Intercropping legumes and cereals increases phosphorus use efficiency; a meta-analysis
Aims Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus use efficiency but no overarching analysis exists on the role of species traits and input levels. Here we synthesize the available info...
Saved in:
Published in | Plant and soil Vol. 460; no. 1/2; pp. 89 - 104 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer Science + Business Media
01.03.2021
Springer International Publishing Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0032-079X 1573-5036 |
DOI | 10.1007/s11104-020-04768-x |
Cover
Loading…
Abstract | Aims
Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus use efficiency but no overarching analysis exists on the role of species traits and input levels. Here we synthesize the available information on P use efficiency in cereal/legume intercropping.
Methods
Global data on yields, P uptake and nutrient input in cereal/legume mixtures were extracted from the literature and statistically analyzed. Co-variables explaining P uptake efficiency and yield were considered.
Results
P uptake was substantially increased with an average value of LER
P
, the land equivalent ratio for P uptake, of 1.24, and an average NE
P
(observed P uptake minus expected P uptake) of 3.67 kg P ha
−1
. The conversion efficiency of P uptake to biomass decreased with P uptake and was lower in intercrops than in sole crops but the conversion efficiency to yield was not affected by intercropping. The P fertilizer requirement was 21% lower in intercrops than in sole crops for the same yields.
Conclusions
Substantial improvements in land use efficiency and P uptake are obtained by cereal/legume intercropping. Cereal/legume intercropping has therefore potential to increase P fertilizer use efficiency in agriculture. |
---|---|
AbstractList | Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus use efficiency but no overarching analysis exists on the role of species traits and input levels. Here we synthesize the available information on P use efficiency in cereal/legume intercropping. Global data on yields, P uptake and nutrient input in cereal/legume mixtures were extracted from the literature and statistically analyzed. Co-variables explaining P uptake efficiency and yield were considered. P uptake was substantially increased with an average value of LER.sub.P, the land equivalent ratio for P uptake, of 1.24, and an average NE.sub.P (observed P uptake minus expected P uptake) of 3.67 kg P ha.sup.-1. The conversion efficiency of P uptake to biomass decreased with P uptake and was lower in intercrops than in sole crops but the conversion efficiency to yield was not affected by intercropping. The P fertilizer requirement was 21% lower in intercrops than in sole crops for the same yields. Substantial improvements in land use efficiency and P uptake are obtained by cereal/legume intercropping. Cereal/legume intercropping has therefore potential to increase P fertilizer use efficiency in agriculture. AIMS: Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus use efficiency but no overarching analysis exists on the role of species traits and input levels. Here we synthesize the available information on P use efficiency in cereal/legume intercropping. METHODS: Global data on yields, P uptake and nutrient input in cereal/legume mixtures were extracted from the literature and statistically analyzed. Co-variables explaining P uptake efficiency and yield were considered. RESULTS: P uptake was substantially increased with an average value of LERP, the land equivalent ratio for P uptake, of 1.24, and an average NEP (observed P uptake minus expected P uptake) of 3.67 kg P ha⁻¹. The conversion efficiency of P uptake to biomass decreased with P uptake and was lower in intercrops than in sole crops but the conversion efficiency to yield was not affected by intercropping. The P fertilizer requirement was 21% lower in intercrops than in sole crops for the same yields. CONCLUSIONS: Substantial improvements in land use efficiency and P uptake are obtained by cereal/legume intercropping. Cereal/legume intercropping has therefore potential to increase P fertilizer use efficiency in agriculture. AimsIntercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus use efficiency but no overarching analysis exists on the role of species traits and input levels. Here we synthesize the available information on P use efficiency in cereal/legume intercropping.MethodsGlobal data on yields, P uptake and nutrient input in cereal/legume mixtures were extracted from the literature and statistically analyzed. Co-variables explaining P uptake efficiency and yield were considered.ResultsP uptake was substantially increased with an average value of LERP, the land equivalent ratio for P uptake, of 1.24, and an average NEP (observed P uptake minus expected P uptake) of 3.67 kg P ha−1. The conversion efficiency of P uptake to biomass decreased with P uptake and was lower in intercrops