Mad1 influences interphase nucleoplasm organization and chromatin regulation in Drosophila

The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope...

Full description

Saved in:
Bibliographic Details
Published inOpen biology Vol. 8; no. 10
Main Authors Raich, Natacha, Mahmoudi, Souhir, Emre, Doruk, Karess, Roger E.
Format Journal Article
LanguageEnglish
Published England Royal Society 17.10.2018
The Royal Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in Drosophila that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins colocalized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In mad1 mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm. mad1 flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that Drosophila Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation.
AbstractList The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in Drosophila that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins coloca-lized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In mad1 mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm. mad1 flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that Drosophila Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation.
The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in Drosophila that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins colocalized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In mad1 mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm. mad1 flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that Drosophila Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation.The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in Drosophila that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins colocalized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In mad1 mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm. mad1 flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that Drosophila Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation.
The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in Drosophila that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins colocalized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In mad1 mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm. mad1 flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that Drosophila Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation.
The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in Drosophila that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins colocalized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In mad1 mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm. mad1 flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that Drosophila Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation.
The Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins colocalized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm. flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation.
Author Raich, Natacha
Karess, Roger E.
Mahmoudi, Souhir
Emre, Doruk
AuthorAffiliation CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot , Sorbonne Paris Cité, Paris Cedex 13 75205 , France
AuthorAffiliation_xml – name: CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot , Sorbonne Paris Cité, Paris Cedex 13 75205 , France
Author_xml – sequence: 1
  givenname: Natacha
  surname: Raich
  fullname: Raich, Natacha
  organization: CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Sorbonne Paris Cité, Paris Cedex 13 75205, France
– sequence: 2
  givenname: Souhir
  surname: Mahmoudi
  fullname: Mahmoudi, Souhir
  organization: CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Sorbonne Paris Cité, Paris Cedex 13 75205, France
– sequence: 3
  givenname: Doruk
  surname: Emre
  fullname: Emre, Doruk
  organization: CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Sorbonne Paris Cité, Paris Cedex 13 75205, France
– sequence: 4
  givenname: Roger E.
  orcidid: 0000-0002-7299-0600
  surname: Karess
  fullname: Karess, Roger E.
