_3390_agriculture14030469 crossref_primary_10_1016_j_scitotenv_2016_12_158 crossref_primary_10_2139_ssrn_2310087 crossref_primary_10_1016_j_ecoinf_2015_10_009 crossref_primary_10_1371_journal_pone_0198623 crossref_primary_10_3390_su12041638 crossref_primary_10_1007_s10584_019_02538_y crossref_primary_10_3389_fpls_2024_1464454 crossref_primary_10_1038_s41437_022_00542_0 crossref_primary_10_3389_fsufs_2023_1291866 crossref_primary_10_30852_sb_2024_2570 crossref_primary_10_1016_j_eja_2016_12_009 crossref_primary_10_1016_j_foodpol_2020_101954 crossref_primary_10_1016_j_eja_2017_06_012 crossref_primary_10_3389_fpls_2018_01041 crossref_primary_10_1088_1748_9326_7_3_034032 crossref_primary_10_1088_1748_9326_8_2_024001 crossref_primary_10_1016_j_agee_2018_07_015 crossref_primary_10_1007_s10681_018_2134_2 crossref_primary_10_1016_j_agsy_2015_02_007 crossref_primary_10_1017_S0021859612001013 crossref_primary_10_1007_s11269_024_03839_3 crossref_primary_10_1080_09670874_2015_1028510 crossref_primary_10_1088_1748_9326_8_2_024018 crossref_primary_10_1016_j_agsy_2017_06_009 crossref_primary_10_1038_s41598_019_45745_4 crossref_primary_10_1002_agj2_20667 crossref_primary_10_1016_j_techfore_2015_03_019 crossref_primary_10_3390_agronomy14010181 crossref_primary_10_1111_gcb_14091 crossref_primary_10_1016_j_agrformet_2017_02_033 crossref_primary_10_1016_j_eja_2015_09_002 crossref_primary_10_1007_s12571_015_0440_2 crossref_primary_10_1038_s43016_022_00521_y crossref_primary_10_1016_j_envsoft_2016_03_008 crossref_primary_10_1142_S2010007813500024 crossref_primary_10_1104_pp_112_208298 crossref_primary_10_1007_s10584_020_02857_5 crossref_primary_10_1111_jac_12182 crossref_primary_10_1073_pnas_1222463110 crossref_primary_10_21511_ppm_23_1__2025_38 crossref_primary_10_1016_j_agee_2012_04_026 crossref_primary_10_1007_s10584_015_1487_y crossref_primary_10_1088_1748_9326_abd970 crossref_primary_10_1093_insilicoplants_diae010 crossref_primary_10_3390_atmos12040441 crossref_primary_10_1016_j_agsy_2018_06_007 crossref_primary_10_5897_AJAR2018_13801 crossref_primary_10_1016_j_fcr_2013_09_019 crossref_primary_10_1080_02571862_2015_1006271 crossref_primary_10_1002_2016MS000749 crossref_primary_10_1002_jsfa_12779 crossref_primary_10_3389_ffgc_2023_1198186 crossref_primary_10_1186_s43170_024_00232_3 crossref_primary_10_2139_ssrn_3077684 crossref_primary_10_1007_s41748_022_00321_1 crossref_primary_10_1007_s10658_012_0144_9 crossref_primary_10_1016_j_landusepol_2022_106011 crossref_primary_10_1016_j_agsy_2017_04_004 crossref_primary_10_1016_j_jcs_2014_01_006 crossref_primary_10_1016_j_fcr_2014_06_017 crossref_primary_10_2139_ssrn_2343170 crossref_primary_10_1016_j_agsy_2020_102948 crossref_primary_10_1007_s10980_013_9939_0 crossref_primary_10_1016_j_agrformet_2021_108700 crossref_primary_10_1016_j_fcr_2013_11_008 crossref_primary_10_1007_s00704_016_1935_2 crossref_primary_10_1007_s11707_019_0806_4 crossref_primary_10_1016_j_gfs_2014_05_002 crossref_primary_10_1016_j_inpa_2020_10_002 crossref_primary_10_3390_ijgi11080433 crossref_primary_10_1007_s13593_022_00813_4 crossref_primary_10_1029_2023EF004297 crossref_primary_10_1007_s40808_020_00932_5 crossref_primary_10_3390_cli4040055 crossref_primary_10_1007_s10584_021_03223_9 crossref_primary_10_3390_agronomy11020369 crossref_primary_10_18278_wfp_4_2_9 crossref_primary_10_1016_j_agsy_2012_05_001 crossref_primary_10_1038_ncomms12608 crossref_primary_10_1016_j_scitotenv_2012_10_029 crossref_primary_10_1016_j_eja_2014_10_003 crossref_primary_10_1016_j_pce_2015_08_013 crossref_primary_10_5194_esd_14_457_2023 crossref_primary_10_1038_nclimate1916 crossref_primary_10_33462_jotaf_1240401 crossref_primary_10_5937_BiljLek2304565J crossref_primary_10_32604_phyton_2021_011685 crossref_primary_10_1515_reveh_2018_0043 crossref_primary_10_1016_j_agee_2019_106625 crossref_primary_10_3390_rs5073331 crossref_primary_10_1016_j_eja_2017_08_004 crossref_primary_10_3389_fpls_2023_1270087 crossref_primary_10_1016_j_envsoft_2014_12_003 crossref_primary_10_1016_j_cliser_2022_100333 crossref_primary_10_1016_j_biombioe_2015_04_038 crossref_primary_10_1016_j_wep_2012_11_002 crossref_primary_10_1016_j_fcr_2019_107685 crossref_primary_10_1038_s41598_017_13582_y crossref_primary_10_1186_2048_7010_3_11 crossref_primary_10_3390_land10121339 crossref_primary_10_1038_s41598_019_49167_0 crossref_primary_10_3390_w13243624 crossref_primary_10_3354_cr01282 crossref_primary_10_3354_cr01164 crossref_primary_10_1007_s44378_025_00029_4 crossref_primary_10_1007_s00704_014_1307_8 crossref_primary_10_1016_j_fcr_2019_107674 crossref_primary_10_4236_gep_2019_78006 crossref_primary_10_1029_2023EF004009 crossref_primary_10_1111_gcb_12768 crossref_primary_10_1007_s10584_014_1264_3 crossref_primary_10_1111_gcb_12520 crossref_primary_10_1007_s00704_020_03268_3 crossref_primary_10_1016_j_agsy_2017_03_005 crossref_primary_10_1016_j_cosust_2021_01_006 crossref_primary_10_1016_j_fcr_2024_109306 crossref_primary_10_3390_agronomy12112625 crossref_primary_10_1016_j_tplants_2017_02_003 crossref_primary_10_1007_s10287_018_0339_4 crossref_primary_10_1017_S0021859614001129 crossref_primary_10_1061__ASCE_NH_1527_6996_0000367 crossref_primary_10_1016_j_scitotenv_2017_07_270 crossref_primary_10_1093_plphys_kiab113 crossref_primary_10_1016_j_eja_2022_126500 crossref_primary_10_1016_j_crm_2016_12_003 crossref_primary_10_1016_j_envsoft_2020_104836 crossref_primary_10_1111_gcb_13967 crossref_primary_10_1007_s00477_016_1233_7 crossref_primary_10_1002_2013JD020130 crossref_primary_10_1111_gcb_13600 crossref_primary_10_1016_j_eja_2013_01_005 