Methodologies for simulating impacts of climate change on crop production

► We reviewed 221 papers that used crop models to assess impacts of climate change. ► Crops most frequently assessed were wheat, maize, soybean and rice. ► Models predominantly used radiation use efficiency-based approaches. ► Assumed low baseline [CO 2] may exaggerate projected impacts of increased...

Full description

Saved in:
Bibliographic Details
Published inField crops research Vol. 124; no. 3; pp. 357 - 368
Main Authors White, Jeffrey W., Hoogenboom, Gerrit, Kimball, Bruce A., Wall, Gerard W.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 20.12.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► We reviewed 221 papers that used crop models to assess impacts of climate change. ► Crops most frequently assessed were wheat, maize, soybean and rice. ► Models predominantly used radiation use efficiency-based approaches. ► Assumed low baseline [CO 2] may exaggerate projected impacts of increased [CO 2]. ► Coordinated data resources and model intercomparisons may enhance impact studies. Ecophysiological models are widely used to forecast potential impacts of climate change on future agricultural productivity and to examine options for adaptation by local stakeholders and policy makers. However, protocols followed in such assessments vary to such an extent that they constrain cross-study syntheses and increase the potential for bias in projected impacts. We reviewed 221 peer-reviewed papers that used crop simulation models to examine diverse aspects of how climate change might affect agricultural systems. Six subject areas were examined: target crops and regions; the crop model(s) used and their characteristics; sources and application of data on [CO 2] and climate; impact parameters evaluated; assessment of variability or risk; and adaptation strategies. Wheat, maize, soybean and rice were considered in approximately 170 papers. The USA (55 papers) and Europe (64 papers) were the dominant regions studied. The most frequent approach used to simulate response to CO 2 involved adjusting daily radiation use efficiency (RUE) and transpiration, precluding consideration of the interacting effects of CO 2, stomatal conductance and canopy temperature, which are expected to exacerbate effects of global warming. The assumed baseline [CO 2] typically corresponded to conditions 10–30 years earlier than the date the paper was accepted, exaggerating the relative impacts of increased [CO 2]. Due in part to the diverse scenarios for increases in greenhouse gas emissions, assumed future [CO 2] also varied greatly, further complicating comparisons among studies. Papers considering adaptation predominantly examined changes in planting dates and cultivars; only 20 papers tested different tillage practices or crop rotations. Risk was quantified in over half the papers, mainly in relation to variability in yield or effects of water deficits, but the limited consideration of other factors affecting risk beside climate change per se suggests that impacts of climate change were overestimated relative to background variability. A coordinated crop, climate and soil data resource would allow researchers to focus on underlying science. More extensive model intercomparison, facilitated by modular software, should strengthen the biological realism of predictions and clarify the limits of our ability to forecast agricultural impacts of climate change on crop production and associated food security as well as to evaluate potential for adaptation.
AbstractList Ecophysiological models are widely used to forecast potential impacts of climate change on future agricultural productivity and to examine options for adaptation by local stakeholders and policy makers. However, protocols followed in such assessments vary to such an extent that they constrain cross-study syntheses and increase the potential for bias in projected impacts. We reviewed 221 peer-reviewed papers that used crop simulation models to examine diverse aspects of how climate change might affect agricultural systems. Six subject areas were examined: target crops and regions; the crop model(s) used and their characteristics; sources and application of data on [CO₂] and climate; impact parameters evaluated; assessment of variability or risk; and adaptation strategies. Wheat, maize, soybean and rice were considered in approximately 170 papers. The USA (55 papers) and Europe (64 papers) were the dominant regions studied. The most frequent approach used to simulate response to CO₂ involved adjusting daily radiation use efficiency (RUE) and transpiration, precluding consideration of the interacting effects of CO₂, stomatal conductance and canopy temperature, which are expected to exacerbate effects of global warming. The assumed baseline [CO₂] typically corresponded to conditions 10–30 years earlier than the date the paper was accepted, exaggerating the relative impacts of increased [CO₂]. Due in part to the diverse scenarios for increases in greenhouse gas emissions, assumed future [CO₂] also varied greatly, further complicating comparisons among studies. Papers considering adaptation predominantly examined changes in planting dates and cultivars; only 20 papers tested different tillage practices or crop rotations. Risk was quantified in over half the papers, mainly in relation to variability in yield or effects of water deficits, but the limited consideration of other factors affecting risk beside climate change per se suggests that impacts of climate change were overestimated relative to background variability. A coordinated crop, climate and soil data resource would allow researchers to focus on underlying science. More extensive model intercomparison, facilitated by modular software, should strengthen the biological realism of predictions and clarify the limits of our ability to forecast agricultural impacts of climate change on crop production and associated food security as well as to evaluate potential for adaptation.
Ecophysiological models are widely used to forecast potential impacts of climate change on future agricultural productivity and to examine options for adaptation by local stakeholders and policy makers. However, protocols followed in such assessments vary to such an extent that they constrain cross-study syntheses and increase the potential for bias in projected impacts. We reviewed 221 peer-reviewed papers that used crop simulation models to examine diverse aspects of how climate change might affect agricultural systems. Six subject areas were examined: target crops and regions; the crop model(s) used and their characteristics; sources and application of data on [CO sub(2] and climate; impact parameters evaluated; assessment of variability or risk; and adaptation strategies. Wheat, maize, soybean and rice were considered in approximately 170 papers. The USA (55 papers) and Europe (64 papers) were the dominant regions studied. The most frequent approach used to simulate response to CO) sub(2) involved adjusting daily radiation use efficiency (RUE) and transpiration, precluding consideration of the interacting effects of CO sub(2, stomatal conductance and canopy temperature, which are expected to exacerbate effects of global warming. The assumed baseline [CO) sub(2)] typically corresponded to conditions 10-30 years earlier than the date the paper was accepted, exaggerating the relative impacts of increased [CO sub(2]. Due in part to the diverse scenarios for increases in greenhouse gas emissions, assumed future [CO) sub(2)] also varied greatly, further complicating comparisons among studies. Papers considering adaptation predominantly examined changes in planting dates and cultivars; only 20 papers tested different tillage practices or crop rotations. Risk was quantified in over half the papers, mainly in relation to variability in yield or effects of water deficits, but the limited consideration of other factors affecting risk beside climate change per se suggests that impacts of climate change were overestimated relative to background variability. A coordinated crop, climate and soil data resource would allow researchers to focus on underlying science. More extensive model intercomparison, facilitated by modular software, should strengthen the biological realism of predictions and clarify the limits of our ability to forecast agricultural impacts of climate change on crop production and associated food security as well as to evaluate potential for adaptation.
Ecophysiological models are widely used to forecast potential impacts of climate change on future agricultural productivity and to examine options for adaptation by local stakeholders and policy makers. However, protocols followed in such assessments vary to such an extent that they constrain cross-study syntheses and increase the potential for bias in projected impacts. We reviewed 221 peer-reviewed papers that used crop simulation models to examine diverse aspects of how climate change might affect agricultural systems. Six subject areas were examined: target crops and regions; the crop model(s) used and their characteristics; sources and application of data on [CO(2)] and climate; impact parameters evaluated; assessment of variability or risk; and adaptation strategies. Wheat, maize, soybean and rice were considered in approximately 170 papers. The USA (55 papers) and Europe (64 papers) were the dominant regions studied. The most frequent approach used to simulate response to CO(2) involved adjusting daily radiation use efficiency (RUE) and transpiration, precluding consideration of the interacting effects of CO(2), stomatal conductance and canopy temperature, which are expected to exacerbate effects of global warming. The assumed baseline [CO(2)] typically corresponded to conditions 10-30 years earlier than the date the paper was accepted, exaggerating the relative impacts of increased [CO(2)]. Due in part to the diverse scenarios for increases in greenhouse gas emissions, assumed future [CO(2)] also varied greatly, further complicating comparisons among studies. Papers considering adaptation predominantly examined changes in planting dates and cultivars; only 20 papers tested different tillage practices or crop rotations. Risk was quantified in over half the papers, mainly in relation to variability in yield or effects of water deficits, but the limited consideration of other factors affecting risk beside climate change per se suggests that impacts of climate change were overestimated relative to background variability. A coordinated crop, climate and soil data resource would allow researchers to focus on underlying science. More extensive model intercomparison, facilitated by modular software, should strengthen the biological realism of predictions and clarify the limits of our ability to forecast agricultural impacts of climate change on crop production and associated food security as well as to evaluate potential for adaptation.
► We reviewed 221 papers that used crop models to assess impacts of climate change. ► Crops most frequently assessed were wheat, maize, soybean and rice. ► Models predominantly used radiation use efficiency-based approaches. ► Assumed low baseline [CO 2] may exaggerate projected impacts of increased [CO 2]. ► Coordinated data resources and model intercomparisons may enhance impact studies. Ecophysiological models are widely used to forecast potential impacts of climate change on future agricultural productivity and to examine options for adaptation by local stakeholders and policy makers. However, protocols followed in such assessments vary to such an extent that they constrain cross-study syntheses and increase the potential for bias in projected impacts. We reviewed 221 peer-reviewed papers that used crop simulation models to examine diverse aspects of how climate change might affect agricultural systems. Six subject areas were examined: target crops and regions; the crop model(s) used and their characteristics; sources and application of data on [CO 2] and climate; impact parameters evaluated; assessment of variability or risk; and adaptation strategies. Wheat, maize, soybean and rice were considered in approximately 170 papers. The USA (55 papers) and Europe (64 papers) were the dominant regions studied. The most frequent approach used to simulate response to CO 2 involved adjusting daily radiation use efficiency (RUE) and transpiration, precluding consideration of the interacting effects of CO 2, stomatal conductance and canopy temperature, which are expected to exacerbate effects of global warming. The assumed baseline [CO 2] typically corresponded to conditions 10–30 years earlier than the date the paper was accepted, exaggerating the relative impacts of increased [CO 2]. Due in part to the diverse scenarios for increases in greenhouse gas emissions, assumed future [CO 2] also varied greatly, further complicating comparisons among studies. Papers considering adaptation predominantly examined changes in planting dates and cultivars; only 20 papers tested different tillage practices or crop rotations. Risk was quantified in over half the papers, mainly in relation to variability in yield or effects of water deficits, but the limited consideration of other factors affecting risk beside climate change per se suggests that impacts of climate change were overestimated relative to background variability. A coordinated crop, climate and soil data resource would allow researchers to focus on underlying science. More extensive model intercomparison, facilitated by modular software, should strengthen the biological realism of predictions and clarify the limits of our ability to forecast agricultural impacts of climate change on crop production and associated food security as well as to evaluate potential for adaptation.