  organization: CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Sorbonne Paris Cité, Paris Cedex 13 75205, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30333236$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02355446$$DView record in HAL
BookMark eNptUktv1DAQtlARLUtP3FGOVGiL33EuSFULtNIiLnDhYk0cZ-PKsRc7qQS_vt6mVG2FL57HN988X6ODEINF6C3BpwQ36mPKsT0lChMpX6AjirlcU87JwSP5EB3nfI3LE5I0nLxChwwzxiiTR-jXN-hI5ULvZxuMzUWcbNoNkG0VZuNt3HnIYxXTFoL7C5OLoYLQVWZIcSxqqJLdzn5xFO0ixRx3g_PwBr3swWd7fP-v0M8vn3-cX643379enZ9t1oYrMa3BCm4FMYrgmgqoCQFaAye9oL3BjFvgsm9Ny1uFWUNVw01tMFGq7xohBGErdLXwdhGu9S65EdIfHcHpO0OpXEOaXOlF45oz6LiVQhpeY2j7nrSdqFumpLJlIiv0aeHaze1oO2PDlMA_IX3qCW7Q23ijJaWMYlEIThaC4VnY5dlG722YMiE4lzf7wt_fJ0vx92zzpEeXjfUego1z1pRQKhrCeVOg7x7X9cD8b5EF8GEBmDL_nGz_ACFY7y9F7y9FL5dS0OQZ2rjpboWlKef_G3MLgo3BmA
CitedBy_id crossref_primary_10_1091_mbc_E22_02_0037
crossref_primary_10_3389_fimmu_2020_589929
crossref_primary_10_3390_cells8111414
crossref_primary_10_1126_sciadv_abq5914
crossref_primary_10_3390_genes11020234
Cites_doi 10.1371/journal.pgen.1000846
10.1016/j.cell.2009.12.054
10.1083/jcb.200106046
10.1242/jcs.110.8.927
10.1016/j.molcel.2014.03.004
10.1002/cyto.a.20896
10.1016/j.cub.2015.08.051
10.1083/jcb.200205068
10.3390/genes5030767
10.1006/excr.2002.5525
10.1242/jcs.149112
10.1534/genetics.113.157859
10.1007/s10577-015-9472-x
10.1038/nrm3461
10.1074/jbc.M404942200
10.1093/genetics/90.2.277
10.1083/jcb.143.2.283
10.1101/gad.484208
10.1038/emboj.2010.54
10.1007/978-1-4899-8032-8_14
10.1091/mbc.e12-02-0117
10.1016/j.cell.2014.01.010
10.1242/dev.111310
10.1091/mbc.e04-07-0579
10.1091/mbc.e04-03-0165
10.1016/j.devcel.2012.11.020
10.1242/dev.134759
10.1091/mbc.e07-02-0123
10.1083/jcb.136.3.515
10.1242/dev.056945
10.1242/jcs.114.5.953
10.1242/jcs.081216
10.1002/dvg.22341
10.1016/j.tcb.2016.04.009
10.1101/gad.264341.115
10.1083/jcb.200405168
10.1083/jcb.201309076
10.1091/mbc.e07-11-1162
10.1038/ncb1570
10.1091/mbc.e13-07-0412
10.1074/jbc.M110.214569
10.1007/s11103-012-9903-4
10.1016/j.devcel.2007.03.022
10.1074/jbc.M306195200
10.1186/1471-2121-10-74
10.1016/j.molcel.2012.10.017
10.1126/science.1118101
10.1101/gad.1677208
10.1371/journal.pgen.1003842
10.1101/cshperspect.a017780
10.1128/MCB.22.18.6498-6508.2002
10.1242/dev.00325
10.1083/jcb.200811012
10.1242/jcs.107.12.3521
10.1091/mbc.e05-01-0011
10.1007/s00412-013-0429-6
10.1016/j.cub.2005.03.052
10.1038/nrm3478
10.1016/j.cub.2014.09.052
ContentType Journal Article
Copyright 2018 The Authors.
Distributed under a Creative Commons Attribution 4.0 International License
2018 The Authors. 2018
Copyright_xml – notice: 2018 The Authors.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2018 The Authors. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1098/rsob.180166
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate An interphase role for Mad1
EISSN 2046-2441
ExternalDocumentID oai_doaj_org_article_0743ad4e656c470abff1bd57b3868e32
PMC6223205
oai_HAL_hal_02355446v1
30333236
10_1098_rsob_180166
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: ANR-08-BLAN-0006
– fundername: ;
  grantid: Equipe Labellisée program 2012
GroupedDBID 53G
5VS
88I
AAFWJ
AAYXX
ABUWG
ACQIA
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALAEF
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BTFSW
CCPQU
CITATION
DIK
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
ICLEN
KQ8
M2P
M48
M7P
M~E
OK1
OP1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c485t-ae54e51c810725a711a27a41f52fc034ea46fbcb4b80392894c7c0188fd955513
IEDL.DBID M48
ISSN 2046-2441
IngestDate Wed Aug 27 01:33:28 EDT 2025
Thu Aug 21 18:19:54 EDT 2025
Fri May 09 12:19:51 EDT 2025
Fri Jul 11 12:26:52 EDT 2025
Thu Apr 03 06:59:25 EDT 2025
Thu Apr 24 23:05:27 EDT 2025
Tue Jul 01 04:21:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords nuclear pore complex
Polycomb
chromatin
mitosis
spindle assembly checkpoint
Tpr
Subject Area: cellular biology/genetics Keywords: chromatin
Language English
License 2018 The Authors.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-ae54e51c810725a711a27a41f52fc034ea46fbcb4b80392894c7c0188fd955513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Equipe Labellisée Ligue Contre le Cancer.
Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9.figshare.c.4249736.
