Intercropping legumes and cereals increases phosphorus use efficiency; a meta-analysis

Aims Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus use efficiency but no overarching analysis exists on the role of species traits and input levels. Here we synthesize the available info...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 460; no. 1/2; pp. 89 - 104
Main Authors Tang, Xiaoyan, Zhang, Chaochun, Yu, Yang, Shen, Jianbo, van der Werf, Wopke, Zhang, Fusuo
Format Journal Article
LanguageEnglish
Published Cham Springer Science + Business Media 01.03.2021
Springer International Publishing
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0032-079X
1573-5036
DOI10.1007/s11104-020-04768-x

Cover

Loading…
Abstract Aims Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus use efficiency but no overarching analysis exists on the role of species traits and input levels. Here we synthesize the available information on P use efficiency in cereal/legume intercropping. Methods Global data on yields, P uptake and nutrient input in cereal/legume mixtures were extracted from the literature and statistically analyzed. Co-variables explaining P uptake efficiency and yield were considered. Results P uptake was substantially increased with an average value of LER P , the land equivalent ratio for P uptake, of 1.24, and an average NE P (observed P uptake minus expected P uptake) of 3.67 kg P ha −1 . The conversion efficiency of P uptake to biomass decreased with P uptake and was lower in intercrops than in sole crops but the conversion efficiency to yield was not affected by intercropping. The P fertilizer requirement was 21% lower in intercrops than in sole crops for the same yields. Conclusions Substantial improvements in land use efficiency and P uptake are obtained by cereal/legume intercropping. Cereal/legume intercropping has therefore potential to increase P fertilizer use efficiency in agriculture.
AbstractList Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus use efficiency but no overarching analysis exists on the role of species traits and input levels. Here we synthesize the available information on P use efficiency in cereal/legume intercropping. Global data on yields, P uptake and nutrient input in cereal/legume mixtures were extracted from the literature and statistically analyzed. Co-variables explaining P uptake efficiency and yield were considered. P uptake was substantially increased with an average value of LER.sub.P, the land equivalent ratio for P uptake, of 1.24, and an average NE.sub.P (observed P uptake minus expected P uptake) of 3.67 kg P ha.sup.-1. The conversion efficiency of P uptake to biomass decreased with P uptake and was lower in intercrops than in sole crops but the conversion efficiency to yield was not affected by intercropping. The P fertilizer requirement was 21% lower in intercrops than in sole crops for the same yields. Substantial improvements in land use efficiency and P uptake are obtained by cereal/legume intercropping. Cereal/legume intercropping has therefore potential to increase P fertilizer use efficiency in agriculture.
AIMS: Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus use efficiency but no overarching analysis exists on the role of species traits and input levels. Here we synthesize the available information on P use efficiency in cereal/legume intercropping. METHODS: Global data on yields, P uptake and nutrient input in cereal/legume mixtures were extracted from the literature and statistically analyzed. Co-variables explaining P uptake efficiency and yield were considered. RESULTS: P uptake was substantially increased with an average value of LERP, the land equivalent ratio for P uptake, of 1.24, and an average NEP (observed P uptake minus expected P uptake) of 3.67 kg P ha⁻¹. The conversion efficiency of P uptake to biomass decreased with P uptake and was lower in intercrops than in sole crops but the conversion efficiency to yield was not affected by intercropping. The P fertilizer requirement was 21% lower in intercrops than in sole crops for the same yields. CONCLUSIONS: Substantial improvements in land use efficiency and P uptake are obtained by cereal/legume intercropping. Cereal/legume intercropping has therefore potential to increase P fertilizer use efficiency in agriculture.
AimsIntercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus use efficiency but no overarching analysis exists on the role of species traits and input levels. Here we synthesize the available information on P use efficiency in cereal/legume intercropping.MethodsGlobal data on yields, P uptake and nutrient input in cereal/legume mixtures were extracted from the literature and statistically analyzed. Co-variables explaining P uptake efficiency and yield were considered.ResultsP uptake was substantially increased with an average value of LERP, the land equivalent ratio for P uptake, of 1.24, and an average NEP (observed P uptake minus expected P uptake) of 3.67 kg P ha−1. The conversion efficiency of P uptake to biomass decreased with P uptake and was lower in intercrops than in sole crops but the conversion efficiency to yield was not affected by intercropping. The P fertilizer requirement was 21% lower in intercrops than in sole crops for the same yields.ConclusionsSubstantial improvements in land use efficiency and P uptake are obtained by cereal/legume intercropping. Cereal/legume intercropping has therefore potential to increase P fertilizer use efficiency in agriculture.
Aims Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus use efficiency but no overarching analysis exists on the role of species traits and input levels. Here we synthesize the available information on P use efficiency in cereal/legume intercropping. Methods Global data on yields, P uptake and nutrient input in cereal/legume mixtures were extracted from the literature and statistically analyzed. Co-variables explaining P uptake efficiency and yield were considered. Results P uptake was substantially increased with an average value of LER.sub.P, the land equivalent ratio for P uptake, of 1.24, and an average NE.sub.P (observed P uptake minus expected P uptake) of 3.67 kg P ha.sup.-1. The conversion efficiency of P uptake to biomass decreased with P uptake and was lower in intercrops than in sole crops but the conversion efficiency to yield was not affected by intercropping. The P fertilizer requirement was 21% lower in intercrops than in sole crops for the same yields. Conclusions Substantial improvements in land use efficiency and P uptake are obtained by cereal/legume intercropping. Cereal/legume intercropping has therefore potential to increase P fertilizer use efficiency in agriculture.
Aims Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus use efficiency but no overarching analysis exists on the role of species traits and input levels. Here we synthesize the available information on P use efficiency in cereal/legume intercropping. Methods Global data on yields, P uptake and nutrient input in cereal/legume mixtures were extracted from the literature and statistically analyzed. Co-variables explaining P uptake efficiency and yield were considered. Results P uptake was substantially increased with an average value of LER P , the land equivalent ratio for P uptake, of 1.24, and an average NE P (observed P uptake minus expected P uptake) of 3.67 kg P ha −1 . The conversion efficiency of P uptake to biomass decreased with P uptake and was lower in intercrops than in sole crops but the conversion efficiency to yield was not affected by intercropping. The P fertilizer requirement was 21% lower in intercrops than in sole crops for the same yields. Conclusions Substantial improvements in land use efficiency and P uptake are obtained by cereal/legume intercropping. Cereal/legume intercropping has therefore potential to increase P fertilizer use efficiency in agriculture.
