Mad1 influences interphase nucleoplasm organization and chromatin regulation in Drosophila
The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope...
Saved in:
Published in | Open biology Vol. 8; no. 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society
17.10.2018
The Royal Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The
Drosophila
Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in
Drosophila
that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins colocalized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In
mad1
mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm.
mad1
flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that
Drosophila
Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation. |
---|---|
AbstractList | The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in Drosophila that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins coloca-lized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In mad1 mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm. mad1 flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that Drosophila Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation. The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in Drosophila that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins colocalized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In mad1 mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm. mad1 flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that Drosophila Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation.The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in Drosophila that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins colocalized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In mad1 mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm. mad1 flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that Drosophila Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation. The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in Drosophila that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins colocalized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In mad1 mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm. mad1 flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that Drosophila Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation. The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in Drosophila that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins colocalized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In mad1 mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm. mad1 flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that Drosophila Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation. The Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins colocalized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm. flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation. |
Author | Raich, Natacha Karess, Roger E. Mahmoudi, Souhir Emre, Doruk |
AuthorAffiliation | CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot , Sorbonne Paris Cité, Paris Cedex 13 75205 , France |
AuthorAffiliation_xml | – name: CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot , Sorbonne Paris Cité, Paris Cedex 13 75205 , France |