ORCID 0000-0002-7299-0600
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1098/rsob.180166
PMID 30333236
PQID 2122591449
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0743ad4e656c470abff1bd57b3868e32
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6223205
hal_primary_oai_HAL_hal_02355446v1
proquest_miscellaneous_2122591449
pubmed_primary_30333236
crossref_primary_10_1098_rsob_180166
crossref_citationtrail_10_1098_rsob_180166
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181017
PublicationDateYYYYMMDD 2018-10-17
PublicationDate_xml – month: 10
  year: 2018
  text: 20181017
  day: 17
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Open biology
PublicationTitleAlternate Open Biol
PublicationYear 2018
Publisher Royal Society
The Royal Society
Publisher_xml – name: Royal Society
– name: The Royal Society
References e_1_3_6_30_2
e_1_3_6_51_2
e_1_3_6_32_2
e_1_3_6_53_2
e_1_3_6_19_2
e_1_3_6_38_2
e_1_3_6_59_2
e_1_3_6_11_2
e_1_3_6_17_2
e_1_3_6_34_2
e_1_3_6_55_2
e_1_3_6_15_2
e_1_3_6_36_2
e_1_3_6_57_2
e_1_3_6_40_2
e_1_3_6_21_2
e_1_3_6_42_2
e_1_3_6_61_2
e_1_3_6_4_2
e_1_3_6_2_2
e_1_3_6_8_2
e_1_3_6_6_2
e_1_3_6_27_2
e_1_3_6_48_2
Shah JV (e_1_3_6_13_2) 2004; 14
e_1_3_6_29_2
e_1_3_6_23_2
e_1_3_6_44_2
e_1_3_6_25_2
e_1_3_6_46_2
e_1_3_6_52_2
e_1_3_6_31_2
e_1_3_6_54_2
e_1_3_6_10_2
Denell RE (e_1_3_6_50_2) 1978; 90
e_1_3_6_14_2
e_1_3_6_37_2
e_1_3_6_12_2
e_1_3_6_39_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_56_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_58_2
e_1_3_6_41_2
e_1_3_6_20_2
e_1_3_6_43_2
e_1_3_6_60_2
e_1_3_6_5_2
e_1_3_6_3_2
e_1_3_6_9_2
e_1_3_6_7_2
e_1_3_6_26_2
e_1_3_6_49_2
e_1_3_6_28_2
e_1_3_6_22_2
e_1_3_6_45_2
e_1_3_6_24_2
e_1_3_6_47_2
References_xml – ident: e_1_3_6_25_2
  doi: 10.1371/journal.pgen.1000846
– volume: 14
  start-page: 942
  year: 2004
  ident: e_1_3_6_13_2
  article-title: Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing
  publication-title: Curr. Biol.
– ident: e_1_3_6_44_2
  doi: 10.1016/j.cell.2009.12.054
– ident: e_1_3_6_22_2
  doi: 10.1083/jcb.200106046
– ident: e_1_3_6_31_2
  doi: 10.1242/jcs.110.8.927
– ident: e_1_3_6_56_2
  doi: 10.1016/j.molcel.2014.03.004
– ident: e_1_3_6_60_2
  doi: 10.1002/cyto.a.20896
– ident: e_1_3_6_2_2
  doi: 10.1016/j.cub.2015.08.051
– ident: e_1_3_6_14_2
  doi: 10.1083/jcb.200205068
– ident: e_1_3_6_23_2
  doi: 10.3390/genes5030767
– ident: e_1_3_6_32_2
  doi: 10.1006/excr.2002.5525
– ident: e_1_3_6_16_2
  doi: 10.1242/jcs.149112
– ident: e_1_3_6_42_2
  doi: 10.1534/genetics.113.157859
– ident: e_1_3_6_61_2
  doi: 10.1007/s10577-015-9472-x
– ident: e_1_3_6_27_2
  doi: 10.1038/nrm3461
– ident: e_1_3_6_34_2