Author Wall, Gerard W.
White, Jeffrey W.
Hoogenboom, Gerrit
Kimball, Bruce A.
Author_xml – sequence: 1
  givenname: Jeffrey W.
  surname: White
  fullname: White, Jeffrey W.
  email: jeffrey.white@ars.usda.gov
  organization: ALARC, USDA-ARS, 21881 North Cardon Lane, Maricopa, AZ 85138, United States
– sequence: 2
  givenname: Gerrit
  surname: Hoogenboom
  fullname: Hoogenboom, Gerrit
  organization: Department of Biological and Agricultural Engineering, University of Georgia, Griffin, GA 30223-1797, United States
– sequence: 3
  givenname: Bruce A.
  surname: Kimball
  fullname: Kimball, Bruce A.
  organization: ALARC, USDA-ARS, 21881 North Cardon Lane, Maricopa, AZ 85138, United States
– sequence: 4
  givenname: Gerard W.
  surname: Wall
  fullname: Wall, Gerard W.
  organization: ALARC, USDA-ARS, 21881 North Cardon Lane, Maricopa, AZ 85138, United States
BookMark eNqNkT9vFDEQxS2USFwCH4AKd9DsMl7_XVGhiIRIQRQhteXzji8-7a0P24fEt8fHUVGcqKbw7808v3dFLpa0ICFvGPQMmPqw7YPP_QCM9aB7APaCrJjRQ6eMHC7ICrg2nRhGeEmuStkCgFJMrcj9V6zPaUpz2kQsNKRMS9wdZlfjsqFxt3e-FpoC9XPcuYrUP7tlgzQt1Oe0p_ucpoOvMS2vyGVwc8HXf-c1ebr9_P3mS_fw7e7-5tND54WRtVszxaUSRigYRzMg8CDk6PQaHZ-cBNm8r5nAAFx4jgwcd8KsA2qvdJgkvybvTnvb6R8HLNXuYvE4z27BdCh2hIFr2ZJo5PuzJNNaMw2K_wfKlYSjZdNQdkLb_0vJGOw-t2jyL8vAHruwW9u6sMcuLGgLf5zofzQ-VndMrWYX57PKtydlcMm6TY7FPj02QLRHDYPRjfh4IrCF_jNitsVHXDxOMaOvdkrxzP7fd3StoQ
CitedBy_id crossref_primary_10_1002_joc_6792
crossref_primary_10_1007_s10584_014_1322_x
crossref_primary_10_1093_jxb_eraa310
crossref_primary_10_1007_s11027_015_9639_y
crossref_primary_10_1007_s00704_022_04086_5
crossref_primary_10_1016_j_scitotenv_2017_10_038
crossref_primary_10_1007_s43621_025_00945_z
crossref_primary_10_3390_jof8050542
crossref_primary_10_1016_j_envsoft_2015_12_003
crossref_primary_10_1017_S0021859618000011
crossref_primary_10_1016_j_agsy_2019_102746
crossref_primary_10_1073_pnas_1720716115
crossref_primary_10_1016_j_biosystemseng_2014_09_001
crossref_primary_10_1016_j_jclepro_2022_130870
crossref_primary_10_1016_j_rsci_2023_03_010
crossref_primary_10_1007_s13593_024_00963_7
crossref_primary_10_1016_j_eja_2016_08_012
crossref_primary_10_3354_cr01322
crossref_primary_10_1016_j_eja_2015_06_007
crossref_primary_10_1002_jsfa_7359
crossref_primary_10_1111_wej_12523
crossref_primary_10_1002_ece3_782
crossref_primary_10_1007_BF03356454
crossref_primary_10_2134_agronj2011_0220
crossref_primary_10_1016_j_agrformet_2021_108452
crossref_primary_10_1016_j_eja_2024_127456
crossref_primary_10_1016_j_crm_2021_100300
crossref_primary_10_1016_j_agrformet_2012_12_008
crossref_primary_10_1016_j_agwat_2021_107042
crossref_primary_10_1016_j_eja_2019_125961
crossref_primary_10_1016_j_agsy_2016_07_006
crossref_primary_10_1017_S0021859621000101
crossref_primary_10_1002_ird_2373
crossref_primary_10_1007_s10658_018_1494_8
crossref_primary_10_1016_j_compag_2021_106047
crossref_primary_10_1088_1748_9326_aa8da6
crossref_primary_10_3389_fsufs_2023_1176385
crossref_primary_10_1016_j_eja_2020_126153
crossref_primary_10_1111_gcb_16601
crossref_primary_10_3354_cr01335
crossref_primary_10_1016_j_fcr_2019_02_006
crossref_primary_10_1002_agg2_20453
crossref_primary_10_1016_j_indcrop_2020_112381
crossref_primary_10_3389_fenvs_2021_692959
crossref_primary_10_1016_j_agsy_2024_104242
crossref_primary_10_33245_2310_9270_2023_183_2_130_136
crossref_primary_10_3390_seeds1010005
crossref_primary_10_1016_j_eja_2023_127056
crossref_primary_10_1002_fes3_34
crossref_primary_10_1016_j_ecolmodel_2017_11_003
crossref_primary_10_1016_j_agsy_2013_01_005
crossref_primary_10_1016_j_eja_2021_126446
crossref_primary_10_1016_j_ecolind_2019_105991
crossref_primary_10_1007_s10661_015_4564_9
crossref_primary_10_1016_j_gloplacha_2013_08_010
crossref_primary_10_1016_j_scitotenv_2017_10_247
crossref_primary_10_3389_fsufs_2023_1246347
crossref_primary_10_1111_pce_12119
crossref_primary_10_1016_j_agrformet_2019_107851
crossref_primary_10_1016_j_agsy_2021_103221
crossref_primary_10_1016_j_scitotenv_2019_04_212
crossref_primary_10_1186_s40066_020_00283_5
crossref_primary_10_1016_j_agsy_2017_08_004
crossref_primary_10_3390_plants13060900
crossref_primary_10_1016_j_envsoft_2015_05_012
crossref_primary_10_3354_cr01635
crossref_primary_10_1111_gcb_12302
crossref_primary_10_3390_su14010334
crossref_primary_10_1002_agj2_21005
crossref_primary_10_1007_s11027_018_9820_1
crossref_primary_10_1016_j_fcr_2019_02_021
crossref_primary_10_1016_j_fcr_2014_02_012
crossref_primary_10_1016_j_jclepro_2022_131885
crossref_primary_10_1016_j_fcr_2015_10_012
crossref_primary_10_4141_cjss2012_053
crossref_primary_10_1016_j_geoderma_2016_07_010
crossref_primary_10_1016_j_gloplacha_2014_08_010
crossref_primary_10_1093_pcp_pcx141
crossref_primary_10_1111_gcb_12660
crossref_primary_10_1016_j_agrformet_2015_09_013
crossref_primary_10_1016_j_jclepro_2015_05_061
crossref_primary_10_1002_joc_6882
crossref_primary_10_1111_gcb_12412
crossref_primary_10_1016_j_eja_2017_10_008
crossref_primary_10_1016_j_eja_2017_10_004
crossref_primary_10_1016_j_envsoft_2024_106119
crossref_primary_10_1007_s10584_021_02999_0
crossref_primary_10_5194_gmd_9_3493_2016
crossref_primary_10_1007_s13593_014_0248_z
crossref_primary_10_1007_s42106_020_00116_2
crossref_primary_10_1016_j_agsy_2017_01_016
crossref_primary_10_1007_s10584_013_0802_8
crossref_primary_10_1038_s41598_024_59151_y
crossref_primary_10_1016_j_agsy_2017_11_005
crossref_primary_10_1080_00288233_2015_1018392
crossref_primary_10_1111_gcb_13411
crossref_primary_10_3390_jof10060401
crossref_primary_10_3390_w10040356
crossref_primary_10_1186_s40068_018_0107_z
crossref_primary_10_2134_agronj2018_08_0537
crossref_primary_10_1016_j_jafr_2022_100480
crossref_primary_10_1016_j_envsoft_2014_08_001
crossref_primary_10_1016_j_cliser_2021_100235
crossref_primary_10_1016_j_eja_2017_11_008
crossref_primary_10_1088_1748_9326_ac61c8
crossref_primary_10_1016_j_eja_2013_02_004
crossref_primary_10_1007_s41885_021_00091_6
crossref_primary_10_1088_2515_7620_accfed
crossref_primary_10_3389_fpls_2023_1249793
crossref_primary_10_1071_CP18412
crossref_primary_10_1016_j_scitotenv_2024_175038
crossref_primary_10_3354_cr01303
crossref_primary_10_1016_j_eja_2024_127279
crossref_primary_10_1016_j_envsoft_2015_05_009
crossref_primary_10_1016_j_agsy_2024_104182
crossref_primary_10_1038_s41598_020_57466_0
crossref_primary_10_1016_j_eja_2024_127165
crossref_primary_10_1016_j_agwat_2024_109028
crossref_primary_10_1016_j_fcr_2016_05_001
crossref_primary_10_1016_j_fcr_2012_03_016
crossref_primary_10_34133_plantphenomics_0185
crossref_primary_10_1038_s41598_020_76693_z
crossref_primary_10_1016_j_compag_2017_04_007
crossref_primary_10_1093_jxb_erv014
crossref_primary_10_1016_j_agrformet_2015_08_263
crossref_primary_10_1007_s12517_019_4588_5
crossref_primary_10_1016_j_ecolind_2020_106804
crossref_primary_10_1007_s11099_014_0028_7
crossref_primary_10_1007_s00484_021_02189_8
crossref_primary_10_1002_ece3_2854
crossref_primary_10_5018_economics_ejournal_ja_2015_10
crossref_primary_10_1002_ldr_2363
crossref_primary_10_1007_s00704_016_1779_9
crossref_primary_10_1016_j_agsy_2014_09_010
crossref_primary_10_1016_j_agrformet_2015_08_259
crossref_primary_10_1016_j_agrformet_2018_02_008
crossref_primary_10_1007_s12517_021_08213_w
crossref_primary_10_1371_journal_pone_0141218
crossref_primary_10_1007_s10584_014_1062_y
crossref_primary_10_1016_j_agsy_2020_102938
crossref_primary_10_1029_2021WR031249
crossref_primary_10_1016_j_jclepro_2017_01_124
crossref_primary_10_1088_1748_9326_aa518a
crossref_primary_10_5532_KJAFM_2015_17_1_1
crossref_primary_10_1016_j_agsy_2016_10_013
crossref_primary_10_1038_nclimate2228
crossref_primary_10_1080_09064702_2013_793735
crossref_primary_10_1016_j_jhydrol_2013_11_061
crossref_primary_10_1038_s41597_019_0343_8
crossref_primary_10_1111_gcb_15441
crossref_primary_10_1111_gcb_15565
crossref_primary_10_1371_journal_pone_0140490
crossref_primary_10_1093_ajae_aas034
crossref_primary_10_1016_j_agsy_2020_102906
crossref_primary_10_1016_j_agrformet_2012_09_007
crossref_primary_10_1016_j_apenergy_2017_03_006
crossref_primary_10_2134_agronj2017_02_0076
crossref_primary_10_1016_j_fcr_2021_108254
crossref_primary_10_3390_cli7090101