than in sole crops but the conversion efficiency to yield was not affected by intercropping. The P fertilizer requirement was 21% lower in intercrops than in sole crops for the same yields.ConclusionsSubstantial improvements in land use efficiency and P uptake are obtained by cereal/legume intercropping. Cereal/legume intercropping has therefore potential to increase P fertilizer use efficiency in agriculture. Aims Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus use efficiency but no overarching analysis exists on the role of species traits and input levels. Here we synthesize the available information on P use efficiency in cereal/legume intercropping. Methods Global data on yields, P uptake and nutrient input in cereal/legume mixtures were extracted from the literature and statistically analyzed. Co-variables explaining P uptake efficiency and yield were considered. Results P uptake was substantially increased with an average value of LER.sub.P, the land equivalent ratio for P uptake, of 1.24, and an average NE.sub.P (observed P uptake minus expected P uptake) of 3.67 kg P ha.sup.-1. The conversion efficiency of P uptake to biomass decreased with P uptake and was lower in intercrops than in sole crops but the conversion efficiency to yield was not affected by intercropping. The P fertilizer requirement was 21% lower in intercrops than in sole crops for the same yields. Conclusions Substantial improvements in land use efficiency and P uptake are obtained by cereal/legume intercropping. Cereal/legume intercropping has therefore potential to increase P fertilizer use efficiency in agriculture. Aims Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus use efficiency but no overarching analysis exists on the role of species traits and input levels. Here we synthesize the available information on P use efficiency in cereal/legume intercropping. Methods Global data on yields, P uptake and nutrient input in cereal/legume mixtures were extracted from the literature and statistically analyzed. Co-variables explaining P uptake efficiency and yield were considered. Results P uptake was substantially increased with an average value of LER P , the land equivalent ratio for P uptake, of 1.24, and an average NE P (observed P uptake minus expected P uptake) of 3.67 kg P ha −1 . The conversion efficiency of P uptake to biomass decreased with P uptake and was lower in intercrops than in sole crops but the conversion efficiency to yield was not affected by intercropping. The P fertilizer requirement was 21% lower in intercrops than in sole crops for the same yields. Conclusions Substantial improvements in land use efficiency and P uptake are obtained by cereal/legume intercropping. Cereal/legume intercropping has therefore potential to increase P fertilizer use efficiency in agriculture. |
Audience | Academic |
Author | Zhang, Chaochun Zhang, Fusuo Tang, Xiaoyan Yu, Yang Shen, Jianbo van der Werf, Wopke |
Author_xml | – sequence: 1 givenname: Xiaoyan surname: Tang fullname: Tang, Xiaoyan – sequence: 2 givenname: Chaochun surname: Zhang fullname: Zhang, Chaochun – sequence: 3 givenname: Yang surname: Yu fullname: Yu, Yang – sequence: 4 givenname: Jianbo surname: Shen fullname: Shen, Jianbo – sequence: 5 givenname: Wopke surname: van der Werf fullname: van der Werf, Wopke – sequence: 6 givenname: Fusuo surname: Zhang fullname: Zhang, Fusuo |
BookMark | eNp9kd9rFDEQx4NU8Fr9BwRhwRdfUifJJtnFp1L8USj4ouJbyOUmZ47dZE12offfm3PFYpESQibD9zMzyfecnMUUkZCXDC4ZgH5bGGPQUuBAodWqo3dPyIZJLagEoc7IBkBwCrr__oycl3KA052pDfl2E2fMLqdpCnHfDLhfRiyNjbvGYUY7lCZEV4NSs9OPVOrOS2mWgg16H1zA6I7vGtuMOFtqox2OJZTn5KmvLL74c16Qrx_ef7n-RG8_f7y5vrqlru3kTK3nHW47uZMtd8oKu932gu1c77gE77XqgWvNewHIBZPWAUjHtGbO9sopLy7Im7XulNPPBctsxlAcDoONmJZiuJSsV1opVqWvH0gPacl13pMKBOs74OpetbcDmhB9mrN1p6LmSknFmAbdVtXlf1R17XAMrlrjQ83_A_AVqD9dSkZvphxGm4-GgTk5aFYHTXXQ_HbQ3FWoewC5MNs5pFi7heFxVKxoqX3iHvP9Yx-lXq3Uocwp_x2RVwe4ZEr8An7SusM |
CitedBy_id | crossref_primary_10_1016_j_rhisph_2024_100907 crossref_primary_10_1007_s11104_021_04915_y crossref_primary_10_1007_s11104_025_07357_y crossref_primary_10_1016_j_scienta_2023_111834 crossref_primary_10_1016_j_envpol_2023_122873 crossref_primary_10_1007_s42729_022_00936_3 crossref_primary_10_1007_s42729_025_02327_w crossref_primary_10_3390_agronomy12061372 crossref_primary_10_1016_j_fcr_2024_109607 crossref_primary_10_1016_j_fcr_2022_108757 crossref_primary_10_1007_s42729_024_01638_8 crossref_primary_10_1007_s11104_021_05076_8 crossref_primary_10_1007_s13593_022_00816_1 crossref_primary_10_1007_s11104_025_07363_0 crossref_primary_10_1007_s00374_024_01872_3 crossref_primary_10_1007_s42729_024_01918_3 crossref_primary_10_3389_fpls_2023_1228850 crossref_primary_10_32615_bp_2024_005 crossref_primary_10_1007_s11104_021_05165_8 crossref_primary_10_3390_su16073081 crossref_primary_10_1016_j_agsy_2024_104081 crossref_primary_10_1016_j_apsoil_2023_104989 crossref_primary_10_3389_fsufs_2022_921216 crossref_primary_10_3390_agronomy15010220 crossref_primary_10_1002_ldr_4770 