  doi: 10.1074/jbc.M404942200
– volume: 90
  start-page: 277
  year: 1978
  ident: e_1_3_6_50_2
  article-title: Homoeosis in Drosophila. II. A genetic analysis of Polycomb
  publication-title: Genetics
  doi: 10.1093/genetics/90.2.277
– ident: e_1_3_6_3_2
  doi: 10.1083/jcb.143.2.283
– ident: e_1_3_6_20_2
  doi: 10.1101/gad.484208
– ident: e_1_3_6_24_2
  doi: 10.1038/emboj.2010.54
– ident: e_1_3_6_28_2
  doi: 10.1007/978-1-4899-8032-8_14
– ident: e_1_3_6_46_2
  doi: 10.1091/mbc.e12-02-0117
– ident: e_1_3_6_8_2
  doi: 10.1016/j.cell.2014.01.010
– ident: e_1_3_6_43_2
  doi: 10.1242/dev.111310
– ident: e_1_3_6_33_2
  doi: 10.1091/mbc.e04-07-0579
– ident: e_1_3_6_29_2
  doi: 10.1091/mbc.e04-03-0165
– ident: e_1_3_6_40_2
  doi: 10.1016/j.devcel.2012.11.020
– ident: e_1_3_6_54_2
  doi: 10.1242/dev.134759
– ident: e_1_3_6_38_2
  doi: 10.1091/mbc.e07-02-0123
– ident: e_1_3_6_30_2
  doi: 10.1083/jcb.136.3.515
– ident: e_1_3_6_53_2
  doi: 10.1242/dev.056945
– ident: e_1_3_6_4_2
  doi: 10.1242/jcs.114.5.953
– ident: e_1_3_6_15_2
  doi: 10.1242/jcs.081216
– ident: e_1_3_6_47_2
  doi: 10.1002/dvg.22341
– ident: e_1_3_6_49_2
  doi: 10.1016/j.tcb.2016.04.009
– ident: e_1_3_6_59_2
  doi: 10.1101/gad.264341.115
– ident: e_1_3_6_37_2
  doi: 10.1083/jcb.200405168
– ident: e_1_3_6_12_2
  doi: 10.1083/jcb.201309076
– ident: e_1_3_6_5_2
  doi: 10.1091/mbc.e07-11-1162
– ident: e_1_3_6_45_2
  doi: 10.1038/ncb1570
– ident: e_1_3_6_26_2
  doi: 10.1091/mbc.e13-07-0412
– ident: e_1_3_6_55_2
  doi: 10.1074/jbc.M110.214569
– ident: e_1_3_6_9_2
  doi: 10.1007/s11103-012-9903-4
– ident: e_1_3_6_58_2
  doi: 10.1016/j.devcel.2007.03.022
– ident: e_1_3_6_35_2
  doi: 10.1074/jbc.M306195200
– ident: e_1_3_6_21_2
  doi: 10.1186/1471-2121-10-74
– ident: e_1_3_6_11_2
  doi: 10.1016/j.molcel.2012.10.017
– ident: e_1_3_6_51_2
  doi: 10.1126/science.1118101
– ident: e_1_3_6_6_2
  doi: 10.1101/gad.1677208
– ident: e_1_3_6_52_2
  doi: 10.1371/journal.pgen.1003842
– ident: e_1_3_6_48_2
  doi: 10.1101/cshperspect.a017780
– ident: e_1_3_6_36_2
  doi: 10.1128/MCB.22.18.6498-6508.2002
– ident: e_1_3_6_57_2
  doi: 10.1242/dev.00325
– ident: e_1_3_6_7_2
  doi: 10.1083/jcb.200811012
– ident: e_1_3_6_19_2
  doi: 10.1242/jcs.107.12.3521
– ident: e_1_3_6_10_2
  doi: 10.1091/mbc.e05-01-0011
– ident: e_1_3_6_39_2
  doi: 10.1007/s00412-013-0429-6
– ident: e_1_3_6_18_2
  doi: 10.1016/j.cub.2005.03.052
– ident: e_1_3_6_41_2
  doi: 10.1038/nrm3478
– ident: e_1_3_6_17_2
  doi: 10.1016/j.cub.2014.09.052
SSID ssj0000561941
Score 2.1626265
Snippet The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression...
The Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting...