Audience Academic
Author Zhang, Chaochun
Zhang, Fusuo
Tang, Xiaoyan
Yu, Yang
Shen, Jianbo
van der Werf, Wopke
Author_xml – sequence: 1
  givenname: Xiaoyan
  surname: Tang
  fullname: Tang, Xiaoyan
– sequence: 2
  givenname: Chaochun
  surname: Zhang
  fullname: Zhang, Chaochun
– sequence: 3
  givenname: Yang
  surname: Yu
  fullname: Yu, Yang
– sequence: 4
  givenname: Jianbo
  surname: Shen
  fullname: Shen, Jianbo
– sequence: 5
  givenname: Wopke
  surname: van der Werf
  fullname: van der Werf, Wopke
– sequence: 6
  givenname: Fusuo
  surname: Zhang
  fullname: Zhang, Fusuo
BookMark eNp9kd9rFDEQx4NU8Fr9BwRhwRdfUifJJtnFp1L8USj4ouJbyOUmZ47dZE12offfm3PFYpESQibD9zMzyfecnMUUkZCXDC4ZgH5bGGPQUuBAodWqo3dPyIZJLagEoc7IBkBwCrr__oycl3KA052pDfl2E2fMLqdpCnHfDLhfRiyNjbvGYUY7lCZEV4NSs9OPVOrOS2mWgg16H1zA6I7vGtuMOFtqox2OJZTn5KmvLL74c16Qrx_ef7n-RG8_f7y5vrqlru3kTK3nHW47uZMtd8oKu932gu1c77gE77XqgWvNewHIBZPWAUjHtGbO9sopLy7Im7XulNPPBctsxlAcDoONmJZiuJSsV1opVqWvH0gPacl13pMKBOs74OpetbcDmhB9mrN1p6LmSknFmAbdVtXlf1R17XAMrlrjQ83_A_AVqD9dSkZvphxGm4-GgTk5aFYHTXXQ_HbQ3FWoewC5MNs5pFi7heFxVKxoqX3iHvP9Yx-lXq3Uocwp_x2RVwe4ZEr8An7SusM
CitedBy_id crossref_primary_10_1016_j_rhisph_2024_100907
crossref_primary_10_1007_s11104_021_04915_y
crossref_primary_10_1007_s11104_025_07357_y
crossref_primary_10_1016_j_scienta_2023_111834
crossref_primary_10_1016_j_envpol_2023_122873
crossref_primary_10_1007_s42729_022_00936_3
crossref_primary_10_1007_s42729_025_02327_w
crossref_primary_10_3390_agronomy12061372
crossref_primary_10_1016_j_fcr_2024_109607
crossref_primary_10_1016_j_fcr_2022_108757
crossref_primary_10_1007_s42729_024_01638_8
crossref_primary_10_1007_s11104_021_05076_8
crossref_primary_10_1007_s13593_022_00816_1
crossref_primary_10_1007_s11104_025_07363_0
crossref_primary_10_1007_s00374_024_01872_3
crossref_primary_10_1007_s42729_024_01918_3
crossref_primary_10_3389_fpls_2023_1228850
crossref_primary_10_32615_bp_2024_005
crossref_primary_10_1007_s11104_021_05165_8
crossref_primary_10_3390_su16073081
crossref_primary_10_1016_j_agsy_2024_104081
crossref_primary_10_1016_j_apsoil_2023_104989
crossref_primary_10_3389_fsufs_2022_921216
crossref_primary_10_3390_agronomy15010220
crossref_primary_10_1002_ldr_4770
crossref_primary_10_1007_s11368_025_04003_z
crossref_primary_10_1016_j_still_2023_105867
crossref_primary_10_3390_biology11050630
crossref_primary_10_1007_s11104_024_06990_3
crossref_primary_10_1080_03650340_2024_2419969
crossref_primary_10_1111_pce_14487
crossref_primary_10_1186_s12870_022_03706_6
crossref_primary_10_1016_j_agsy_2022_103584
crossref_primary_10_1186_s42055_023_00052_9
crossref_primary_10_1016_j_agsy_2022_103589
crossref_primary_10_1016_j_agee_2024_108929
crossref_primary_10_1007_s42729_024_01648_6
crossref_primary_10_1007_s13593_023_00916_6
crossref_primary_10_1016_j_still_2024_106063
crossref_primary_10_1111_nph_70037
crossref_primary_10_1371_journal_pone_0300573
crossref_primary_10_1016_j_pld_2021_06_005
crossref_primary_10_1016_j_pedsph_2024_05_002
crossref_primary_10_1177_00307270231199795
crossref_primary_10_1016_j_indcrop_2022_114958
crossref_primary_10_3390_su16041440
crossref_primary_10_1016_j_apsoil_2024_105624
crossref_primary_10_1080_01904167_2024_2410818
crossref_primary_10_1002_sd_2435
crossref_primary_10_1007_s40003_024_00699_6
crossref_primary_10_1016_j_eja_2022_126679
crossref_primary_10_3390_agronomy12030613
crossref_primary_10_1007_s11104_024_07041_7
crossref_primary_10_3390_agronomy14051053
crossref_primary_10_1088_1755_1315_1192_1_012001
crossref_primary_10_1002_sae2_12067
crossref_primary_10_3390_plants14010106
crossref_primary_10_1093_jee_toac045
crossref_primary_10_1016_j_ecofro_2024_12_008
crossref_primary_10_1007_s11356_023_27400_8
crossref_primary_10_1002_sae2_12026
crossref_primary_10_1016_j_agee_2022_108239