crossref_primary_10_1088_1748_9326_ab93fc crossref_primary_10_1038_s43017_023_00491_0 crossref_primary_10_1038_nclimate1832 crossref_primary_10_1016_j_compag_2014_03_002 crossref_primary_10_1088_1748_9326_ab17fb crossref_primary_10_3390_ijms22031314 crossref_primary_10_1007_s42729_023_01438_6 crossref_primary_10_1017_S0021859616000241 crossref_primary_10_1080_17565529_2021_2007837 crossref_primary_10_1016_j_agrformet_2021_108406 crossref_primary_10_1016_j_eja_2023_126853 crossref_primary_10_1088_1748_9326_10_9_094021 crossref_primary_10_1016_j_agwat_2017_08_022 crossref_primary_10_3390_su14010053 crossref_primary_10_1016_j_fcr_2024_109719 crossref_primary_10_1016_j_fcr_2014_10_019 crossref_primary_10_3390_atmos14030497 crossref_primary_10_1016_j_fcr_2013_02_014 crossref_primary_10_1016_j_agrformet_2016_03_006 crossref_primary_10_1016_j_scitotenv_2017_03_208 crossref_primary_10_1016_j_fcr_2018_02_023 crossref_primary_10_1002_wcc_498 crossref_primary_10_1093_hr_uhad045 crossref_primary_10_1016_j_still_2017_02_009 crossref_primary_10_1007_s40953_024_00411_z crossref_primary_10_1016_j_indcrop_2019_03_046 crossref_primary_10_1007_s11069_021_05130_9 crossref_primary_10_1016_j_eja_2013_09_015 crossref_primary_10_1007_s13351_019_8143_9 crossref_primary_10_1088_1748_9326_aafa3e crossref_primary_10_1371_journal_pone_0181954 crossref_primary_10_1016_j_agsy_2017_03_012 crossref_primary_10_1051_e3sconf_20185001006 crossref_primary_10_1016_j_agee_2022_108179 crossref_primary_10_1007_s00704_012_0780_1 crossref_primary_10_1016_j_eja_2019_125915 crossref_primary_10_1007_s00484_022_02265_7 crossref_primary_10_1371_journal_pone_0228552 crossref_primary_10_1016_j_pbi_2020_05_002 crossref_primary_10_1088_1748_9326_11_7_074007 crossref_primary_10_1088_1748_9326_8_2_024041 crossref_primary_10_1007_s10333_014_0455_x crossref_primary_10_1093_aob_mct016 crossref_primary_10_1111_1467_8489_12330 crossref_primary_10_1016_j_agrformet_2011_10_015 crossref_primary_10_1016_j_agrformet_2025_110463 crossref_primary_10_1111_ddi_12939 crossref_primary_10_1016_j_cropro_2017_05_005 crossref_primary_10_1007_s00704_023_04573_3 crossref_primary_10_1038_s41558_019_0427_7 crossref_primary_10_1111_gcb_16087 crossref_primary_10_1016_j_eja_2016_11_004 crossref_primary_10_1016_j_agrformet_2014_09_016 crossref_primary_10_1016_j_scitotenv_2017_10_209 crossref_primary_10_1029_2018WR022767 crossref_primary_10_1007_s00704_023_04729_1 crossref_primary_10_1016_j_envsoft_2014_12_013 crossref_primary_10_1016_j_fcr_2019_04_022 crossref_primary_10_1017_S0021859623000011 crossref_primary_10_1038_s41598_021_99378_7 crossref_primary_10_1007_s10661_023_11108_w crossref_primary_10_1016_j_envsoft_2014_12_016 crossref_primary_10_1088_1748_9326_11_12_123001 crossref_primary_10_1016_j_fcr_2015_12_012 crossref_primary_10_1007_s10113_013_0470_2 crossref_primary_10_1016_j_eja_2017_07_011 crossref_primary_10_1016_j_compag_2023_108238 crossref_primary_10_1016_j_envsoft_2016_09_001 |
Cites_doi | 10.1007/s003820050276 10.1073/pnas.0913000107 10.3923/ijar.2006.202.225 10.1016/j.envsoft.2010.08.004 10.1007/BF00175549 10.1126/science.1160787 10.1007/s10584-005-5940-1 10.1016/j.jenvman.2006.04.019 10.1016/j.ecolmodel.2010.09.001 10.1111/j.1365-2486.2007.01486.x 10.1016/S0167-8809(97)00083-2 10.1029/2009EO360002 10.1016/S0168-1923(03)00025-X 10.2134/asaspecpub59 10.1007/BF00139076 10.1016/S0304-3800(96)01924-2 10.1007/BF00139053 10.1016/S0167-8809(03)00114-2 10.1007/s11027-007-9103-8 10.1016/j.tplants.2008.06.001 10.1093/jxb/erq100 10.1007/s10584-006-9211-6 10.1016/0168-1923(92)90087-K 10.1093/jxb/erp062 10.1016/S0167-8809(97)00082-0 10.2134/agronj2004.0853 10.1046/j.1365-2486.2002.00498.x 10.1007/BF01091475 10.1016/S0378-4290(02)00041-2 10.1007/BF00162779 10.2134/agronj1996.00021962008800050002x 10.1590/S0100-204X2008001100001 10.1016/0306-4565(94)00047-M 10.2134/agronj1994.00021962008600050020x 10.1111/j.2153-3490.1976.tb00701.x 10.1016/S0065-2113(02)77017-X 10.1029/1998WR900115 10.1016/S1161-0301(02)00097-7 10.1002/(SICI)1096-9063(199804)52:4<394::AID-PS741>3.0.CO;2-D 10.2134/jeq1988.00472425001700040001x 10.1111/j.1365-3040.2008.01841.x 10.1093/wbro/14.2.277 |
ContentType | Journal Article |
Copyright | 2011 |
Copyright_xml | – notice: 2011 |
DBID | FBQ AAYXX CITATION 7S9 L.6 7ST 7SU 7U6 8FD C1K FR3 SOI |
DOI | 10.1016/j.fcr.2011.07.001 |
DatabaseName | AGRIS CrossRef AGRICOLA AGRICOLA - Academic Environment Abstracts Environmental Engineering Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Engineering Research Database Technology Research Database Environment Abstracts Sustainability Science Abstracts Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Environment Abstracts AGRICOLA Engineering Research Database |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6852 |
EndPage | 368 |
ExternalDocumentID | 10_1016_j_fcr_2011_07_001 US201400170287 S0378429011002395 |
GeographicLocations | United States Europe USA |
GeographicLocations_xml | – name: Europe – name: United States – name: USA |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SES SEW SPCBC SSA SSZ T5K UNMZH WUQ Y6R ~G- ~KM ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 7ST 7SU 7U6 8FD C1K FR3 SOI |
ID | FETCH-LOGICAL-c485t-b16356484609982e03f459a7bea3da505001b14ef034c3e10a3a48bfe7c67fd53 |
IEDL.DBID | .~1 |
ISSN | 0378-4290 |