The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Animals
Cell Behavior
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Nucleus - metabolism
Cellular Biology
chromatin
Chromatin - metabolism
Cysteine Endopeptidases - genetics
Cysteine Endopeptidases - metabolism
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Interphase - physiology
Life Sciences
Male
mitosis
Nuclear Pore - metabolism
nuclear pore complex
Nuclear Pore Complex Proteins - genetics
Nuclear Pore Complex Proteins - metabolism
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
polycomb
Primary Cell Culture
Spermatocytes - cytology
Spermatocytes - metabolism
spindle assembly checkpoint
tpr
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwR6-daLVH6JKzdbJJN9rFWyyHWJwvFl5BP7qDulutV8L93Jtk771TwxcdNQnZ3Jsn8hsz8hpCjrvUqNpbXifeuFuB01D33TZ08wAHBML0EE5zPP3ezC_HxUl5ulfrCmLBCD1wEd4wmzgYRAXd4oRrrUmIuSOW47nTk-fQFm7flTBVWb_TO2ZSQ1_T6GOCre8vgPM58iL9MUGbqB8MyxzjIP0Hm77GSW8bn7AG5P6FGelK-dp_cicNDcrfUkfzxiHw9t4HRxbreyA1d5FDCOVgoOiBh8XgNIPkbHbcSL6kdAvXz5YiQdaDLUpMeO-Dp_TKXN1hc2cfk4uzDl9NZPRVNqL3QclXbKEWUzGvw61ppFWO2VVawJNvkGy6iFV1y3gmnG8BGuhde-YZpnUIvsdrLE7I3jEN8RqgLyO4OqosqCO-StY5LpxPs-xScDhV5s5aj8ROjOBa2uDLlZlsbFLopQq_I0WbwdSHS-Puwd6iQzRBkv84NICEzrQnzrzVRkdegzp05ZiefDLYhvY8EF_g7q8irtbYNbCm8J7FDHG9vDFhzcArB0-wr8rRofzMXWHzOWw7fqXbWxc7LdnuGxTzTdneAxNpGPv8ff3hA7gFyy8S8TL0ge6vlbXwJ6GjlDvNG-AliWg_1
  priority: 102
  providerName: Directory of Open Access Journals
Title Mad1 influences interphase nucleoplasm organization and chromatin regulation in Drosophila
URI https://www.ncbi.nlm.nih.gov/pubmed/30333236
https://www.proquest.com/docview/2122591449
https://hal.science/hal-02355446
https://pubmed.ncbi.nlm.nih.gov/PMC6223205
https://doaj.org/article/0743ad4e656c470abff1bd57b3868e32
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKERIXxJvwqAzqCSklju3YOSBUHmWFWODASisukZ_alZakZLeI_ntmkuyqKT1wsZTYcaIZO_NNYn8fIYdF7lTIDE8jL20qIOlIS-6yNDqAA4Lh9hLc4Dz9Ukxm4tNczvfIVoxzMOD6ytQO9aRm7eroz6_zNzDhX_dkSPoVIFN7xOBVWxTXyHUISQpn6HTA-T3JNybrbNifd-maUUTqiPshzixwWeS_mPPy0skLsejkNrk1gEh63Hv9DtkL9V1yo5eVPL9HfkyNZ3S5lR9Z02W3snABAYvWyF_cnAJm_kmbC_swqak9dYu2QQRb07aXqMcKOHrfdmoHy5W5T2YnH76_m6SDhkLqhJab1AQpgmROQ5qXS6MYM7kygkWZR5dxEYwoonVWWJ0BVNKlcMplTOvoS4niLw_Ift3U4RGh1iPZO3gyKC-cjcZYLq2O8BqI3mqfkJdbO1ZuIBhHnYtV1f_o1hUaveqNnpDDXePTnlfj6mZv0SG7JkiG3Z0AC1XD3KoQBRkvAkBTJ1RmbIzMeqks14UOPE_IC3DnqI_J8ecKzyHbj4SM-DdLyPOttyuYYfjbxNShOVtXENwhR4TEs0zIw977u74AAHCec3hONRoXo5uNa-rlomPxLgCY5Zl8_D8P94TcBKDW8fAy9ZTsb9qz8AzA0MYedB8RoPw4ZwfdoIfy6zf2F29QDpQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mad1+influences+interphase+nucleoplasm+organization+and+chromatin+regulation+in+Drosophila&rft.jtitle=Open+biology&rft.au=Raich%2C+Natacha&rft.au=Mahmoudi%2C+Souhir&rft.au=Emre%2C+Doruk&rft.au=Karess%2C+Roger&rft.date=2018-10-17&rft.pub=Royal+Society&rft.eissn=2046-2441&rft_id=info:doi/10.1098%2Frsob.180166&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02355446v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2441&client=summon