crossref_primary_10_1007_s13593_023_00902_y
crossref_primary_10_1007_s42729_021_00605_x
crossref_primary_10_3389_fagro_2023_1223639
crossref_primary_10_1186_s12870_024_05061_0
crossref_primary_10_3389_fsufs_2025_1527256
crossref_primary_10_1038_s41598_025_87293_0
crossref_primary_10_1177_00307270241240778
crossref_primary_10_1007_s44187_024_00135_2
crossref_primary_10_1007_s11104_023_06426_4
crossref_primary_10_1007_s11104_024_07018_6
crossref_primary_10_1007_s11104_022_05309_4
crossref_primary_10_1016_j_still_2024_106430
crossref_primary_10_1016_j_ijagro_2024_100024
crossref_primary_10_3390_su13094695
crossref_primary_10_1007_s10705_022_10234_0
crossref_primary_10_1007_s11104_022_05487_1
crossref_primary_10_3389_fpls_2023_1153237
crossref_primary_10_1038_s41559_022_01794_z
crossref_primary_10_3390_su16072725
crossref_primary_10_3389_fagro_2024_1376110
crossref_primary_10_1016_j_fcr_2023_109174
crossref_primary_10_3389_fmicb_2024_1403338
crossref_primary_10_1016_j_fcr_2023_109136
Cites_doi 10.1016/j.fcr.2012.09.019
10.1016/j.scitotenv.2017.10.024
10.1016/j.eja.2019.125987
10.1104/pp.111.175331
10.1007/s11104-018-3732-4
10.1038/s41477-020-0680-9
10.1007/BF02370641
10.1093/jxb/ery288
10.2134/agronj2016.03.0170
10.4141/cjss89-025
10.1071/CP09212
10.1016/j.tplants.2017.01.005
10.1016/j.soilbio.2012.07.027
10.1073/pnas.0704591104
10.1111/gcb.12738
10.1017/S0014479700010978
10.1016/S0378-4290(01)00126-5
10.1007/s11104-004-1305-1
10.1016/S0065-2113(08)60802-0
10.1016/j.fcr.2019.107661
10.1007/s10658-019-01711-4
10.1007/s11104-016-2949-3
10.1016/j.fcr.2015.09.010
10.1016/j.fcr.2016.08.001
10.1016/j.agee.2016.12.026
10.1080/01904169409364723
10.1007/s13593-014-0272-z
10.1111/nph.13613
10.1098/rstb.1977.0140
10.1016/0378-4290(93)90123-5
10.1016/j.soilbio.2011.11.015
10.1016/j.eja.2009.04.002
10.1038/35083573
10.1016/j.fcr.2012.02.007
10.1016/S0378-4290(01)00176-9
10.1017/CBO9780511974199
10.1007/s11104-017-3365-z
10.1016/j.gloenvcha.2008.10.009
10.1016/S0378-4290(01)00157-5
10.1016/j.soilbio.2020.107791
10.1093/aob/mch140
10.1515/9781400840908
10.2307/j.ctvx5w9ws
10.1146/annurev-phyto-082712-102246
10.1890/0012-9658(1999)080[1142:SIIEMA]2.0.CO;2
10.1007/978-0-387-93837-0
10.1016/j.soilbio.2014.04.001
10.2134/agronj13.0590
10.1023/A:1021885032241
10.1016/j.fcr.2019.107613
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2021 Springer
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-020-04768-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Agricultural Science Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Botany
Ecology
EISSN 1573-5036
EndPage 104
ExternalDocumentID A656117074
10_1007_s11104_020_04768_x
27292516
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Sichuan Science and Technology Program
  grantid: 2018HH0036
– fundername: European Union’s Horizon 2020 Programme for Research & Innovation
  grantid: n°727217
– fundername: National Natural Science Foundation of China
  grantid: 31972505; 31772402
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Key R&D Program of China
  grantid: 2017YFD0200200/2017YFD0200207
GroupedDBID -~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2XV
2~F
2~H
30V
4.4
406
408
409
40D
40E
5VS
67N
67Z
6NX
78A
7X2
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBHK
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEEJZ
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
B0M
BA0
BBNVY
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EMK
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JZLTJ
KDC
KOV
KPH
LAK
LK8
LLZTM
M0K
M4Y
M7P
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3A
S3B
SA0
SAP
SBL
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WJK
WK8
Y6R
YLTOR
Z45
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
-4W
-56
-5G
-BR
-EM
-Y2
1SB
2.D
28-
2P1
2VQ
3SX
3V.