IngestDate | Mon Jul 21 12:00:06 EDT 2025 Fri Jul 11 05:56:12 EDT 2025 Tue Aug 05 10:56:59 EDT 2025 Tue Jul 01 01:32:22 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Wed Dec 27 19:18:14 EST 2023 Fri Feb 23 02:21:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Adaptation, Agricultural impacts, Climate change, Crop growth simulation, Global warming, Modeling |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-b16356484609982e03f459a7bea3da505001b14ef034c3e10a3a48bfe7c67fd53 |
Notes | http://dx.doi.org/10.1016/j.fcr.2011.07.001 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1365046098 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_902375201 proquest_miscellaneous_1777170631 proquest_miscellaneous_1365046098 crossref_primary_10_1016_j_fcr_2011_07_001 crossref_citationtrail_10_1016_j_fcr_2011_07_001 fao_agris_US201400170287 elsevier_sciencedirect_doi_10_1016_j_fcr_2011_07_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-12-20 |
PublicationDateYYYYMMDD | 2011-12-20 |
PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-20 day: 20 |
PublicationDecade | 2010 |
PublicationTitle | Field crops research |
PublicationYear | 2011 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Adam, Van Bussel, Leffelaar, Van Keulen, Ewert (bib0010) 2011; 222 Rosenberg, Crosson, Frederick, Easterling, McKenney, Bowes, Sedjo, Darmstadter, Katz, Lemon (bib0190) 1993; 24 Gitay, Brown, Easterling, Jallow (bib0085) 2001 Adam, M.Y.O., 2010. A framework to introduce flexibility in crop modelling: from conceptual modelling to software engineering and back. PhD thesis. Plant Production Systems. Wageningen University, Wageningen, pp. 190. Alexandrov, Ames, Bellocchi, Bruen, Crout, Erechtchoukova, Hildebrandt, Hoffman, Jackisch, Khaiter, Mannina, Matsunaga, Purucker, Rivington, Samaniego (bib0025) 2011; 26 White, Corbett, Dobermann (bib0275) 2002; 76 Stokes, C.J., Howden, S.M. 2008. An overview of climate change adaptation in Australian primary industries—impacts, options and priorities. Report prepared for the National Climate Change Research Strategy for Primary Industries, Land and Water Australia, Canberra. p. 344. Easterling, Rosenberg, Lemon, McKenney (bib0065) 1992; 59 Tans, P., 2010. Trends in atmospheric carbon dioxide. NOAA/ESRL. FAO., 2008. FAOSTAT. Katz (bib0095) 1977; 1 Christensen, Carter, Rummukainen, Amanatidis (bib0050) 2007; 81 Viner, Hulme, Raper (bib0270) 1995; 20 Passioura (bib0170) 1996; 88 Timsina, Humphreys (bib0245) 2006; 1 Lobb, Huffman, Reicosky (bib0125) 2007; 82 Motha, Baier (bib0160) 2005; 70 Cox, Betts, Bunton, Essery, Rowntree, Smith (bib0055) 1999; 15 Yuan, Tiller, Al-Ahmad, Stewart, Stewart (bib0280) 2008; 13 Reilly, Baethgen, Chege, van de Geijn, Lin, Iglesias, Kenny, Patterson, Rogasik, Roetter, Rosenzweig, Sombroek, Westbrook (bib0175) 1996 (verified 28 June 2011). Lago, Streck, Alberto, Oliveira, Paula (bib0130) 2008; 43 Luo, Teng, Fabellar, TeBeest (bib0135) 1998; 68 Bostick, Koo, Walen, Jones, Hoogenboom (bib0035) 2004; 96 . Donatelli, M., Russell, G., Rizzoli, A., 2009. APES: The Agricultural Production and Externalities Simulator. In: Van Ittersum, M.K., Wolf, J., van Laar, H.H. (Eds.), AgSAP conference 2009. Wageningen University and Research Centre, The Netherlands, Egmond aan Zee, The Netherlands, pp. 206–207. Liverman, Terjung, Hayes, Mearns (bib0120) 1986; 9 (bib0250) 1998 Ainsworth, Beier, Calfapietra, Ceulemans, Durand-Tardif, Farquhar, Godbold, Hendrey, Hickler, Kaduk, Karnosky, Kimball, Korner, Koornneef, Lafarge, Leakey, Lewin, Long, Manderscheid, McNeil, Mies, Miglietta, Morgan, Nagy, Norby, Norton, Percy, Rogers, Soussana, Stitt, Weigel, White (bib0020) 2008; 31 (bib0230) 1990 Thornton, Wilkens (bib0240) 1998 (verified 8 April 2011). Marshall (bib0145) 1999; 52 Kimball, Conley, Wang, Xingwu, Morgan, Smith (bib0105) 2008; 14 Tubiello, Ewert (bib0255) 2002; 18 Kimball, Kobayashi, Bindi (bib0110) 2002; 77 Smit, Ludlow, Brklacich (bib0210) 1988; 17 Hoogenboom, Jones, Wilkens, Porter, Batchelor, Hunt, Boote, Singh, Uryasev, Bowen, Gijsman, du Toit, White, Tsuji (bib0080) 2010 Kimball, LaMorte, Pinter, Wall, Hunsaker, Adamsen, Leavitt, Thompson, Matthias, Brooks (bib0115) 1999; 35 Reynolds, Acock (bib0180) 1997; 94 Mendelsohn, Dinar (bib0155) 1999; 14 Allan, Soden (bib0030) 2008; 321 UKCIP, 2010. Previous UK climate information. Keeling, Bacastow, Bainbridge, Ekdahl, Guenther, Waterman, Chin (bib0100) 1976; 28 Challinor, Ewert, Arnold, Simelton, Fraser (bib0045) 2009; 60 Easterling W.E., Aggarwal P.K., Batima P., Brander K.M., Erda L., Howden S.M., Kirilenko A., Morton J., Soussana J.-F., Schmidhuber J., Tubiello F.N., 2007. Food, fibre and forest products. In: Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E. (Eds.), Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. pp. 273–313. Rosenberg, Brown, Izaurralde, Thomson (bib0185) 2003; 117 Soussana, Graux, Tubiello (bib0215) 2010; 61 Thornton, Hoogenboom (bib0235) 1994; 86 Ainsworth, Davey, Bernacchi, Dermody, Heaton, Moore, Morgan, Naidu, Ra, Zhu, Long (bib0015) 2002; 8 (verified 13 September 2010). Nakicenovic, N., Swart, R. Eds., 2000. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., 599 pp. Available online at Iglesias, Erda, Rosenzweig (bib0090) 1996; 92 Rosenzweig (bib0195) 1985; 7 Rosenzweig, C., Tubiello, F.N., 2007: Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitig. Adapt. Strategies Global Change, 12, 855-873 Rosenzweig, C., Ritchie, J.T., Jones, J.W., Tsuji, G.Y., Hildebrand, P., 1995. Climate change and agriculture: analysis of potential international impacts. American Society of Agronomy, Madison, WI. Mearns, Gutowski, Jones, Leung, McGinnis, Nunes, Qian (bib0150) 2009; 90 Luo, Teng, Fabellar, TeBeest (bib0140) 1998; 68 Van Ittersum, Howden, Asseng (bib0265) 2003; 97 (verified 8 April 2010). Cao, Bala, Caldeira, Nemani, Ban-Weiss (bib0040) 2010; 107 Iglesias (10.1016/j.fcr.2011.07.001_bib0090) 1996; 92 Keeling (10.1016/j.fcr.2011.07.001_bib0100) 1976; 28 Mendelsohn (10.1016/j.fcr.2011.07.001_bib0155) 1999; 14 Thornton (10.1016/j.fcr.2011.07.001_bib0235) 1994; 86 (10.1016/j.fcr.2011.07.001_bib0250) 1998 Luo (10.1016/j.fcr.2011.07.001_bib0140) 1998; 68 Alexandrov (10.1016/j.fcr.2011.07.001_bib0025) 2011; 26 Ainsworth (10.1016/j.fcr.2011.07.001_bib0020) 2008; 31 Hoogenboom (10.1016/j.fcr.2011.07.001_bib0080) 2010 10.1016/j.fcr.2011.07.001_bib0005 Easterling (10.1016/j.fcr.2011.07.001_bib0065) 1992; 59 10.1016/j.fcr.2011.07.001_bib0205 Timsina (10.1016/j.fcr.2011.07.001_bib0245) 2006; 1 Van Ittersum (10.1016/j.fcr.2011.07.001_bib0265) 2003; 97 (10.1016/j.fcr.2011.07.001_bib0230) 1990 Allan (10.1016/j.fcr.2011.07.001_bib0030) 2008; 321 Ainsworth (10.1016/j.fcr.2011.07.001_bib0015) 2002; 8 Motha (10.1016/j.fcr.2011.07.001_bib0160) 2005; 70 Rosenzweig (10.1016/j.fcr.2011.07.001_bib0195) 1985; 7 Passioura (10.1016/j.fcr.2011.07.001_bib0170) 1996; 88 Tubiello (10.1016/j.fcr.2011.07.001_bib0255) 2002; 18 Christensen (10.1016/j.fcr.2011.07.001_bib0050) 2007; 81 Luo (10.1016/j.fcr.2011.07.001_bib0135) 1998; 68 Kimball (10.1016/j.fcr.2011.07.001_bib0110) 2002; 77 Liverman (10.1016/j.fcr.2011.07.001_bib0120) 1986; 9 Katz (10.1016/j.fcr.2011.07.001_bib0095) 1977; 1 10.1016/j.fcr.2011.07.001_bib0165 10.1016/j.fcr.2011.07.001_bib0200 Marshall (10.1016/j.fcr.2011.07.001_bib0145) 1999; 52 Rosenberg (10.1016/j.fcr.2011.07.001_bib0190) 1993; 24 Lobb (10.1016/j.fcr.2011.07.001_bib0125) 2007; 82 Reynolds (10.1016/j.fcr.2011.07.001_bib0180) 1997; 94 Soussana (10.1016/j.fcr.2011.07.001_bib0215) 2010; 61 Thornton (10.1016/j.fcr.2011.07.001_bib0240) 1998 Rosenberg (10.1016/j.fcr.2011.07.001_bib0185) 2003; 117 Bostick (10.1016/j.fcr.2011.07.001_bib0035) 2004; 96 10.1016/j.fcr.2011.07.001_bib0225 Adam (10.1016/j.fcr.2011.07.001_bib0010) 2011; 222 Kimball (10.1016/j.fcr.2011.07.001_bib0115) 1999; 35 Cox (10.1016/j.fcr.2011.07.001_bib0055) 1999; 15 10.1016/j.fcr.2011.07.001_bib0075 Gitay (10.1016/j.fcr.2011.07.001_bib0085) 2001 Yuan (10.1016/j.fcr.2011.07.001_bib0280) 2008; 13 10.1016/j.fcr.2011.07.001_bib0070 White (10.1016/j.fcr.2011.07.001_bib0275) 2002; 76 Cao (10.1016/j.fcr.2011.07.001_bib0040) 2010; 107 Challinor (10.1016/j.fcr.2011.07.001_bib0045) 2009; 60 Lago (10.1016/j.fcr.2011.07.001_bib0130) 2008; 43 Reilly (10.1016/j.fcr.2011.07.001_bib0175) 1996 10.1016/j.fcr.2011.07.001_bib0260 10.1016/j.fcr.2011.07.001_bib0220 Viner (10.1016/j.fcr.2011.07.001_bib0270) 1995; 20 Mearns (10.1016/j.fcr.2011.07.001_bib0150) 2009; 90 Smit (10.1016/j.fcr.2011.07.001_bib0210) 1988; 17 10.1016/j.fcr.2011.07.001_bib0060 Kimball (10.1016/j.fcr.2011.07.001_bib0105) 2008; 14 |
References_xml | – volume: 86 start-page: 860 year: 1994 end-page: 868 ident: bib0235 article-title: A computer program to analyze single-season crop model outputs publication-title: Agron. J. – volume: 81 start-page: 1 year: 2007 end-page: 6 ident: bib0050 article-title: Evaluating the performance and utility of regional climate models: the Prudence Project publication-title: Clim. Change – volume: 43 start-page: 1441 year: 2008 end-page: 1448 ident: bib0130 article-title: Impact of increasing mean air temperature on the development of rice and red rice publication-title: Pesqui. Agropecu. Bras. – volume: 31 start-page: 1317 year: 2008 end-page: 1324 ident: bib0020 article-title: Next generation of elevated [CO publication-title: Plant Cell Environ. – volume: 82 start-page: 377 year: 2007 end-page: 387 ident: bib0125 article-title: Importance of information on tillage practices in the modelling of environmental processes and in the use of environmental indicators publication-title: J. Environ. Manag. – volume: 94 start-page: 7 year: 1997 end-page: 16 ident: bib0180 article-title: Modularity and genericness in plant and ecosystem models: modularity in Plant Models publication-title: Ecol. Model. – reference: Rosenzweig, C., Tubiello, F.N., 2007: Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitig. Adapt. Strategies Global Change, 12, 855-873, – reference: Stokes, C.J., Howden, S.M. 2008. An overview of climate change adaptation in Australian primary industries—impacts, options and priorities. Report prepared for the National Climate Change Research Strategy for Primary Industries, Land and Water Australia, Canberra. p. 344. – volume: 68 start-page: 197 year: 1998 end-page: 205 ident: bib0135 article-title: Risk analysis of yield losses caused by rice leaf blast associated with temperature changes above and below for five Asian countries publication-title: Agric. Ecosys. Environ. – volume: 321 start-page: 1481 year: 2008 end-page: 1484 ident: bib0030 article-title: Atmospheric warming and the amplification of precipitation extremes publication-title: Science – start-page: 427 year: 1996 end-page: 467 ident: bib0175 article-title: Agriculture in a changing climate: impacts and adaptation publication-title: Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses—Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change – year: 2010 ident: bib0080 article-title: Decision Support System for Agrotechnology Transfer (DSSAT) Version 4 – reference: Easterling W.E., Aggarwal P.K., Batima P., Brander K.M., Erda L., Howden S.M., Kirilenko A., Morton J., Soussana J.