crossref_primary_10_2183_pjab_95_016
crossref_primary_10_1016_j_agee_2013_06_011
crossref_primary_10_1016_j_envsoft_2017_06_048
crossref_primary_10_3390_cli7090102
crossref_primary_10_1007_s00704_020_03406_x
crossref_primary_10_1016_j_agsy_2016_10_006
crossref_primary_10_1111_gcb_14019
crossref_primary_10_1016_j_agrformet_2012_09_011
crossref_primary_10_1016_j_jenvman_2023_118532
crossref_primary_10_1007_s11356_020_08846_6
crossref_primary_10_1111_een_12017
crossref_primary_10_1016_j_eja_2017_01_002
crossref_primary_10_1016_j_wace_2016_10_002
crossref_primary_10_1016_j_fcr_2017_12_017
crossref_primary_10_1016_j_ecolind_2020_106935
crossref_primary_10_1016_j_scitotenv_2020_140667
crossref_primary_10_1016_j_ancene_2017_05_002
crossref_primary_10_1016_j_agwat_2019_105746
crossref_primary_10_1016_j_fcr_2016_10_004
crossref_primary_10_3390_cli8090100
crossref_primary_10_1007_s11356_019_06061_6
crossref_primary_10_2134_agronj2016_04_0247
crossref_primary_10_1080_15715124_2014_983523
crossref_primary_10_1038_s41598_023_39795_y
crossref_primary_10_1016_j_eneco_2014_04_014
crossref_primary_10_1016_j_eja_2024_127426
crossref_primary_10_1016_j_agrformet_2016_07_021
crossref_primary_10_3934_environsci_2015_3_852
crossref_primary_10_1007_s00425_019_03129_y
crossref_primary_10_1016_j_fcr_2012_12_020
crossref_primary_10_1016_j_eja_2012_02_005
crossref_primary_10_3390_atmos11121300
crossref_primary_10_1016_j_scitotenv_2019_136190
crossref_primary_10_3390_su16114853
crossref_primary_10_1016_j_agrformet_2024_109966
crossref_primary_10_1038_nclimate2153
crossref_primary_10_1016_j_fcr_2016_04_031
crossref_primary_10_1111_jac_12575
crossref_primary_10_1016_j_fcr_2022_108768
crossref_primary_10_1186_s40322_017_0036_4
crossref_primary_10_1007_s10661_016_5472_3
crossref_primary_10_3390_cli12030042
crossref_primary_10_1016_j_eja_2013_04_005
crossref_primary_10_1038_nclimate2181
crossref_primary_10_3390_agriculture11111029
crossref_primary_10_1016_j_biosystemseng_2017_02_007
crossref_primary_10_1016_j_fcr_2017_11_005
crossref_primary_10_1016_j_eja_2013_04_003
crossref_primary_10_1017_S0021859612000767
crossref_primary_10_3390_su14074100
crossref_primary_10_1002_agj2_20693
crossref_primary_10_1016_j_eja_2024_127328
crossref_primary_10_17221_315_2019_PSE
crossref_primary_10_1016_j_agsy_2016_11_007
crossref_primary_10_1007_s11027_015_9688_2
crossref_primary_10_1007_s11027_022_09996_3
crossref_primary_10_1007_s41742_018_0074_2
crossref_primary_10_1016_j_agsy_2024_103913
crossref_primary_10_1016_j_agsy_2016_12_016
crossref_primary_10_1016_j_agrformet_2018_02_026
crossref_primary_10_3390_w16121719
crossref_primary_10_1007_s10584_015_1428_9
crossref_primary_10_3389_fpls_2016_01262
crossref_primary_10_1017_S0021859612000779
crossref_primary_10_1016_j_agrformet_2022_109148
crossref_primary_10_1088_1748_9326_ac20f4
crossref_primary_10_1016_j_agsy_2017_07_010
crossref_primary_10_4236_ajps_2014_56096
crossref_primary_10_1111_gcb_16992
crossref_primary_10_1007_s11027_015_9676_6
crossref_primary_10_1088_1748_9326_ac9242
crossref_primary_10_1007_s40808_018_0513_2
crossref_primary_10_1071_CP21279
crossref_primary_10_1016_j_agrformet_2023_109413
crossref_primary_10_1088_1748_9326_11_11_113004
crossref_primary_10_1016_j_agrformet_2023_109778
crossref_primary_10_1088_1748_9326_7_4_044014
crossref_primary_10_1007_s00122_023_04496_7
crossref_primary_10_1016_j_ecoinf_2015_09_009
crossref_primary_10_1007_s40003_018_0366_y
crossref_primary_10_1016_j_agwat_2024_108881
crossref_primary_10_1088_1748_9326_ac0f26
crossref_primary_10_1016_j_fcr_2016_08_015
crossref_primary_10_1007_s11269_014_0577_3
crossref_primary_10_1007_s11829_012_9234_z
crossref_primary_10_1016_j_eja_2022_126487
crossref_primary_10_1007_s13353_023_00789_1
crossref_primary_10_3390_agronomy12122927
crossref_primary_10_3390_land11091409
crossref_primary_10_3390_agriculture14030469
crossref_primary_10_1016_j_scitotenv_2016_12_158
crossref_primary_10_2139_ssrn_2310087
crossref_primary_10_1016_j_ecoinf_2015_10_009
crossref_primary_10_1371_journal_pone_0198623
crossref_primary_10_3390_su12041638
crossref_primary_10_1007_s10584_019_02538_y
crossref_primary_10_3389_fpls_2024_1464454
crossref_primary_10_1038_s41437_022_00542_0
crossref_primary_10_3389_fsufs_2023_1291866
crossref_primary_10_30852_sb_2024_2570
crossref_primary_10_1016_j_eja_2016_12_009
crossref_primary_10_1016_j_foodpol_2020_101954
crossref_primary_10_1016_j_eja_2017_06_012
crossref_primary_10_3389_fpls_2018_01041
crossref_primary_10_1088_1748_9326_7_3_034032
crossref_primary_10_1088_1748_9326_8_2_024001
crossref_primary_10_1016_j_agee_2018_07_015
crossref_primary_10_1007_s10681_018_2134_2
crossref_primary_10_1016_j_agsy_2015_02_007
crossref_primary_10_1017_S0021859612001013
crossref_primary_10_1007_s11269_024_03839_3
crossref_primary_10_1080_09670874_2015_1028510
crossref_primary_10_1088_1748_9326_8_2_024018
crossref_primary_10_1016_j_agsy_2017_06_009
crossref_primary_10_1038_s41598_019_45745_4
crossref_primary_10_1002_agj2_20667
crossref_primary_10_1016_j_techfore_2015_03_019
crossref_primary_10_3390_agronomy14010181
crossref_primary_10_1111_gcb_14091
crossref_primary_10_1016_j_agrformet_2017_02_033
crossref_primary_10_1016_j_eja_2015_09_002
crossref_primary_10_1007_s12571_015_0440_2
crossref_primary_10_1038_s43016_022_00521_y
crossref_primary_10_1016_j_envsoft_2016_03_008
crossref_primary_10_1142_S2010007813500024
crossref_primary_10_1104_pp_112_208298
crossref_primary_10_1007_s10584_020_02857_5
crossref_primary_10_1111_jac_12182
crossref_primary_10_1073_pnas_1222463110
crossref_primary_10_21511_ppm_23_1__2025_38
crossref_primary_10_1016_j_agee_2012_04_026
crossref_primary_10_1007_s10584_015_1487_y
crossref_primary_10_1088_1748_9326_abd970
crossref_primary_10_1093_insilicoplants_diae010
crossref_primary_10_3390_atmos12040441
crossref_primary_10_1016_j_agsy_2018_06_007
crossref_primary_10_5897_AJAR2018_13801
crossref_primary_10_1016_j_fcr_2013_09_019
crossref_primary_10_1080_02571862_2015_1006271
crossref_primary_10_1002_2016MS000749
crossref_primary_10_1002_jsfa_12779
crossref_primary_10_3389_ffgc_2023_1198186
crossref_primary_10_1186_s43170_024_00232_3
crossref_primary_10_2139_ssrn_3077684
crossref_primary_10_1007_s41748_022_00321_1
crossref_primary_10_1007_s10658_012_0144_9
crossref_primary_10_1016_j_landusepol_2022_106011
crossref_primary_10_1016_j_agsy_2017_04_004
crossref_primary_10_1016_j_jcs_2014_01_006
crossref_primary_10_1016_j_fcr_2014_06_017
crossref_primary_10_2139_ssrn_2343170
crossref_primary_10_1016_j_agsy_2020_102948
crossref_primary_10_1007_s10980_013_9939_0
crossref_primary_10_1016_j_agrformet_2021_108700
crossref_primary_10_1016_j_fcr_2013_11_008
crossref_primary_10_1007_s00704_016_1935_2
crossref_primary_10_1007_s11707_019_0806_4
crossref_primary_10_1016_j_gfs_2014_05_002
crossref_primary_10_1016_j_inpa_2020_10_002
crossref_primary_10_3390_ijgi11080433
crossref_primary_10_1007_s13593_022_00813_4
crossref_primary_10_1029_2023EF004297
crossref_primary_10_1007_s40808_020_00932_5
crossref_primary_10_3390_cli4040055
crossref_primary_10_1007_s10584_021_03223_9
crossref_primary_10_3390_agronomy11020369
crossref_primary_10_18278_wfp_4_2_9
crossref_primary_10_1016_j_agsy_2012_05_001
crossref_primary_10_1038_ncomms12608
crossref_primary_10_1016_j_scitotenv_2012_10_029
crossref_primary_10_1016_j_eja_2014_10_003
crossref_primary_10_1016_j_pce_2015_08_013
crossref_primary_10_5194_esd_14_457_2023
crossref_primary_10_1038_nclimate1916
crossref_primary_10_33462_jotaf_1240401
crossref_primary_10_5937_BiljLek2304565J
crossref_primary_10_32604_phyton_2021_011685
crossref_primary_10_1515_reveh_2018_0043
crossref_primary_10_1016_j_agee_2019_106625
crossref_primary_10_3390_rs5073331
crossref_primary_10_1016_j_eja_2017_08_004
crossref_primary_10_3389_fpls_2023_1270087
crossref_primary_10_1016_j_envsoft_2014_12_003
crossref_primary_10_1016_j_cliser_2022_100333
crossref_primary_10_1016_j_biombioe_2015_04_038
crossref_primary_10_1016_j_wep_2012_11_002
crossref_primary_10_1016_j_fcr_2019_107685
crossref_primary_10_1038_s41598_017_13582_y
crossref_primary_10_1186_2048_7010_3_11
crossref_primary_10_3390_land10121339
crossref_primary_10_1038_s41598_019_49167_0