53G
5QI
88A
AANXM
AARHV
AAYTO
ABQSL
ABULA
ABXSQ
ACBXY
ACHIC
ACKIV
ADINQ
ADULT
ADYPR
AEBTG
AEFIE
AEKMD
AFEXP
AFFNX
AFGCZ
AGGDS
AIDBO
AJBLW
AQVQM
BBWZM
BDATZ
C6C
CAG
COF
EJD
EN4
FINBP
FSGXE
GQ6
H13
JSODD
KOW
M0L
N2Q
NDZJH
O9-
OVD
P0-
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SBY
SCLPG
T16
TEORI
UZXMN
VFIZW
WK6
XOL
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
AAYXX
ADHKG
AGQPQ
CITATION
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c485t-af28eb85d542c6a3abb931dc9c250ff76902772930e2315ac005c1771ca96c6f3
IEDL.DBID BENPR
ISSN 0032-079X
IngestDate Fri Jul 11 02:05:33 EDT 2025
Fri Jul 25 19:03:36 EDT 2025
Tue Jun 17 21:39:58 EDT 2025
Tue Jun 10 20:36:12 EDT 2025
Tue Jul 01 01:47:11 EDT 2025
Thu Apr 24 23:00:20 EDT 2025
Fri Feb 21 02:49:50 EST 2025
Thu Jun 19 20:10:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1/2
Keywords Cereal/legume intercrops
P conversion efficiency
P fertilizer equivalent ratio
P uptake
Meta-analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-af28eb85d542c6a3abb931dc9c250ff76902772930e2315ac005c1771ca96c6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5506-4699
OpenAccessLink https://link.springer.com/10.1007/s11104-020-04768-x
PQID 2503198026
PQPubID 54098
PageCount 16
ParticipantIDs proquest_miscellaneous_2551967661
proquest_journals_2503198026
gale_infotracmisc_A656117074
gale_infotracacademiconefile_A656117074
crossref_primary_10_1007_s11104_020_04768_x
crossref_citationtrail_10_1007_s11104_020_04768_x
springer_journals_10_1007_s11104_020_04768_x
jstor_primary_27292516
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210301
20210300
2021-03-00
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210301
  day: 1
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2021
Publisher Springer Science + Business Media
Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer Science + Business Media
– name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Li, Hoffland, Kuyper, Yu, Zhang, Li, Zhang, van der Werf (CR23) 2020; 6
Yu, Stomph, Makowski, van der Werf (CR50) 2015; 184
He, Ding, Shi, Wu, Liao, Xu (CR17) 2013; 57
CR39
CR38
CR37
Rao, Rego, Willey (CR40) 1987; 101
Makoi, Chimphango, Dakora (CR30) 2010; 61
Mead, Willey (CR33) 1980; 16
Trenbath (CR46) 1993; 34
Darch, Giles, Blackwell, George, Brown, Menezes-Blackburn, Shand, Stutter, Lumsdon, Mezeli, Wendler, Zhang, Wearing, Cooper, Haygarth (CR8) 2018; 427
CR2
CR3
Zhang, Zhang, Tang, Li, Zhang, Rengel, Whalley, Davies, Shen (CR53) 2016; 209
Hauggaard-Nielsen, Jensen (CR15) 2005; 274
Mao, Zhang, Li, van der Werf, Sun, Spiertz, Li (CR31) 2012; 138
Li, Hoffland, Kuyper, Yu, Li, Zhang, Zhang, van der Werf (CR24) 2020; 113
CR45
CR43
CR42
CR41
Connor, Loomis, Cassman (CR5) 2011
Hauggaard-Nielsen, Ambus, Jensen (CR16) 2001; 70
Ofori, Stern (CR36) 1987; 41
Hinsinger, Betencourt, Bernard, Brauman, Plassard, Shen, Tang, Zhang (CR18) 2011; 156
Loreau, Hector (CR29) 2001; 412
Evers, van der Werf, Stomph, Bastiaans, Niels (CR9) 2018; 70
Gaba, Lescourret, Boudsocq, Enjalbert, Hinsinger, Journet, Navas, Wery, Louarn, Malezieux, Pelzer (CR12) 2015; 35
Betencourt, Duputel, Colomb, Desclaux, Hinsinger (CR1) 2012; 46
Cordell, Drangert, White (CR6) 2009; 19
CR13
Willey (CR47) 1979; 32
CR55
Yu, Makowski, Stomph, van der Werf (CR51) 2016; 108
Li, Kuyper, van der Werf, Zhang, Li, Zhang, Hoffland (CR22) 2018; 439
Tang, Placella, Daydé, Bernard, Robin, Journet, Justes, Hinsinger (CR44) 2016; 407
Martin-Guay, Paquette, Dupras, Rivest (CR32) 2018; 615
Fernandez, Ascencio (CR11) 1994; 17
Liu, Wang, Yan, Li, Jiao, Hu (CR28) 2017; 237
Xiang, Yong, Yang, Wan, Gong, Cui, Lei (CR48) 2012; 7
Mei, Gui, Wang, Huang, Long, Christie, Li (CR34) 2012; 130
Zhang, Dong, Tang, Zheng, Makowski, Yu, Zhang, van der Werf (CR54) 2019; 154
Cowell, Bnnuen, Van Kessel (CR7) 1989; 69
Lemon (CR20) 2006; 6
Xu, Li, Zhang, Yang, van der Werf, Zhang (CR49) 2020; 246
CR27
Faucon, Houben, Lambers (CR10) 2017; 22
CR26
CR25
Yu, Stomph, Makowski, Zhang, van der Werf (CR52) 2016; 198
Li, Li, Sun, Zhou, Bao, Zhang, Zhang (CR21) 2007; 104
Monteith (CR35) 1977; 281
Cong, Hoffland, Li, Six, Sun, Bao, Zhang, van der Werf (CR4) 2015; 21
Hauggaard-Nielsen, Jensen (CR14) 2001; 72
Launay, Brisson, Satger, Hauggaardnielsen, Correhellou, Kasynova, Ruske, Jensen, Gooding (CR19) 2009; 31
BR Trenbath (4768_CR46) 1993; 34
JHJR Makoi (4768_CR30) 2010; 61
P Hinsinger (4768_CR18) 2011; 156
Y Yu (4768_CR50) 2015; 184
4768_CR55
4768_CR13
D Cordell (4768_CR6) 2009; 19
LL Mao (4768_CR31) 2012; 138
DS Zhang (4768_CR53) 2016; 209
H Hauggaard-Nielsen (4768_CR14) 2001; 72
E Betencourt (4768_CR1) 2012; 46
Z Xu (4768_CR49) 2020; 246
S Gaba (4768_CR12) 2015; 35
J Lemon (4768_CR20) 2006; 6
T Darch (4768_CR8) 2018; 427
R Mead (4768_CR33) 1980; 16
JL Monteith (4768_CR35) 1977; 281
JB Evers (4768_CR9) 2018; 70
H Hauggaard-Nielsen (4768_CR15) 2005; 274
M Martin-Guay (4768_CR32) 2018; 615
4768_CR26
4768_CR25
4768_CR27
CJ Li (4768_CR22) 2018; 439
MR Rao (4768_CR40) 1987; 101
Y He (4768_CR17) 2013; 57
Y Yu (4768_CR52) 2016; 198
LE Cowell (4768_CR7) 1989; 69
L Li (4768_CR21) 2007; 104