crossref_primary_10_1007_s11368_025_04003_z crossref_primary_10_1016_j_still_2023_105867 crossref_primary_10_3390_biology11050630 crossref_primary_10_1007_s11104_024_06990_3 crossref_primary_10_1080_03650340_2024_2419969 crossref_primary_10_1111_pce_14487 crossref_primary_10_1186_s12870_022_03706_6 crossref_primary_10_1016_j_agsy_2022_103584 crossref_primary_10_1186_s42055_023_00052_9 crossref_primary_10_1016_j_agsy_2022_103589 crossref_primary_10_1016_j_agee_2024_108929 crossref_primary_10_1007_s42729_024_01648_6 crossref_primary_10_1007_s13593_023_00916_6 crossref_primary_10_1016_j_still_2024_106063 crossref_primary_10_1111_nph_70037 crossref_primary_10_1371_journal_pone_0300573 crossref_primary_10_1016_j_pld_2021_06_005 crossref_primary_10_1016_j_pedsph_2024_05_002 crossref_primary_10_1177_00307270231199795 crossref_primary_10_1016_j_indcrop_2022_114958 crossref_primary_10_3390_su16041440 crossref_primary_10_1016_j_apsoil_2024_105624 crossref_primary_10_1080_01904167_2024_2410818 crossref_primary_10_1002_sd_2435 crossref_primary_10_1007_s40003_024_00699_6 crossref_primary_10_1016_j_eja_2022_126679 crossref_primary_10_3390_agronomy12030613 crossref_primary_10_1007_s11104_024_07041_7 crossref_primary_10_3390_agronomy14051053 crossref_primary_10_1088_1755_1315_1192_1_012001 crossref_primary_10_1002_sae2_12067 crossref_primary_10_3390_plants14010106 crossref_primary_10_1093_jee_toac045 crossref_primary_10_1016_j_ecofro_2024_12_008 crossref_primary_10_1007_s11356_023_27400_8 crossref_primary_10_1002_sae2_12026 crossref_primary_10_1016_j_agee_2022_108239 crossref_primary_10_1007_s13593_023_00902_y crossref_primary_10_1007_s42729_021_00605_x crossref_primary_10_3389_fagro_2023_1223639 crossref_primary_10_1186_s12870_024_05061_0 crossref_primary_10_3389_fsufs_2025_1527256 crossref_primary_10_1038_s41598_025_87293_0 crossref_primary_10_1177_00307270241240778 crossref_primary_10_1007_s44187_024_00135_2 crossref_primary_10_1007_s11104_023_06426_4 crossref_primary_10_1007_s11104_024_07018_6 crossref_primary_10_1007_s11104_022_05309_4 crossref_primary_10_1016_j_still_2024_106430 crossref_primary_10_1016_j_ijagro_2024_100024 crossref_primary_10_3390_su13094695 crossref_primary_10_1007_s10705_022_10234_0 crossref_primary_10_1007_s11104_022_05487_1 crossref_primary_10_3389_fpls_2023_1153237 crossref_primary_10_1038_s41559_022_01794_z crossref_primary_10_3390_su16072725 crossref_primary_10_3389_fagro_2024_1376110 crossref_primary_10_1016_j_fcr_2023_109174 crossref_primary_10_3389_fmicb_2024_1403338 crossref_primary_10_1016_j_fcr_2023_109136 |
Cites_doi | 10.1016/j.fcr.2012.09.019 10.1016/j.scitotenv.2017.10.024 10.1016/j.eja.2019.125987 10.1104/pp.111.175331 10.1007/s11104-018-3732-4 10.1038/s41477-020-0680-9 10.1007/BF02370641 10.1093/jxb/ery288 10.2134/agronj2016.03.0170 10.4141/cjss89-025 10.1071/CP09212 10.1016/j.tplants.2017.01.005 10.1016/j.soilbio.2012.07.027 10.1073/pnas.0704591104 10.1111/gcb.12738 10.1017/S0014479700010978 10.1016/S0378-4290(01)00126-5 10.1007/s11104-004-1305-1 10.1016/S0065-2113(08)60802-0 10.1016/j.fcr.2019.107661 10.1007/s10658-019-01711-4 10.1007/s11104-016-2949-3 10.1016/j.fcr.2015.09.010 10.1016/j.fcr.2016.08.001 10.1016/j.agee.2016.12.026 10.1080/01904169409364723 10.1007/s13593-014-0272-z 10.1111/nph.13613 10.1098/rstb.1977.0140 10.1016/0378-4290(93)90123-5 10.1016/j.soilbio.2011.11.015 10.1016/j.eja.2009.04.002 10.1038/35083573 10.1016/j.fcr.2012.02.007 10.1016/S0378-4290(01)00176-9 10.1017/CBO9780511974199 10.1007/s11104-017-3365-z 10.1016/j.gloenvcha.2008.10.009 10.1016/S0378-4290(01)00157-5 10.1016/j.soilbio.2020.107791 10.1093/aob/mch140 10.1515/9781400840908 10.2307/j.ctvx5w9ws 10.1146/annurev-phyto-082712-102246 10.1890/0012-9658(1999)080[1142:SIIEMA]2.0.CO;2 10.1007/978-0-387-93837-0 10.1016/j.soilbio.2014.04.001 10.2134/agronj13.0590 10.1023/A:1021885032241 10.1016/j.fcr.2019.107613 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 COPYRIGHT 2021 Springer The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2021 Springer – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-020-04768-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany Ecology |
EISSN | 1573-5036 |
EndPage | 104 |
ExternalDocumentID | A656117074 10_1007_s11104_020_04768_x 27292516 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Sichuan Science and Technology Program grantid: 2018HH0036 – fundername: European Union’s Horizon 2020 Programme for Research & Innovation grantid: n°727217 – fundername: National Natural Science Foundation of China grantid: 31972505; 31772402 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2017YFD0200200/2017YFD0200207 |