Author_xml | – sequence: 1 givenname: Natacha surname: Raich fullname: Raich, Natacha organization: CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Sorbonne Paris Cité, Paris Cedex 13 75205, France – sequence: 2 givenname: Souhir surname: Mahmoudi fullname: Mahmoudi, Souhir organization: CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Sorbonne Paris Cité, Paris Cedex 13 75205, France – sequence: 3 givenname: Doruk surname: Emre fullname: Emre, Doruk organization: CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Sorbonne Paris Cité, Paris Cedex 13 75205, France – sequence: 4 givenname: Roger E. orcidid: 0000-0002-7299-0600 surname: Karess fullname: Karess, Roger E. organization: CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Sorbonne Paris Cité, Paris Cedex 13 75205, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30333236$$D View this record in MEDLINE/PubMed https://hal.science/hal-02355446$$DView record in HAL |
BookMark | eNptUktv1DAQtlARLUtP3FGOVGiL33EuSFULtNIiLnDhYk0cZ-PKsRc7qQS_vt6mVG2FL57HN988X6ODEINF6C3BpwQ36mPKsT0lChMpX6AjirlcU87JwSP5EB3nfI3LE5I0nLxChwwzxiiTR-jXN-hI5ULvZxuMzUWcbNoNkG0VZuNt3HnIYxXTFoL7C5OLoYLQVWZIcSxqqJLdzn5xFO0ixRx3g_PwBr3swWd7fP-v0M8vn3-cX643379enZ9t1oYrMa3BCm4FMYrgmgqoCQFaAye9oL3BjFvgsm9Ny1uFWUNVw01tMFGq7xohBGErdLXwdhGu9S65EdIfHcHpO0OpXEOaXOlF45oz6LiVQhpeY2j7nrSdqFumpLJlIiv0aeHaze1oO2PDlMA_IX3qCW7Q23ijJaWMYlEIThaC4VnY5dlG722YMiE4lzf7wt_fJ0vx92zzpEeXjfUego1z1pRQKhrCeVOg7x7X9cD8b5EF8GEBmDL_nGz_ACFY7y9F7y9FL5dS0OQZ2rjpboWlKef_G3MLgo3BmA |
CitedBy_id | crossref_primary_10_1091_mbc_E22_02_0037 crossref_primary_10_3389_fimmu_2020_589929 crossref_primary_10_3390_cells8111414 crossref_primary_10_1126_sciadv_abq5914 crossref_primary_10_3390_genes11020234 |
Cites_doi | 10.1371/journal.pgen.1000846 10.1016/j.cell.2009.12.054 10.1083/jcb.200106046 10.1242/jcs.110.8.927 10.1016/j.molcel.2014.03.004 10.1002/cyto.a.20896 10.1016/j.cub.2015.08.051 10.1083/jcb.200205068 10.3390/genes5030767 10.1006/excr.2002.5525 10.1242/jcs.149112 10.1534/genetics.113.157859 10.1007/s10577-015-9472-x 10.1038/nrm3461 10.1074/jbc.M404942200 10.1093/genetics/90.2.277 10.1083/jcb.143.2.283 10.1101/gad.484208 10.1038/emboj.2010.54 10.1007/978-1-4899-8032-8_14 10.1091/mbc.e12-02-0117 10.1016/j.cell.2014.01.010 10.1242/dev.111310 10.1091/mbc.e04-07-0579 10.1091/mbc.e04-03-0165 10.1016/j.devcel.2012.11.020 10.1242/dev.134759 10.1091/mbc.e07-02-0123 10.1083/jcb.136.3.515 10.1242/dev.056945 10.1242/jcs.114.5.953 10.1242/jcs.081216 10.1002/dvg.22341 10.1016/j.tcb.2016.04.009 10.1101/gad.264341.115 10.1083/jcb.200405168 10.1083/jcb.201309076 10.1091/mbc.e07-11-1162 10.1038/ncb1570 10.1091/mbc.e13-07-0412 10.1074/jbc.M110.214569 10.1007/s11103-012-9903-4 10.1016/j.devcel.2007.03.022 10.1074/jbc.M306195200 10.1186/1471-2121-10-74 10.1016/j.molcel.2012.10.017 10.1126/science.1118101 10.1101/gad.1677208 10.1371/journal.pgen.1003842 10.1101/cshperspect.a017780 10.1128/MCB.22.18.6498-6508.2002 10.1242/dev.00325 10.1083/jcb.200811012 10.1242/jcs.107.12.3521 10.1091/mbc.e05-01-0011 10.1007/s00412-013-0429-6 10.1016/j.cub.2005.03.052 10.1038/nrm3478 10.1016/j.cub.2014.09.052 |
ContentType | Journal Article |
Copyright | 2018 The Authors. Distributed under a Creative Commons Attribution 4.0 International License 2018 The Authors. 2018 |