R Willey (4768_CR47) 1979; 32
4768_CR37
4768_CR39
4768_CR38
CC Zhang (4768_CR54) 2019; 154
M Loreau (4768_CR29) 2001; 412
Y Yu (4768_CR51) 2016; 108
WF Cong (4768_CR4) 2015; 21
H Hauggaard-Nielsen (4768_CR16) 2001; 70
XY Tang (4768_CR44) 2016; 407
L Liu (4768_CR28) 2017; 237
D Connor (4768_CR5) 2011
4768_CR42
4768_CR41
DS Fernandez (4768_CR11) 1994; 17
MP Faucon (4768_CR10) 2017; 22
4768_CR43
CJ Li (4768_CR23) 2020; 6
4768_CR45
CJ Li (4768_CR24) 2020; 113
F Ofori (4768_CR36) 1987; 41
4768_CR3
4768_CR2
M Launay (4768_CR19) 2009; 31
PP Mei (4768_CR34) 2012; 130
DB Xiang (4768_CR48) 2012; 7
References_xml – ident: CR45
– volume: 138
  start-page: 11
  year: 2012
  end-page: 20
  ident: CR31
  article-title: Yield advantage and water saving in maize/pea intercrop
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2012.09.019
– volume: 615
  start-page: 767
  year: 2018
  end-page: 772
  ident: CR32
  article-title: The new green revolution: sustainable intensification of agriculture by intercropping
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.10.024
– ident: CR39
– volume: 113
  start-page: 125987
  year: 2020
  ident: CR24
  article-title: Yield gain, complementarity and competitive dominance in intercropping in China: A meta-analysis of drivers of yield gain using additive partitioning
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2019.125987
– ident: CR25
– volume: 156
  start-page: 1078
  year: 2011
  end-page: 1086
  ident: CR18
  article-title: P for two, sharing a scarce resource: soil phosphorus acquisition in the Rhizosphere of intercropped species
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175331
– volume: 439
  start-page: 163
  year: 2018
  end-page: 177
  ident: CR22
  article-title: Testing for complementarity in phosphorus resource use by mixtures of crop species
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3732-4
– ident: CR42
– volume: 6
  start-page: 653
  year: 2020
  end-page: 660
  ident: CR23
  article-title: Syndromes of production in intercropping impact yield gains
  publication-title: Nature Plants
  doi: 10.1038/s41477-020-0680-9
– volume: 101
  start-page: 167
  year: 1987
  end-page: 177
  ident: CR40
  article-title: Response of cereals to nitrogen in sole cropping and intercropping with different legumes
  publication-title: Plant Soil
  doi: 10.1007/BF02370641
– volume: 70
  start-page: 2381
  year: 2018
  end-page: 2388
  ident: CR9
  article-title: Understanding and optimizing species mixtures using functional-structural plant modelling
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ery288
– volume: 108
  start-page: 2269
  year: 2016
  end-page: 2279
  ident: CR51
  article-title: Robust increases of land equivalent ratio with temporal niche differentiation: a meta-quantile regression
  publication-title: Agron J
  doi: 10.2134/agronj2016.03.0170
– volume: 69
  start-page: 243
  year: 1989
  end-page: 251
  ident: CR7
  article-title: Yield and N, fixation of pea and lentil as affected by intercropping and N application
  publication-title: Can J Soil Sci
  doi: 10.4141/cjss89-025
– volume: 32
  start-page: 1
  year: 1979
  end-page: 10
  ident: CR47
  article-title: Intercropping-its importance and research needs. 1. Competition and yield advantages
  publication-title: Field Crop Abs
– volume: 61
  start-page: 279
  year: 2010
  end-page: 286
  ident: CR30
  article-title: Elevated levels of acid and alkaline phosphatase activity in roots and rhizosphere of cowpea ( L. Walp.) genotypes grown in mixed culture and at different densities with sorghum ( L.)
  publication-title: Crop Pasture Sci
  doi: 10.1071/CP09212
– volume: 22
  start-page: 385
  year: 2017
  end-page: 394
  ident: CR10
  article-title: Plant functional traits: soil and ecosystem services
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2017.01.005
– volume: 57
  start-page: 625
  year: 2013
  end-page: 634
  ident: CR17
  article-title: Profiling of microbial PLFAs: implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.07.027
– ident: CR26
– volume: 104
  start-page: 11192
  year: 2007
  end-page: 11196
  ident: CR21
  article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.0704591104
– volume: 21
  start-page: 1715
  year: 2015
  end-page: 1726
  ident: CR4
  article-title: Intercropping enhances organic carbon and nitrogen in soil
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.12738
– volume: 16
  start-page: 217
  year: 1980
  end-page: 228
  ident: CR33
  article-title: The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping
  publication-title: Exp Agr
  doi: 10.1017/S0014479700010978
– volume: 70
  start-page: 101
  year: 2001
  end-page: 109
  ident: CR16
  article-title: Interspecific competition, N use and interference with weeds in pea–barley intercropping
  publication-title: Field Crop Res
  doi: 10.1016/S0378-4290(01)00126-5
– ident: CR43
– volume: 274
  start-page: 237
  year: 2005
  end-page: 250
  ident: CR15
  article-title: Facilitative root interaction in intercrops