-F., Schmidhuber J., Tubiello F.N., 2007. Food, fibre and forest products. In: Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E. (Eds.), Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. pp. 273–313. – volume: 90 start-page: 311 year: 2009 ident: bib0150 article-title: A regional climate change assessment program for North America publication-title: Eos. Trans. Am. Geophys. U – volume: 13 start-page: 421 year: 2008 end-page: 429 ident: bib0280 article-title: Plants to power: bioenergy to fuel the future publication-title: Trends Plant Sci. – volume: 17 start-page: 519 year: 1988 end-page: 527 ident: bib0210 article-title: Implications of a global climatic warming for agriculture: a review and appraisal publication-title: J. Environ. Qual. – reference: Tans, P., 2010. Trends in atmospheric carbon dioxide. NOAA/ESRL. – reference: UKCIP, 2010. Previous UK climate information. – volume: 60 start-page: 2775 year: 2009 end-page: 2789 ident: bib0045 article-title: Crops and climate change: Progress, trends, and challenges in simulating impacts and informing adaptation publication-title: J. Exp. Bot. – reference: (verified 8 April 2011). – reference: Donatelli, M., Russell, G., Rizzoli, A., 2009. APES: The Agricultural Production and Externalities Simulator. In: Van Ittersum, M.K., Wolf, J., van Laar, H.H. (Eds.), AgSAP conference 2009. Wageningen University and Research Centre, The Netherlands, Egmond aan Zee, The Netherlands, pp. 206–207. – reference: (verified 8 April 2010). – volume: 97 start-page: 255 year: 2003 end-page: 273 ident: bib0265 article-title: Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO publication-title: Agric. Ecosys. Environ. – reference: Nakicenovic, N., Swart, R. Eds., 2000. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., 599 pp. Available online at: – volume: 35 start-page: 1179 year: 1999 end-page: 1190 ident: bib0115 article-title: Free-air CO2 enrichment (FACE) and soil nitrogen effects on energy balance and evapotranspiration of wheat publication-title: Water Resour. Res. – reference: . – volume: 14 start-page: 277 year: 1999 end-page: 293 ident: bib0155 article-title: Climate change, agriculture, and developing countries: does adaptation matter? publication-title: World Bank Research Obs. – volume: 28 start-page: 538 year: 1976 end-page: 551 ident: bib0100 article-title: Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii publication-title: Tellus – volume: 1 start-page: 202 year: 2006 end-page: 225 ident: bib0245 article-title: Applications of CERES-rice and CERES-wheat in research, policy and climate change studies in Asia: a review publication-title: Int. J. Agric. Res. – volume: 77 start-page: 293 year: 2002 end-page: 368 ident: bib0110 article-title: Responses of agricultural crops to free-air CO publication-title: Adv. Agron. – volume: 70 start-page: 137 year: 2005 end-page: 164 ident: bib0160 article-title: Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America publication-title: Clim. Change – volume: 222 start-page: 131 year: 2011 end-page: 143 ident: bib0010 article-title: Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions publication-title: Ecol. Model. – volume: 18 start-page: 57 year: 2002 end-page: 74 ident: bib0255 article-title: Simulating the effects of elevated CO publication-title: Eur. J. Agron. – start-page: 235 year: 2001 end-page: 342 ident: bib0085 article-title: Ecosystems and their goods and services publication-title: Climate Change 2001: Impacts, Adaptation, and Vulnerability. Third Assessment Report of the Intergovernmental Panel on Climate Change. – reference: Adam, M.Y.O., 2010. A framework to introduce flexibility in crop modelling: from conceptual modelling to software engineering and back. PhD thesis. Plant Production Systems. Wageningen University, Wageningen, pp. 190. – volume: 76 start-page: 45 year: 2002 end-page: 54 ident: bib0275 article-title: Insufficient use of meso-resolution spatial analysis in the planning, execution and dissemination of agronomic research? publication-title: Field Crops Res. – start-page: 329 year: 1998 end-page: 345 ident: bib0240 article-title: Risk assessment and food security publication-title: Understanding Options for Agricultural Production – volume: 1 start-page: 85 year: 1977 end-page: 96 ident: bib0095 article-title: Assessing the impact of climatic change on food production publication-title: Clim. Change – volume: 14 start-page: 309 year: 2008 end-page: 320 ident: bib0105 article-title: Infrared heater arrays for warming ecosystem field plots publication-title: Global Change Biol. – volume: 7 start-page: 367 year: 1985 end-page: 389 ident: bib0195 article-title: Potential CO publication-title: Climatic Change – year: 1990 ident: bib0230 publication-title: Impacts Assessment of Climate Change—Report of Working Group II – reference: (verified 28 June 2011). – volume: 92 start-page: 13 year: 1996 end-page: 27 ident: bib0090 article-title: Climate change in Asia: a review of the vulnerability and adaptation of crop production publication-title: Water Air Soil Pollut. – volume: 8 start-page: 695 year: 2002 end-page: 709 ident: bib0015 article-title: A meta-analysis of elevated [CO2] effects on soybean ( publication-title: Global Change Biol. – volume: 96 start-page: 853 year: 2004 end-page: 856 ident: bib0035 article-title: A web-based data exchange system for crop model applications publication-title: Agron. J. – volume: 24 start-page: 7 year: 1993 end-page: 22 ident: bib0190 article-title: The MINK methodology: background and baseline publication-title: Clim. Change – volume: 59 start-page: 75 year: 1992 end-page: 102 ident: bib0065 article-title: Simulations of crop responses to climate change: effects with present