Copyright_xml | – notice: 2018 The Authors. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2018 The Authors. 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM DOA |
DOI | 10.1098/rsob.180166 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | An interphase role for Mad1 |
EISSN | 2046-2441 |
ExternalDocumentID | oai_doaj_org_article_0743ad4e656c470abff1bd57b3868e32 PMC6223205 oai_HAL_hal_02355446v1 30333236 10_1098_rsob_180166 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: ANR-08-BLAN-0006 – fundername: ; grantid: Equipe Labellisée program 2012 |
GroupedDBID | 53G 5VS 88I AAFWJ AAYXX ABUWG ACQIA ADBBV ADRAZ AENEX AFKRA AFPKN ALAEF ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BTFSW CCPQU CITATION DIK DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HYE ICLEN KQ8 M2P M48 M7P M~E OK1 OP1 PGMZT PHGZM PHGZT PIMPY RPM CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c485t-ae54e51c810725a711a27a41f52fc034ea46fbcb4b80392894c7c0188fd955513 |
IEDL.DBID | M48 |
ISSN | 2046-2441 |
IngestDate | Wed Aug 27 01:33:28 EDT 2025 Thu Aug 21 18:19:54 EDT 2025 Fri May 09 12:19:51 EDT 2025 Fri Jul 11 12:26:52 EDT 2025 Thu Apr 03 06:59:25 EDT 2025 Thu Apr 24 23:05:27 EDT 2025 Tue Jul 01 04:21:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | nuclear pore complex Polycomb chromatin mitosis spindle assembly checkpoint Tpr Subject Area: cellular biology/genetics Keywords: chromatin |
Language | English |
License | 2018 The Authors. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-ae54e51c810725a711a27a41f52fc034ea46fbcb4b80392894c7c0188fd955513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Equipe Labellisée Ligue Contre le Cancer. Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9.figshare.c.4249736. |
ORCID | 0000-0002-7299-0600 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1098/rsob.180166 |
PMID | 30333236 |
PQID | 2122591449 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0743ad4e656c470abff1bd57b3868e32 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6223205 hal_primary_oai_HAL_hal_02355446v1 proquest_miscellaneous_2122591449 pubmed_primary_30333236 crossref_primary_10_1098_rsob_180166 crossref_citationtrail_10_1098_rsob_180166 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181017 |
PublicationDateYYYYMMDD | 2018-10-17 |
PublicationDate_xml | – month: 10 year: 2018 text: 20181017 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Open biology |
PublicationTitleAlternate | Open Biol |
PublicationYear | 2018 |
Publisher | Royal Society The Royal Society |
Publisher_xml | – name: Royal Society – name: The Royal Society |
References | e_1_3_6_30_2 e_1_3_6_51_2 e_1_3_6_32_2 e_1_3_6_53_2 e_1_3_6_19_2 e_1_3_6_38_2 e_1_3_6_59_2 e_1_3_6_11_2 e_1_3_6_17_2 e_1_3_6_34_2 e_1_3_6_55_2 e_1_3_6_15_2 e_1_3_6_36_2 e_1_3_6_57_2 e_1_3_6_40_2 e_1_3_6_21_2 e_1_3_6_42_2 e_1_3_6_61_2 e_1_3_6_4_2 e_1_3_6_2_2 e_1_3_6_8_2 e_1_3_6_6_2 e_1_3_6_27_2 e_1_3_6_48_2 Shah JV (e_1_3_6_13_2) 2004; 14 e_1_3_6_29_2 e_1_3_6_23_2 e_1_3_6_44_2 e_1_3_6_25_2 e_1_3_6_46_2 e_1_3_6_52_2 e_1_3_6_31_2 e_1_3_6_54_2 e_1_3_6_10_2 Denell RE (e_1_3_6_50_2) 1978; 90 e_1_3_6_14_2 e_1_3_6_37_2 e_1_3_6_12_2 e_1_3_6_39_2 e_1_3_6_18_2 e_1_3_6_33_2 e_1_3_6_56_2 e_1_3_6_16_2 e_1_3_6_35_2 e_1_3_6_58_2 e_1_3_6_41_2 e_1_3_6_20_2 e_1_3_6_43_2 e_1_3_6_60_2 e_1_3_6_5_2 e_1_3_6_3_2 e_1_3_6_9_2 e_1_3_6_7_2 e_1_3_6_26_2 e_1_3_6_49_2 e_1_3_6_28_2 e_1_3_6_22_2 e_1_3_6_45_2 e_1_3_6_24_2 e_1_3_6_47_2 |