GroupedDBID | -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2XV 2~F 2~H 30V 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BENPR BGNMA BHPHI BPHCQ BSONS CCPQU CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EMK EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KPH LAK LK8 LLZTM M0K M4Y M7P MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3A S3B SA0 SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WH7 WJK WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~02 ~8M ~EX ~KM -4W -56 -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 3SX 3V. 53G 5QI 88A AANXM AARHV AAYTO ABQSL ABULA ABXSQ ACBXY ACHIC ACKIV ADINQ ADULT ADYPR AEBTG AEFIE AEKMD AFEXP AFFNX AFGCZ AGGDS AIDBO AJBLW AQVQM BBWZM BDATZ C6C CAG COF EJD EN4 FINBP FSGXE GQ6 H13 JSODD KOW M0L N2Q NDZJH O9- OVD P0- R4E RNI RZC RZE RZK S1Z S26 S28 SBY SCLPG T16 TEORI UZXMN VFIZW WK6 XOL Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG AAYXX ADHKG AGQPQ CITATION AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c485t-af28eb85d542c6a3abb931dc9c250ff76902772930e2315ac005c1771ca96c6f3 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Fri Jul 11 02:05:33 EDT 2025 Fri Jul 25 19:03:36 EDT 2025 Tue Jun 17 21:39:58 EDT 2025 Tue Jun 10 20:36:12 EDT 2025 Tue Jul 01 01:47:11 EDT 2025 Thu Apr 24 23:00:20 EDT 2025 Fri Feb 21 02:49:50 EST 2025 Thu Jun 19 20:10:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Keywords | Cereal/legume intercrops P conversion efficiency P fertilizer equivalent ratio P uptake Meta-analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-af28eb85d542c6a3abb931dc9c250ff76902772930e2315ac005c1771ca96c6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5506-4699 |
OpenAccessLink | https://link.springer.com/10.1007/s11104-020-04768-x |
PQID | 2503198026 |
PQPubID | 54098 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2551967661 proquest_journals_2503198026 gale_infotracmisc_A656117074 gale_infotracacademiconefile_A656117074 crossref_primary_10_1007_s11104_020_04768_x crossref_citationtrail_10_1007_s11104_020_04768_x springer_journals_10_1007_s11104_020_04768_x jstor_primary_27292516 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210301 20210300 2021-03-00 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210301 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2021 |
Publisher | Springer Science + Business Media Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer Science + Business Media – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Li, Hoffland, Kuyper, Yu, Zhang, Li, Zhang, van der Werf (CR23) 2020; 6 Yu, Stomph, Makowski, van der Werf (CR50) 2015; 184 He, Ding, Shi, Wu, Liao, Xu (CR17) 2013; 57 CR39 CR38 CR37 Rao, Rego, Willey (CR40) 1987; 101 Makoi, Chimphango, Dakora (CR30) 2010; 61 Mead, Willey (CR33) 1980; 16 Trenbath (CR46) 1993; 34 Darch, Giles, Blackwell, George, Brown, Menezes-Blackburn, Shand, Stutter, Lumsdon, Mezeli, Wendler, Zhang, Wearing, Cooper, Haygarth (CR8) 2018; 427 CR2 CR3 Zhang, Zhang, Tang, Li, Zhang, Rengel, Whalley, Davies, Shen (CR53) 2016; 209 Hauggaard-Nielsen, Jensen (CR15) 2005; 274 Mao, Zhang, Li, van der Werf, Sun, Spiertz, Li (CR31) 2012; 138 Li, Hoffland, Kuyper, Yu, Li, Zhang, Zhang, van der Werf (CR24) 2020; 113 CR45 CR43 CR42 CR41 Connor, Loomis, Cassman (CR5) 2011 Hauggaard-Nielsen, Ambus, Jensen (CR16) 2001; 70 Ofori, Stern (CR36) 1987; 41 Hinsinger, Betencourt, Bernard, Brauman, Plassard, Shen, Tang, Zhang (CR18) 2011; 156 Loreau, Hector (CR29) 2001; 412 Evers, van der Werf, Stomph, Bastiaans, Niels (CR9) 2018; 70 Gaba, Lescourret, Boudsocq, Enjalbert, Hinsinger, Journet, Navas, Wery, Louarn, Malezieux, Pelzer (CR12) 2015; 35 Betencourt, Duputel, Colomb, Desclaux, Hinsinger (CR1) 2012; 46 Cordell, Drangert, White (CR6) 2009; 19 CR13 Willey (CR47) 1979; 32 CR55 Yu, Makowski, Stomph, van der Werf (CR51) 2016; 108 Li, Kuyper, van der Werf, Zhang, Li, Zhang, Hoffland (CR22) 2018; 439 Tang, Placella, Daydé, Bernard, Robin, Journet, Justes, Hinsinger (CR44) 2016; 407 Martin-Guay, Paquette, Dupras, Rivest (CR32) 2018; 615 Fernandez, Ascencio (CR11) 1994; 17 Liu, Wang, Yan, Li, Jiao, Hu (CR28) 2017; 237 Xiang, Yong, Yang, Wan, Gong, Cui, Lei (CR48) 2012; 7 Mei, Gui, Wang, Huang, Long, Christie, Li (CR34) 2012; 130 Zhang, Dong, Tang, Zheng, Makowski, Yu, Zhang, van der Werf (CR54) 2019; 154 Cowell, Bnnuen, Van Kessel (CR7) 1989; 69 Lemon (CR20) 2006; 6 Xu, Li, Zhang, Yang, van der Werf, Zhang (CR49) 2020; 246 CR27 Faucon, Houben, Lambers (CR10) 2017; 22 CR26 CR25 Yu, Stomph, Makowski, Zhang, van der Werf (CR52) 2016; 198 Li, Li, Sun, Zhou, Bao, Zhang, Zhang (CR21) 2007; 104 Monteith (CR35) 1977; 281 Cong, Hoffland, Li, Six, Sun, Bao, Zhang, van der Werf (CR4) 2015; 21 Hauggaard-Nielsen, Jensen (CR14) 2001; 72 Launay, Brisson, Satger, Hauggaardnielsen, Correhellou, Kasynova, Ruske, Jensen, Gooding (CR19) 2009; 31 BR Trenbath (4768_CR46) 1993; 34 JHJR Makoi (4768_CR30) 2010; 61 P Hinsinger (4768_CR18) 2011; 156 Y Yu (4768_CR50) 2015; 184 4768_CR55 4768_CR13 D Cordell (4768_CR6) 2009; 19 LL Mao (4768_CR31) 2012; 138 DS Zhang (4768_CR53) 2016; 209 H Hauggaard-Nielsen (4768_CR14) 2001; 72 E Betencourt (4768_CR1) 2012; 46 Z Xu (4768_CR49) 2020; 246 S Gaba (4768_CR12) 2015; 35 J Lemon (4768_CR20) 2006; 6 T Darch (4768_CR8) 2018; 427 R Mead (4768_CR33) 1980; 16 JL Monteith (4768_CR35) 1977; 281 JB Evers (4768_CR9) 2018; 70 H Hauggaard-Nielsen (4768_CR15) 2005; 274 M Martin-Guay (4768_CR32) 2018; 615 4768_CR26 4768_CR25 4768_CR27 CJ Li (4768_CR22) 2018; 439 MR Rao (4768_CR40) 1987; 101 Y He (4768_CR17) 2013; 57 Y Yu (4768_CR52) 2016; 198 LE Cowell (4768_CR7) 1989; 69 L Li (4768_CR21) 2007; 104 R Willey (4768_CR47) 1979; 32 4768_CR37 4768_CR39 4768_CR38 CC Zhang (4768_CR54) 2019; 154 M Loreau (4768_CR29) 2001; 412 Y Yu (4768_CR51) 2016; 108 WF Cong (4768_CR4) 2015; 21 H Hauggaard-Nielsen (4768_CR16) 2001; 70 XY Tang (4768_CR44) 2016; 407 L Liu (4768_CR28) 2017; 237 D Connor (4768_CR5) 2011 4768_CR42 4768_CR41 DS Fernandez (4768_CR11) 1994; 17 MP Faucon (4768_CR10) 2017; 22 4768_CR43 CJ Li (4768_CR23) 2020; 6 4768_CR45 CJ Li (4768_CR24) 2020; 113 F Ofori (4768_CR36) 1987; 41 4768_CR3 4768_CR2 M Launay (4768_CR19) 2009; 31 PP Mei (4768_CR34) 2012; 130 DB Xiang (4768_CR48) 2012; 7 |
References_xml | – ident: CR45 – volume: 138 start-page: 11 year: 2012 end-page: 20 ident: CR31 article-title: Yield advantage and water saving in maize/pea intercrop publication-title: Field Crop Res doi: 10.1016/j.fcr.2012.09.019 – volume: 615 start-page: 767 year: 2018 end-page: 772 ident: CR32 article-title: The new green revolution: sustainable intensification of agriculture by intercropping publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.10.024 – ident: CR39 – volume: 113 start-page: 125987 year: 2020 ident: CR24 article-title: Yield gain, complementarity and competitive dominance in intercropping in China: A meta-analysis of drivers of yield gain using additive partitioning publication-title: Eur J Agron doi: 10.1016/j.eja.2019.125987 – ident: CR25 – volume: 156 start-page: 1078 year: 2011 end-page: 1086 ident: CR18 article-title: P for two, sharing a scarce resource: soil phosphorus acquisition in the Rhizosphere of intercropped species publication-title: Plant Physiol doi: 10.1104/pp.111.175331 – volume: 439 start-page: 163 year: 2018 end-page: 177 ident: CR22 article-title: Testing for complementarity in phosphorus resource use by mixtures of crop species publication-title: Plant Soil doi: 10.1007/s11104-018-3732-4 – ident: CR42 – volume: 6 start-page: 653 year: 2020 end-page: 660 ident: CR23 article-title: Syndromes of production in intercropping impact yield gains publication-title: Nature Plants doi: 10.1038/s41477-020-0680-9 – volume: 101 start-page: 167 year: 1987 end-page: 177 ident: CR40 article-title: Response of cereals to nitrogen in sole cropping and intercropping with different legumes publication-title: Plant Soil doi: 10.1007/BF02370641 – volume: 70 start-page: 2381 year: 2018 end-page: 2388 ident: CR9 article-title: Understanding and optimizing species mixtures using functional-structural plant modelling publication-title: J Exp Bot doi: 10.1093/jxb/ery288 – volume: 108 start-page: 2269 year: 2016 end-page: 2279 ident: CR51 article-title: Robust increases of land equivalent ratio with temporal niche differentiation: a meta-quantile regression publication-title: Agron J doi: 10.2134/agronj2016.03.0170 – volume: 69 start-page: 243 year: 1989 end-page: 251 ident: CR7 article-title: Yield and N, fixation of pea and lentil as affected by intercropping and N application publication-title: Can J Soil Sci doi: 10.4141/cjss89-025 – volume: 32 start-page: 1 year: 1979 end-page: 10 ident: CR47 article-title: Intercropping-its importance and research needs. 1. Competition and yield advantages publication-title: Field Crop Abs – volume: 61 start-page: 279 year: 2010 end-page: 286 ident: CR30 article-title: Elevated levels of acid and alkaline phosphatase activity in roots and rhizosphere of cowpea ( L. Walp.) genotypes grown in mixed culture and at different densities with sorghum ( L.) publication-title: Crop Pasture Sci doi: 10.1071/CP09212 – volume: 22 start-page: 385 year: 2017 end-page: 394 ident: CR10 article-title: Plant functional traits: soil and ecosystem services publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2017.01.005 – volume: 57 start-page: 625 year: 2013 end-page: 634 ident: CR17 article-title: Profiling of microbial PLFAs: implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.07.027 – ident: CR26 – volume: 104 start-page: 11192 year: 2007 end-page: 11196 ident: CR21 article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.0704591104 – volume: 21 start-page: 1715 year: 2015 end-page: 1726 ident: CR4 article-title: Intercropping enhances organic carbon and nitrogen in soil publication-title: Glob Chang Biol doi: 10.1111/gcb.12738 – volume: 16 start-page: 217 year: 1980 end-page: 228 ident: CR33 article-title: The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping publication-title: Exp Agr doi: 10.1017/S0014479700010978 – volume: 70 start-page: 101 year: 2001 end-page: 109 ident: CR16 article-title: Interspecific competition, N use and interference with weeds in pea–barley intercropping publication-title: Field Crop Res doi: 10.1016/S0378-4290(01)00126-5 – ident: CR43 – volume: 274 