crossref_primary_10_3390_w13243624
crossref_primary_10_3354_cr01282
crossref_primary_10_3354_cr01164
crossref_primary_10_1007_s44378_025_00029_4
crossref_primary_10_1007_s00704_014_1307_8
crossref_primary_10_1016_j_fcr_2019_107674
crossref_primary_10_4236_gep_2019_78006
crossref_primary_10_1029_2023EF004009
crossref_primary_10_1111_gcb_12768
crossref_primary_10_1007_s10584_014_1264_3
crossref_primary_10_1111_gcb_12520
crossref_primary_10_1007_s00704_020_03268_3
crossref_primary_10_1016_j_agsy_2017_03_005
crossref_primary_10_1016_j_cosust_2021_01_006
crossref_primary_10_1016_j_fcr_2024_109306
crossref_primary_10_3390_agronomy12112625
crossref_primary_10_1016_j_tplants_2017_02_003
crossref_primary_10_1007_s10287_018_0339_4
crossref_primary_10_1017_S0021859614001129
crossref_primary_10_1061__ASCE_NH_1527_6996_0000367
crossref_primary_10_1016_j_scitotenv_2017_07_270
crossref_primary_10_1093_plphys_kiab113
crossref_primary_10_1016_j_eja_2022_126500
crossref_primary_10_1016_j_crm_2016_12_003
crossref_primary_10_1016_j_envsoft_2020_104836
crossref_primary_10_1111_gcb_13967
crossref_primary_10_1007_s00477_016_1233_7
crossref_primary_10_1002_2013JD020130
crossref_primary_10_1111_gcb_13600
crossref_primary_10_1016_j_eja_2013_01_005
crossref_primary_10_1088_1748_9326_ab93fc
crossref_primary_10_1038_s43017_023_00491_0
crossref_primary_10_1038_nclimate1832
crossref_primary_10_1016_j_compag_2014_03_002
crossref_primary_10_1088_1748_9326_ab17fb
crossref_primary_10_3390_ijms22031314
crossref_primary_10_1007_s42729_023_01438_6
crossref_primary_10_1017_S0021859616000241
crossref_primary_10_1080_17565529_2021_2007837
crossref_primary_10_1016_j_agrformet_2021_108406
crossref_primary_10_1016_j_eja_2023_126853
crossref_primary_10_1088_1748_9326_10_9_094021
crossref_primary_10_1016_j_agwat_2017_08_022
crossref_primary_10_3390_su14010053
crossref_primary_10_1016_j_fcr_2024_109719
crossref_primary_10_1016_j_fcr_2014_10_019
crossref_primary_10_3390_atmos14030497
crossref_primary_10_1016_j_fcr_2013_02_014
crossref_primary_10_1016_j_agrformet_2016_03_006
crossref_primary_10_1016_j_scitotenv_2017_03_208
crossref_primary_10_1016_j_fcr_2018_02_023
crossref_primary_10_1002_wcc_498
crossref_primary_10_1093_hr_uhad045
crossref_primary_10_1016_j_still_2017_02_009
crossref_primary_10_1007_s40953_024_00411_z
crossref_primary_10_1016_j_indcrop_2019_03_046
crossref_primary_10_1007_s11069_021_05130_9
crossref_primary_10_1016_j_eja_2013_09_015
crossref_primary_10_1007_s13351_019_8143_9
crossref_primary_10_1088_1748_9326_aafa3e
crossref_primary_10_1371_journal_pone_0181954
crossref_primary_10_1016_j_agsy_2017_03_012
crossref_primary_10_1051_e3sconf_20185001006
crossref_primary_10_1016_j_agee_2022_108179
crossref_primary_10_1007_s00704_012_0780_1
crossref_primary_10_1016_j_eja_2019_125915
crossref_primary_10_1007_s00484_022_02265_7
crossref_primary_10_1371_journal_pone_0228552
crossref_primary_10_1016_j_pbi_2020_05_002
crossref_primary_10_1088_1748_9326_11_7_074007
crossref_primary_10_1088_1748_9326_8_2_024041
crossref_primary_10_1007_s10333_014_0455_x
crossref_primary_10_1093_aob_mct016
crossref_primary_10_1111_1467_8489_12330
crossref_primary_10_1016_j_agrformet_2011_10_015
crossref_primary_10_1016_j_agrformet_2025_110463
crossref_primary_10_1111_ddi_12939
crossref_primary_10_1016_j_cropro_2017_05_005
crossref_primary_10_1007_s00704_023_04573_3
crossref_primary_10_1038_s41558_019_0427_7
crossref_primary_10_1111_gcb_16087
crossref_primary_10_1016_j_eja_2016_11_004
crossref_primary_10_1016_j_agrformet_2014_09_016
crossref_primary_10_1016_j_scitotenv_2017_10_209
crossref_primary_10_1029_2018WR022767
crossref_primary_10_1007_s00704_023_04729_1
crossref_primary_10_1016_j_envsoft_2014_12_013
crossref_primary_10_1016_j_fcr_2019_04_022
crossref_primary_10_1017_S0021859623000011
crossref_primary_10_1038_s41598_021_99378_7
crossref_primary_10_1007_s10661_023_11108_w
crossref_primary_10_1016_j_envsoft_2014_12_016
crossref_primary_10_1088_1748_9326_11_12_123001
crossref_primary_10_1016_j_fcr_2015_12_012
crossref_primary_10_1007_s10113_013_0470_2
crossref_primary_10_1016_j_eja_2017_07_011
crossref_primary_10_1016_j_compag_2023_108238
crossref_primary_10_1016_j_envsoft_2016_09_001
Cites_doi 10.1007/s003820050276
10.1073/pnas.0913000107
10.3923/ijar.2006.202.225
10.1016/j.envsoft.2010.08.004
10.1007/BF00175549
10.1126/science.1160787
10.1007/s10584-005-5940-1
10.1016/j.jenvman.2006.04.019
10.1016/j.ecolmodel.2010.09.001
10.1111/j.1365-2486.2007.01486.x
10.1016/S0167-8809(97)00083-2
10.1029/2009EO360002
10.1016/S0168-1923(03)00025-X
10.2134/asaspecpub59
10.1007/BF00139076
10.1016/S0304-3800(96)01924-2
10.1007/BF00139053
10.1016/S0167-8809(03)00114-2
10.1007/s11027-007-9103-8
10.1016/j.tplants.2008.06.001
10.1093/jxb/erq100
10.1007/s10584-006-9211-6
10.1016/0168-1923(92)90087-K
10.1093/jxb/erp062
10.1016/S0167-8809(97)00082-0
10.2134/agronj2004.0853
10.1046/j.1365-2486.2002.00498.x
10.1007/BF01091475
10.1016/S0378-4290(02)00041-2
10.1007/BF00162779
10.2134/agronj1996.00021962008800050002x
10.1590/S0100-204X2008001100001
10.1016/0306-4565(94)00047-M
10.2134/agronj1994.00021962008600050020x
10.1111/j.2153-3490.1976.tb00701.x
10.1016/S0065-2113(02)77017-X
10.1029/1998WR900115
10.1016/S1161-0301(02)00097-7
10.1002/(SICI)1096-9063(199804)52:4<394::AID-PS741>3.0.CO;2-D
10.2134/jeq1988.00472425001700040001x
10.1111/j.1365-3040.2008.01841.x
10.1093/wbro/14.2.277
ContentType Journal Article
Copyright 2011
Copyright_xml – notice: 2011
DBID FBQ
AAYXX
CITATION
7S9
L.6
7ST
7SU
7U6
8FD
C1K
FR3
SOI
DOI 10.1016/j.fcr.2011.07.001
DatabaseName AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
Environmental Engineering Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Engineering Research Database
Technology Research Database
Environment Abstracts
Sustainability Science Abstracts
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Environment Abstracts
AGRICOLA
Engineering Research Database

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6852
EndPage 368
ExternalDocumentID 10_1016_j_fcr_2011_07_001
US201400170287
S0378429011002395
GeographicLocations United States
Europe
USA
GeographicLocations_xml – name: Europe
– name: United States
– name: USA
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SES
SEW
SPCBC
SSA
SSZ
T5K
UNMZH
WUQ
Y6R
~G-
~KM
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
7ST
7SU
7U6
8FD
C1K
FR3
SOI
ID FETCH-LOGICAL-c485t-b16356484609982e03f459a7bea3da505001b14ef034c3e10a3a48bfe7c67fd53
IEDL.DBID .~1
ISSN 0378-4290
IngestDate Mon Jul 21 12:00:06 EDT 2025
Fri Jul 11 05:56:12 EDT 2025
Tue Aug 05 10:56:59 EDT 2025
Tue Jul 01 01:32:22 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Wed Dec 27 19:18:14 EST 2023
Fri Feb 23 02:21:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Adaptation, Agricultural impacts, Climate change, Crop growth simulation, Global warming, Modeling
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-b16356484609982e03f459a7bea3da505001b14ef034c3e10a3a48bfe7c67fd53
Notes http://dx.doi.org/10.1016/j.fcr.2011.07.001
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1365046098
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_902375201
proquest_miscellaneous_1777170631
proquest_miscellaneous_1365046098
crossref_primary_10_1016_j_fcr_2011_07_001
crossref_citationtrail_10_1016_j_fcr_2011_07_001
fao_agris_US201400170287
elsevier_sciencedirect_doi_10_1016_j_fcr_2011_07_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-20
PublicationDateYYYYMMDD 2011-12-20
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-20
  day: 20
PublicationDecade 2010
PublicationTitle Field crops research
PublicationYear 2011
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Adam, Van Bussel, Leffelaar, Van Keulen, Ewert (bib0010) 2011; 222
Rosenberg, Crosson, Frederick, Easterling, McKenney, Bowes, Sedjo, Darmstadter, Katz, Lemon (bib0190) 1993; 24
Gitay, Brown, Easterling, Jallow (bib0085) 2001
Adam, M.Y.O., 2010. A framework to introduce flexibility in crop modelling: from conceptual modelling to software engineering and back. PhD thesis. Plant Production Systems. Wageningen University, Wageningen, pp. 190.