technology and currently available adjustments (the ‘smart farmer’ scenario) publication-title: Agric. Forest. Meteorol. – volume: 61 start-page: 2217 year: 2010 end-page: 2228 ident: bib0215 article-title: Improving the use of modelling for projections of climate change impacts on crops and pastures publication-title: J. Exp. Bot. – volume: 20 start-page: 175 year: 1995 end-page: 190 ident: bib0270 article-title: Climate change scenarios for the assessments of the climate change on regional ecosystems publication-title: J. Thermal Biol. – volume: 107 start-page: 9513 year: 2010 end-page: 9518 ident: bib0040 article-title: Importance of carbon dioxide physiological forcing to future climate change publication-title: Proc. Nat. Acad. Sci. – volume: 52 start-page: 394 year: 1999 end-page: 402 ident: bib0145 article-title: Herbicide-tolerant crops - real farmer opportunity or potential environmental problem? publication-title: Pesticide Sci. – volume: 117 start-page: 73 year: 2003 end-page: 96 ident: bib0185 article-title: Integrated assessment of Hadley Centre (HadCM2) climate change projections on agricultural productivity and irrigation water supply in the conterminous United States: I. climate change scenarios and impacts on irrigation water supply simulated with the HUMUS model publication-title: Agric. For. Met. – reference: Rosenzweig, C., Ritchie, J.T., Jones, J.W., Tsuji, G.Y., Hildebrand, P., 1995. Climate change and agriculture: analysis of potential international impacts. American Society of Agronomy, Madison, WI. – volume: 26 start-page: 328 year: 2011 end-page: 336 ident: bib0025 article-title: Technical assessment and evaluation of environmental models and software: Letter to the publication-title: Environ. Model. Software – volume: 15 start-page: 183 year: 1999 end-page: 203 ident: bib0055 article-title: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity publication-title: Clim. Dynam. – reference: (verified 13 September 2010). – year: 1998 ident: bib0250 publication-title: Understanding Options for Agricultural Production – reference: FAO., 2008. FAOSTAT. – volume: 9 start-page: 327 year: 1986 end-page: 347 ident: bib0120 article-title: Climatic change and grain corn yields in the North American Great Plains publication-title: Clim. Change – volume: 88 start-page: 690 year: 1996 end-page: 694 ident: bib0170 article-title: Simulation models: science, snake oil, education, or engineering? publication-title: Agron. J. – volume: 68 start-page: 187 year: 1998 end-page: 196 ident: bib0140 article-title: The effects of global temperature change on rice leaf blast epidemics: a simulation study in three agroecological zones publication-title: Agric. Ecosys. Environ. – start-page: 427 year: 1996 ident: 10.1016/j.fcr.2011.07.001_bib0175 article-title: Agriculture in a changing climate: impacts and adaptation – volume: 15 start-page: 183 year: 1999 ident: 10.1016/j.fcr.2011.07.001_bib0055 article-title: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity publication-title: Clim. Dynam. doi: 10.1007/s003820050276 – start-page: 329 year: 1998 ident: 10.1016/j.fcr.2011.07.001_bib0240 article-title: Risk assessment and food security – volume: 107 start-page: 9513 year: 2010 ident: 10.1016/j.fcr.2011.07.001_bib0040 article-title: Importance of carbon dioxide physiological forcing to future climate change publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.0913000107 – volume: 1 start-page: 202 year: 2006 ident: 10.1016/j.fcr.2011.07.001_bib0245 article-title: Applications of CERES-rice and CERES-wheat in research, policy and climate change studies in Asia: a review publication-title: Int. J. Agric. Res. doi: 10.3923/ijar.2006.202.225 – volume: 26 start-page: 328 year: 2011 ident: 10.1016/j.fcr.2011.07.001_bib0025 article-title: Technical assessment and evaluation of environmental models and software: Letter to the publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2010.08.004 – volume: 92 start-page: 13 year: 1996 ident: 10.1016/j.fcr.2011.07.001_bib0090 article-title: Climate change in Asia: a review of the vulnerability and adaptation of crop production publication-title: Water Air Soil Pollut. doi: 10.1007/BF00175549 – volume: 321 start-page: 1481 year: 2008 ident: 10.1016/j.fcr.2011.07.001_bib0030 article-title: Atmospheric warming and the amplification of precipitation extremes publication-title: Science doi: 10.1126/science.1160787 – volume: 70 start-page: 137 year: 2005 ident: 10.1016/j.fcr.2011.07.001_bib0160 article-title: Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America publication-title: Clim. Change doi: 10.1007/s10584-005-5940-1 – ident: 10.1016/j.fcr.2011.07.001_bib0225 – ident: 10.1016/j.fcr.2011.07.001_bib0070 – year: 2010 ident: 10.1016/j.fcr.2011.07.001_bib0080 – volume: 82 start-page: 377 year: 2007 ident: 10.1016/j.fcr.2011.07.001_bib0125 article-title: Importance of information on tillage practices in the modelling of environmental processes and in the use of environmental indicators publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2006.04.019 – volume: 222 start-page: 131 year: 2011 ident: 10.1016/j.fcr.2011.07.001_bib0010 article-title: Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2010.09.001 – ident: 10.1016/j.fcr.2011.07.001_bib0060 – volume: 14 start-page: 309 year: 2008 ident: 10.1016/j.fcr.2011.07.001_bib0105 article-title: Infrared heater arrays for warming ecosystem field plots publication-title: Global Change Biol. doi: 10.1111/j.1365-2486.2007.01486.x – volume: 68 start-page: 197 year: 1998 ident: 