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-1305-1
– volume: 41
  start-page: 41
  year: 1987
  end-page: 90
  ident: CR36
  article-title: Cereal-legume intercropping systems
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(08)60802-0
– volume: 246
  start-page: 107661
  year: 2020
  ident: CR49
  article-title: Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2019.107661
– volume: 7
  start-page: 342
  year: 2012
  end-page: 351
  ident: CR48
  article-title: Effect of phosphorus and potassium nutrition on growth and yield of soybean in relay strip intercropping system
  publication-title: Sci Res Essay
– ident: CR2
– ident: CR37
– volume: 154
  start-page: 931
  year: 2019
  end-page: 942
  ident: CR54
  article-title: Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input; a meta-analysis
  publication-title: Eur J Plant Pathol
  doi: 10.1007/s10658-019-01711-4
– volume: 407
  start-page: 119
  year: 2016
  end-page: 134
  ident: CR44
  article-title: Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradient
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2949-3
– volume: 184
  start-page: 133
  year: 2015
  end-page: 144
  ident: CR50
  article-title: Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2015.09.010
– volume: 198
  start-page: 269
  year: 2016
  end-page: 279
  ident: CR52
  article-title: A meta-analysis of relative crop yields in cereal/legume mixtures suggests options for management
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2016.08.001
– volume: 237
  start-page: 16
  year: 2017
  end-page: 23
  ident: CR28
  article-title: Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2016.12.026
– volume: 17
  start-page: 229
  year: 1994
  end-page: 241
  ident: CR11
  article-title: Acid phosphatase activity in bean and cowpea plants grown under phosphorus stress
  publication-title: J Plant Nutr
  doi: 10.1080/01904169409364723
– volume: 35
  start-page: 607
  year: 2015
  end-page: 623
  ident: CR12
  article-title: Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design
  publication-title: Agron Sustain Dev
  doi: 10.1007/s13593-014-0272-z
– volume: 209
  start-page: 823
  year: 2016
  end-page: 831
  ident: CR53
  article-title: Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize
  publication-title: New Phytol
  doi: 10.1111/nph.13613
– ident: CR27
– volume: 281
  start-page: 277
  year: 1977
  end-page: 294
  ident: CR35
  article-title: Climate and the efficiency of crop production in Britain
  publication-title: Philos Trans R Soc Lond B
  doi: 10.1098/rstb.1977.0140
– volume: 34
  start-page: 381
  year: 1993
  end-page: 405
  ident: CR46
  article-title: Intercropping for the management of pests and diseases
  publication-title: Field Crop Res
  doi: 10.1016/0378-4290(93)90123-5
– volume: 6
  start-page: 8
  year: 2006
  end-page: 12
  ident: CR20
  article-title: Plotrix: a package in the red light district of R
  publication-title: R-news
– volume: 46
  start-page: 181
  year: 2012
  end-page: 190
  ident: CR1
  article-title: Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.11.015
– volume: 31
  start-page: 85
  year: 2009
  end-page: 98
  ident: CR19
  article-title: Exploring options for managing strategies for pea–barley intercropping using a modeling approach
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2009.04.002
– volume: 412
  start-page: 72
  year: 2001
  end-page: 76
  ident: CR29
  article-title: Partitioning selection and complementarity in biodiversity experiments
  publication-title: Nature
  doi: 10.1038/35083573
– volume: 130
  start-page: 19
  year: 2012
  end-page: 27
  ident: CR34
  article-title: Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2012.02.007
– volume: 72
  start-page: 185
  year: 2001
  end-page: 196
  ident: CR14
  article-title: Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability
  publication-title: Field Crop Res
  doi: 10.1016/S0378-4290(01)00176-9
– ident: CR3
– ident: CR38
– year: 2011
  ident: CR5
  publication-title: Crop ecology: productivity and Management in Agricultural Systems
  doi: 10.1017/CBO9780511974199
– ident: CR13
– ident: CR55
– volume: 427
  start-page: 125
  year: 2018
  end-page: 138
  ident: CR8
  article-title: Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3365-z
– ident: CR41
– volume: 19
  start-page: 292
  year: 2009
  end-page: 305
  ident: CR6
  article-title: The story of phosphorus: global food security and food for thought
  publication-title: Global Environ Chang
  doi: 10.1016/j.gloenvcha.2008.10.009
– volume: 46
  start-page: 181
  year: 2012
  ident: 4768_CR1
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.11.015
– volume: 113
  start-page: 125987
  year: 2020
  ident: 4768_CR24
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2019.125987
– ident: 4768_CR25
  doi: 10.1016/S0378-4290(01)00157-5
– ident: 4768_CR39
  doi: 10.1016/j.soilbio.2020.107791
– volume: 69
  start-page: 243
  year: 1989
  ident: 4768_CR7
  publication-title: Can J Soil Sci
  doi: 10.4141/cjss89-025
– volume: 154
  start-page: 931
  year: 2019
  ident: 4768_CR54