Alexandrov, Ames, Bellocchi, Bruen, Crout, Erechtchoukova, Hildebrandt, Hoffman, Jackisch, Khaiter, Mannina, Matsunaga, Purucker, Rivington, Samaniego (bib0025) 2011; 26
White, Corbett, Dobermann (bib0275) 2002; 76
Stokes, C.J., Howden, S.M. 2008. An overview of climate change adaptation in Australian primary industries—impacts, options and priorities. Report prepared for the National Climate Change Research Strategy for Primary Industries, Land and Water Australia, Canberra. p. 344.
Easterling, Rosenberg, Lemon, McKenney (bib0065) 1992; 59
Tans, P., 2010. Trends in atmospheric carbon dioxide. NOAA/ESRL.
FAO., 2008. FAOSTAT.
Katz (bib0095) 1977; 1
Christensen, Carter, Rummukainen, Amanatidis (bib0050) 2007; 81
Viner, Hulme, Raper (bib0270) 1995; 20
Passioura (bib0170) 1996; 88
Timsina, Humphreys (bib0245) 2006; 1
Lobb, Huffman, Reicosky (bib0125) 2007; 82
Motha, Baier (bib0160) 2005; 70
Cox, Betts, Bunton, Essery, Rowntree, Smith (bib0055) 1999; 15
Yuan, Tiller, Al-Ahmad, Stewart, Stewart (bib0280) 2008; 13
Reilly, Baethgen, Chege, van de Geijn, Lin, Iglesias, Kenny, Patterson, Rogasik, Roetter, Rosenzweig, Sombroek, Westbrook (bib0175) 1996
(verified 28 June 2011).
Lago, Streck, Alberto, Oliveira, Paula (bib0130) 2008; 43
Luo, Teng, Fabellar, TeBeest (bib0135) 1998; 68
Bostick, Koo, Walen, Jones, Hoogenboom (bib0035) 2004; 96
.
Donatelli, M., Russell, G., Rizzoli, A., 2009. APES: The Agricultural Production and Externalities Simulator. In: Van Ittersum, M.K., Wolf, J., van Laar, H.H. (Eds.), AgSAP conference 2009. Wageningen University and Research Centre, The Netherlands, Egmond aan Zee, The Netherlands, pp. 206–207.
Liverman, Terjung, Hayes, Mearns (bib0120) 1986; 9
(bib0250) 1998
Ainsworth, Beier, Calfapietra, Ceulemans, Durand-Tardif, Farquhar, Godbold, Hendrey, Hickler, Kaduk, Karnosky, Kimball, Korner, Koornneef, Lafarge, Leakey, Lewin, Long, Manderscheid, McNeil, Mies, Miglietta, Morgan, Nagy, Norby, Norton, Percy, Rogers, Soussana, Stitt, Weigel, White (bib0020) 2008; 31
(bib0230) 1990
Thornton, Wilkens (bib0240) 1998
(verified 8 April 2011).
Marshall (bib0145) 1999; 52
Kimball, Conley, Wang, Xingwu, Morgan, Smith (bib0105) 2008; 14
Tubiello, Ewert (bib0255) 2002; 18
Kimball, Kobayashi, Bindi (bib0110) 2002; 77
Smit, Ludlow, Brklacich (bib0210) 1988; 17
Hoogenboom, Jones, Wilkens, Porter, Batchelor, Hunt, Boote, Singh, Uryasev, Bowen, Gijsman, du Toit, White, Tsuji (bib0080) 2010
Kimball, LaMorte, Pinter, Wall, Hunsaker, Adamsen, Leavitt, Thompson, Matthias, Brooks (bib0115) 1999; 35
Reynolds, Acock (bib0180) 1997; 94
Mendelsohn, Dinar (bib0155) 1999; 14
Allan, Soden (bib0030) 2008; 321
UKCIP, 2010. Previous UK climate information.
Keeling, Bacastow, Bainbridge, Ekdahl, Guenther, Waterman, Chin (bib0100) 1976; 28
Challinor, Ewert, Arnold, Simelton, Fraser (bib0045) 2009; 60
Easterling W.E., Aggarwal P.K., Batima P., Brander K.M., Erda L., Howden S.M., Kirilenko A., Morton J., Soussana J.-F., Schmidhuber J., Tubiello F.N., 2007. Food, fibre and forest products. In: Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E. (Eds.), Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. pp. 273–313.
Rosenberg, Brown, Izaurralde, Thomson (bib0185) 2003; 117
Soussana, Graux, Tubiello (bib0215) 2010; 61
Thornton, Hoogenboom (bib0235) 1994; 86
Ainsworth, Davey, Bernacchi, Dermody, Heaton, Moore, Morgan, Naidu, Ra, Zhu, Long (bib0015) 2002; 8
(verified 13 September 2010).
Nakicenovic, N., Swart, R. Eds., 2000. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., 599 pp. Available online at
Iglesias, Erda, Rosenzweig (bib0090) 1996; 92
Rosenzweig (bib0195) 1985; 7
Rosenzweig, C., Tubiello, F.N., 2007: Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitig. Adapt. Strategies Global Change, 12, 855-873
Rosenzweig, C., Ritchie, J.T., Jones, J.W., Tsuji, G.Y., Hildebrand, P., 1995. Climate change and agriculture: analysis of potential international impacts. American Society of Agronomy, Madison, WI.
Mearns, Gutowski, Jones, Leung, McGinnis, Nunes, Qian (bib0150) 2009; 90
Luo, Teng, Fabellar, TeBeest (bib0140) 1998; 68
Van Ittersum, Howden, Asseng (bib0265) 2003; 97
(verified 8 April 2010).