start-page: 237 year: 2005 end-page: 250 ident: CR15 article-title: Facilitative root interaction in intercrops publication-title: Plant Soil doi: 10.1007/s11104-004-1305-1 – volume: 41 start-page: 41 year: 1987 end-page: 90 ident: CR36 article-title: Cereal-legume intercropping systems publication-title: Adv Agron doi: 10.1016/S0065-2113(08)60802-0 – volume: 246 start-page: 107661 year: 2020 ident: CR49 article-title: Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis publication-title: Field Crops Res doi: 10.1016/j.fcr.2019.107661 – volume: 7 start-page: 342 year: 2012 end-page: 351 ident: CR48 article-title: Effect of phosphorus and potassium nutrition on growth and yield of soybean in relay strip intercropping system publication-title: Sci Res Essay – ident: CR2 – ident: CR37 – volume: 154 start-page: 931 year: 2019 end-page: 942 ident: CR54 article-title: Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input; a meta-analysis publication-title: Eur J Plant Pathol doi: 10.1007/s10658-019-01711-4 – volume: 407 start-page: 119 year: 2016 end-page: 134 ident: CR44 article-title: Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradient publication-title: Plant Soil doi: 10.1007/s11104-016-2949-3 – volume: 184 start-page: 133 year: 2015 end-page: 144 ident: CR50 article-title: Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis publication-title: Field Crops Res doi: 10.1016/j.fcr.2015.09.010 – volume: 198 start-page: 269 year: 2016 end-page: 279 ident: CR52 article-title: A meta-analysis of relative crop yields in cereal/legume mixtures suggests options for management publication-title: Field Crops Res doi: 10.1016/j.fcr.2016.08.001 – volume: 237 start-page: 16 year: 2017 end-page: 23 ident: CR28 article-title: Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2016.12.026 – volume: 17 start-page: 229 year: 1994 end-page: 241 ident: CR11 article-title: Acid phosphatase activity in bean and cowpea plants grown under phosphorus stress publication-title: J Plant Nutr doi: 10.1080/01904169409364723 – volume: 35 start-page: 607 year: 2015 end-page: 623 ident: CR12 article-title: Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design publication-title: Agron Sustain Dev doi: 10.1007/s13593-014-0272-z – volume: 209 start-page: 823 year: 2016 end-page: 831 ident: CR53 article-title: Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize publication-title: New Phytol doi: 10.1111/nph.13613 – ident: CR27 – volume: 281 start-page: 277 year: 1977 end-page: 294 ident: CR35 article-title: Climate and the efficiency of crop production in Britain publication-title: Philos Trans R Soc Lond B doi: 10.1098/rstb.1977.0140 – volume: 34 start-page: 381 year: 1993 end-page: 405 ident: CR46 article-title: Intercropping for the management of pests and diseases publication-title: Field Crop Res doi: 10.1016/0378-4290(93)90123-5 – volume: 6 start-page: 8 year: 2006 end-page: 12 ident: CR20 article-title: Plotrix: a package in the red light district of R publication-title: R-news – volume: 46 start-page: 181 year: 2012 end-page: 190 ident: CR1 article-title: Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.11.015 – volume: 31 start-page: 85 year: 2009 end-page: 98 ident: CR19 article-title: Exploring options for managing strategies for pea–barley intercropping using a modeling approach publication-title: Eur J Agron doi: 10.1016/j.eja.2009.04.002 – volume: 412 start-page: 72 year: 2001 end-page: 76 ident: CR29 article-title: Partitioning selection and complementarity in biodiversity experiments publication-title: Nature doi: 10.1038/35083573 – volume: 130 start-page: 19 year: 2012 end-page: 27 ident: CR34 article-title: Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil publication-title: Field Crop Res doi: 10.1016/j.fcr.2012.02.007 – volume: 72 start-page: 185 year: 2001 end-page: 196 ident: CR14 article-title: Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability publication-title: Field Crop Res doi: 10.1016/S0378-4290(01)00176-9 – ident: CR3 – ident: CR38 – year: 2011 ident: CR5 publication-title: Crop ecology: productivity and Management in Agricultural Systems doi: 10.1017/CBO9780511974199 – ident: CR13 – ident: CR55 – volume: 427 start-page: 125 year: 2018 end-page: 138 ident: CR8 article-title: Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability publication-title: Plant Soil doi: 10.1007/s11104-017-3365-z – ident: CR41 – volume: 19 start-page: 292 year: 2009 end-page: 305 ident: CR6 article-title: The story of phosphorus: global food security and food for thought publication-title: Global Environ Chang doi: 10.1016/j.gloenvcha.2008.10.009 – volume: 46 start-page: 181 year: 2012 ident: 4768_CR1 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.11.015 – volume: 113 start-page: 125987 year: 2020 ident: 4768_CR24 publication-title: Eur J Agron doi: 10.1016/j.eja.2019.125987 – ident: 4768_CR25 doi: 10.1016/S0378-4290(01)00157-5 – ident: 4768_CR39 doi: 10.1016/j.soilbio.2020.107791 – volume: 69 start-page: 243 year: 1989 ident: 4768_CR7 publication-title: Can J Soil Sci doi: 10.4141/cjss89-025 – volume: 154 start-page: 931 year: 2019 ident: 4768_CR54 publication-title: Eur J Plant Pathol doi: 10.1007/s10658-019-01711-4 – volume: 31 start-page: 85 year: 2009 ident: 4768_CR19 publication-title: Eur J Agron doi: 10.1016/j.eja.2009.04.002 – volume: 198 start-page: 269 year: 2016 ident: 4768_CR52 publication-title: Field Crops Res doi: 10.1016/j.fcr.2016.08.001 – volume: 184 start-page: 133 year: 2015 ident: 4768_CR50 publication-title: Field Crops Res doi: 10.1016/j.fcr.2015.09.010 – volume-title: Crop ecology: productivity and Management in Agricultural Systems year: 2011 ident: 4768_CR5 doi: 10.1017/CBO9780511974199 – volume: 7 start-page: 342 year: 2012 ident: 4768_CR48 publication-title: Sci Res Essay – volume: 130 start-page: 19 year: 2012 ident: 4768_CR34 publication-title: Field Crop Res doi: 10.1016/j.fcr.2012.02.007 – volume: 108 start-page: 2269 year: 2016 ident: 4768_CR51 publication-title: Agron J doi: 10.2134/agronj2016.03.0170 – ident: 4768_CR27 doi: 10.1093/aob/mch140 – ident: 4768_CR2 doi: 10.1515/9781400840908 – ident: 4768_CR45 doi: 10.2307/j.ctvx5w9ws – volume: 209 start-page: 823 year: 2016 ident: 4768_CR53 publication-title: New Phytol doi: 10.1111/nph.13613 – volume: 57 start-page: 625 year: 2013 ident: 4768_CR17 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.07.027 – volume: 41 start-page: 41 year: 1987 ident: 4768_CR36 publication-title: Adv Agron doi: 10.1016/S0065-2113(08)60802-0 – ident: 4768_CR3 doi: 10.1146/annurev-phyto-082712-102246 – volume: 156 start-page: 1078 year: 2011 ident: 4768_CR18 publication-title: Plant Physiol doi: 10.1104/pp.111.175331 – volume: 32 start-page: 1 year: 1979 ident: 4768_CR47 publication-title: Field Crop Abs – volume: 412 start-page: 72 year: 2001 ident: 4768_CR29 publication-title: Nature doi: 10.1038/35083573 – volume: 70 start-page: 101 year: 2001 ident: 4768_CR16 publication-title: Field Crop Res doi: 10.1016/S0378-4290(01)00126-5 – volume: 407 start-page: 119 year: 2016 ident: 4768_CR44 publication-title: Plant Soil doi: 10.1007/s11104-016-2949-3 – volume: 274 start-page: 237 year: 2005 ident: 4768_CR15 publication-title: Plant Soil doi: 10.1007/s11104-004-1305-1 – ident: 4768_CR13 doi: 10.1890/0012-9658(1999)080[1142:SIIEMA]2.0.CO;2 – volume: 21 start-page: 1715 year: 2015 ident: 4768_CR4 publication-title: Glob Chang Biol doi: 10.1111/gcb.12738 – volume: 35 start-page: 607 year: 2015 ident: 4768_CR12 publication-title: Agron Sustain Dev doi: 10.1007/s13593-014-0272-z – volume: 16 start-page: 217 year: 1980 ident: 4768_CR33 publication-title: Exp Agr doi: 10.1017/S0014479700010978 – volume: 6 start-page: 653 year: 2020 ident: 4768_CR23 publication-title: Nature Plants doi: 10.1038/s41477-020-0680-9 – volume: 101 start-page: 167 year: 1987 ident: 4768_CR40 publication-title: Plant Soil doi: 10.1007/BF02370641 – volume: 281 start-page: 277 year: 1977 ident: 4768_CR35 publication-title: Philos Trans R Soc Lond B doi: 10.1098/rstb.1977.0140 – volume: 34 start-page: 381 year: 1993 ident: 4768_CR46 publication-title: Field Crop Res doi: 10.1016/0378-4290(93)90123-5 – ident: 4768_CR55 doi: 10.1007/978-0-387-93837-0 – volume: 439 start-page: 163 year: 2018 ident: 4768_CR22 publication-title: Plant Soil doi: 10.1007/s11104-018-3732-4 – ident: 4768_CR43 doi: 10.1016/j.soilbio.2014.04.001 – volume: 61 start-page: 279 year: 2010 ident: 4768_CR30 publication-title: Crop Pasture Sci doi: 10.1071/CP09212 – volume: 246 start-page: 107661 year: 2020 ident: 4768_CR49 publication-title: Field Crops Res doi: 10.1016/j.fcr.2019.107661 – volume: 237 start-page: 16 year: 2017 ident: 4768_CR28 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2016.12.026 – ident: 4768_CR37 doi: 10.2134/agronj13.0590 – volume: 615 start-page: 767 year: 2018 ident: 4768_CR32 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.10.024 – volume: 6 start-page: 8 year: 2006 ident: 4768_CR20 publication-title: R-news – volume: 70 start-page: 2381 year: 2018 ident: 4768_CR9 publication-title: J Exp Bot doi: 10.1093/jxb/ery288 – ident: 4768_CR41 – ident: 4768_CR26 doi: 10.1023/A:1021885032241 – volume: 427 start-page: 125 year: 2018 ident: 4768_CR8 publication-title: Plant Soil doi: 10.1007/s11104-017-3365-z – volume: 104 start-page: 11192 year: 2007 ident: 4768_CR21 publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.0704591104 – volume: 19 start-page: 292 year: 2009 ident: 4768_CR6 publication-title: Global Environ Chang doi: 10.1016/j.gloenvcha.2008.10.009 – volume: 17 start-page: 229 year: 1994 ident: 4768_CR11 publication-title: J Plant Nutr doi: 10.1080/01904169409364723 – volume: 72 start-page: 185 year: 2001 ident: 4768_CR14 publication-title: Field Crop Res doi: 10.1016/S0378-4290(01)00176-9 – volume: 138 start-page: 11 year: 2012 ident: 4768_CR31 publication-title: Field Crop Res doi: 10.1016/j.fcr.2012.09.019 – ident: 4768_CR38 – ident: 4768_CR42 doi: 10.1016/j.fcr.2019.107613 – volume: 22 start-page: 385 year: 2017 ident: 4768_CR10 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2017.01.005 |