References_xml | – ident: e_1_3_6_25_2 doi: 10.1371/journal.pgen.1000846 – volume: 14 start-page: 942 year: 2004 ident: e_1_3_6_13_2 article-title: Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing publication-title: Curr. Biol. – ident: e_1_3_6_44_2 doi: 10.1016/j.cell.2009.12.054 – ident: e_1_3_6_22_2 doi: 10.1083/jcb.200106046 – ident: e_1_3_6_31_2 doi: 10.1242/jcs.110.8.927 – ident: e_1_3_6_56_2 doi: 10.1016/j.molcel.2014.03.004 – ident: e_1_3_6_60_2 doi: 10.1002/cyto.a.20896 – ident: e_1_3_6_2_2 doi: 10.1016/j.cub.2015.08.051 – ident: e_1_3_6_14_2 doi: 10.1083/jcb.200205068 – ident: e_1_3_6_23_2 doi: 10.3390/genes5030767 – ident: e_1_3_6_32_2 doi: 10.1006/excr.2002.5525 – ident: e_1_3_6_16_2 doi: 10.1242/jcs.149112 – ident: e_1_3_6_42_2 doi: 10.1534/genetics.113.157859 – ident: e_1_3_6_61_2 doi: 10.1007/s10577-015-9472-x – ident: e_1_3_6_27_2 doi: 10.1038/nrm3461 – ident: e_1_3_6_34_2 doi: 10.1074/jbc.M404942200 – volume: 90 start-page: 277 year: 1978 ident: e_1_3_6_50_2 article-title: Homoeosis in Drosophila. II. A genetic analysis of Polycomb publication-title: Genetics doi: 10.1093/genetics/90.2.277 – ident: e_1_3_6_3_2 doi: 10.1083/jcb.143.2.283 – ident: e_1_3_6_20_2 doi: 10.1101/gad.484208 – ident: e_1_3_6_24_2 doi: 10.1038/emboj.2010.54 – ident: e_1_3_6_28_2 doi: 10.1007/978-1-4899-8032-8_14 – ident: e_1_3_6_46_2 doi: 10.1091/mbc.e12-02-0117 – ident: e_1_3_6_8_2 doi: 10.1016/j.cell.2014.01.010 – ident: e_1_3_6_43_2 doi: 10.1242/dev.111310 – ident: e_1_3_6_33_2 doi: 10.1091/mbc.e04-07-0579 – ident: e_1_3_6_29_2 doi: 10.1091/mbc.e04-03-0165 – ident: e_1_3_6_40_2 doi: 10.1016/j.devcel.2012.11.020 – ident: e_1_3_6_54_2 doi: 10.1242/dev.134759 – ident: e_1_3_6_38_2 doi: 10.1091/mbc.e07-02-0123 – ident: e_1_3_6_30_2 doi: 10.1083/jcb.136.3.515 – ident: e_1_3_6_53_2 doi: 10.1242/dev.056945 – ident: e_1_3_6_4_2 doi: 10.1242/jcs.114.5.953 – ident: e_1_3_6_15_2 doi: 10.1242/jcs.081216 – ident: e_1_3_6_47_2 doi: 10.1002/dvg.22341 – ident: e_1_3_6_49_2 doi: 10.1016/j.tcb.2016.04.009 – ident: e_1_3_6_59_2 doi: 10.1101/gad.264341.115 – ident: e_1_3_6_37_2 doi: 10.1083/jcb.200405168 – ident: e_1_3_6_12_2 doi: 10.1083/jcb.201309076 – ident: e_1_3_6_5_2 doi: 10.1091/mbc.e07-11-1162 – ident: e_1_3_6_45_2 doi: 10.1038/ncb1570 – ident: e_1_3_6_26_2 doi: 10.1091/mbc.e13-07-0412 – ident: e_1_3_6_55_2 doi: 10.1074/jbc.M110.214569 – ident: e_1_3_6_9_2 doi: 10.1007/s11103-012-9903-4 – ident: e_1_3_6_58_2 doi: 10.1016/j.devcel.2007.03.022 – ident: e_1_3_6_35_2 doi: 10.1074/jbc.M306195200 – ident: e_1_3_6_21_2 doi: 10.1186/1471-2121-10-74 – ident: e_1_3_6_11_2 doi: 10.1016/j.molcel.2012.10.017 – ident: e_1_3_6_51_2 doi: 10.1126/science.1118101 – ident: e_1_3_6_6_2 doi: 10.1101/gad.1677208 – ident: e_1_3_6_52_2 doi: 10.1371/journal.pgen.1003842 – ident: e_1_3_6_48_2 doi: 10.1101/cshperspect.a017780 – ident: e_1_3_6_36_2 doi: 10.1128/MCB.22.18.6498-6508.2002 – ident: e_1_3_6_57_2 doi: 10.1242/dev.00325 – ident: e_1_3_6_7_2 doi: 10.1083/jcb.200811012 – ident: e_1_3_6_19_2 doi: 10.1242/jcs.107.12.3521 – ident: e_1_3_6_10_2 doi: 10.1091/mbc.e05-01-0011 – ident: e_1_3_6_39_2 doi: 10.1007/s00412-013-0429-6 – ident: e_1_3_6_18_2 doi: 10.1016/j.cub.2005.03.052 – ident: e_1_3_6_41_2 doi: 10.1038/nrm3478 – ident: e_1_3_6_17_2 doi: 10.1016/j.cub.2014.09.052 |
SSID | ssj0000561941 |
Score | 2.1626265 |
Snippet | The
Drosophila
Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression... The Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting... The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals Cell Behavior Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Nucleus - metabolism Cellular Biology chromatin Chromatin - metabolism Cysteine Endopeptidases - genetics Cysteine Endopeptidases - metabolism Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Interphase - physiology Life Sciences Male mitosis Nuclear Pore - metabolism nuclear pore complex Nuclear Pore Complex Proteins - genetics Nuclear Pore Complex Proteins - metabolism Nuclear Proteins - genetics Nuclear Proteins - metabolism polycomb Primary Cell Culture Spermatocytes - cytology Spermatocytes - metabolism spindle assembly checkpoint tpr |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwR6-daLVH6JKzdbJJN9rFWyyHWJwvFl5BP7qDulutV8L93Jtk771TwxcdNQnZ3Jsn8hsz8hpCjrvUqNpbXifeuFuB01D33TZ08wAHBML0EE5zPP3ezC_HxUl5ulfrCmLBCD1wEd4wmzgYRAXd4oRrrUmIuSOW47nTk-fQFm7flTBVWb_TO2ZSQ1_T6GOCre8vgPM58iL9MUGbqB8MyxzjIP0Hm77GSW8bn7AG5P6FGelK-dp_cicNDcrfUkfzxiHw9t4HRxbreyA1d5FDCOVgoOiBh8XgNIPkbHbcSL6kdAvXz5YiQdaDLUpMeO-Dp_TKXN1hc2cfk4uzDl9NZPRVNqL3QclXbKEWUzGvw61ppFWO2VVawJNvkGy6iFV1y3gmnG8BGuhde-YZpnUIvsdrLE7I3jEN8RqgLyO4OqosqCO-StY5LpxPs-xScDhV5s5aj8ROjOBa2uDLlZlsbFLopQq_I0WbwdSHS-Puwd6iQzRBkv84NICEzrQnzrzVRkdegzp05ZiefDLYhvY8EF_g7q8irtbYNbCm8J7FDHG9vDFhzcArB0-wr8rRofzMXWHzOWw7fqXbWxc7LdnuGxTzTdneAxNpGPv8ff3hA7gFyy8S8TL0ge6vlbXwJ6GjlDvNG-AliWg_1 priority: 102 providerName: Directory of Open Access Journals |
Title | Mad1 influences interphase nucleoplasm organization and chromatin regulation in Drosophila |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30333236 https://www.proquest.com/docview/2122591449 https://hal.science/hal-02355446 https://pubmed.ncbi.nlm.nih.gov/PMC6223205 https://doaj.org/article/0743ad4e656c470abff1bd57b3868e32 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKERIXxJvwqAzqCSklju3YOSBUHmWFWODASisukZ_alZakZLeI_ntmkuyqKT1wsZTYcaIZO_NNYn8fIYdF7lTIDE8jL20qIOlIS-6yNDqAA4Lh9hLc4Dz9Ukxm4tNczvfIVoxzMOD6ytQO9aRm7eroz6_zNzDhX_dkSPoVIFN7xOBVWxTXyHUISQpn6HTA-T3JNybrbNifd-maUUTqiPshzixwWeS_mPPy0skLsejkNrk1gEh63Hv9DtkL9V1yo5eVPL9HfkyNZ3S5lR9Z02W3snABAYvWyF_cnAJm_kmbC_swqak9dYu2QQRb07aXqMcKOHrfdmoHy5W5T2YnH76_m6SDhkLqhJab1AQpgmROQ5qXS6MYM7kygkWZR5dxEYwoonVWWJ0BVNKlcMplTOvoS4niLw_Ift3U4RGh1iPZO3gyKC-cjcZYLq2O8BqI3mqfkJdbO1ZuIBhHnYtV1f_o1hUaveqNnpDDXePTnlfj6mZv0SG7JkiG3Z0AC1XD3KoQBRkvAkBTJ1RmbIzMeqks14UOPE_IC3DnqI_J8ecKzyHbj4SM-DdLyPOttyuYYfjbxNShOVtXENwhR4TEs0zIw977u74AAHCec3hONRoXo5uNa-rlomPxLgCY5Zl8_D8P94TcBKDW8fAy9ZTsb9qz8AzA0MYedB8RoPw4ZwfdoIfy6zf2F29QDpQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mad1+influences+interphase+nucleoplasm+organization+and+chromatin+regulation+in+Drosophila&rft.jtitle=Open+biology&rft.au=Raich%2C+Natacha&rft.au=Mahmoudi%2C+Souhir&rft.au=Emre%2C+Doruk&rft.au=Karess%2C+Roger&rft.date=2018-10-17&rft.pub=Royal+Society&rft.eissn=2046-2441&rft_id=info:doi/10.1098%2Frsob.180166&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02355446v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2441&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2441&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2441&client=summon |