  publication-title: Eur J Plant Pathol
  doi: 10.1007/s10658-019-01711-4
– volume: 31
  start-page: 85
  year: 2009
  ident: 4768_CR19
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2009.04.002
– volume: 198
  start-page: 269
  year: 2016
  ident: 4768_CR52
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2016.08.001
– volume: 184
  start-page: 133
  year: 2015
  ident: 4768_CR50
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2015.09.010
– volume-title: Crop ecology: productivity and Management in Agricultural Systems
  year: 2011
  ident: 4768_CR5
  doi: 10.1017/CBO9780511974199
– volume: 7
  start-page: 342
  year: 2012
  ident: 4768_CR48
  publication-title: Sci Res Essay
– volume: 130
  start-page: 19
  year: 2012
  ident: 4768_CR34
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2012.02.007
– volume: 108
  start-page: 2269
  year: 2016
  ident: 4768_CR51
  publication-title: Agron J
  doi: 10.2134/agronj2016.03.0170
– ident: 4768_CR27
  doi: 10.1093/aob/mch140
– ident: 4768_CR2
  doi: 10.1515/9781400840908
– ident: 4768_CR45
  doi: 10.2307/j.ctvx5w9ws
– volume: 209
  start-page: 823
  year: 2016
  ident: 4768_CR53
  publication-title: New Phytol
  doi: 10.1111/nph.13613
– volume: 57
  start-page: 625
  year: 2013
  ident: 4768_CR17
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.07.027
– volume: 41
  start-page: 41
  year: 1987
  ident: 4768_CR36
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(08)60802-0
– ident: 4768_CR3
  doi: 10.1146/annurev-phyto-082712-102246
– volume: 156
  start-page: 1078
  year: 2011
  ident: 4768_CR18
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175331
– volume: 32
  start-page: 1
  year: 1979
  ident: 4768_CR47
  publication-title: Field Crop Abs
– volume: 412
  start-page: 72
  year: 2001
  ident: 4768_CR29
  publication-title: Nature
  doi: 10.1038/35083573
– volume: 70
  start-page: 101
  year: 2001
  ident: 4768_CR16
  publication-title: Field Crop Res
  doi: 10.1016/S0378-4290(01)00126-5
– volume: 407
  start-page: 119
  year: 2016
  ident: 4768_CR44
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2949-3
– volume: 274
  start-page: 237
  year: 2005
  ident: 4768_CR15
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-1305-1
– ident: 4768_CR13
  doi: 10.1890/0012-9658(1999)080[1142:SIIEMA]2.0.CO;2
– volume: 21
  start-page: 1715
  year: 2015
  ident: 4768_CR4
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.12738
– volume: 35
  start-page: 607
  year: 2015
  ident: 4768_CR12
  publication-title: Agron Sustain Dev
  doi: 10.1007/s13593-014-0272-z
– volume: 16
  start-page: 217
  year: 1980
  ident: 4768_CR33
  publication-title: Exp Agr
  doi: 10.1017/S0014479700010978
– volume: 6
  start-page: 653
  year: 2020
  ident: 4768_CR23
  publication-title: Nature Plants
  doi: 10.1038/s41477-020-0680-9
– volume: 101
  start-page: 167
  year: 1987
  ident: 4768_CR40
  publication-title: Plant Soil
  doi: 10.1007/BF02370641
– volume: 281
  start-page: 277
  year: 1977
  ident: 4768_CR35
  publication-title: Philos Trans R Soc Lond B
  doi: 10.1098/rstb.1977.0140
– volume: 34
  start-page: 381
  year: 1993
  ident: 4768_CR46
  publication-title: Field Crop Res
  doi: 10.1016/0378-4290(93)90123-5
– ident: 4768_CR55
  doi: 10.1007/978-0-387-93837-0
– volume: 439
  start-page: 163
  year: 2018
  ident: 4768_CR22
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3732-4
– ident: 4768_CR43
  doi: 10.1016/j.soilbio.2014.04.001
– volume: 61
  start-page: 279
  year: 2010
  ident: 4768_CR30
  publication-title: Crop Pasture Sci
  doi: 10.1071/CP09212
– volume: 246
  start-page: 107661
  year: 2020
  ident: 4768_CR49
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2019.107661
– volume: 237
  start-page: 16
  year: 2017
  ident: 4768_CR28
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2016.12.026
– ident: 4768_CR37
  doi: 10.2134/agronj13.0590
– volume: 615
  start-page: 767
  year: 2018
  ident: 4768_CR32
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.10.024
– volume: 6
  start-page: 8
  year: 2006
  ident: 4768_CR20
  publication-title: R-news
– volume: 70
  start-page: 2381
  year: 2018
  ident: 4768_CR9
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ery288
– ident: 4768_CR41
– ident: 4768_CR26
  doi: 10.1023/A:1021885032241
– volume: 427
  start-page: 125
  year: 2018
  ident: 4768_CR8
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3365-z
– volume: 104
  start-page: 11192
  year: 2007
  ident: 4768_CR21
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.0704591104
– volume: 19
  start-page: 292
  year: 2009
  ident: 4768_CR6
  publication-title: Global Environ Chang
  doi: 10.1016/j.gloenvcha.2008.10.009
– volume: 17
  start-page: 229
  year: 1994
  ident: 4768_CR11
  publication-title: J Plant Nutr
  doi: 10.1080/01904169409364723
– volume: 72
  start-page: 185
  year: 2001
  ident: 4768_CR14
  publication-title: Field Crop Res
  doi: 10.1016/S0378-4290(01)00176-9
– volume: 138
  start-page: 11
  year: 2012
  ident: 4768_CR31
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2012.09.019