10.1016/j.fcr.2011.07.001_bib0135 article-title: Risk analysis of yield losses caused by rice leaf blast associated with temperature changes above and below for five Asian countries publication-title: Agric. Ecosys. Environ. doi: 10.1016/S0167-8809(97)00083-2 – volume: 90 start-page: 311 year: 2009 ident: 10.1016/j.fcr.2011.07.001_bib0150 article-title: A regional climate change assessment program for North America publication-title: Eos. Trans. Am. Geophys. U doi: 10.1029/2009EO360002 – volume: 117 start-page: 73 year: 2003 ident: 10.1016/j.fcr.2011.07.001_bib0185 publication-title: Agric. For. Met. doi: 10.1016/S0168-1923(03)00025-X – ident: 10.1016/j.fcr.2011.07.001_bib0220 – ident: 10.1016/j.fcr.2011.07.001_bib0205 doi: 10.2134/asaspecpub59 – volume: 9 start-page: 327 year: 1986 ident: 10.1016/j.fcr.2011.07.001_bib0120 article-title: Climatic change and grain corn yields in the North American Great Plains publication-title: Clim. Change doi: 10.1007/BF00139076 – volume: 94 start-page: 7 year: 1997 ident: 10.1016/j.fcr.2011.07.001_bib0180 article-title: Modularity and genericness in plant and ecosystem models: modularity in Plant Models publication-title: Ecol. Model. doi: 10.1016/S0304-3800(96)01924-2 – volume: 7 start-page: 367 year: 1985 ident: 10.1016/j.fcr.2011.07.001_bib0195 article-title: Potential CO2-induced climate effects on North American wheat-producing regions publication-title: Climatic Change doi: 10.1007/BF00139053 – volume: 97 start-page: 255 year: 2003 ident: 10.1016/j.fcr.2011.07.001_bib0265 article-title: Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation publication-title: Agric. Ecosys. Environ. doi: 10.1016/S0167-8809(03)00114-2 – ident: 10.1016/j.fcr.2011.07.001_bib0075 – ident: 10.1016/j.fcr.2011.07.001_bib0200 doi: 10.1007/s11027-007-9103-8 – volume: 13 start-page: 421 year: 2008 ident: 10.1016/j.fcr.2011.07.001_bib0280 article-title: Plants to power: bioenergy to fuel the future publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2008.06.001 – volume: 61 start-page: 2217 year: 2010 ident: 10.1016/j.fcr.2011.07.001_bib0215 article-title: Improving the use of modelling for projections of climate change impacts on crops and pastures publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq100 – volume: 81 start-page: 1 year: 2007 ident: 10.1016/j.fcr.2011.07.001_bib0050 article-title: Evaluating the performance and utility of regional climate models: the Prudence Project publication-title: Clim. Change doi: 10.1007/s10584-006-9211-6 – volume: 59 start-page: 75 year: 1992 ident: 10.1016/j.fcr.2011.07.001_bib0065 article-title: Simulations of crop responses to climate change: effects with present technology and currently available adjustments (the ‘smart farmer’ scenario) publication-title: Agric. Forest. Meteorol. doi: 10.1016/0168-1923(92)90087-K – volume: 60 start-page: 2775 year: 2009 ident: 10.1016/j.fcr.2011.07.001_bib0045 article-title: Crops and climate change: Progress, trends, and challenges in simulating impacts and informing adaptation publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp062 – volume: 68 start-page: 187 year: 1998 ident: 10.1016/j.fcr.2011.07.001_bib0140 article-title: The effects of global temperature change on rice leaf blast epidemics: a simulation study in three agroecological zones publication-title: Agric. Ecosys. Environ. doi: 10.1016/S0167-8809(97)00082-0 – volume: 96 start-page: 853 year: 2004 ident: 10.1016/j.fcr.2011.07.001_bib0035 article-title: A web-based data exchange system for crop model applications publication-title: Agron. J. doi: 10.2134/agronj2004.0853 – year: 1998 ident: 10.1016/j.fcr.2011.07.001_bib0250 – ident: 10.1016/j.fcr.2011.07.001_bib0005 – volume: 8 start-page: 695 year: 2002 ident: 10.1016/j.fcr.2011.07.001_bib0015 article-title: A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield publication-title: Global Change Biol. doi: 10.1046/j.1365-2486.2002.00498.x – volume: 24 start-page: 7 year: 1993 ident: 10.1016/j.fcr.2011.07.001_bib0190 article-title: The MINK methodology: background and baseline publication-title: Clim. Change doi: 10.1007/BF01091475 – volume: 76 start-page: 45 year: 2002 ident: 10.1016/j.fcr.2011.07.001_bib0275 article-title: Insufficient use of meso-resolution spatial analysis in the planning, execution and dissemination of agronomic research? publication-title: Field Crops Res. doi: 10.1016/S0378-4290(02)00041-2 – volume: 1 start-page: 85 year: 1977 ident: 10.1016/j.fcr.2011.07.001_bib0095 article-title: Assessing the impact of climatic change on food production publication-title: Clim. Change doi: 10.1007/BF00162779 – volume: 88 start-page: 690 year: 1996 ident: 10.1016/j.fcr.2011.07.001_bib0170 article-title: Simulation models: science, snake oil, education, or engineering? publication-title: Agron. J. doi: 10.2134/agronj1996.00021962008800050002x – volume: 43 start-page: 1441 year: 2008 ident: 10.1016/j.fcr.2011.07.001_bib0130 article-title: Impact of increasing mean air temperature on the development of rice and red rice publication-title: Pesqui. Agropecu. Bras. doi: 10.1590/S0100-204X2008001100001 – volume: 20 start-page: 175 year: 1995 ident: 10.1016/j.fcr.2011.07.001_bib0270 article-title: Climate change scenarios for the assessments of the climate change on regional ecosystems publication-title: J. Thermal Biol. doi: 10.1016/0306-4565(94)00047-M – volume: 86 start-page: 860 year: 1994 ident: 10.1016/j.fcr.2011.07.001_bib0235 article-title: A computer program to analyze single-season crop model outputs publication-title: Agron. J. doi: 10.2134/agronj1994.00021962008600050020x – volume: 28 start-page: 538 year: 1976 ident: 10.1016/j.fcr.2011.07.001_bib0100 article-title: Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii publication-title: Tellus doi: 10.1111/j.2153-3490.1976.tb00701.x – volume: 77 start-page: 293 year: 2002 ident: 10.1016/j.fcr.2011.07.001_bib0110 article-title: Responses of agricultural crops to free-air CO2 enrichment publication-title: Adv. Agron. doi: 10.1016/S0065-2113(02)77017-X – year: 1990 ident: 10.1016/j.fcr.2011.07.001_bib0230 – start-page: 235 year: 2001 ident: 10.1016/j.fcr.2011.07.001_bib0085 article-title: Ecosystems and their goods and services – volume: 35 start-page: 1179 year: 1999 ident: 10.1016/j.fcr.2011.07.001_bib0115 article-title: Free-air CO2 enrichment (FACE) and soil nitrogen effects on energy balance and evapotranspiration of wheat publication-title: Water Resour. Res. doi: 10.1029/1998WR900115 – ident: 10.1016/j.fcr.2011.07.001_bib0165 – volume: 18 start-page: 57 year: 2002 ident: 10.1016/j.fcr.2011.07.001_bib0255 article-title: Simulating the effects of elevated CO2 on crops: approaches and applications for climate change publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(02)00097-7 – volume: 52 start-page: 394 year: 1999 ident: 10.1016/j.fcr.2011.07.001_bib0145 article-title: Herbicide-tolerant crops - real farmer opportunity or potential environmental problem? publication-title: Pesticide Sci. doi: 10.1002/(SICI)1096-9063(199804)52:4<394::AID-PS741>3.0.CO;2-D – volume: 17 start-page: 519 year: 1988 ident: 10.1016/j.fcr.2011.07.001_bib0210 article-title: Implications of a global climatic warming for agriculture: a review and appraisal publication-title: J. Environ. Qual. doi: 10.2134/jeq1988.00472425001700040001x – ident: 10.1016/j.fcr.2011.07.001_bib0260 – volume: 31 start-page: 1317 year: 2008 ident: 10.1016/j.fcr.2011.07.001_bib0020 article-title: Next generation of elevated [CO2] experiments with crops: A critical investment for feeding the future world publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2008.01841.x – volume: 14 start-page: 277 year: 1999 ident: 10.1016/j.fcr.2011.07.001_bib0155 article-title: Climate change, agriculture, and developing countries: does adaptation matter? publication-title: World Bank Research Obs. doi: 10.1093/wbro/14.2.277 |
SSID | ssj0006616 |
Score | 2.53869 |
Snippet | ► We reviewed 221 papers that used crop models to assess impacts of climate change. ► Crops most frequently assessed were wheat, maize, soybean and rice. ►... Ecophysiological models are widely used to forecast potential impacts of climate change on future agricultural productivity and to examine options for... |
SourceID | proquest crossref fao elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 357 |
SubjectTerms | adaptation Adaptation, Agricultural impacts, Climate change, Crop growth simulation, Global warming, Modeling agricultural forecasts canopy carbon dioxide climate computer software corn crop models crop production crop rotation crops cultivars Europe food production food security global warming greenhouse gas emissions issues and policy Oryza sativa planting date prediction radiation use efficiency researchers rice risk risk factors Ruta graveolens soil resources soybeans stakeholders stomatal conductance temperature tillage Triticum aestivum United States wheat Zea mays |
Title | Methodologies for simulating impacts of climate change on crop production |
URI | https://dx.doi.org/10.1016/j.fcr.2011.07.001 https://www.proquest.com/docview/1365046098 https://www.proquest.com/docview/1777170631 https://www.proquest.com/docview/902375201 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9wwDI4Ye2EPCAYTDIaCtKdJ3SVN0qSPJwQ6QPDCTuItSnoJuom1p-vxym_HTtshNHEPe62cNrVdx67tz4R8V7mqYhFUVs6Ez2RhisxppjLpSiWqaKTwmNG9uS0mU3l1r-43yNnQC4Nllb3t72x6stb9lVHPzdFiPh_dMaGNxDQgTx2a2GgupUYt__n8WuYB50-Xr4RoCamHzGaq8YrVskfxRCBD_t7Z9CG65h9bnQ6gix2y3XuOdNxtbpdshPoz-TR-WPboGWGPXN6kedDJnoWWgj9K2_mfNKCrfqBdQ2RLm0irxzl4qoF2bb-0qSlO8qKLDv4VRLVPphfnv84mWT8rIaukUavMcwSak-BNgMtn8sBElKp02gcnZg7cHHg9z2WITMhKBM6ccNL4GHRV6DhT4gvZrJs6HBAKAQ7cJOqYF1pGH0o346VRnsmoVW74IWEDl2zVA4njPItHO1SM_bbAWIuMtQzT27Dkx98liw5FYx2xHFhv36iCBSu_btkBiMk6YHtrp3c5ho4IDgQh4SE5HWRn4evBlIirQ_PUWizyw9RwadbQaK0RZEjAI-g7NCVoIDCH8a__t_kjspV-VvMczNYx2Vwtn8I38HZW_iSp8wn5OL68nty-AIdt-m0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBba9LDtUOyJdt1DA3YaYESyJEs-BsWKZG1yaQP0JkiOVKTo7CBO__9IWy4wDM1hV0O0ZUr-RJrkR0K-q1xVsQgqK1fCZ7IwReY0U5l0pRJVNFJ4jOjOF8V0KX_dqtsDcj7UwmBaZcL-HtM7tE5Xxkmb4816Pb5mQhuJYUDeVWiqQ3KE7FRqRI4ms8vp4gmQ4QjqQ5bgMKHAENzs0rxitU1EnshlyJ87ng6ja_6B6-4MunhNjpPxSCf9_N6Qg1C_Ja8md9tEoBHekdm8awndQVpoKZiktF3_7np01Xe0r4lsaRNp9bAGYzXQvvKXNjXFZl500zPAwmq9J8uLnzfn0yy1S8gqadQu8xy55iQYFGD1mTwwEaUqnfbBiZUDSwdez3MZIhOyEoEzJ5w0PgZdFTqulPhARnVThxNCwceBm0Qd80LL6EPpVrw0yjMZtcoNPyVs0JKtEpc4trR4sEPS2L0FxVpUrGUY4QaRH08im55IY99gOaje_rUbLAD9PrETWCbrQO2tXV7n6D0iPxB4hafk27B2Fj4gjIq4OjSPrcU8P4wOl2bPGK018gwJeAR9ZkwJmxCUw_jH_5v8V_JiejO_slezxeUZedn9u-Y5oNgnMtptH8NnMH52_kva3H8AIzL9Hg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methodologies+for+simulating+impacts+of+climate+change+on+crop+production&rft.jtitle=Field+crops+research&rft.au=White%2C+Jeffrey+W.&rft.au=Hoogenboom%2C+Gerrit&rft.au=Kimball%2C+Bruce+A.&rft.au=Wall%2C+Gerard+W.&rft.date=2011-12-20&rft.issn=0378-4290&rft.volume=124&rft.issue=3&rft.spage=357&rft.epage=368&rft_id=info:doi/10.1016%2Fj.fcr.2011.07.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fcr_2011_07_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4290&client=summon |