Cao, Bala, Caldeira, Nemani, Ban-Weiss (bib0040) 2010; 107
Iglesias (10.1016/j.fcr.2011.07.001_bib0090) 1996; 92
Keeling (10.1016/j.fcr.2011.07.001_bib0100) 1976; 28
Mendelsohn (10.1016/j.fcr.2011.07.001_bib0155) 1999; 14
Thornton (10.1016/j.fcr.2011.07.001_bib0235) 1994; 86
(10.1016/j.fcr.2011.07.001_bib0250) 1998
Luo (10.1016/j.fcr.2011.07.001_bib0140) 1998; 68
Alexandrov (10.1016/j.fcr.2011.07.001_bib0025) 2011; 26
Ainsworth (10.1016/j.fcr.2011.07.001_bib0020) 2008; 31
Hoogenboom (10.1016/j.fcr.2011.07.001_bib0080) 2010
10.1016/j.fcr.2011.07.001_bib0005
Easterling (10.1016/j.fcr.2011.07.001_bib0065) 1992; 59
10.1016/j.fcr.2011.07.001_bib0205
Timsina (10.1016/j.fcr.2011.07.001_bib0245) 2006; 1
Van Ittersum (10.1016/j.fcr.2011.07.001_bib0265) 2003; 97
(10.1016/j.fcr.2011.07.001_bib0230) 1990
Allan (10.1016/j.fcr.2011.07.001_bib0030) 2008; 321
Ainsworth (10.1016/j.fcr.2011.07.001_bib0015) 2002; 8
Motha (10.1016/j.fcr.2011.07.001_bib0160) 2005; 70
Rosenzweig (10.1016/j.fcr.2011.07.001_bib0195) 1985; 7
Passioura (10.1016/j.fcr.2011.07.001_bib0170) 1996; 88
Tubiello (10.1016/j.fcr.2011.07.001_bib0255) 2002; 18
Christensen (10.1016/j.fcr.2011.07.001_bib0050) 2007; 81
Luo (10.1016/j.fcr.2011.07.001_bib0135) 1998; 68
Kimball (10.1016/j.fcr.2011.07.001_bib0110) 2002; 77
Liverman (10.1016/j.fcr.2011.07.001_bib0120) 1986; 9
Katz (10.1016/j.fcr.2011.07.001_bib0095) 1977; 1
10.1016/j.fcr.2011.07.001_bib0165
10.1016/j.fcr.2011.07.001_bib0200
Marshall (10.1016/j.fcr.2011.07.001_bib0145) 1999; 52
Rosenberg (10.1016/j.fcr.2011.07.001_bib0190) 1993; 24
Lobb (10.1016/j.fcr.2011.07.001_bib0125) 2007; 82
Reynolds (10.1016/j.fcr.2011.07.001_bib0180) 1997; 94
Soussana (10.1016/j.fcr.2011.07.001_bib0215) 2010; 61
Thornton (10.1016/j.fcr.2011.07.001_bib0240) 1998
Rosenberg (10.1016/j.fcr.2011.07.001_bib0185) 2003; 117
Bostick (10.1016/j.fcr.2011.07.001_bib0035) 2004; 96
10.1016/j.fcr.2011.07.001_bib0225
Adam (10.1016/j.fcr.2011.07.001_bib0010) 2011; 222
Kimball (10.1016/j.fcr.2011.07.001_bib0115) 1999; 35
Cox (10.1016/j.fcr.2011.07.001_bib0055) 1999; 15
10.1016/j.fcr.2011.07.001_bib0075
Gitay (10.1016/j.fcr.2011.07.001_bib0085) 2001
Yuan (10.1016/j.fcr.2011.07.001_bib0280) 2008; 13
10.1016/j.fcr.2011.07.001_bib0070
White (10.1016/j.fcr.2011.07.001_bib0275) 2002; 76
Cao (10.1016/j.fcr.2011.07.001_bib0040) 2010; 107
Challinor (10.1016/j.fcr.2011.07.001_bib0045) 2009; 60
Lago (10.1016/j.fcr.2011.07.001_bib0130) 2008; 43
Reilly (10.1016/j.fcr.2011.07.001_bib0175) 1996
10.1016/j.fcr.2011.07.001_bib0260
10.1016/j.fcr.2011.07.001_bib0220
Viner (10.1016/j.fcr.2011.07.001_bib0270) 1995; 20
Mearns (10.1016/j.fcr.2011.07.001_bib0150) 2009; 90
Smit (10.1016/j.fcr.2011.07.001_bib0210) 1988; 17
10.1016/j.fcr.2011.07.001_bib0060
Kimball (10.1016/j.fcr.2011.07.001_bib0105) 2008; 14
References_xml – volume: 86
  start-page: 860
  year: 1994
  end-page: 868
  ident: bib0235
  article-title: A computer program to analyze single-season crop model outputs
  publication-title: Agron. J.
– volume: 81
  start-page: 1
  year: 2007
  end-page: 6
  ident: bib0050
  article-title: Evaluating the performance and utility of regional climate models: the Prudence Project
  publication-title: Clim. Change
– volume: 43
  start-page: 1441
  year: 2008
  end-page: 1448
  ident: bib0130
  article-title: Impact of increasing mean air temperature on the development of rice and red rice
  publication-title: Pesqui. Agropecu. Bras.
– volume: 31
  start-page: 1317
  year: 2008
  end-page: 1324
  ident: bib0020
  article-title: Next generation of elevated [CO
  publication-title: Plant Cell Environ.
– volume: 82
  start-page: 377
  year: 2007
  end-page: 387
  ident: bib0125
  article-title: Importance of information on tillage practices in the modelling of environmental processes and in the use of environmental indicators
  publication-title: J. Environ. Manag.
– volume: 94
  start-page: 7
  year: 1997
  end-page: 16
  ident: bib0180
  article-title: Modularity and genericness in plant and ecosystem models: modularity in Plant Models
  publication-title: Ecol. Model.
– reference: Rosenzweig, C., Tubiello, F.N., 2007: Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitig. Adapt. Strategies Global Change, 12, 855-873,
– reference: Stokes, C.J., Howden, S.M. 2008. An overview of climate change adaptation in Australian primary industries—impacts, options and priorities. Report prepared for the National Climate Change Research Strategy for Primary Industries, Land and Water Australia, Canberra. p. 344.
– volume: 68
  start-page: 197
  year: 1998
  end-page: 205
  ident: bib0135
  article-title: Risk analysis of yield losses caused by rice leaf blast associated with temperature changes above and below for five Asian countries
  publication-title: Agric. Ecosys. Environ.
– volume: 321
  start-page: 1481
  year: 2008
  end-page: 1484
  ident: bib0030
  article-title: Atmospheric warming and the amplification of precipitation extremes
  publication-title: Science
– start-page: 427
  year: 1996
  end-page: 467
  ident: bib0175
  article-title: Agriculture in a changing climate: impacts and adaptation
  publication-title: Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses—Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change
– year: 2010
  ident: bib0080
  article-title: Decision Support System for Agrotechnology Transfer (DSSAT) Version 4
– reference: Easterling W.E., Aggarwal P.K., Batima P., Brander K.M., Erda L., Howden S.M., Kirilenko A., Morton J., Soussana J.-F., Schmidhuber J., Tubiello F.N., 2007. Food, fibre and forest products. In: Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E. (Eds.), Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. pp. 273–313.
– volume: 90
  start-page: 311
  year: 2009
  ident: bib0150
  article-title: A regional climate change assessment program for North America
  publication-title: Eos. Trans. Am. Geophys. U
– volume: 13
  start-page: 421
  year: 2008
  end-page: 429
  ident: bib0280
  article-title: Plants to power: bioenergy to fuel the future
  publication-title: Trends Plant Sci.
– volume: 17
  start-page: 519
  year: 1988
  end-page: 527
  ident: bib0210
  article-title: Implications of a global climatic warming for agriculture: a review and appraisal
  publication-title: J. Environ. Qual.
– reference: Tans, P., 2010. Trends in atmospheric carbon dioxide. NOAA/ESRL.
– reference: UKCIP, 2010. Previous UK climate information.
– volume: 60
  start-page: 2775
  year: 2009
  end-page: 2789
  ident: bib0045
  article-title: Crops and climate change: Progress, trends, and challenges in simulating impacts and informing adaptation
  publication-title: J. Exp. Bot.
– reference: (verified 8 April 2011).
– reference: Donatelli, M., Russell, G., Rizzoli, A., 2009. APES: The Agricultural Production and Externalities Simulator. In: Van Ittersum, M.K., Wolf, J., van Laar, H.H. (Eds.), AgSAP conference 2009. Wageningen University and Research Centre, The Netherlands, Egmond aan Zee, The Netherlands, pp. 206–207.
– reference: (verified 8 April 2010).
– volume: 97
  start-page: 255
  year: 2003
  end-page: 273
  ident: bib0265
  article-title: Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO
  publication-title: Agric. Ecosys. Environ.
– reference: Nakicenovic, N., Swart, R. Eds., 2000. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., 599 pp. Available online at:
– volume: 35
  start-page: 1179
  year: 1999
  end-page: 1190
  ident: bib0115
  article-title: Free-air CO2 enrichment (FACE) and soil nitrogen effects on energy balance and evapotranspiration of wheat
  publication-title: Water Resour. Res.
– reference: .
– volume: 14
  start-page: 277
  year: 1999
  end-page: 293
  ident: bib0155
  article-title: Climate change, agriculture, and developing countries: does adaptation matter?
  publication-title: World Bank Research Obs.
– volume: 28
  start-page: 538
  year: 1976
  end-page: 551
  ident: bib0100
  article-title: Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii
  publication-title: Tellus
– volume: 1
  start-page: 202
  year: 2006
  end-page: 225
  ident: bib0245
  article-title: Applications of CERES-rice and CERES-wheat in research, policy and climate change studies in Asia: a review
  publication-title: Int. J. Agric. Res.
– volume: 77
  start-page: 293
  year: 2002
  end-page: 368
  ident: bib0110
  article-title: Responses of agricultural crops to free-air CO
  publication-title: Adv. Agron.
– volume: 70
  start-page: 137
  year: 2005
  end-page: 164
  ident: bib0160
  article-title: Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America
  publication-title: Clim. Change
– volume: 222
  start-page: 131
  year: 2011
  end-page: 143
  ident: bib0010
  article-title: Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions
  publication-title: Ecol. Model.
– volume: 18
  start-page: 57
  year: 2002
  end-page: 74
  ident: bib0255
  article-title: Simulating the effects of elevated CO
  publication-title: Eur. J. Agron.
– start-page: 235
  year: 2001
  end-page: 342
  ident: bib0085
  article-title: Ecosystems and their goods and services
  publication-title: Climate Change 2001: Impacts, Adaptation, and Vulnerability. Third Assessment Report of the Intergovernmental Panel on Climate Change.
– reference: Adam, M.Y.O., 2010. A framework to introduce flexibility in crop modelling: from conceptual modelling to software engineering and back. PhD thesis. Plant Production Systems. Wageningen University, Wageningen, pp. 190.
– volume: 76
  start-page: 45
  year: 2002
  end-page: 54
  ident: bib0275
  article-title: Insufficient use of meso-resolution spatial analysis in the planning, execution and dissemination of agronomic research?
  publication-title: Field Crops Res.
– start-page: 329
  year: 1998
  end-page: 345
  ident: bib0240
  article-title: Risk assessment and food security
  publication-title: Understanding Options for Agricultural Production
– volume: 1
  start-page: 85
  year: 1977
  end-page: 96
  ident: bib0095
  article-title: Assessing the impact of climatic change on food production
  publication-title: Clim. Change
– volume: 14
  start-page: 309
  year: 2008
  end-page: 320
  ident: bib0105
  article-title: Infrared heater arrays for warming ecosystem field plots
  publication-title: Global Change Biol.
– volume: 7
  start-page: 367
  year: 1985
  end-page: 389
  ident: bib0195
  article-title: Potential CO
  publication-title: Climatic Change
– year: 1990
  ident: bib0230
  publication-title: Impacts Assessment of Climate Change—Report of Working Group II
– reference: (verified 28 June 2011).
– volume: 92
  start-page: 13
  year: 1996
  end-page: 27
  ident: bib0090
  article-title: Climate change in Asia: a review of the vulnerability and adaptation of crop production
  publication-title: Water Air Soil Pollut.
– volume: 8
  start-page: 695
  year: 2002
  end-page: 709
  ident: bib0015
  article-title: A meta-analysis of elevated [CO2] effects on soybean (
  publication-title: Global Change Biol.
– volume: 96
  start-page: 853
  year: 2004
  end-page: 856
  ident: bib0035
  article-title: A web-based data exchange system for crop model applications
  publication-title: Agron. J.
– volume: 24
  start-page: 7
  year: 1993
  end-page: 22
  ident: bib0190
  article-title: The MINK methodology: background and baseline
  publication-title: Clim. Change
– volume: 59
  start-page: 75
  year: 1992
  end-page: 102
  ident: bib0065
  article-title: Simulations of crop responses to climate change: effects with present technology and currently available adjustments (the ‘smart farmer’ scenario)
  publication-title: Agric. Forest. Meteorol.
– volume: 61
  start-page: 2217
  year: 2010
  end-page: 2228
  ident: bib0215
  article-title: Improving the use of modelling for projections of climate change impacts on crops and pastures
  publication-title: J. Exp. Bot.
– volume: 20
  start-page: 175
  year: 1995
  end-page: 190
  ident: bib0270
  article-title: Climate change scenarios for the assessments of the climate change on regional ecosystems
  publication-title: J. Thermal Biol.
– volume: 107
  start-page: 9513
  year: 2010
  end-page: 9518
  ident: bib0040
  article-title: Importance of carbon dioxide physiological forcing to future climate change
  publication-title: Proc. Nat. Acad. Sci.
– volume: 52
  start-page: 394
  year: 1999
  end-page: 402
  ident: bib0145
  article-title: Herbicide-tolerant crops - real farmer opportunity or potential environmental problem?
  publication-title: Pesticide Sci.
– volume: 117
  start-page: 73
  year: 2003
  end-page: 96
  ident: bib0185
  article-title: Integrated assessment of Hadley Centre (HadCM2) climate change projections on agricultural productivity and irrigation water supply in the conterminous United States: I. climate change scenarios and impacts on irrigation water supply simulated with the HUMUS model
  publication-title: Agric. For. Met.
– reference: Rosenzweig, C., Ritchie, J.T., Jones, J.W., Tsuji, G.Y., Hildebrand, P., 1995. Climate change and agriculture: analysis of potential international impacts. American Society of Agronomy, Madison, WI.
– volume: 26
  start-page: 328
  year: 2011
  end-page: 336
  ident: bib0025
  article-title: Technical assessment and evaluation of environmental models and software: Letter to the
  publication-title: Environ. Model. Software
– volume: 15
  start-page: 183
  year: 1999
  end-page: 203
  ident: bib0055
  article-title: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity
  publication-title: Clim. Dynam.
– reference: (verified 13 September 2010).
– year: 1998
  ident: bib0250
  publication-title: Understanding Options for Agricultural Production
– reference: FAO., 2008. FAOSTAT.
– volume: 9
  start-page: 327
  year: 1986
  end-page: 347
  ident: bib0120
  article-title: Climatic change and grain corn yields in the North American Great Plains
  publication-title: Clim. Change
– volume: 88
  start-page: 690
  year: 1996
  end-page: 694
  ident: bib0170
  article-title: Simulation models: science, snake oil, education, or engineering?
  publication-title: Agron. J.
– volume: 68
  start-page: 187
  year: 1998
  end-page: 196
  ident: bib0140
  article-title: The effects of global temperature change on rice leaf blast epidemics: a simulation study in three agroecological zones
  publication-title: Agric. Ecosys. Environ.
– start-page: 427
  year: 1996
  ident: 10.1016/j.fcr.2011.07.001_bib0175
  article-title: Agriculture in a changing climate: impacts and adaptation
– volume: 15
  start-page: 183
  year: 1999
  ident: 10.1016/j.fcr.2011.07.001_bib0055
  article-title: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity
  publication-title: Clim. Dynam.
  doi: 10.1007/s003820050276
– start-page: 329
  year: 1998
  ident: 10.1016/j.fcr.2011.07.001_bib0240
  article-title: Risk assessment and food security
– volume: 107
  start-page: 9513
  year: 2010
  ident: 10.1016/j.fcr.2011.07.001_bib0040
  article-title: Importance of carbon dioxide physiological forcing to future climate change
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.0913000107
– volume: 1
  start-page: 202
  year: 2006
  ident: 10.1016/j.fcr.2011.07.001_bib0245
  article-title: Applications of CERES-rice and CERES-wheat in research, policy and climate change studies in Asia: a review
  publication-title: Int. J. Agric. Res.
  doi: 10.3923/ijar.2006.202.225
– volume: 26
  start-page: 328
  year: 2011
  ident: 10.1016/j.fcr.2011.07.001_bib0025
  article-title: Technical assessment and evaluation of environmental models and software: Letter to the
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2010.08.004
– volume: 92
  start-page: 13
  year: 1996
  ident: 10.1016/j.fcr.2011.07.001_bib0090
  article-title: Climate change in Asia: a review of the vulnerability and adaptation of crop production
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/BF00175549
– volume: 321
  start-page: 1481
  year: 2008
  ident: 10.1016/j.fcr.2011.07.001_bib0030
  article-title: Atmospheric warming and the amplification of precipitation extremes
  publication-title: Science
  doi: 10.1126/science.1160787
– volume: 70
  start-page: 137
  year: 2005
  ident: 10.1016/j.fcr.2011.07.001_bib0160
  article-title: Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America
  publication-title: Clim. Change
  doi: 10.1007/s10584-005-5940-1
– ident: 10.1016/j.fcr.2011.07.001_bib0225
– ident: 10.1016/j.fcr.2011.07.001_bib0070
– year: 2010
  ident: 10.1016/j.fcr.2011.07.001_bib0080
– volume: 82
  start-page: 377
  year: 2007
  ident: 10.1016/j.fcr.2011.07.001_bib0125
  article-title: Importance of information on tillage practices in the modelling of environmental processes and in the use of environmental indicators
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2006.04.019
– volume: 222
  start-page: 131
  year: 2011
  ident: 10.1016/j.fcr.2011.07.001_bib0010
  article-title: Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2010.09.001
– ident: 10.1016/j.fcr.2011.07.001_bib0060
– volume: 14
  start-page: 309
  year: 2008
  ident: 10.1016/j.fcr.2011.07.001_bib0105
  article-title: Infrared heater arrays for warming ecosystem field plots
  publication-title: Global Change Biol.
  doi: 10.1111/j.1365-2486.2007.01486.x
– volume: 68
  start-page: 197
  year: 1998
  ident: 10.1016/j.fcr.2011.07.001_bib0135
  article-title: Risk analysis of yield losses caused by rice leaf blast associated with temperature changes above and below for five Asian countries
  publication-title: Agric. Ecosys. Environ.
  doi: 10.1016/S0167-8809(97)00083-2
– volume: 90
  start-page: 311
  year: 2009
  ident: 10.1016/j.fcr.2011.07.001_bib0150
  article-title: A regional climate change assessment program for North America
  publication-title: Eos. Trans. Am. Geophys. U
  doi: 10.1029/2009EO360002
– volume: 117
  start-page: 73
  year: 2003
  ident: 10.1016/j.fcr.2011.07.001_bib0185
  publication-title: Agric. For. Met.
  doi: 10.1016/S0168-1923(03)00025-X
– ident: 10.1016/j.fcr.2011.07.001_bib0220
– ident: 10.1016/j.fcr.2011.07.001_bib0205
  doi: 10.2134/asaspecpub59
– volume: 9
  start-page: 327
  year: 1986
  ident: 10.1016/j.fcr.2011.07.001_bib0120
  article-title: Climatic change and grain corn yields in the North American Great Plains
  publication-title: Clim. Change
  doi: 10.1007/BF00139076
– volume: 94
  start-page: 7
  year: 1997
  ident: 10.1016/j.fcr.2011.07.001_bib0180
  article-title: Modularity and genericness in plant and ecosystem models: modularity in Plant Models
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(96)01924-2
– volume: 7
  start-page: 367
  year: 1985
  ident: 10.1016/j.fcr.2011.07.001_bib0195
  article-title: Potential CO2-induced climate effects on North American wheat-producing regions
  publication-title: Climatic Change
  doi: 10.1007/BF00139053
– volume: 97
  start-page: 255
  year: 2003
  ident: 10.1016/j.fcr.2011.07.001_bib0265
  article-title: Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation
  publication-title: Agric. Ecosys. Environ.
  doi: 10.1016/S0167-8809(03)00114-2
– ident: 10.1016/j.fcr.2011.07.001_bib0075
– ident: 10.1016/j.fcr.2011.07.001_bib0200
  doi: 10.1007/s11027-007-9103-8
– volume: 13
  start-page: 421
  year: 2008
  ident: 10.1016/j.fcr.2011.07.001_bib0280
  article-title: Plants to power: bioenergy to fuel the future
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2008.06.001
– volume: 61
  start-page: 2217
  year: 2010
  ident: 10.1016/j.fcr.2011.07.001_bib0215
  article-title: Improving the use of modelling for projections of climate change impacts on crops and pastures
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq100
– volume: 81
  start-page: 1
  year: 2007
  ident: 10.1016/j.fcr.2011.07.001_bib0050
  article-title: Evaluating the performance and utility of regional climate models: the Prudence Project
  publication-title: Clim. Change
  doi: 10.1007/s10584-006-9211-6
– volume: 59
  start-page: 75
  year: 1992
  ident: 10.1016/j.fcr.2011.07.001_bib0065
  article-title: Simulations of crop responses to climate change: effects with present technology and currently available adjustments (the ‘smart farmer’ scenario)
  publication-title: Agric. Forest. Meteorol.
  doi: 10.1016/0168-1923(92)90087-K
– volume: 60
  start-page: 2775
  year: 2009
  ident: 10.1016/j.fcr.2011.07.001_bib0045
  article-title: Crops and climate change: Progress, trends, and challenges in simulating impacts and informing adaptation
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp062
– volume: 68
  start-page: 187
  year: 1998
  ident: 10.1016/j.fcr.2011.07.001_bib0140
  article-title: The effects of global temperature change on rice leaf blast epidemics: a simulation study in three agroecological zones
  publication-title: Agric. Ecosys. Environ.
  doi: 10.1016/S0167-8809(97)00082-0
– volume: 96
  start-page: 853
  year: 2004
  ident: 10.1016/j.fcr.2011.07.001_bib0035
  article-title: A web-based data exchange system for crop model applications
  publication-title: Agron. J.
  doi: 10.2134/agronj2004.0853
– year: 1998
  ident: 10.1016/j.fcr.2011.07.001_bib0250
– ident: 10.1016/j.fcr.2011.07.001_bib0005
– volume: 8
  start-page: 695
  year: 2002
  ident: 10.1016/j.fcr.2011.07.001_bib0015
  article-title: A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield
  publication-title: Global Change Biol.
  doi: 10.1046/j.1365-2486.2002.00498.x
– volume: 24
  start-page: 7
  year: 1993
  ident: 10.1016/j.fcr.2011.07.001_bib0190
  article-title: The MINK methodology: background and baseline
  publication-title: Clim. Change
  doi: 10.1007/BF01091475
– volume: 76
  start-page: 45
  year: 2002
  ident: 10.1016/j.fcr.2011.07.001_bib0275
  article-title: Insufficient use of meso-resolution spatial analysis in the planning, execution and dissemination of agronomic research?
  publication-title: Field Crops Res.
  doi: 10.1016/S0378-4290(02)00041-2
– volume: 1
  start-page: 85
  year: 1977
  ident: 10.1016/j.fcr.2011.07.001_bib0095
  article-title: Assessing the impact of climatic change on food production
  publication-title: Clim. Change
  doi: 10.1007/BF00162779
– volume: 88
  start-page: 690
  year: 1996
  ident: 10.1016/j.fcr.2011.07.001_bib0170
  article-title: Simulation models: science, snake oil, education, or engineering?
  publication-title: Agron. J.
  doi: 10.2134/agronj1996.00021962008800050002x
– volume: 43
  start-page: 1441
  year: 2008
  ident: 10.1016/j.fcr.2011.07.001_bib0130
  article-title: Impact of increasing mean air temperature on the development of rice and red rice
  publication-title: Pesqui. Agropecu. Bras.
  doi: 10.1590/S0100-204X2008001100001
– volume: 20
  start-page: 175
  year: 1995
  ident: 10.1016/j.fcr.2011.07.001_bib0270
  article-title: Climate change scenarios for the assessments of the climate change on regional ecosystems
  publication-title: J. Thermal Biol.
  doi: 10.1016/0306-4565(94)00047-M
– volume: 86
  start-page: 860
  year: 1994
  ident: 10.1016/j.fcr.2011.07.001_bib0235
  article-title: A computer program to analyze single-season crop model outputs
  publication-title: Agron. J.
  doi: 10.2134/agronj1994.00021962008600050020x
– volume: 28
  start-page: 538
  year: 1976
  ident: 10.1016/j.fcr.2011.07.001_bib0100
  article-title: Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii
  publication-title: Tellus
  doi: 10.1111/j.2153-3490.1976.tb00701.x
– volume: 77
  start-page: 293
  year: 2002
  ident: 10.1016/j.fcr.2011.07.001_bib0110
  article-title: Responses of agricultural crops to free-air CO2 enrichment
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(02)77017-X
– year: 1990
  ident: 10.1016/j.fcr.2011.07.001_bib0230
– start-page: 235
  year: 2001
  ident: 10.1016/j.fcr.2011.07.001_bib0085
  article-title: Ecosystems and their goods and services
– volume: 35
  start-page: 1179
  year: 1999
  ident: 10.1016/j.fcr.2011.07.001_bib0115
  article-title: Free-air CO2 enrichment (FACE) and soil nitrogen effects on energy balance and evapotranspiration of wheat
  publication-title: Water Resour. Res.
  doi: 10.1029/1998WR900115
– ident: 10.1016/j.fcr.2011.07.001_bib0165
– volume: 18
  start-page: 57
  year: 2002
  ident: 10.1016/j.fcr.2011.07.001_bib0255
  article-title: Simulating the effects of elevated CO2 on crops: approaches and applications for climate change
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(02)00097-7
– volume: 52
  start-page: 394
  year: 1999
  ident: 10.1016/j.fcr.2011.07.001_bib0145
  article-title: Herbicide-tolerant crops - real farmer opportunity or potential environmental problem?
  publication-title: Pesticide Sci.
  doi: 10.1002/(SICI)1096-9063(199804)52:4<394::AID-PS741>3.0.CO;2-D
– volume: 17
  start-page: 519
  year: 1988
  ident: 10.1016/j.fcr.2011.07.001_bib0210
  article-title: Implications of a global climatic warming for agriculture: a review and appraisal
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1988.00472425001700040001x
– ident: 10.1016/j.fcr.2011.07.001_bib0260
– volume: 31
  start-page: 1317
  year: 2008
  ident: 10.1016/j.fcr.2011.07.001_bib0020
  article-title: Next generation of elevated [CO2] experiments with crops: A critical investment for feeding the future world
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2008.01841.x
– volume: 14
  start-page: 277
  year: 1999
  ident: 10.1016/j.fcr.2011.07.001_bib0155
  article-title: Climate change, agriculture, and developing countries: does adaptation matter?
  publication-title: World Bank Research Obs.
  doi: 10.1093/wbro/14.2.277
SSID ssj0006616
Score 2.53869
Snippet ► We reviewed 221 papers that used crop models to assess impacts of climate change. ► Crops most frequently assessed were wheat, maize, soybean and rice. ►...
Ecophysiological models are widely used to forecast potential impacts of climate change on future agricultural productivity and to examine options for...
SourceID proquest
crossref
fao
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 357
SubjectTerms adaptation
Adaptation, Agricultural impacts, Climate change, Crop growth simulation, Global warming, Modeling
agricultural forecasts
canopy
carbon dioxide
climate
computer software
corn
crop models
crop production
crop rotation
crops
cultivars
Europe
food production
food security
global warming
greenhouse gas emissions
issues and policy
Oryza sativa
planting date
prediction
radiation use efficiency
researchers
rice
risk
risk factors
Ruta graveolens
soil resources
soybeans
stakeholders
stomatal conductance
temperature
tillage
Triticum aestivum
United States
wheat
Zea mays
Title Methodologies for simulating impacts of climate change on crop production
URI https://dx.doi.org/10.1016/j.fcr.2011.07.001
https://www.proquest.com/docview/1365046098
https://www.proquest.com/docview/1777170631
https://www.proquest.com/docview/902375201
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9wwDI4Ye2EPCAYTDIaCtKdJ3SVN0qSPJwQ6QPDCTuItSnoJuom1p-vxym_HTtshNHEPe62cNrVdx67tz4R8V7mqYhFUVs6Ez2RhisxppjLpSiWqaKTwmNG9uS0mU3l1r-43yNnQC4Nllb3t72x6stb9lVHPzdFiPh_dMaGNxDQgTx2a2GgupUYt__n8WuYB50-Xr4RoCamHzGaq8YrVskfxRCBD_t7Z9CG65h9bnQ6gix2y3XuOdNxtbpdshPoz-TR-WPboGWGPXN6kedDJnoWWgj9K2_mfNKCrfqBdQ2RLm0irxzl4qoF2bb-0qSlO8qKLDv4VRLVPphfnv84mWT8rIaukUavMcwSak-BNgMtn8sBElKp02gcnZg7cHHg9z2WITMhKBM6ccNL4GHRV6DhT4gvZrJs6HBAKAQ7cJOqYF1pGH0o346VRnsmoVW74IWEDl2zVA4njPItHO1SM_bbAWIuMtQzT27Dkx98liw5FYx2xHFhv36iCBSu_btkBiMk6YHtrp3c5ho4IDgQh4SE5HWRn4evBlIirQ_PUWizyw9RwadbQaK0RZEjAI-g7NCVoIDCH8a__t_kjspV-VvMczNYx2Vwtn8I38HZW_iSp8wn5OL68nty-AIdt-m0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBba9LDtUOyJdt1DA3YaYESyJEs-BsWKZG1yaQP0JkiOVKTo7CBO__9IWy4wDM1hV0O0ZUr-RJrkR0K-q1xVsQgqK1fCZ7IwReY0U5l0pRJVNFJ4jOjOF8V0KX_dqtsDcj7UwmBaZcL-HtM7tE5Xxkmb4816Pb5mQhuJYUDeVWiqQ3KE7FRqRI4ms8vp4gmQ4QjqQ5bgMKHAENzs0rxitU1EnshlyJ87ng6ja_6B6-4MunhNjpPxSCf9_N6Qg1C_Ja8md9tEoBHekdm8awndQVpoKZiktF3_7np01Xe0r4lsaRNp9bAGYzXQvvKXNjXFZl500zPAwmq9J8uLnzfn0yy1S8gqadQu8xy55iQYFGD1mTwwEaUqnfbBiZUDSwdez3MZIhOyEoEzJ5w0PgZdFTqulPhARnVThxNCwceBm0Qd80LL6EPpVrw0yjMZtcoNPyVs0JKtEpc4trR4sEPS2L0FxVpUrGUY4QaRH08im55IY99gOaje_rUbLAD9PrETWCbrQO2tXV7n6D0iPxB4hafk27B2Fj4gjIq4OjSPrcU8P4wOl2bPGK018gwJeAR9ZkwJmxCUw_jH_5v8V_JiejO_slezxeUZedn9u-Y5oNgnMtptH8NnMH52_kva3H8AIzL9Hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methodologies+for+simulating+impacts+of+climate+change+on+crop+production&rft.jtitle=Field+crops+research&rft.au=White%2C+Jeffrey+W.&rft.au=Hoogenboom%2C+Gerrit&rft.au=Kimball%2C+Bruce+A.&rft.au=Wall%2C+Gerard+W.&rft.date=2011-12-20&rft.issn=0378-4290&rft.volume=124&rft.issue=3&rft.spage=357&rft.epage=368&rft_id=info:doi/10.1016%2Fj.fcr.2011.07.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fcr_2011_07_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4290&client=summon