– ident: 4768_CR38
– ident: 4768_CR42
  doi: 10.1016/j.fcr.2019.107613
– volume: 22
  start-page: 385
  year: 2017
  ident: 4768_CR10
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2017.01.005
SSID ssj0003216
Score 2.613282
Snippet Aims Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases...
Aims Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases...
Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus...
AimsIntercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases...
AIMS: Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases...
SourceID proquest
gale
crossref
springer
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 89
SubjectTerms Agricultural practices
Agricultural production
Beans
biomass
Biomedical and Life Sciences
Cereals
Crop yield
Crops
Double cropping
Ecology
Efficiency
Environmental aspects
fertilizer application
Fertilizers
Grain
Intercropping
Land use
Legumes
Life Sciences
Meta-analysis
Methods
Mimosaceae
Phosphorus
phosphorus fertilizers
Phosphorus in the body
Physiological aspects
Plant Physiology
Plant Sciences
Regular Article
REGULAR ARTICLES
soil
Soil Science & Conservation
Sole cropping
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED9Gu8H6ULpspW67ocGgD5sg_pCc0Kd0tJTB9rSUvImzLHWD1ClxAu1_3ztFTsjYBn0wGOvDtk5395N0HwCf2Jkz07WTteJjRl2SHMx9KhEV5pUmhebZG_n7D309Lr5N1CQ6hbWdtXt3JBkk9cbZjTRVIXm50y8IJEtCjruK1u48r8fZaC1_8ywkPOUb2S-Hk-gq8_c-ttRRFMorw8QtyPnHKWlQPlcHsB9RoxityPwGXrimB3uj23mMnOF68PJiRjjvsQevLkMg6se3cBO2-zhHFztFiam7JUHUCmxqYR2BxWkrfjeMGlt6ev9r1tI1X7Zi2TrhQmgJ9ss8Fyju3AIlxvgl72B8dfnz67WMeRSkLQZqIdFnA1cNVK2KzGrMsaqGeVrboSX8431JC-SMQXbed4T2FFriTJuWZWpxqK32-SHsNLPGHYEg7V8r77TKCyx4D0r5ElPUNfIOUt8nkHbDaWwMMs65LqZmEx6ZSWCIBCaQwDwk8Hnd5n4VYuO_tc-YSob5j3q2GN0I6Ps4kpUZEUDlbDplkcDpVk3iG7tVfBjovH5nRkNAaE9Tu47wJjJ0a2ikSFgNaLYl8HFdzF2ykVrjZkuuQ3BYl4R4EvjSTZhNF__-p-PnVT-B1xlb1gRLuFPYWcyX7j1Bo0X1IXDCE08RAZA
  priority: 102
  providerName: Springer Nature
Title Intercropping legumes and cereals increases phosphorus use efficiency; a meta-analysis
URI https://www.jstor.org/stable/27292516
https://link.springer.com/article/10.1007/s11104-020-04768-x
https://www.proquest.com/docview/2503198026
https://www.proquest.com/docview/2551967661
Volume 460
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xlQf2gGAwEdgqIyHxABbNh51UPExp1TKBqBCiqDxZjmOPSSUpTSuN_5671G1VJPbQNGocpzn77n4-3wfAKwrmjGRpeSlom1GmKAdjF3KthY4LiQrNUTTy54m8miYfZ2LmDW6Nd6vcysRWUJe1IRv5O1TVOFsyXDJcLn5zqhpFu6u-hMYRdFAEZzjDO4PR5MvXnSyOo7b4KZ3wXtqf-bCZTfAcar6E0_KplyDo5rcHqskL6I2T4gH8_GfHtFVE40fw0CNIlm-G_DHcs9UpnOTXS59Fw57C_UGNmO_PE_jeGvyoSheFRbG5vUZR1DBdlcxYhIvzht1UhBsb_HXxs27ws1w3bN1YZtvkEhSZ-Z5p9suuNNc-g8lTmI5H34ZX3FdS4CbJxIprF2W2yEQpkshIHeui6MdhafoGyepcikvkiGB23LOI94Q2yJsmTNPQ6L400sVncFzVlX0GDPV_KZyVIk50QlYo4VIdallqsiH1XADhlojK-DTjVO1irvYJkonwCgmvWsKr2wDe7O5ZbJJs3Nn6NY2NIg7Eno32gQT4_yiXlcoRolI9nTQJ4PygJXKOObh81o7u7pkRkgDxnsT7tsOtPEs3aj8BA3i5u0xdkptaZes1tUFALFPEPAG83U6TfRf_f6fndz_xBTyIyJem9X07h-PVcm0vEAytii508vFgMKHvDz8-jbqeA7pwNJRDPE6j_C8LjAdv
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDgl4QDCYCAwwEogHsGg-7LRCCHWwqWNbhdCG-mYcxx5IJSlNK7Z_ir-Ru8RpVST2todIUezYyfl897N9HwDPyZkzkrnluaBjRpmiHIxdyLUWOs4kKjRH3sjHIzk8TT6NxXgD_rS-MGRW2crEWlDnpaE98jeoqpFberhkeD_9xSlrFJ2utik0GrY4tBe_cclWvTv4iOP7Ior2904-DLnPKsBN0hNzrl3Us1lP5CKJjNSxzrJ-HOamb7AL51JcLkYEOeOuRewjtEE-NWGahkb3pZEuxnavwWYSI1TowObu3ujzl6Xsj6M62Srd8G7aH3s3ncZZDzVtwmm51k0Q5PPzNVXoFUJjFLkGd_85oa0V3_4duO0RKxs0LHYXNmyxBbcGZzMftcNuwfXdEjHmxT34Wm8wUlYwcsNiE3uGoq9iusiZsQhPJxX7URBOrfDp9HtZ4TVbVGxRWWbrYBbkCfqWafbTzjXXPmLKfTi9EhpvQ6coC_sAGOKNXDgrRZzohHa9hEt1qGWuac-q6wIIWyIq48OaU3aNiVoFZCbCKyS8qgmvzgN4tXxn2gT1uLT2SxobRTMeWzbaOy7g91HsLDVASEz5e9IkgJ21mjhTzVrxdj26yz4jJAHiS4nvtcOtvAip1IrhA3i2LKYmySyusOWC6iAAlylirABet2yyauL___Tw8h6fwo3hyfGROjoYHT6CmxHZ8dR2dzvQmc8W9jECsXn2xHM_g29XPeH-ArxzPtI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDiF4QDCYCAwwEogHsNZ82GmFEOrYqo1BNSGG-mYcxx5IJSlNK7Z_jb-Ou8RpVST2todIUezYyfl897N9HwDPyZkzkrnluaBjRpmiHIxdyLUWOs4kKjRH3sifRvLwNPkwFuMN-NP6wpBZZSsTa0Gdl4b2yHdRVSO39HDJsOu8WcTJ_vDd9BenDFJ00tqm02hY5Nhe_MblW_X2aB_H-kUUDQ--vD_kPsMAN0lPzLl2Uc9mPZGLJDJSxzrL-nGYm77B7pxLcekYEfyMuxZxkNAGedaEaRoa3ZdGuhjbvQabKbmPdmBz72B08nmpB-KoTrxKN7yb9sfeZadx3EOtm3BaunUTBPz8fE0teuXQGEiuQd9_TmtrJTi8A7c9emWDht3uwoYttuDW4GzmI3jYLbi-VyLevLgHX-vNRsoQRi5ZbGLPUAxWTBc5Mxah6qRiPwrCrBU-nX4vK7xmi4otKstsHdiCvELfMM1-2rnm2kdPuQ-nV0LjbegUZWEfAEPskQtnpYgTndAOmHCpDrXMNe1fdV0AYUtEZXyIc8q0MVGr4MxEeIWEVzXh1XkAr5bvTJsAH5fWfkljo2j2Y8tGeycG_D6Ko6UGCI8pl0-aBLCzVhNnrVkr3q5Hd9lnhCRArCnxvXa4lRcnlVoxfwDPlsXUJJnIFbZcUB0E4zJFvBXA65ZNVk38_58eXt7jU7iBE019PBodP4KbEZn01CZ4O9CZzxb2MWKyefbEMz-Db1c93_4C_fRDEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intercropping+legumes+and+cereals+increases+phosphorus+use+efficiency%3B+a+meta-analysis&rft.jtitle=Plant+and+soil&rft.au=Tang%2C+Xiaoyan&rft.au=Zhang%2C+Chaochun&rft.au=Yu%2C+Yang&rft.au=Shen%2C+Jianbo&rft.date=2021-03-01&rft.issn=0032-079X&rft.volume=460&rft.issue=1-2+p.89-104&rft.spage=89&rft.epage=104&rft_id=info:doi/10.1007%2Fs11104-020-04768-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon