Long-term changes in the fine-scale population structure of coho salmon populations (Oncorhynchus kisutch) subject to extensive supportive breeding
The long-term viability of a metapopulation depends partly on the gene flow among sub-populations. Management approaches such as translocations and supportive breeding between closely related populations may affect gene flow and overall structure, and therefore viability. Here, we examined temporal...
Saved in:
Published in | Heredity Vol. 103; no. 4; pp. 299 - 309 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2009
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The long-term viability of a metapopulation depends partly on the gene flow among sub-populations. Management approaches such as translocations and supportive breeding between closely related populations may affect gene flow and overall structure, and therefore viability. Here, we examined temporal changes in the fine-scale population structure of coho salmon (
Oncorhynchus kisutch
) by comparing archived (1938) and modern (2001–2005) populations in six rivers within a single conservation unit (Puget Sound, Washington) sampled before and after an extended period of between-river transfers and releases of millions of cultured salmon. Genotype frequencies at eight microsatellite loci showed that current populations descended from historical Puget Sound populations, but populations in different rivers that exchanged fish for hatchery propagation share more of their ancestry recently than they did historically. Historically, populations in different rivers were isolated by geographic distance, but that relationship is no longer significant. Allelic richness among all populations declined significantly, suggesting that genetic drift has increased because of a population bottleneck. Populations in different rivers and within the same river have become more diverged, providing further evidence for a widespread bottleneck. Previously, we observed that genetic distance significantly decreased with the number of fish exchanged; however, some populations apparently resisted introgression. Altered gene flow and lost diversity may affect the complexity, and therefore resiliency of sub-populations within a conservation unit. Plans for artificial culture need to maintain existing genetic diversity and avoid disrupting the fine-scale structure by using local populations for parents whenever possible. |
---|---|
AbstractList | The long-term viability of a metapopulation depends partly on the gene flow among sub-populations. Management approaches such as translocations and supportive breeding between closely related populations may affect gene flow and overall structure, and therefore viability. Here, we examined temporal changes in the fine-scale population structure of coho salmon (Oncorhynchus kisutch) by comparing archived (1938) and modern (2001-2005) populations in six rivers within a single conservation unit (Puget Sound, Washington) sampled before and after an extended period of between-river transfers and releases of millions of cultured salmon. Genotype frequencies at eight microsatellite loci showed that current populations descended from historical Puget Sound populations, but populations in different rivers that exchanged fish for hatchery propagation share more of their ancestry recently than they did historically. Historically, populations in different rivers were isolated by geographic distance, but that relationship is no longer significant. Allelic richness among all populations declined significantly, suggesting that genetic drift has increased because of a population bottleneck. Populations in different rivers and within the same river have become more diverged, providing further evidence for a widespread bottleneck. Previously, we observed that genetic distance significantly decreased with the number of fish exchanged; however, some populations apparently resisted introgression. Altered gene flow and lost diversity may affect the complexity, and therefore resiliency of sub-populations within a conservation unit. Plans for artificial culture need to maintain existing genetic diversity and avoid disrupting the fine-scale structure by using local populations for parents whenever possible. The long-term viability of a metapopulation depends partly on the gene flow among sub-populations. Management approaches such as translocations and supportive breeding between closely related populations may affect gene flow and overall structure, and therefore viability. Here, we examined temporal changes in the fine-scale population structure of coho salmon (Oncorhynchus kisutch) by comparing archived (1938) and modern (2001-2005) populations in six rivers within a single conservation unit (Puget Sound, Washington) sampled before and after an extended period of between-river transfers and releases of millions of cultured salmon. Genotype frequencies at eight microsatellite loci showed that current populations descended from historical Puget Sound populations, but populations in different rivers that exchanged fish for hatchery propagation share more of their ancestry recently than they did historically. Historically, populations in different rivers were isolated by geographic distance, but that relationship is no longer significant. Allelic richness among all populations declined significantly, suggesting that genetic drift has increased because of a population bottleneck. Populations in different rivers and within the same river have become more diverged, providing further evidence for a widespread bottleneck. Previously, we observed that genetic distance significantly decreased with the number of fish exchanged; however, some populations apparently resisted introgression. Altered gene flow and lost diversity may affect the complexity, and therefore resiliency of sub-populations within a conservation unit. Plans for artificial culture need to maintain existing genetic diversity and avoid disrupting the fine-scale structure by using local populations for parents whenever possible. [PUBLICATION ABSTRACT] The long-term viability of a metapopulation depends partly on the gene flow among sub-populations. Management approaches such as translocations and supportive breeding between closely related populations may affect gene flow and overall structure, and therefore viability. Here, we examined temporal changes in the fine-scale population structure of coho salmon (Oncorhynchus kisutch) by comparing archived (1938) and modern (2001-2005) populations in six rivers within a single conservation unit (Puget Sound, Washington) sampled before and after an extended period of between-river transfers and releases of millions of cultured salmon. Genotype frequencies at eight microsatellite loci showed that current populations descended from historical Puget Sound populations, but populations in different rivers that exchanged fish for hatchery propagation share more of their ancestry recently than they did historically. Historically, populations in different rivers were isolated by geographic distance, but that relationship is no longer significant. Allelic richness among all populations declined significantly, suggesting that genetic drift has increased because of a population bottleneck. Populations in different rivers and within the same river have become more diverged, providing further evidence for a widespread bottleneck. Previously, we observed that genetic distance significantly decreased with the number of fish exchanged; however, some populations apparently resisted introgression. Altered gene flow and lost diversity may affect the complexity, and therefore resiliency of sub-populations within a conservation unit. Plans for artificial culture need to maintain existing genetic diversity and avoid disrupting the fine-scale structure by using local populations for parents whenever possible.The long-term viability of a metapopulation depends partly on the gene flow among sub-populations. Management approaches such as translocations and supportive breeding between closely related populations may affect gene flow and overall structure, and therefore viability. Here, we examined temporal changes in the fine-scale population structure of coho salmon (Oncorhynchus kisutch) by comparing archived (1938) and modern (2001-2005) populations in six rivers within a single conservation unit (Puget Sound, Washington) sampled before and after an extended period of between-river transfers and releases of millions of cultured salmon. Genotype frequencies at eight microsatellite loci showed that current populations descended from historical Puget Sound populations, but populations in different rivers that exchanged fish for hatchery propagation share more of their ancestry recently than they did historically. Historically, populations in different rivers were isolated by geographic distance, but that relationship is no longer significant. Allelic richness among all populations declined significantly, suggesting that genetic drift has increased because of a population bottleneck. Populations in different rivers and within the same river have become more diverged, providing further evidence for a widespread bottleneck. Previously, we observed that genetic distance significantly decreased with the number of fish exchanged; however, some populations apparently resisted introgression. Altered gene flow and lost diversity may affect the complexity, and therefore resiliency of sub-populations within a conservation unit. Plans for artificial culture need to maintain existing genetic diversity and avoid disrupting the fine-scale structure by using local populations for parents whenever possible. The long-term viability of a metapopulation depends partly on the gene flow among sub-populations. Management approaches such as translocations and supportive breeding between closely related populations may affect gene flow and overall structure, and therefore viability. Here, we examined temporal changes in the fine-scale population structure of coho salmon ( Oncorhynchus kisutch ) by comparing archived (1938) and modern (2001–2005) populations in six rivers within a single conservation unit (Puget Sound, Washington) sampled before and after an extended period of between-river transfers and releases of millions of cultured salmon. Genotype frequencies at eight microsatellite loci showed that current populations descended from historical Puget Sound populations, but populations in different rivers that exchanged fish for hatchery propagation share more of their ancestry recently than they did historically. Historically, populations in different rivers were isolated by geographic distance, but that relationship is no longer significant. Allelic richness among all populations declined significantly, suggesting that genetic drift has increased because of a population bottleneck. Populations in different rivers and within the same river have become more diverged, providing further evidence for a widespread bottleneck. Previously, we observed that genetic distance significantly decreased with the number of fish exchanged; however, some populations apparently resisted introgression. Altered gene flow and lost diversity may affect the complexity, and therefore resiliency of sub-populations within a conservation unit. Plans for artificial culture need to maintain existing genetic diversity and avoid disrupting the fine-scale structure by using local populations for parents whenever possible. |
Author | Myers, J M Eldridge, W H Naish, K A |
Author_xml | – sequence: 1 givenname: W H surname: Eldridge fullname: Eldridge, W H email: weldridge@stroudcenter.org organization: University of Washington, School of Aquatic and Fishery Sciences – sequence: 2 givenname: J M surname: Myers fullname: Myers, J M organization: Conservation Biology Division, National Marine Fisheries Service, Northwest Fisheries Science Center – sequence: 3 givenname: K A surname: Naish fullname: Naish, K A organization: University of Washington, School of Aquatic and Fishery Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19603062$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUuLFDEQgIOsuLOjJ-8SPIiiPVb6ke4cZfEFA3tR8Nak05XpjN1Jm6TF-R3-YTPOysCieEqR-qqSqu-KXFhnkZDHDDYMiub10B82OYDYcHGPrFjBqyyvSrggKwDWZMDrL5fkKoQ9ABR1Lh6QSyY4FMDzFfm5dXaXRfQTVYO0OwzUWBoHpNpYzIKSI9LZzcsoo3GWhugXFReP1Gmq3OBokOOUEmcm0Oc3Vjk_HKwalkC_mrBENbygYen2qCKNjuKPiDaY75gu59n5eAw7j9gbu3tI7ms5Bnx0e67J53dvP11_yLY37z9ev9lmqmyqmElRqr5muuwLUKAZdJUWOoe-aXjdsBRohlw3DBkIwUXRq76SAlkHjSp6XazJs1Pf2btvC4bYTiYoHEdp0S2h5TXnvEk7_h-Yp8fquqkS-PQOuHeLt2mINs-FEMDLMkFPbqGlm7BvZ28m6Q_tHykJeHkClHcheNRnBNqj8jYpb4_K2zTVmrA7tDLxt4jopRn_UfPqVBNS5yTdn__5N_wXMFjAyA |
CODEN | HDTYAT |
CitedBy_id | crossref_primary_10_1111_j_1365_294X_2011_05419_x crossref_primary_10_1111_mec_12046 crossref_primary_10_1146_annurev_animal_021419_083617 crossref_primary_10_1007_s10592_013_0510_y crossref_primary_10_1111_eva_12028 crossref_primary_10_1111_eva_12765 crossref_primary_10_1111_eva_13656 crossref_primary_10_1111_eva_12566 crossref_primary_10_1111_mec_13570 crossref_primary_10_1155_2024_6851143 crossref_primary_10_1111_eva_12160 crossref_primary_10_1080_03632415_2017_1356124 crossref_primary_10_1111_j_1365_294X_2012_05581_x crossref_primary_10_1002_wsb_626 crossref_primary_10_1007_s10592_023_01582_7 crossref_primary_10_1002_nafm_10426 crossref_primary_10_1002_ece3_1906 crossref_primary_10_1016_j_bse_2016_03_012 crossref_primary_10_1080_02755947_2014_902409 crossref_primary_10_1002_tafs_10239 crossref_primary_10_1111_eva_12118 crossref_primary_10_1139_cjfas_2013_0362 crossref_primary_10_1111_j_1095_8649_2010_02865_x crossref_primary_10_1111_j_1365_2427_2010_02485_x crossref_primary_10_1002_ece3_5191 crossref_primary_10_1080_02755947_2014_920739 crossref_primary_10_1002_ece3_3073 crossref_primary_10_1002_ece3_2084 crossref_primary_10_1111_j_1365_294X_2012_05579_x crossref_primary_10_1111_mec_14816 crossref_primary_10_3996_122013_JFWM_086 crossref_primary_10_1007_s10592_015_0733_1 crossref_primary_10_1007_s10592_013_0545_0 crossref_primary_10_1002_ece3_5237 crossref_primary_10_1016_j_tree_2010_06_013 crossref_primary_10_1007_s10592_014_0602_3 crossref_primary_10_1002_ece3_629 crossref_primary_10_1016_j_aquaculture_2012_05_020 crossref_primary_10_1002_tafs_10206 crossref_primary_10_1007_s12562_019_01359_3 |
Cites_doi | 10.1577/1548-8640(1937)431[33:ROSART]2.0.CO;2 10.1093/oxfordjournals.jhered.a111573 10.1016/S0065-2881(07)53002-6 10.1046/j.1365-294X.1997.00204.x 10.1007/s10592-007-9298-y 10.1007/s10592-004-1983-5 10.1146/annurev.ecolsys.30.1.539 10.1111/j.1365-294X.2006.02994.x 10.3732/ajb.90.11.1619 10.1073/pnas.1037274100 10.1111/j.1365-294X.2007.03271.x 10.1046/j.1365-294X.2002.01495.x 10.1111/j.0014-3820.2004.tb00882.x 10.1007/s10592-005-9098-1 10.1016/S0169-5347(02)02478-3 10.1002/9780470751329 10.1007/s10592-006-9178-x 10.1016/0044-8486(96)01278-1 10.1023/A:1012239029574 10.1111/j.1365-294X.2004.02162.x 10.2307/2529108 10.1016/j.biocon.2005.06.027 10.1046/j.1523-1739.1996.10061509.x 10.1093/genetics/153.4.1989 10.1046/j.1365-294X.1997.00244.x 10.1038/sj.hdy.6800693 10.1111/j.1523-1739.1991.tb00144.x 10.1111/j.1471-8286.2004.00684.x 10.1093/oxfordjournals.jhered.a111627 10.1046/j.1365-294X.2002.01634.x 10.1111/j.1365-294x.2005.02591.x 10.1111/j.1601-5223.1999.00265.x 10.1023/A:1012247213644 10.1016/j.tree.2004.07.003 10.1111/j.1365-294X.2006.03148.x 10.1111/j.1471-8286.2005.01155.x 10.1007/BF00001225 10.1073/pnas.172242899 10.1023/A:1016686415022 10.1577/1548-8446(1991)016<0004:PSATCS>2.0.CO;2 10.1098/rspb.2003.2426 10.1007/s00227-002-0972-9 10.1023/B:COGE.0000031136.35472.af 10.1139/f01-135 10.1016/B978-012323448-3/50009-X 10.1577/1548-8446(2005)30[11:HRIWS]2.0.CO;2 10.1016/0044-8486(91)90383-I |
ContentType | Journal Article |
Copyright | The Genetics Society 2009 Copyright Nature Publishing Group Oct 2009 |
Copyright_xml | – notice: The Genetics Society 2009 – notice: Copyright Nature Publishing Group Oct 2009 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7SS 7T7 7TK 7U9 7X7 7XB 88A 88E 88I 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 F1W H95 H98 L.G 7X8 |
DOI | 10.1038/hdy.2009.69 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources MEDLINE - Academic |
DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-2540 |
EndPage | 309 |
ExternalDocumentID | 1864425201 19603062 10_1038_hdy_2009_69 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | INE, USA, Washington, Puget Sound |
GeographicLocations_xml | – name: INE, USA, Washington, Puget Sound |
GroupedDBID | --- -ET -Q- -~X 0R~ 1OC 29I 2WC 31~ 36B 39C 3O- 4.4 406 53G 5GY 5RE 70F 7X7 8-1 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AACDK AAHBH AAKAB AANZL AAOIN AASML AATNV AAYZH ABAKF ABAWZ ABBRH ABCQX ABDBE ABDBF ABFSG ABJNI ABLJU ABRTQ ABUWG ABZZP ACAOD ACGFS ACGOD ACKTT ACNCT ACPRK ACRQY ACSTC ACUHS ACXQS ACZOJ ADBBV ADXHL AEFQL AEJRE AEMSY AENEX AESKC AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFFNX AFHIU AFKRA AFRAH AFSHS AFZJQ AGAYW AGHAI AGQEE AHMBA AHSBF AHWEU AI. AIGIU AILAN AIXLP AJAOE AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF AOIJS ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC B0M BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CAG CCPQU COF CS3 DIK DNIVK DPUIP DWQXO E3Z EAD EAP EBC EBD EBLON EBS EE. EIOEI EJD EMB EMK EMOBN EPL ESX F5P FDQFY FEDTE FERAY FIGPU FIZPM FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HYE H~9 IHE IWAJR JSO JZLTJ KQ8 L7B LH4 LK8 LW6 M1P M2O M2P M7P MVM NQJWS OK1 OVD P2P PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RNS RNT RNTTT ROL RPM SNX SNYQT SOHCF SOJ SRMVM SV3 SWTZT TAOOD TBHMF TDRGL TEORI TN5 TR2 TUS UKHRP VH1 WH7 WHG X7L ZGI ZXP ZY4 ~8M ~KM AAYXX CITATION ABTAH CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7SS 7T7 7TK 7U9 7XB 88A 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS PUEGO Q9U RC3 F1W H95 H98 L.G 7X8 |
ID | FETCH-LOGICAL-c485t-a94cd71f4d30c0f10b5f9f20d88678120df1e6f81e1099693dcd5a9e1b08c3df3 |
IEDL.DBID | 7X7 |
ISSN | 0018-067X 1365-2540 |
IngestDate | Fri Jul 11 12:39:15 EDT 2025 Fri Jul 11 10:22:55 EDT 2025 Sat Aug 23 14:44:41 EDT 2025 Thu Apr 03 06:53:33 EDT 2025 Tue Jul 01 01:34:20 EDT 2025 Thu Apr 24 23:02:36 EDT 2025 Mon Jul 21 06:08:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | hatchery pacific salmon microsatellite loci metapopulation genetic diversity temporal |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-a94cd71f4d30c0f10b5f9f20d88678120df1e6f81e1099693dcd5a9e1b08c3df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/hdy200969.pdf |
PMID | 19603062 |
PQID | 229990644 |
PQPubID | 36536 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_67666810 proquest_miscellaneous_21207785 proquest_journals_229990644 pubmed_primary_19603062 crossref_primary_10_1038_hdy_2009_69 crossref_citationtrail_10_1038_hdy_2009_69 springer_journals_10_1038_hdy_2009_69 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-10-01 |
PublicationDateYYYYMMDD | 2009-10-01 |
PublicationDate_xml | – month: 10 year: 2009 text: 2009-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: England – name: Cardiff |
PublicationTitle | Heredity |
PublicationTitleAbbrev | Heredity |
PublicationTitleAlternate | Heredity (Edinb) |
PublicationYear | 2009 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | JK McKay (BFhdy200969_CR29) 2002; 17 R Haygood (BFhdy200969_CR20) 2003; 270 S Wright (BFhdy200969_CR57) 1932; 1 JH Bernal-Ramirez (BFhdy200969_CR3) 2003; 142 RR Stickney (BFhdy200969_CR45) 1996 TA Flagg (BFhdy200969_CR11) 1995 EB Taylor (BFhdy200969_CR47) 1991; 98 KM Leber (BFhdy200969_CR25) 2004 FW Allendorf (BFhdy200969_CR1) 2007 D Ruzzante (BFhdy200969_CR41) 2001; 2 MJ Ford (BFhdy200969_CR12) 2004; 5 EK Latch (BFhdy200969_CR24) 2006; 7 RS Waples (BFhdy200969_CR52) 1991; 53 WH Eldridge (BFhdy200969_CR8) 2007; 9 ND Halbert (BFhdy200969_CR15) 2005; 14 A Vasemagi (BFhdy200969_CR51) 2005; 95 R Hilborn (BFhdy200969_CR21) 2003; 100 GB Kelez (BFhdy200969_CR23) 1937; 31 M Raymond (BFhdy200969_CR40) 1995; 86 MP Small (BFhdy200969_CR44) 2004; 5 J-M Cornuet (BFhdy200969_CR6) 1999; 153 MM Hansen (BFhdy200969_CR17) 2001; 58 EE Nielsen (BFhdy200969_CR37) 1999; 130 L Mobrand (BFhdy200969_CR31) 2005; 30 KA Naish (BFhdy200969_CR32) 2007; 53 JH Zar (BFhdy200969_CR58) 1999 MM Hansen (BFhdy200969_CR16) 2002; 11 E McClelland (BFhdy200969_CR28) 2007; 8 EE Nielsen (BFhdy200969_CR35) 2001; 2 J Goudet (BFhdy200969_CR14) 1995; 86 RS Waples (BFhdy200969_CR53) 2002 EE Nielsen (BFhdy200969_CR36) 1997; 6 K Birnbaum (BFhdy200969_CR4) 2003; 90 NC Ellstrand (BFhdy200969_CR10) 1999; 30 S Leider (BFhdy200969_CR26) 1989; 24 S Edmands (BFhdy200969_CR7) 2007; 16 National Marine Fisheries Service (NMFS) (BFhdy200969_CR33) 2004; 69 GR Pess (BFhdy200969_CR39) 2002 J Corander (BFhdy200969_CR5) 2006; 15 MC Whitlock (BFhdy200969_CR55) 2004 LA Weitkamp (BFhdy200969_CR54) 1995 DE Ruzzante (BFhdy200969_CR42) 2004; 13 L Hauser (BFhdy200969_CR19) 2002; 99 F Utter (BFhdy200969_CR49) 2001; 10 C Van Oosterhout (BFhdy200969_CR50) 2004; 4 PM Gaffney (BFhdy200969_CR13) 1996; 143 EA Hoffman (BFhdy200969_CR22) 2004; 58 W Nehlsen (BFhdy200969_CR34) 1991; 16 R Peakall (BFhdy200969_CR38) 2006; 6 DA Tallmon (BFhdy200969_CR46) 2004; 19 N Tessier (BFhdy200969_CR48) 1997; 6 MM Hansen (BFhdy200969_CR18) 2002; 11 FC Withler (BFhdy200969_CR56) 1982 WH Eldridge (BFhdy200969_CR9) 2007; 16 N Ryman (BFhdy200969_CR43) 1991; 5 M Barilani (BFhdy200969_CR2) 2005; 126 N Mantel (BFhdy200969_CR27) 1970; 26 LS Mills (BFhdy200969_CR30) 1996; 10 |
References_xml | – start-page: 147 volume-title: Population Viability Analyses year: 2002 ident: BFhdy200969_CR53 – volume: 31 start-page: 33 year: 1937 ident: BFhdy200969_CR23 publication-title: Prog Fish Cult doi: 10.1577/1548-8640(1937)431[33:ROSART]2.0.CO;2 – volume: 86 start-page: 248 year: 1995 ident: BFhdy200969_CR40 publication-title: J Hered doi: 10.1093/oxfordjournals.jhered.a111573 – volume: 53 start-page: 61 year: 2007 ident: BFhdy200969_CR32 publication-title: Adv Mar Biol doi: 10.1016/S0065-2881(07)53002-6 – volume: 6 start-page: 487 year: 1997 ident: BFhdy200969_CR36 publication-title: Mol Ecol doi: 10.1046/j.1365-294X.1997.00204.x – volume: 9 start-page: 13 year: 2007 ident: BFhdy200969_CR8 publication-title: Conserv Genet doi: 10.1007/s10592-007-9298-y – volume: 53 start-page: 11 year: 1991 ident: BFhdy200969_CR52 publication-title: US National Marine Fisheries Service Marine Fisheries Review – volume: 5 start-page: 797 year: 2004 ident: BFhdy200969_CR12 publication-title: Conserv Genet doi: 10.1007/s10592-004-1983-5 – volume: 30 start-page: 539 year: 1999 ident: BFhdy200969_CR10 publication-title: Annu Rev Ecol Sys doi: 10.1146/annurev.ecolsys.30.1.539 – volume: 15 start-page: 2833 year: 2006 ident: BFhdy200969_CR5 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2006.02994.x – volume: 90 start-page: 1619 year: 2003 ident: BFhdy200969_CR4 publication-title: Am J Bot doi: 10.3732/ajb.90.11.1619 – volume: 100 start-page: 6564 year: 2003 ident: BFhdy200969_CR21 publication-title: Pro Natl Acad Sci USA doi: 10.1073/pnas.1037274100 – start-page: 129 volume-title: Restoration of Puget Sound Rivers year: 2002 ident: BFhdy200969_CR39 – volume: 16 start-page: 2407 year: 2007 ident: BFhdy200969_CR9 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2007.03271.x – volume: 69 start-page: 19975 year: 2004 ident: BFhdy200969_CR33 publication-title: Fed Regist – volume: 11 start-page: 1003 year: 2002 ident: BFhdy200969_CR16 publication-title: Mol Ecol doi: 10.1046/j.1365-294X.2002.01495.x – volume: 58 start-page: 2536 year: 2004 ident: BFhdy200969_CR22 publication-title: Evolution doi: 10.1111/j.0014-3820.2004.tb00882.x – volume-title: Status Review of Coho Salmon from Washington, Oregon and California year: 1995 ident: BFhdy200969_CR54 – volume-title: Aquaculture in the United States: A Historical Survey year: 1996 ident: BFhdy200969_CR45 – volume: 7 start-page: 295 year: 2006 ident: BFhdy200969_CR24 publication-title: Conserv Genet doi: 10.1007/s10592-005-9098-1 – volume: 17 start-page: 285 year: 2002 ident: BFhdy200969_CR29 publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(02)02478-3 – volume-title: Stock Enhancements and Sea Ranching; Developments, Pitfalls and Opportunities year: 2004 ident: BFhdy200969_CR25 doi: 10.1002/9780470751329 – volume: 8 start-page: 397 year: 2007 ident: BFhdy200969_CR28 publication-title: Conserv Genet doi: 10.1007/s10592-006-9178-x – start-page: 27 volume-title: Transplanting Pacific salmon year: 1982 ident: BFhdy200969_CR56 – volume: 143 start-page: 257 year: 1996 ident: BFhdy200969_CR13 publication-title: Aquaculture doi: 10.1016/0044-8486(96)01278-1 – volume: 2 start-page: 219 year: 2001 ident: BFhdy200969_CR35 publication-title: Conserv Genet doi: 10.1023/A:1012239029574 – volume: 13 start-page: 1433 year: 2004 ident: BFhdy200969_CR42 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2004.02162.x – volume: 26 start-page: 547 year: 1970 ident: BFhdy200969_CR27 publication-title: Biometrics doi: 10.2307/2529108 – volume: 126 start-page: 445 year: 2005 ident: BFhdy200969_CR2 publication-title: Biol Conserv doi: 10.1016/j.biocon.2005.06.027 – volume: 10 start-page: 1509 year: 1996 ident: BFhdy200969_CR30 publication-title: Conserv Biol doi: 10.1046/j.1523-1739.1996.10061509.x – volume: 153 start-page: 1989 year: 1999 ident: BFhdy200969_CR6 publication-title: Genetics doi: 10.1093/genetics/153.4.1989 – volume: 6 start-page: 735 year: 1997 ident: BFhdy200969_CR48 publication-title: Mol Ecol doi: 10.1046/j.1365-294X.1997.00244.x – volume: 95 start-page: 76 year: 2005 ident: BFhdy200969_CR51 publication-title: Heredity doi: 10.1038/sj.hdy.6800693 – volume: 5 start-page: 325 year: 1991 ident: BFhdy200969_CR43 publication-title: Conserv Biol doi: 10.1111/j.1523-1739.1991.tb00144.x – volume: 4 start-page: 535 year: 2004 ident: BFhdy200969_CR50 publication-title: Mol Ecol Notes doi: 10.1111/j.1471-8286.2004.00684.x – volume: 86 start-page: 485 year: 1995 ident: BFhdy200969_CR14 publication-title: J Hered doi: 10.1093/oxfordjournals.jhered.a111627 – volume: 11 start-page: 2523 year: 2002 ident: BFhdy200969_CR18 publication-title: Mol Ecol doi: 10.1046/j.1365-294X.2002.01634.x – volume: 14 start-page: 2343 year: 2005 ident: BFhdy200969_CR15 publication-title: Mol Ecol doi: 10.1111/j.1365-294x.2005.02591.x – volume: 130 start-page: 265 year: 1999 ident: BFhdy200969_CR37 publication-title: Hereditas doi: 10.1111/j.1601-5223.1999.00265.x – volume: 2 start-page: 257 year: 2001 ident: BFhdy200969_CR41 publication-title: Conserv Genet doi: 10.1023/A:1012247213644 – volume: 19 start-page: 489 year: 2004 ident: BFhdy200969_CR46 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2004.07.003 – volume: 16 start-page: 463 year: 2007 ident: BFhdy200969_CR7 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2006.03148.x – volume: 6 start-page: 288 year: 2006 ident: BFhdy200969_CR38 publication-title: Mol Ecol Notes doi: 10.1111/j.1471-8286.2005.01155.x – start-page: 366 volume-title: Uses and Effects of Cultured Fishes in Aquatic Ecosystems year: 1995 ident: BFhdy200969_CR11 – volume: 24 start-page: 219 year: 1989 ident: BFhdy200969_CR26 publication-title: Environ Biol Fishes doi: 10.1007/BF00001225 – volume: 99 start-page: 11742 year: 2002 ident: BFhdy200969_CR19 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.172242899 – volume: 10 start-page: 265 year: 2001 ident: BFhdy200969_CR49 publication-title: Rev Fish Biol Fish doi: 10.1023/A:1016686415022 – volume-title: Conservation and the Genetics of Populations year: 2007 ident: BFhdy200969_CR1 – volume: 16 start-page: 4 year: 1991 ident: BFhdy200969_CR34 publication-title: Fisheries doi: 10.1577/1548-8446(1991)016<0004:PSATCS>2.0.CO;2 – volume: 1 start-page: 356 year: 1932 ident: BFhdy200969_CR57 publication-title: Proc 6th Int Congr Genet – volume: 270 start-page: 1879 year: 2003 ident: BFhdy200969_CR20 publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.2003.2426 – volume-title: Biostatistical Analysis, 4th edition year: 1999 ident: BFhdy200969_CR58 – volume: 142 start-page: 567 year: 2003 ident: BFhdy200969_CR3 publication-title: Mar Biol doi: 10.1007/s00227-002-0972-9 – volume: 5 start-page: 367 year: 2004 ident: BFhdy200969_CR44 publication-title: Conserv Genet doi: 10.1023/B:COGE.0000031136.35472.af – volume: 58 start-page: 1853 year: 2001 ident: BFhdy200969_CR17 publication-title: Can J Fish Aquat Sci doi: 10.1139/f01-135 – start-page: 153 volume-title: Ecology, Genetics, and Evolution of Metapopulations year: 2004 ident: BFhdy200969_CR55 doi: 10.1016/B978-012323448-3/50009-X – volume: 30 start-page: 11 year: 2005 ident: BFhdy200969_CR31 publication-title: Fisheries doi: 10.1577/1548-8446(2005)30[11:HRIWS]2.0.CO;2 – volume: 98 start-page: 185 year: 1991 ident: BFhdy200969_CR47 publication-title: Aquaculture doi: 10.1016/0044-8486(91)90383-I |
SSID | ssj0003729 |
Score | 2.1151683 |
Snippet | The long-term viability of a metapopulation depends partly on the gene flow among sub-populations. Management approaches such as translocations and supportive... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 299 |
SubjectTerms | Animal Migration Animal populations Animals Biomedical and Life Sciences Biomedicine Breeding Conservation Cytogenetics Ecology Evolution, Molecular Evolutionary Biology Female Fish hatcheries Fish populations Gene Flow Genetic diversity Genetic drift Genetic Variation Genotype & phenotype Human Genetics Local population Male Metapopulations Microsatellite Repeats Oncorhynchus kisutch Oncorhynchus kisutch - genetics Oncorhynchus kisutch - physiology original-article Plant Genetics and Genomics Population genetics Population structure Rivers Salmon Sexual Behavior, Animal |
Title | Long-term changes in the fine-scale population structure of coho salmon populations (Oncorhynchus kisutch) subject to extensive supportive breeding |
URI | https://link.springer.com/article/10.1038/hdy.2009.69 https://www.ncbi.nlm.nih.gov/pubmed/19603062 https://www.proquest.com/docview/229990644 https://www.proquest.com/docview/21207785 https://www.proquest.com/docview/67666810 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0RfBF_DZW6z5UUGHp7mV3s_skvdKjiJwiFu4t3H55QklOc3m4v8N_2JkklxZafcnnQDaZ2fnYmcyPkCPrbNTSe8aLZJjUKjEwejivtBXOSuFcV-U71-cX8tNCLYbanGYoq9zpxE5Rh9rjGvnxBPSmBfspP65_MQSNwuTqgKBxl-xj5zKs6CoWY7zFMSPVK2LDQCkvht_zeG6OV2Hb96rEQufrBumGl3kjQ9oZntlD8mDwGOlJz-JH5E6sHpN7PYbk9gn587mufjBUsLT_ibehPysKbh1N4ECyBngQ6XqE6aJ9w9j2d6R1ogiPS5vlJbzdNZqGvvuC7S1X28qv2oaCj9kCc9_TpnW4bEM3Ne0Wz7H0HS6u0YfHQwivO1v4lFzMzr6fnrMBaYF5adSGLa30oRBJhpx7ngR3Ktk04cEYMGYCDpKIOhkRMZGmbR58UEsbhePG5yHlz8heVVfxBaHaGROU8nk0EwnhiguFjTHFQuno4CQjH3afu_RDG3JEw7gsu3R4bkrgDYJj2lLbjByNxOu--8btZAc7vpXDFGzKUWAy8ma8C3MHEyLLKtYtkMCbFYVR_6bQBYR3RvCMPO_F4WoYEPpBuDXJyNudfFw9-5YxvvzvGA_I_S5N1VUJviJ7IArxNXg7G3fYyTRszak4JPsns-l0Dvvp2fzrt79NHAYi |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtQwcFS2QvCCuAkF6odWAiSrORzHfkCIo9WWLgtCrbRvYX2xSFWykI3QfgffwT8yztVKLbz1zUlGieO5PeMZgB2ppOVMaxpmTlDGU0dR6Xm-4jJSkkVKNVm-Uz4-YR9m6WwD_vRnYXxaZS8TG0FtSu33yPdilJsS9Sd7vfxBfdMoH1ztO2i0VHFk17_QY6teHb5H9O7G8cH-8bsx7ZoKUM1EuqJzybTJIsdMEurQRaFKnXRxaIRAuR3hwEWWOxFZHzPiMjHapHNpIxUKnRiX4HuvwSZL0JMZwebb_ennL4Po9zGwVvQLimpg1h0IDBOxtzDrtjqmT60-rwIv2LUXYrKNqju4Dbc6G5W8aYnqDmzY4i5cb7tWru_B70lZfKNepJP22HBFvhcEDUni0GSlFWLdkuXQGIy0JWrrn5aUjviGvKSan-J6noOpyPNPvqDmYl3oRV0RtGprJKcXpKqV3ygiq5I02_U-2R5vLr3X4Ifo0Dfa9z6cXAkaHsCoKAv7CAhXQpg01YkVMUMHSZlMWutslnKr8CKAl_1y57orfO77b5zmTQA-ETnixrfjlDmXAewMwMu23sflYFs93vKO6at8INEAtoenyK0-BDMvbFkjCP5Zlon03xA8Q4dSRGEAD1tyOJsGOpvo4MUB7Pb0cfbtS-b4-L9z3IYb4-OPk3xyOD3agptNkKzJUXwCIyQL-xRtrZV61lE4ga9XzVR_AcEzQLo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKQFwQzxIK1IdWAiRr4yR27ANCiLJqaVU4UGlvYf1ikapkIRuh_Q6-hr9jnFcrtXDrzUlGieN5e8YzALtKKycyY2ice0kzwT1FpRf4SiimVca0brN8T8TBafZxxmcb8Gc4CxPSKgeZ2ApqW5mwRz5JUG4q1J_ZxPdZEZ_3p2-XP2hoIBUCrUM3jY5Cjtz6F3pv9ZvDfUT1XpJMP3x5f0D7BgPUZJKv6FxlxubMZzaNTexZrLlXPomtlCjDGQ48c8JL5kL8SKjUGsvnyjEdS5Nan-J7b8DNPOUssFg-G329OETDOiUgKSqEWX80ME7lZGHXXZ3MkGR9URlesnAvRWdbpTe9B3d7a5W868jrPmy48gHc6vpXrh_C7-Oq_EaDcCfdAeKafC8JmpTEo_FKa8S_I8uxRRjpitU2Px2pPAmteUk9P8PVvABTk5efQmnNxbo0i6YmaN82SFivSN3osGVEVhVpN-5D2j3eXAb_IQzRtW_18CM4vRYkPIbNsirdEyBCS2k5N6mTSYaukra5cs67nAun8SKC18NyF6YvgR46cZwVbSg-lQXiJjTmVIVQEeyOwMuu8sfVYNsD3oqe_etiJNYIdsanyLchGDMvXdUgCP5Znkv-bwiRo2spWRzBVkcO59NAtxNdvSSCvYE-zr99xRyf_neOO3AbWak4Pjw52oY7bbSsTVZ8BptIFe45Gl0r_aIlbwJfr5uf_gLt-0OK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+changes+in+the+fine-scale+population+structure+of+coho+salmon+populations+%28Oncorhynchus+kisutch%29+subject+to+extensive+supportive+breeding&rft.jtitle=Heredity&rft.au=Eldridge%2C+W+H&rft.au=Myers%2C+J+M&rft.au=Naish%2C+K+A&rft.date=2009-10-01&rft.pub=Springer+International+Publishing&rft.issn=0018-067X&rft.eissn=1365-2540&rft.volume=103&rft.issue=4&rft.spage=299&rft.epage=309&rft_id=info:doi/10.1038%2Fhdy.2009.69&rft.externalDocID=10_1038_hdy_2009_69 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-067X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-067X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-067X&client=summon |