SSID | ssj0003216 |
Score | 2.613282 |
Snippet | Aims
Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases... Aims Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases... Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus... AimsIntercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases... AIMS: Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases... |
SourceID | proquest gale crossref springer jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 89 |
SubjectTerms | Agricultural practices Agricultural production Beans biomass Biomedical and Life Sciences Cereals Crop yield Crops Double cropping Ecology Efficiency Environmental aspects fertilizer application Fertilizers Grain Intercropping Land use Legumes Life Sciences Meta-analysis Methods Mimosaceae Phosphorus phosphorus fertilizers Phosphorus in the body Physiological aspects Plant Physiology Plant Sciences Regular Article REGULAR ARTICLES soil Soil Science & Conservation Sole cropping |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED9Gu8H6ULpspW67ocGgD5sg_pCc0Kd0tJTB9rSUvImzLHWD1ClxAu1_3ztFTsjYBn0wGOvDtk5395N0HwCf2Jkz07WTteJjRl2SHMx9KhEV5pUmhebZG_n7D309Lr5N1CQ6hbWdtXt3JBkk9cbZjTRVIXm50y8IJEtCjruK1u48r8fZaC1_8ywkPOUb2S-Hk-gq8_c-ttRRFMorw8QtyPnHKWlQPlcHsB9RoxityPwGXrimB3uj23mMnOF68PJiRjjvsQevLkMg6se3cBO2-zhHFztFiam7JUHUCmxqYR2BxWkrfjeMGlt6ev9r1tI1X7Zi2TrhQmgJ9ss8Fyju3AIlxvgl72B8dfnz67WMeRSkLQZqIdFnA1cNVK2KzGrMsaqGeVrboSX8431JC-SMQXbed4T2FFriTJuWZWpxqK32-SHsNLPGHYEg7V8r77TKCyx4D0r5ElPUNfIOUt8nkHbDaWwMMs65LqZmEx6ZSWCIBCaQwDwk8Hnd5n4VYuO_tc-YSob5j3q2GN0I6Ps4kpUZEUDlbDplkcDpVk3iG7tVfBjovH5nRkNAaE9Tu47wJjJ0a2ikSFgNaLYl8HFdzF2ykVrjZkuuQ3BYl4R4EvjSTZhNF__-p-PnVT-B1xlb1gRLuFPYWcyX7j1Bo0X1IXDCE08RAZA priority: 102 providerName: Springer Nature |
Title | Intercropping legumes and cereals increases phosphorus use efficiency; a meta-analysis |
URI | https://www.jstor.org/stable/27292516 https://link.springer.com/article/10.1007/s11104-020-04768-x https://www.proquest.com/docview/2503198026 https://www.proquest.com/docview/2551967661 |
Volume | 460 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xlQf2gGAwEdgqIyHxABbNh51UPExp1TKBqBCiqDxZjmOPSSUpTSuN_5671G1VJPbQNGocpzn77n4-3wfAKwrmjGRpeSlom1GmKAdjF3KthY4LiQrNUTTy54m8miYfZ2LmDW6Nd6vcysRWUJe1IRv5O1TVOFsyXDJcLn5zqhpFu6u-hMYRdFAEZzjDO4PR5MvXnSyOo7b4KZ3wXtqf-bCZTfAcar6E0_KplyDo5rcHqskL6I2T4gH8_GfHtFVE40fw0CNIlm-G_DHcs9UpnOTXS59Fw57C_UGNmO_PE_jeGvyoSheFRbG5vUZR1DBdlcxYhIvzht1UhBsb_HXxs27ws1w3bN1YZtvkEhSZ-Z5p9suuNNc-g8lTmI5H34ZX3FdS4CbJxIprF2W2yEQpkshIHeui6MdhafoGyepcikvkiGB23LOI94Q2yJsmTNPQ6L400sVncFzVlX0GDPV_KZyVIk50QlYo4VIdallqsiH1XADhlojK-DTjVO1irvYJkonwCgmvWsKr2wDe7O5ZbJJs3Nn6NY2NIg7Eno32gQT4_yiXlcoRolI9nTQJ4PygJXKOObh81o7u7pkRkgDxnsT7tsOtPEs3aj8BA3i5u0xdkptaZes1tUFALFPEPAG83U6TfRf_f6fndz_xBTyIyJem9X07h-PVcm0vEAytii508vFgMKHvDz8-jbqeA7pwNJRDPE6j_C8LjAdv |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDgl4QDCYCAwwEogHsGg-7LRCCHWwqWNbhdCG-mYcxx5IJSlNK7Z_ir-Ru8RpVST2todIUezYyfl897N9HwDPyZkzkrnluaBjRpmiHIxdyLUWOs4kKjRH3sjHIzk8TT6NxXgD_rS-MGRW2crEWlDnpaE98jeoqpFberhkeD_9xSlrFJ2utik0GrY4tBe_cclWvTv4iOP7Ior2904-DLnPKsBN0hNzrl3Us1lP5CKJjNSxzrJ-HOamb7AL51JcLkYEOeOuRewjtEE-NWGahkb3pZEuxnavwWYSI1TowObu3ujzl6Xsj6M62Srd8G7aH3s3ncZZDzVtwmm51k0Q5PPzNVXoFUJjFLkGd_85oa0V3_4duO0RKxs0LHYXNmyxBbcGZzMftcNuwfXdEjHmxT34Wm8wUlYwcsNiE3uGoq9iusiZsQhPJxX7URBOrfDp9HtZ4TVbVGxRWWbrYBbkCfqWafbTzjXXPmLKfTi9EhpvQ6coC_sAGOKNXDgrRZzohHa9hEt1qGWuac-q6wIIWyIq48OaU3aNiVoFZCbCKyS8qgmvzgN4tXxn2gT1uLT2SxobRTMeWzbaOy7g91HsLDVASEz5e9IkgJ21mjhTzVrxdj26yz4jJAHiS4nvtcOtvAip1IrhA3i2LKYmySyusOWC6iAAlylirABet2yyauL___Tw8h6fwo3hyfGROjoYHT6CmxHZ8dR2dzvQmc8W9jECsXn2xHM_g29XPeH-ArxzPtI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDiF4QDCYCAwwEogHsNZ82GmFEOrYqo1BNSGG-mYcxx5IJSlNK7Z_jb-Ou8RpVST2todIUezYyfl897N9HwDPyZkzkrnluaBjRpmiHIxdyLUWOs4kKjRH3sifRvLwNPkwFuMN-NP6wpBZZSsTa0Gdl4b2yHdRVSO39HDJsOu8WcTJ_vDd9BenDFJ00tqm02hY5Nhe_MblW_X2aB_H-kUUDQ--vD_kPsMAN0lPzLl2Uc9mPZGLJDJSxzrL-nGYm77B7pxLcekYEfyMuxZxkNAGedaEaRoa3ZdGuhjbvQabKbmPdmBz72B08nmpB-KoTrxKN7yb9sfeZadx3EOtm3BaunUTBPz8fE0teuXQGEiuQd9_TmtrJTi8A7c9emWDht3uwoYttuDW4GzmI3jYLbi-VyLevLgHX-vNRsoQRi5ZbGLPUAxWTBc5Mxah6qRiPwrCrBU-nX4vK7xmi4otKstsHdiCvELfMM1-2rnm2kdPuQ-nV0LjbegUZWEfAEPskQtnpYgTndAOmHCpDrXMNe1fdV0AYUtEZXyIc8q0MVGr4MxEeIWEVzXh1XkAr5bvTJsAH5fWfkljo2j2Y8tGeycG_D6Ko6UGCI8pl0-aBLCzVhNnrVkr3q5Hd9lnhCRArCnxvXa4lRcnlVoxfwDPlsXUJJnIFbZcUB0E4zJFvBXA65ZNVk38_58eXt7jU7iBE019PBodP4KbEZn01CZ4O9CZzxb2MWKyefbEMz-Db1c93_4C_fRDEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intercropping+legumes+and+cereals+increases+phosphorus+use+efficiency%3B+a+meta-analysis&rft.jtitle=Plant+and+soil&rft.au=Tang%2C+Xiaoyan&rft.au=Zhang%2C+Chaochun&rft.au=Yu%2C+Yang&rft.au=Shen%2C+Jianbo&rft.date=2021-03-01&rft.issn=0032-079X&rft.volume=460&rft.issue=1-2+p.89-104&rft.spage=89&rft.epage=104&rft_id=info:doi/10.1007%2Fs11104-020-04768-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |