Diversification of flowering plants in space and time
The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 floweri...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 7609 - 16 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.11.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous–Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics.
Global spatiotemporal patterns of plant diversification are unclear. Here, the authors use a genus-level phylogeny and global distribution data for 14,244 flowering plant genera, finding a negative correlation between spatial patterns of diversification and genus diversity. |
---|---|
AbstractList | The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous–Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics.Global spatiotemporal patterns of plant diversification are unclear. Here, the authors use a genus-level phylogeny and global distribution data for 14,244 flowering plant genera, finding a negative correlation between spatial patterns of diversification and genus diversity. Abstract The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous–Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics. The rapid diversification and high species richness of flowering plants is regarded as 'Darwin's second abominable mystery'. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous-Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics. The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous–Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics. Global spatiotemporal patterns of plant diversification are unclear. Here, the authors use a genus-level phylogeny and global distribution data for 14,244 flowering plant genera, finding a negative correlation between spatial patterns of diversification and genus diversity. The rapid diversification and high species richness of flowering plants is regarded as 'Darwin's second abominable mystery'. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous-Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics.The rapid diversification and high species richness of flowering plants is regarded as 'Darwin's second abominable mystery'. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous-Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics. |
ArticleNumber | 7609 |
Author | Nogués-Bravo, David Liu, Yunpeng Fang, Jingyun Wang, Zhiheng Dimitrov, Dimitar Fjeldså, Jon Xu, Xiaoting Shrestha, Nawal Liu, Jianquan Lyu, Lisha Su, Xiangyan Schmid, Bernhard Kennedy, Jonathan D. Rahbek, Carsten Rosindell, James Yang, Yong |
Author_xml | – sequence: 1 givenname: Dimitar orcidid: 0000-0001-5830-5702 surname: Dimitrov fullname: Dimitrov, Dimitar organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Department of Natural History, University Museum of Bergen, University of Bergen, Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Natural History Museum, University of Oslo – sequence: 2 givenname: Xiaoting orcidid: 0000-0001-8126-614X surname: Xu fullname: Xu, Xiaoting organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University – sequence: 3 givenname: Xiangyan surname: Su fullname: Su, Xiangyan organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Land Consolidation and Rehabilitation Center, Ministry of Natural Resources – sequence: 4 givenname: Nawal orcidid: 0000-0002-6866-5100 surname: Shrestha fullname: Shrestha, Nawal organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University – sequence: 5 givenname: Yunpeng orcidid: 0000-0001-6188-3511 surname: Liu fullname: Liu, Yunpeng organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University – sequence: 6 givenname: Jonathan D. orcidid: 0000-0002-2843-122X surname: Kennedy fullname: Kennedy, Jonathan D. organization: Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Natural History Museum of Denmark, University of Copenhagen, Department of Animal and Plant Sciences, University of Sheffield – sequence: 7 givenname: Lisha surname: Lyu fullname: Lyu, Lisha organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, School of Urban Planning and Design, Shenzhen Graduate School, Peking University – sequence: 8 givenname: David orcidid: 0000-0002-4060-0153 surname: Nogués-Bravo fullname: Nogués-Bravo, David organization: Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen – sequence: 9 givenname: James orcidid: 0000-0002-5060-9346 surname: Rosindell fullname: Rosindell, James organization: Department of Life Sciences, Imperial College London – sequence: 10 givenname: Yong surname: Yang fullname: Yang, Yong organization: Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University – sequence: 11 givenname: Jon surname: Fjeldså fullname: Fjeldså, Jon organization: Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Natural History Museum, University of Oslo – sequence: 12 givenname: Jianquan orcidid: 0000-0001-9337-9555 surname: Liu fullname: Liu, Jianquan organization: Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University – sequence: 13 givenname: Bernhard orcidid: 0000-0002-8430-3214 surname: Schmid fullname: Schmid, Bernhard organization: Department of Geography, University of Zurich – sequence: 14 givenname: Jingyun surname: Fang fullname: Fang, Jingyun organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University – sequence: 15 givenname: Carsten orcidid: 0000-0003-4585-0300 surname: Rahbek fullname: Rahbek, Carsten organization: Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Natural History Museum of Denmark, University of Copenhagen, Danish Institute for Advanced Study, University of Southern Denmark – sequence: 16 givenname: Zhiheng orcidid: 0000-0003-0808-7780 surname: Wang fullname: Wang, Zhiheng email: zhiheng.wang@pku.edu.cn organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37993449$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3TAQha0KVB69f4BFFambblL8mCT2sgIKSEjdwNqa-IF8lRundm6r_vuam0tBLPBmrNF3jmbmnJCDMY6OkDNGvzEq5HkGBm1XUy5qEEK1tfxAjjkFVrOOi4NX_yOyynlNyxOKSYCP5Eh0SgkAdUyay_DbpRx8MDiHOFbRV36If1wK42M1DTjOuQpjlSc0rsLRVnPYuE_k0OOQ3WpfT8nDj6v7i5v67uf17cX3u9qAbOYaWedBUjBeCGYpdFL16Lzi2BowTQvSIlcdV8Y2XlqLnaOqd7bnTLBeojglt4uvjbjWUwobTH91xKB3jZgeNaY5mMFpY1veCwOWMgWyGBsODYDFppW8l7x4fV28phR_bV2e9SZk44ayoovbrLlUXEELnBb0yxt0HbdpLJvuKGCypaxQn_fUtt84-3-85-MWQC6ASTHn5Lw2Yd5deU4YBs2ofopSL1HqEqXeRallkfI30mf3d0ViEeXpKT2XXsZ-R_UPqaat0A |
CitedBy_id | crossref_primary_10_2989_10220119_2024_2406822 crossref_primary_10_1111_jse_13155 crossref_primary_10_1038_s41467_024_53860_8 crossref_primary_10_1038_s41586_024_07324_0 crossref_primary_10_3389_fpls_2024_1301395 crossref_primary_10_1111_nph_20200 crossref_primary_10_1111_ecog_07062 crossref_primary_10_1093_pcp_pcae054 crossref_primary_10_1093_isd_ixae022 |
Cites_doi | 10.1038/s41559-020-1241-3 10.1038/ncomms2958 10.1007/s00606-014-1180-z 10.1111/2041-210X.12199 10.1073/pnas.1518659113 10.1093/hesc/9780199292233.001.0001 10.1016/j.tree.2013.09.012 10.1093/jxb/erw156 10.1073/pnas.0608361104 10.1073/pnas.0308127100 10.1098/rstb.2008.0075 10.1093/sysbio/syx037 10.1111/nph.13247 10.1111/nph.13446 10.1111/nph.15708 10.1086/705243 10.1111/geb.12923 10.1093/sysbio/syp056 10.1038/nature02243 10.1101/2020.07.03.185074 10.1111/j.1095-8312.2004.00337.x 10.1890/11-0870.1 10.3732/ajb.0900346 10.1038/nature12872 10.1111/ele.13476 10.1126/science.1163197 10.1038/ngeo2813 10.1126/science.1130880 10.3732/ajb.1600108 10.1111/nph.13572 10.1111/ecog.01055 10.1371/journal.pone.0089543 10.1073/pnas.2300981120 10.1093/molbev/mss075 10.1038/s41467-023-38375-y 10.1093/sysbio/sys088 10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2 10.1111/nph.15011 10.1002/joc.5086 10.1086/345091 10.1038/374027a0 10.1038/nature11631 10.1146/annurev-earth-040809-152402 10.1186/s12870-014-0289-0 10.1038/s41586-018-0273-1 10.3732/ajb.0800126 10.1371/journal.pbio.1001406 10.1002/ajb2.1019 10.1038/s41559-018-0787-9 10.1038/s41586-022-05017-0 10.1111/j.2041-210X.2011.00103.x 10.1086/659883 10.1130/G23175A.1 10.1111/jbi.12620 10.1071/FP10084 10.1038/nature08069 10.1111/2041-210X.12526 10.1038/s41586-020-2176-1 10.1111/ter.12086 10.1038/nature06588 10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2 10.1016/j.jtbi.2015.06.005 10.1073/pnas.1424487112 10.1007/978-3-642-79060-7_27 10.1111/jbi.12149 10.1002/ecy.1569 10.1073/pnas.1218633110 10.1093/bioinformatics/btu033 10.1029/149GM03 10.1130/G19992.1 10.1093/sysbio/syw021 10.3732/ajb.1000404 10.1111/evo.13378 10.1093/sysbio/syq027 10.1111/j.1461-0248.2007.01138.x 10.1371/journal.pone.0097722 10.1111/nph.12942 10.1073/pnas.1324002111 10.3897/BDJ.8.e39677 10.1093/bioinformatics/bts492 10.1016/j.tree.2004.09.011 10.1098/rspb.2008.1762 10.1111/evo.13566 10.1126/science.1135590 10.1093/oxfordjournals.molbev.a003974 10.1038/nature13705 10.1111/nph.13264 10.1016/j.ympev.2012.12.004 10.1130/G33091.1 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-023-43396-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 2041-1723 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_cd62b3c4d019488dac24544da5682b82 37993449 10_1038_s41467_023_43396_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 31988102; 31770566; 32030006 funderid: https://doi.org/10.13039/501100001809 – fundername: National key Research Development Program of China grant # 2017YFC0505203 Natural Science Foundation of Sichuan Province grant #2023NSFSC1280 – fundername: Danmarks Grundforskningsfond (Danish National Research Foundation) grantid: DNRF96 funderid: https://doi.org/10.13039/501100001732 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions) grantid: MSCA-792534 funderid: https://doi.org/10.13039/100010665 – fundername: Carlsbergfondet (Carlsberg Foundation) grantid: CF19-0334 funderid: https://doi.org/10.13039/501100002808 – fundername: National key Research Development Program of China grant # 2022YFF0802300 – fundername: Norwegian Metacenter for Computational Science (NOTUR) project NN9601K – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 31988102 – fundername: Danmarks Grundforskningsfond (Danish National Research Foundation) grantid: DNRF96 – fundername: Carlsbergfondet (Carlsberg Foundation) grantid: CF19-0334 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 31770566 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 32030006 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions) grantid: MSCA-792534 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-a17f4804cf331d04789baef92a6c4c5648da29729cd5f8dda7e09bedb2131b8a3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:29:03 EDT 2025 Tue Aug 05 09:44:17 EDT 2025 Wed Aug 13 07:01:48 EDT 2025 Fri May 09 01:30:32 EDT 2025 Tue Jul 01 02:10:46 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 Fri Feb 21 02:40:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-a17f4804cf331d04789baef92a6c4c5648da29729cd5f8dda7e09bedb2131b8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5060-9346 0000-0002-4060-0153 0000-0001-6188-3511 0000-0001-8126-614X 0000-0003-4585-0300 0000-0002-6866-5100 0000-0001-9337-9555 0000-0003-0808-7780 0000-0002-2843-122X 0000-0002-8430-3214 0000-0001-5830-5702 |
OpenAccessLink | https://www.nature.com/articles/s41467-023-43396-8 |
PMID | 37993449 |
PQID | 2892418601 |
PQPubID | 546298 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cd62b3c4d019488dac24544da5682b82 proquest_miscellaneous_2892946420 proquest_journals_2892418601 pubmed_primary_37993449 crossref_citationtrail_10_1038_s41467_023_43396_8 crossref_primary_10_1038_s41467_023_43396_8 springer_journals_10_1038_s41467_023_43396_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-22 |
PublicationDateYYYYMMDD | 2023-11-22 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | RaboskyDLMitchellJSChangJIs BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification modelsSyst. Biol.20176647749828334223579013810.1093/sysbio/syx037 RaboskyDLAutomatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic treesPLoS ONE20149e895432014PLoSO...989543R24586858393587810.1371/journal.pone.0089543 IgeaJTanentzapAJAngiosperm speciation cools down in the tropicsEcol. Lett.20202369270032043734707899310.1111/ele.13476 BoneRESmithJACArrigoNBuerkiSA macro-ecological perspective on crassulacean acid metabolism (CAM) photosynthesis evolution in Afro-Madagascan drylands: Eulophiinae orchids as a case studyNew Phytol.20152084694811:CAS:528:DC%2BC2MXhsFGrur3E2619246710.1111/nph.13572 FickSEHijmansRJWorldClim 2: new 1-km spatial resolution climate surfaces for global land areasInt. J. Climatol.2017374302431510.1002/joc.5086 CouvreurTLPOdd man out: why are there fewer plant species in African rain forests?Plant Syst. Evol.20153011299131310.1007/s00606-014-1180-z StrömbergCAEvolution of grasses and grassland ecosystemsAnnu. Rev. Earth Planet. Sci.2011395175442011AREPS..39..517S10.1146/annurev-earth-040809-152402 XuXDimitrovDRahbekCWangZNCBIminer: sequences harvest from GenbankEcography2015384264302015Ecogr..38..426X10.1111/ecog.01055 PyronRAGenus-level phylogeny of snakes reveals the origins of species richness in Sri LankaMol. Phylogenet. Evol.2013669699782326171310.1016/j.ympev.2012.12.004 SilveraKEvolution along the crassulacean acid metabolism continuumFunct. Plant Biol.20103799510101:CAS:528:DC%2BC3cXhtlaqtL%2FN10.1071/FP10084 Willis, K. & McElwain, J. The Evolution of Plants. (OUP Oxford, 2013). RaboskyDLRates of speciation and morphological evolution are correlated across the largest vertebrate radiationNat. Commun.201342013NatCo...4.1958R2373962310.1038/ncomms2958 MagallónSGómez-AcevedoSSánchez-ReyesLLHernández-HernándezTA metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversityN. Phytol.201520743745310.1111/nph.13264 Shear, W. A. Shaking The Tree: Readings From Nature In The History Of Life (ed. Gee, H.) 169–179 (University of Chicago Press, 2000). RoyerDLBernerRAMontañezIPTaborNJBeerlingDJCO2 as a primary driver of Phanerozoic climateGSA Today200414410.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2 RaboskyDLAn inverse latitudinal gradient in speciation rate for marine fishesNature20185593923952018Natur.559..392R1:CAS:528:DC%2BC1cXht1OjtrvJ2997372610.1038/s41586-018-0273-1 OsborneCPFreckletonRPEcological selection pressures for C4 photosynthesis in the grassesProc. R. Soc. B: Biol. Sci.20092761753176010.1098/rspb.2008.1762 StamatakisARAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogeniesBioinformatics201430131213131:CAS:528:DC%2BC2cXmvFCjsbc%3D24451623399814410.1093/bioinformatics/btu033 JablonskiDRoyKValentineJWOut of the tropics: evolutionary dynamics of the latitudinal diversity gradientScience20063141021062006Sci...314..102J1:CAS:528:DC%2BD28XhtVCiurvO1702365310.1126/science.1130880 WiensJJThe causes of species richness patterns across space, time, and clades and the role of “ecological limits”Quart. Rev. Biol.20118675962180063510.1086/659883 SpriggsELChristinP-AEdwardsEJC4 photosynthesis promoted species diversification during the miocene grassland expansionPLoS ONE20149e977222014PLoSO...997722S24835188402396210.1371/journal.pone.0097722 RosindellJHarmonLJOneZoom: a fractal explorer for the tree of lifePLoS Biol.201210e10014061:CAS:528:DC%2BC38Xhs1Whtb7I23091419347297610.1371/journal.pbio.1001406 XuXWangZRahbekCLessardJ-PFangJEvolutionary history influences the effects of water–energy dynamics on oak diversity in AsiaJ. Biogeogr.2013402146215510.1111/jbi.12149 Humboldt, A. von & Bonpland, A. Essai Sur La Géographie Des. Plantes (Schoell et Cie, 1805). MagallónSUsing fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiospermsSyst. Biol.2010593843992053875910.1093/sysbio/syq027 Smith, J. A. C. & Winter, K. Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution (eds. Winter, K. & Smith, J. A. C.) 427–436 (Springer, 1996). SmithSABrownJWConstructing a broadly inclusive seed plant phylogenyAm. J. Bot.20181053023142974672010.1002/ajb2.1019 JetzWThomasGHJoyJBHartmannKMooersAOThe global diversity of birds in space and timeNature20124914444482012Natur.491..444J1:CAS:528:DC%2BC38Xhs1ajtrjJ2312385710.1038/nature11631 SmithSADonoghueMJRates of molecular evolution are linked to life history in flowering plantsScience200832286892008Sci...322...86S1:CAS:528:DC%2BD1cXhtFyhu77N1883264310.1126/science.1163197 SmithSAO’MearaBC. treePL: divergence time estimation using penalized likelihood for large phylogeniesBioinformatics201228268926901:CAS:528:DC%2BC38XhsFWktrrO2290821610.1093/bioinformatics/bts492 MorlonHCondamineFLLewitusEManceauMRPANDA: an R package for macroevolutionary analyses on phylogenetic treesMethods Ecol. Evol.2015758959710.1111/2041-210X.12526 OsborneCPA global database of C4 photosynthesis in grassesNew Phytol.20142044414461:CAS:528:DC%2BC2cXhslOjs7jI2504668510.1111/nph.12942 Barba‐MontoyaJReisMdos, SchneiderHDonoghuePCJYangZConstraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial RevolutionNew Phytol.201821881983429399804605584110.1111/nph.15011 Cascales-MiñanaBClealCJThe plant fossil record reflects just two great extinction eventsTerra Nova2014261952002014TeNov..26..195C10.1111/ter.12086 ChaboureauA-CSepulchrePDonnadieuYFrancATectonic-driven climate change and the diversification of angiospermsProc. Natl Acad. Sci. USA201411114066140702014PNAS..11114066C1:CAS:528:DC%2BC2cXhsFCisbjP25225405419176210.1073/pnas.1324002111 WiensJJDonoghueMJHistorical biogeography, ecology and species richnessTrends Ecol. Evol.2004196396441670132610.1016/j.tree.2004.09.011 ZhanSHDroriMGoldbergEEOttoSPMayroseIPhylogenetic evidence for cladogenetic polyploidization in land plantsAm. J. Bot.20161031252125810.3732/ajb.1600108 WeirJTSchluterDThe latitudinal gradient in recent speciation and extinction rates of birds and mammalsScience2007315157415762007Sci...315.1574W1:CAS:528:DC%2BD2sXivVSnsbo%3D1736367310.1126/science.1135590 EldrettJSGreenwoodDRHardingICHuberMIncreased seasonality through the Eocene to Oligocene transition in northern high latitudesNature20094599699732009Natur.459..969E1:CAS:528:DC%2BD1MXnsVagsLY%3D1953626110.1038/nature08069 CrepetWLNiklasKJDarwin’s second “abominable mystery”: why are there so many angiosperm species?Am. J. Bot.2009963663812162819410.3732/ajb.0800126 AudersetAEnhanced ocean oxygenation during Cenozoic warm periodsNature202260977822022Natur.609...77A1:CAS:528:DC%2BB38Xit12jtrvF36045236943332510.1038/s41586-022-05017-0 SilvestroDCascales-MiñanaBBaconCDAntonelliARevisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil recordNew Phytol.201520742543625619401494967010.1111/nph.13247 LoucaSPennellMWExtant timetrees are consistent with a myriad of diversification historiesNature20205805025052020Natur.580..502L1:CAS:528:DC%2BB3cXntFOrsLY%3D3232206510.1038/s41586-020-2176-1 CoiffardCGomezBDaviero-GomezVDilcherDLRise to dominance of angiosperm pioneers in European Cretaceous environmentsProc. Natl Acad. Sci. USA201210920955209592012PNAS..10920955C1:CAS:528:DC%2BC3sXnt1ensg%3D%3D23213256352908010.1073/pnas.1218633110 RaboskyDLBAMM at the court of false equivalency: a response to Meyer and WiensEvolution201872224622563010143510.1111/evo.13566 CranePRFriisEMPedersenKRThe origin and early diversification of angiospermsNature199537427331995Natur.374...27C1:CAS:528:DyaK2MXktFCrtr4%3D10.1038/374027a0 Ramírez-BarahonaSSauquetHMagallónSThe delayed and geographically heterogeneous diversification of flowering plant familiesNat. Ecol. Evol.20204123212383263226010.1038/s41559-020-1241-3 KlakCReevesGHeddersonTUnmatched tempo of evolution in Southern African semi-desert ice plantsNature200442763652004Natur.427...63K1:CAS:528:DC%2BD3sXhtVWhurrF1470208410.1038/nature02243 StephensPRWiensJJExplaining species richness from continents to communities: the time‐for‐speciation effect in emydid turtlesAm. Nat.20031611121281265046610.1086/345091 BrochmannCPolyploidy in arctic plantsBiol. J. Linn. Soc.20048252153610.1111/j.1095-8312.2004.00337.x SchubertMMarcussenTMeseguerASFjellheimSThe grass subfamily Pooideae: Cretaceous–Palaeocene origin and climate-driven Cenozoic diversificationGlob. Ecol. Biogeogr.2019281168118210.1111/geb.12923 Morlon, H., Hartig, F. & Robin, S. Prior hypotheses or regularization allow inference of diversification histories from extant timetrees. bioRxivhttps://doi.org/10.1101/2020.07.03.185074 (2020). Stevens, P. F. Angiosperm Phylogeny Website. Version 14. http://www.mobot.org/MOBOT/research/APweb/ (2017). JanssonRDaviesTJGlobal variation in diversification rates of flowering plants: energy vs. climate changeEcol. Lett.2008111731831807010010.1111/j.1461-0248.2007.01138.x JiaGPengPZhaoQJianZChanges in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China SeaGeology200331109310962003Geo....31.1093J1:CAS:528:DC%2BD2cXhs1KltA%3D%3D10.1130/G19992.1 LiuYAn updated floristic map of the worldNat. Commun.20231429902023NatCo..14.2990L1:CAS:528:DC%2BB3sXhtFGnsb7N372537551022959110.1038/s41467-023-38375-y JanssensSBA large-scale species level dated angiosperm phylogeny for evolutionary and ecological analysesBiodivers. Data J.20208e3967732015666698724810.3897/BDJ.8.e39677 HerbertTDLate Miocene global cooling and the rise of modern ecosystemsNat. Geosci.201698438472016NatGe...9..843H1:CAS:528:DC%2BC28XhsFyms7fL10.1038/ngeo2813 MeyerALSWiensJJEstimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shiftsEvolution20187239532905513310.1111/evo.13378 KrugAZJablonskiDLong-term origination rates are reset only at mass extinctionsGeology2012407317342012G S Epstein (43396_CR98) 1953; 64 M Schubert (43396_CR31) 2019; 28 AE Zanne (43396_CR10) 2014; 506 D Silvestro (43396_CR16) 2015; 207 A Vargha (43396_CR84) 2000; 25 G Jia (43396_CR36) 2003; 31 DL Rabosky (43396_CR92) 2017; 66 43396_CR2 43396_CR1 Z Wu (43396_CR68) 2014; 14 43396_CR4 W Jetz (43396_CR28) 2012; 491 L Cai (43396_CR35) 2023; 120 DL Rabosky (43396_CR95) 2018; 72 HP Linder (43396_CR11) 2008; 363 AZ Krug (43396_CR27) 2012; 40 C Brochmann (43396_CR41) 2004; 82 DL Rabosky (43396_CR66) 2013; 4 TS Kuhn (43396_CR69) 2011; 2 JJ Wiens (43396_CR7) 2004; 19 RA Pyron (43396_CR59) 2013; 66 A Rice (43396_CR39) 2019; 3 JS Eldrett (43396_CR30) 2009; 459 K Katoh (43396_CR61) 2009; 537 43396_CR87 SA Smith (43396_CR64) 2012; 28 CP Osborne (43396_CR43) 2014; 204 PR Stephens (43396_CR47) 2003; 161 43396_CR83 V Campbell (43396_CR58) 2009; 58 K Engemann (43396_CR81) 2016; 97 PD Mannion (43396_CR54) 2014; 29 43396_CR82 K Silvera (43396_CR78) 2010; 37 B Cascales-Miñana (43396_CR17) 2014; 26 PR Crane (43396_CR23) 1995; 374 CE Hinchliff (43396_CR60) 2013; 62 X Xu (43396_CR74) 2013; 40 DL Royer (43396_CR24) 2004; 14 M Coiro (43396_CR53) 2019; 223 J Barba‐Montoya (43396_CR19) 2018; 218 43396_CR76 43396_CR77 H Morlon (43396_CR96) 2015; 7 A Auderset (43396_CR29) 2022; 609 43396_CR71 SH Zhan (43396_CR40) 2016; 103 MJ Sanderson (43396_CR65) 2002; 19 J Rosindell (43396_CR73) 2012; 10 S Ramírez-Barahona (43396_CR14) 2020; 4 A-C Chaboureau (43396_CR25) 2014; 111 Y Liu (43396_CR72) 2023; 14 JC Zachos (43396_CR99) 2008; 451 S Magallón (43396_CR13) 2015; 207 43396_CR18 JT Weir (43396_CR49) 2007; 315 X Xu (43396_CR57) 2015; 38 H Kreft (43396_CR5) 2007; 104 CA Strömberg (43396_CR37) 2011; 39 JJ Wiens (43396_CR46) 2011; 86 DL Rabosky (43396_CR89) 2014; 5 EL Spriggs (43396_CR44) 2014; 9 H Zheng (43396_CR51) 2015; 112 BR Moore (43396_CR91) 2016; 113 S Louca (43396_CR86) 2020; 580 DL Rabosky (43396_CR88) 2014; 9 C Coiffard (43396_CR22) 2012; 109 RS Etienne (43396_CR56) 2019; 194 43396_CR93 A Stamatakis (43396_CR62) 2014; 30 R Jansson (43396_CR6) 2008; 11 AJ Drummond (43396_CR70) 2012; 29 ALS Meyer (43396_CR94) 2018; 72 D Jablonski (43396_CR8) 2006; 314 CP Osborne (43396_CR45) 2009; 276 S Höhna (43396_CR100) 2015; 380 SB Janssens (43396_CR21) 2020; 8 SA Smith (43396_CR38) 2008; 322 DL Rabosky (43396_CR48) 2018; 559 SL Wing (43396_CR26) 2012; 82 SE Fick (43396_CR85) 2017; 37 S Höhna (43396_CR97) 2016; 65 X Xu (43396_CR75) 2016; 43 PN Pearson (43396_CR50) 2007; 35 S Magallón (43396_CR67) 2010; 59 TLP Couvreur (43396_CR55) 2015; 301 43396_CR32 M Plummer (43396_CR90) 2006; 6 TD Herbert (43396_CR33) 2016; 9 C Klak (43396_CR34) 2004; 427 J Igea (43396_CR15) 2020; 23 RE Bone (43396_CR42) 2015; 208 RF Sage (43396_CR80) 2016; 67 SA Smith (43396_CR20) 2018; 105 WL Crepet (43396_CR3) 2009; 96 TJ Davies (43396_CR9) 2004; 101 DE Soltis (43396_CR63) 2011; 98 CD Bell (43396_CR12) 2010; 97 Z Zhang (43396_CR52) 2014; 513 K Winter (43396_CR79) 2015; 208 |
References_xml | – reference: CaiLClimatic stability and geological history shape global centers of neo- and paleoendemism in seed plantsProc. Natl Acad. Sci. USA2023120e23009811201:CAS:528:DC%2BB3sXhvVCksLzK3745951010.1073/pnas.2300981120 – reference: SilvestroDCascales-MiñanaBBaconCDAntonelliARevisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil recordNew Phytol.201520742543625619401494967010.1111/nph.13247 – reference: RaboskyDLAutomatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic treesPLoS ONE20149e895432014PLoSO...989543R24586858393587810.1371/journal.pone.0089543 – reference: Rambaut, A. & Drummond, A. J. Tracer v1.4, Available at http://beast.bio.ed.ac.uk/Tracer (2007). – reference: WiensJJDonoghueMJHistorical biogeography, ecology and species richnessTrends Ecol. Evol.2004196396441670132610.1016/j.tree.2004.09.011 – reference: IgeaJTanentzapAJAngiosperm speciation cools down in the tropicsEcol. Lett.20202369270032043734707899310.1111/ele.13476 – reference: PearsonPNStable warm tropical climate through the Eocene EpochGeology2007352112142007Geo....35..211P10.1130/G23175A.1 – reference: RiceAThe global biogeography of polyploid plantsNat. Ecol. Evol.201932652733069700610.1038/s41559-018-0787-9 – reference: Humboldt, A. von & Bonpland, A. Essai Sur La Géographie Des. Plantes (Schoell et Cie, 1805). – reference: HerbertTDLate Miocene global cooling and the rise of modern ecosystemsNat. Geosci.201698438472016NatGe...9..843H1:CAS:528:DC%2BC28XhsFyms7fL10.1038/ngeo2813 – reference: ZhanSHDroriMGoldbergEEOttoSPMayroseIPhylogenetic evidence for cladogenetic polyploidization in land plantsAm. J. Bot.20161031252125810.3732/ajb.1600108 – reference: EpsteinSBuchsbaumRLowenstamHAUreyHCRevised carbonate-water isotopic temperature scaleGeol. Soc. Am. Bull.195364131513261953GSAB...64.1315E1:CAS:528:DyaG2cXmvVSj10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2 – reference: SpriggsELChristinP-AEdwardsEJC4 photosynthesis promoted species diversification during the miocene grassland expansionPLoS ONE20149e977222014PLoSO...997722S24835188402396210.1371/journal.pone.0097722 – reference: RaboskyDLBAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic treesMethods Ecol. Evol.2014570170710.1111/2041-210X.12199 – reference: Rabosky, D. L. BAMM Documentation — bamm 2.5.0 documentation. http://bamm-project.org/documentation.html (2015). – reference: JetzWThomasGHJoyJBHartmannKMooersAOThe global diversity of birds in space and timeNature20124914444482012Natur.491..444J1:CAS:528:DC%2BC38Xhs1ajtrjJ2312385710.1038/nature11631 – reference: MooreBRHöhnaSMayMRRannalaBHuelsenbeckJPCritically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixturesProc. Natl Acad. Sci. USA2016113956995742016PNAS..113.9569M1:CAS:528:DC%2BC28Xhtlait7%2FM27512038500322810.1073/pnas.1518659113 – reference: JanssensSBA large-scale species level dated angiosperm phylogeny for evolutionary and ecological analysesBiodivers. Data J.20208e3967732015666698724810.3897/BDJ.8.e39677 – reference: HinchliffCERoalsonEHUsing supermatrices for phylogenetic inquiry: an example using the sedgesSyst. Biol.2013622052192310359010.1093/sysbio/sys088 – reference: MagallónSGómez-AcevedoSSánchez-ReyesLLHernández-HernándezTA metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversityN. Phytol.201520743745310.1111/nph.13264 – reference: SilveraKEvolution along the crassulacean acid metabolism continuumFunct. Plant Biol.20103799510101:CAS:528:DC%2BC3cXhtlaqtL%2FN10.1071/FP10084 – reference: ZhengHLate oligocene–early miocene birth of the Taklimakan DesertProc. Natl Acad. Sci. USA2015112766276672015PNAS..112.7662Z1:CAS:528:DC%2BC2MXps1Cltbg%3D26056281448509310.1073/pnas.1424487112 – reference: JiaGPengPZhaoQJianZChanges in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China SeaGeology200331109310962003Geo....31.1093J1:CAS:528:DC%2BD2cXhs1KltA%3D%3D10.1130/G19992.1 – reference: LoucaSPennellMWExtant timetrees are consistent with a myriad of diversification historiesNature20205805025052020Natur.580..502L1:CAS:528:DC%2BB3cXntFOrsLY%3D3232206510.1038/s41586-020-2176-1 – reference: AudersetAEnhanced ocean oxygenation during Cenozoic warm periodsNature202260977822022Natur.609...77A1:CAS:528:DC%2BB38Xit12jtrvF36045236943332510.1038/s41586-022-05017-0 – reference: XuXDimitrovDRahbekCWangZNCBIminer: sequences harvest from GenbankEcography2015384264302015Ecogr..38..426X10.1111/ecog.01055 – reference: SmithSABrownJWConstructing a broadly inclusive seed plant phylogenyAm. J. Bot.20181053023142974672010.1002/ajb2.1019 – reference: CoiffardCGomezBDaviero-GomezVDilcherDLRise to dominance of angiosperm pioneers in European Cretaceous environmentsProc. Natl Acad. Sci. USA201210920955209592012PNAS..10920955C1:CAS:528:DC%2BC3sXnt1ensg%3D%3D23213256352908010.1073/pnas.1218633110 – reference: WuZA precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal eudicotsBMC Plant Biol.20141425407166424583210.1186/s12870-014-0289-0 – reference: MannionPDUpchurchPBensonRBJGoswamiAThe latitudinal biodiversity gradient through deep timeTrends Ecol. Evol.20142942502413912610.1016/j.tree.2013.09.012 – reference: WingSLFloral and environmental gradients on a Late Cretaceous landscapeEcol. Monogr.201282234710.1890/11-0870.1 – reference: LinderHPPlant species radiations: where, when, why?Philos. Trans. R. Soc. B20083633097310510.1098/rstb.2008.0075 – reference: Ramírez-BarahonaSSauquetHMagallónSThe delayed and geographically heterogeneous diversification of flowering plant familiesNat. Ecol. Evol.20204123212383263226010.1038/s41559-020-1241-3 – reference: PlummerMBestNCowlesKVinesKCODA: convergence diagnosis and output analysis for MCMCR. N.20066711 – reference: StrömbergCAEvolution of grasses and grassland ecosystemsAnnu. Rev. Earth Planet. Sci.2011395175442011AREPS..39..517S10.1146/annurev-earth-040809-152402 – reference: SoltisDEAngiosperm phylogeny: 17 genes, 640 taxaAm. J. Bot.2011987047302161316910.3732/ajb.1000404 – reference: JablonskiDRoyKValentineJWOut of the tropics: evolutionary dynamics of the latitudinal diversity gradientScience20063141021062006Sci...314..102J1:CAS:528:DC%2BD28XhtVCiurvO1702365310.1126/science.1130880 – reference: KrugAZJablonskiDLong-term origination rates are reset only at mass extinctionsGeology2012407317342012Geo....40..731K10.1130/G33091.1 – reference: BellCDSoltisDESoltisPSThe age and diversification of the angiosperms re-revisitedAm. J. Bot.201097129613032161688210.3732/ajb.0900346 – reference: Smith, J. A. C. & Winter, K. Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution (eds. Winter, K. & Smith, J. A. C.) 427–436 (Springer, 1996). – reference: Cohen, J. Statiscal Power Analysis for the Behavioral Sciences, Secon (La Wrence Erlabaum Associates, Publishers, 1988). – reference: RaboskyDLMitchellJSChangJIs BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification modelsSyst. Biol.20176647749828334223579013810.1093/sysbio/syx037 – reference: SmithSADonoghueMJRates of molecular evolution are linked to life history in flowering plantsScience200832286892008Sci...322...86S1:CAS:528:DC%2BD1cXhtFyhu77N1883264310.1126/science.1163197 – reference: Cascales-MiñanaBClealCJThe plant fossil record reflects just two great extinction eventsTerra Nova2014261952002014TeNov..26..195C10.1111/ter.12086 – reference: SandersonMJEstimating absolute rates of molecular evolution and divergence times: a penalized likelihood approachMol. Biol. Evol.2002191011091:CAS:528:DC%2BD38XhtFCitQ%3D%3D1175219510.1093/oxfordjournals.molbev.a003974 – reference: HöhnaSRevBayes: bayesian phylogenetic inference using graphical models and an interactive model-specification languageSyst. Biol.20166572673627235697491194210.1093/sysbio/syw021 – reference: EldrettJSGreenwoodDRHardingICHuberMIncreased seasonality through the Eocene to Oligocene transition in northern high latitudesNature20094599699732009Natur.459..969E1:CAS:528:DC%2BD1MXnsVagsLY%3D1953626110.1038/nature08069 – reference: OsborneCPFreckletonRPEcological selection pressures for C4 photosynthesis in the grassesProc. R. Soc. B: Biol. Sci.20092761753176010.1098/rspb.2008.1762 – reference: DaviesTJDarwin’s abominable mystery: insights from a supertree of the angiospermsProc. Natl Acad. Sci. USA2004101190419092004PNAS..101.1904D1:CAS:528:DC%2BD2cXhs1Sktbo%3D1476697135702510.1073/pnas.0308127100 – reference: SchubertMMarcussenTMeseguerASFjellheimSThe grass subfamily Pooideae: Cretaceous–Palaeocene origin and climate-driven Cenozoic diversificationGlob. Ecol. Biogeogr.2019281168118210.1111/geb.12923 – reference: RoyerDLBernerRAMontañezIPTaborNJBeerlingDJCO2 as a primary driver of Phanerozoic climateGSA Today200414410.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2 – reference: Shear, W. A. Shaking The Tree: Readings From Nature In The History Of Life (ed. Gee, H.) 169–179 (University of Chicago Press, 2000). – reference: MeyerALSWiensJJEstimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shiftsEvolution20187239532905513310.1111/evo.13378 – reference: StamatakisARAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogeniesBioinformatics201430131213131:CAS:528:DC%2BC2cXmvFCjsbc%3D24451623399814410.1093/bioinformatics/btu033 – reference: WinterKHoltumJAMSmithJACCrassulacean acid metabolism: a continuous or discrete trait?New Phytol.201520873781:CAS:528:DC%2BC2MXhsVChsr%2FJ2597519710.1111/nph.13446 – reference: EtienneRSA minimal model for the latitudinal diversity gradient suggests a dominant role for ecological limitsAm. Nat.2019194E122E1333161367210.1086/705243 – reference: StephensPRWiensJJExplaining species richness from continents to communities: the time‐for‐speciation effect in emydid turtlesAm. Nat.20031611121281265046610.1086/345091 – reference: VarghaADelaneyHDA critique and improvement of the cl common language effect size statistics of McGraw and WongJ. Educ. Behav. Stat.200025101132 – reference: ZachosJCDickensGRZeebeREAn early Cenozoic perspective on greenhouse warming and carbon-cycle dynamicsNature20084512792008Natur.451..279Z1:CAS:528:DC%2BD1cXnt1Cqtg%3D%3D1820264310.1038/nature06588 – reference: BoneRESmithJACArrigoNBuerkiSA macro-ecological perspective on crassulacean acid metabolism (CAM) photosynthesis evolution in Afro-Madagascan drylands: Eulophiinae orchids as a case studyNew Phytol.20152084694811:CAS:528:DC%2BC2MXhsFGrur3E2619246710.1111/nph.13572 – reference: Stevens, P. F. Angiosperm Phylogeny Website. Version 14. http://www.mobot.org/MOBOT/research/APweb/ (2017). – reference: Willis, K. & McElwain, J. The Evolution of Plants. (OUP Oxford, 2013). – reference: KuhnTSMooersAØThomasGHA simple polytomy resolver for dated phylogeniesMethods Ecol. Evol.2011242743610.1111/j.2041-210X.2011.00103.x – reference: RaboskyDLBAMM at the court of false equivalency: a response to Meyer and WiensEvolution201872224622563010143510.1111/evo.13566 – reference: MorlonHCondamineFLLewitusEManceauMRPANDA: an R package for macroevolutionary analyses on phylogenetic treesMethods Ecol. Evol.2015758959710.1111/2041-210X.12526 – reference: MagallónSUsing fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiospermsSyst. Biol.2010593843992053875910.1093/sysbio/syq027 – reference: XuXWangZRahbekCSandersNJFangJGeographical variation in the importance of water and energy for oak diversityJ. Biogeogr.20164327928810.1111/jbi.12620 – reference: SmithSAO’MearaBC. treePL: divergence time estimation using penalized likelihood for large phylogeniesBioinformatics201228268926901:CAS:528:DC%2BC38XhsFWktrrO2290821610.1093/bioinformatics/bts492 – reference: DrummondAJSuchardMAXieDRambautABayesian phylogenetics with BEAUti and the BEAST 1.7Mol. Biol. Evol.201229196919731:CAS:528:DC%2BC38XhtFagu7fO22367748340807010.1093/molbev/mss075 – reference: Barba‐MontoyaJReisMdos, SchneiderHDonoghuePCJYangZConstraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial RevolutionNew Phytol.201821881983429399804605584110.1111/nph.15011 – reference: KreftHJetzWGlobal patterns and determinants of vascular plant diversityProc. Natl Acad. Sci. USA2007104592559302007PNAS..104.5925K1:CAS:528:DC%2BD2sXkt1Gjsrs%3D17379667185159310.1073/pnas.0608361104 – reference: HöhnaSThe time-dependent reconstructed evolutionary process with a key-role for mass-extinction eventsJ. Theor. Biol.20153803213312015JThBi.380..321H3374008260737241343.9234710.1016/j.jtbi.2015.06.005 – reference: CranePRFriisEMPedersenKRThe origin and early diversification of angiospermsNature199537427331995Natur.374...27C1:CAS:528:DyaK2MXktFCrtr4%3D10.1038/374027a0 – reference: Heine, C., Müller, R. D. & Gaina, C. Continent-Ocean Interactions Within East Asian Marginal Seas (eds. Clift, P., Kuhnt, W., Wang, P. & Hayes, D.) 37–54 (American Geophysical Union, 2004). – reference: PyronRAGenus-level phylogeny of snakes reveals the origins of species richness in Sri LankaMol. Phylogenet. Evol.2013669699782326171310.1016/j.ympev.2012.12.004 – reference: Brummitt, R. K. World Geographical Scheme For Recording Plant Distributions (Hunt Inst. for Botanical Documentation, 2001). – reference: KatohKAsimenosGTohHMultiple alignment of DNA sequences with MAFFT. MethMol. Biol.200953739641:CAS:528:DC%2BD1MXmvVSqtLc%3D – reference: XuXWangZRahbekCLessardJ-PFangJEvolutionary history influences the effects of water–energy dynamics on oak diversity in AsiaJ. Biogeogr.2013402146215510.1111/jbi.12149 – reference: CrepetWLNiklasKJDarwin’s second “abominable mystery”: why are there so many angiosperm species?Am. J. Bot.2009963663812162819410.3732/ajb.0800126 – reference: BrochmannCPolyploidy in arctic plantsBiol. J. Linn. Soc.20048252153610.1111/j.1095-8312.2004.00337.x – reference: RaboskyDLRates of speciation and morphological evolution are correlated across the largest vertebrate radiationNat. Commun.201342013NatCo...4.1958R2373962310.1038/ncomms2958 – reference: Morlon, H., Hartig, F. & Robin, S. Prior hypotheses or regularization allow inference of diversification histories from extant timetrees. bioRxivhttps://doi.org/10.1101/2020.07.03.185074 (2020). – reference: OsborneCPA global database of C4 photosynthesis in grassesNew Phytol.20142044414461:CAS:528:DC%2BC2cXhslOjs7jI2504668510.1111/nph.12942 – reference: ZanneAEThree keys to the radiation of angiosperms into freezing environmentsNature201450689922014Natur.506...89Z1:CAS:528:DC%2BC2cXhsl2msb8%3D2436256410.1038/nature12872 – reference: LiuYAn updated floristic map of the worldNat. Commun.20231429902023NatCo..14.2990L1:CAS:528:DC%2BB3sXhtFGnsb7N372537551022959110.1038/s41467-023-38375-y – reference: RaboskyDLAn inverse latitudinal gradient in speciation rate for marine fishesNature20185593923952018Natur.559..392R1:CAS:528:DC%2BC1cXht1OjtrvJ2997372610.1038/s41586-018-0273-1 – reference: FickSEHijmansRJWorldClim 2: new 1-km spatial resolution climate surfaces for global land areasInt. J. Climatol.2017374302431510.1002/joc.5086 – reference: JanssonRDaviesTJGlobal variation in diversification rates of flowering plants: energy vs. climate changeEcol. Lett.2008111731831807010010.1111/j.1461-0248.2007.01138.x – reference: ZhangZAridification of the Sahara desert caused by Tethys Sea shrinkage during the Late MioceneNature20145134012014Natur.513..401Z1:CAS:528:DC%2BC2cXhsFOlu7nE2523066110.1038/nature13705 – reference: WiensJJThe causes of species richness patterns across space, time, and clades and the role of “ecological limits”Quart. Rev. Biol.20118675962180063510.1086/659883 – reference: RosindellJHarmonLJOneZoom: a fractal explorer for the tree of lifePLoS Biol.201210e10014061:CAS:528:DC%2BC38Xhs1Whtb7I23091419347297610.1371/journal.pbio.1001406 – reference: ChaboureauA-CSepulchrePDonnadieuYFrancATectonic-driven climate change and the diversification of angiospermsProc. Natl Acad. Sci. USA201411114066140702014PNAS..11114066C1:CAS:528:DC%2BC2cXhsFCisbjP25225405419176210.1073/pnas.1324002111 – reference: CouvreurTLPOdd man out: why are there fewer plant species in African rain forests?Plant Syst. Evol.20153011299131310.1007/s00606-014-1180-z – reference: WeirJTSchluterDThe latitudinal gradient in recent speciation and extinction rates of birds and mammalsScience2007315157415762007Sci...315.1574W1:CAS:528:DC%2BD2sXivVSnsbo%3D1736367310.1126/science.1135590 – reference: EngemannKA plant growth form dataset for the New WorldEcology201697324332431:STN:280:DC%2BC2snos12gsg%3D%3D2787005410.1002/ecy.1569 – reference: CampbellVLapointeF-JThe use and validity of composite taxa in phylogenetic analysisSyst. Biol.2009585605721:CAS:528:DC%2BD1MXhsVKmu73L2052560910.1093/sysbio/syp056 – reference: R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019). – reference: CoiroMDoyleJAHiltonJHow deep is the conflict between molecular and fossil evidence on the age of angiosperms?New Phytol.201922383993068114810.1111/nph.15708 – reference: KlakCReevesGHeddersonTUnmatched tempo of evolution in Southern African semi-desert ice plantsNature200442763652004Natur.427...63K1:CAS:528:DC%2BD3sXhtVWhurrF1470208410.1038/nature02243 – reference: SageRFA portrait of the C 4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of FameJ. Exp. Bot.201667403940561:CAS:528:DC%2BC28Xhs12qur7P2705372110.1093/jxb/erw156 – volume: 4 start-page: 1232 year: 2020 ident: 43396_CR14 publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-020-1241-3 – volume: 4 year: 2013 ident: 43396_CR66 publication-title: Nat. Commun. doi: 10.1038/ncomms2958 – ident: 43396_CR76 – volume: 301 start-page: 1299 year: 2015 ident: 43396_CR55 publication-title: Plant Syst. Evol. doi: 10.1007/s00606-014-1180-z – ident: 43396_CR18 – volume: 5 start-page: 701 year: 2014 ident: 43396_CR89 publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12199 – volume: 113 start-page: 9569 year: 2016 ident: 43396_CR91 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1518659113 – ident: 43396_CR4 – ident: 43396_CR1 doi: 10.1093/hesc/9780199292233.001.0001 – volume: 29 start-page: 42 year: 2014 ident: 43396_CR54 publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2013.09.012 – volume: 67 start-page: 4039 year: 2016 ident: 43396_CR80 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw156 – volume: 104 start-page: 5925 year: 2007 ident: 43396_CR5 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0608361104 – volume: 101 start-page: 1904 year: 2004 ident: 43396_CR9 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0308127100 – volume: 363 start-page: 3097 year: 2008 ident: 43396_CR11 publication-title: Philos. Trans. R. Soc. B doi: 10.1098/rstb.2008.0075 – ident: 43396_CR71 – volume: 66 start-page: 477 year: 2017 ident: 43396_CR92 publication-title: Syst. Biol. doi: 10.1093/sysbio/syx037 – volume: 207 start-page: 425 year: 2015 ident: 43396_CR16 publication-title: New Phytol. doi: 10.1111/nph.13247 – volume: 208 start-page: 73 year: 2015 ident: 43396_CR79 publication-title: New Phytol. doi: 10.1111/nph.13446 – volume: 223 start-page: 83 year: 2019 ident: 43396_CR53 publication-title: New Phytol. doi: 10.1111/nph.15708 – volume: 194 start-page: E122 year: 2019 ident: 43396_CR56 publication-title: Am. Nat. doi: 10.1086/705243 – ident: 43396_CR82 – volume: 28 start-page: 1168 year: 2019 ident: 43396_CR31 publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12923 – volume: 58 start-page: 560 year: 2009 ident: 43396_CR58 publication-title: Syst. Biol. doi: 10.1093/sysbio/syp056 – volume: 427 start-page: 63 year: 2004 ident: 43396_CR34 publication-title: Nature doi: 10.1038/nature02243 – volume: 25 start-page: 101 year: 2000 ident: 43396_CR84 publication-title: J. Educ. Behav. Stat. – ident: 43396_CR87 doi: 10.1101/2020.07.03.185074 – volume: 82 start-page: 521 year: 2004 ident: 43396_CR41 publication-title: Biol. J. Linn. Soc. doi: 10.1111/j.1095-8312.2004.00337.x – ident: 43396_CR93 – volume: 82 start-page: 23 year: 2012 ident: 43396_CR26 publication-title: Ecol. Monogr. doi: 10.1890/11-0870.1 – volume: 97 start-page: 1296 year: 2010 ident: 43396_CR12 publication-title: Am. J. Bot. doi: 10.3732/ajb.0900346 – volume: 506 start-page: 89 year: 2014 ident: 43396_CR10 publication-title: Nature doi: 10.1038/nature12872 – volume: 23 start-page: 692 year: 2020 ident: 43396_CR15 publication-title: Ecol. Lett. doi: 10.1111/ele.13476 – volume: 322 start-page: 86 year: 2008 ident: 43396_CR38 publication-title: Science doi: 10.1126/science.1163197 – volume: 9 start-page: 843 year: 2016 ident: 43396_CR33 publication-title: Nat. Geosci. doi: 10.1038/ngeo2813 – volume: 314 start-page: 102 year: 2006 ident: 43396_CR8 publication-title: Science doi: 10.1126/science.1130880 – volume: 103 start-page: 1252 year: 2016 ident: 43396_CR40 publication-title: Am. J. Bot. doi: 10.3732/ajb.1600108 – volume: 208 start-page: 469 year: 2015 ident: 43396_CR42 publication-title: New Phytol. doi: 10.1111/nph.13572 – volume: 38 start-page: 426 year: 2015 ident: 43396_CR57 publication-title: Ecography doi: 10.1111/ecog.01055 – volume: 9 start-page: e89543 year: 2014 ident: 43396_CR88 publication-title: PLoS ONE doi: 10.1371/journal.pone.0089543 – volume: 120 start-page: e2300981120 year: 2023 ident: 43396_CR35 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2300981120 – volume: 29 start-page: 1969 year: 2012 ident: 43396_CR70 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mss075 – volume: 14 start-page: 2990 year: 2023 ident: 43396_CR72 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38375-y – volume: 62 start-page: 205 year: 2013 ident: 43396_CR60 publication-title: Syst. Biol. doi: 10.1093/sysbio/sys088 – volume: 14 start-page: 4 year: 2004 ident: 43396_CR24 publication-title: GSA Today doi: 10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2 – volume: 218 start-page: 819 year: 2018 ident: 43396_CR19 publication-title: New Phytol. doi: 10.1111/nph.15011 – volume: 37 start-page: 4302 year: 2017 ident: 43396_CR85 publication-title: Int. J. Climatol. doi: 10.1002/joc.5086 – volume: 161 start-page: 112 year: 2003 ident: 43396_CR47 publication-title: Am. Nat. doi: 10.1086/345091 – volume: 374 start-page: 27 year: 1995 ident: 43396_CR23 publication-title: Nature doi: 10.1038/374027a0 – volume: 491 start-page: 444 year: 2012 ident: 43396_CR28 publication-title: Nature doi: 10.1038/nature11631 – volume: 39 start-page: 517 year: 2011 ident: 43396_CR37 publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev-earth-040809-152402 – volume: 14 year: 2014 ident: 43396_CR68 publication-title: BMC Plant Biol. doi: 10.1186/s12870-014-0289-0 – volume: 559 start-page: 392 year: 2018 ident: 43396_CR48 publication-title: Nature doi: 10.1038/s41586-018-0273-1 – volume: 96 start-page: 366 year: 2009 ident: 43396_CR3 publication-title: Am. J. Bot. doi: 10.3732/ajb.0800126 – volume: 10 start-page: e1001406 year: 2012 ident: 43396_CR73 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001406 – volume: 105 start-page: 302 year: 2018 ident: 43396_CR20 publication-title: Am. J. Bot. doi: 10.1002/ajb2.1019 – volume: 3 start-page: 265 year: 2019 ident: 43396_CR39 publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-018-0787-9 – volume: 609 start-page: 77 year: 2022 ident: 43396_CR29 publication-title: Nature doi: 10.1038/s41586-022-05017-0 – volume: 2 start-page: 427 year: 2011 ident: 43396_CR69 publication-title: Methods Ecol. Evol. doi: 10.1111/j.2041-210X.2011.00103.x – volume: 86 start-page: 75 year: 2011 ident: 43396_CR46 publication-title: Quart. Rev. Biol. doi: 10.1086/659883 – volume: 35 start-page: 211 year: 2007 ident: 43396_CR50 publication-title: Geology doi: 10.1130/G23175A.1 – volume: 43 start-page: 279 year: 2016 ident: 43396_CR75 publication-title: J. Biogeogr. doi: 10.1111/jbi.12620 – volume: 37 start-page: 995 year: 2010 ident: 43396_CR78 publication-title: Funct. Plant Biol. doi: 10.1071/FP10084 – volume: 459 start-page: 969 year: 2009 ident: 43396_CR30 publication-title: Nature doi: 10.1038/nature08069 – volume: 7 start-page: 589 year: 2015 ident: 43396_CR96 publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12526 – volume: 580 start-page: 502 year: 2020 ident: 43396_CR86 publication-title: Nature doi: 10.1038/s41586-020-2176-1 – volume: 26 start-page: 195 year: 2014 ident: 43396_CR17 publication-title: Terra Nova doi: 10.1111/ter.12086 – volume: 6 start-page: 7 year: 2006 ident: 43396_CR90 publication-title: R. N. – volume: 537 start-page: 39 year: 2009 ident: 43396_CR61 publication-title: Mol. Biol. – volume: 451 start-page: 279 year: 2008 ident: 43396_CR99 publication-title: Nature doi: 10.1038/nature06588 – volume: 64 start-page: 1315 year: 1953 ident: 43396_CR98 publication-title: Geol. Soc. Am. Bull. doi: 10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2 – ident: 43396_CR2 – volume: 380 start-page: 321 year: 2015 ident: 43396_CR100 publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2015.06.005 – volume: 112 start-page: 7662 year: 2015 ident: 43396_CR51 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1424487112 – ident: 43396_CR77 doi: 10.1007/978-3-642-79060-7_27 – volume: 40 start-page: 2146 year: 2013 ident: 43396_CR74 publication-title: J. Biogeogr. doi: 10.1111/jbi.12149 – volume: 97 start-page: 3243 year: 2016 ident: 43396_CR81 publication-title: Ecology doi: 10.1002/ecy.1569 – volume: 109 start-page: 20955 year: 2012 ident: 43396_CR22 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1218633110 – volume: 30 start-page: 1312 year: 2014 ident: 43396_CR62 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – ident: 43396_CR32 doi: 10.1029/149GM03 – volume: 31 start-page: 1093 year: 2003 ident: 43396_CR36 publication-title: Geology doi: 10.1130/G19992.1 – volume: 65 start-page: 726 year: 2016 ident: 43396_CR97 publication-title: Syst. Biol. doi: 10.1093/sysbio/syw021 – volume: 98 start-page: 704 year: 2011 ident: 43396_CR63 publication-title: Am. J. Bot. doi: 10.3732/ajb.1000404 – volume: 72 start-page: 39 year: 2018 ident: 43396_CR94 publication-title: Evolution doi: 10.1111/evo.13378 – volume: 59 start-page: 384 year: 2010 ident: 43396_CR67 publication-title: Syst. Biol. doi: 10.1093/sysbio/syq027 – volume: 11 start-page: 173 year: 2008 ident: 43396_CR6 publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01138.x – volume: 9 start-page: e97722 year: 2014 ident: 43396_CR44 publication-title: PLoS ONE doi: 10.1371/journal.pone.0097722 – volume: 204 start-page: 441 year: 2014 ident: 43396_CR43 publication-title: New Phytol. doi: 10.1111/nph.12942 – volume: 111 start-page: 14066 year: 2014 ident: 43396_CR25 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1324002111 – ident: 43396_CR83 – volume: 8 start-page: e39677 year: 2020 ident: 43396_CR21 publication-title: Biodivers. Data J. doi: 10.3897/BDJ.8.e39677 – volume: 28 start-page: 2689 year: 2012 ident: 43396_CR64 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts492 – volume: 19 start-page: 639 year: 2004 ident: 43396_CR7 publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2004.09.011 – volume: 276 start-page: 1753 year: 2009 ident: 43396_CR45 publication-title: Proc. R. Soc. B: Biol. Sci. doi: 10.1098/rspb.2008.1762 – volume: 72 start-page: 2246 year: 2018 ident: 43396_CR95 publication-title: Evolution doi: 10.1111/evo.13566 – volume: 315 start-page: 1574 year: 2007 ident: 43396_CR49 publication-title: Science doi: 10.1126/science.1135590 – volume: 19 start-page: 101 year: 2002 ident: 43396_CR65 publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a003974 – volume: 513 start-page: 401 year: 2014 ident: 43396_CR52 publication-title: Nature doi: 10.1038/nature13705 – volume: 207 start-page: 437 year: 2015 ident: 43396_CR13 publication-title: N. Phytol. doi: 10.1111/nph.13264 – volume: 66 start-page: 969 year: 2013 ident: 43396_CR59 publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2012.12.004 – volume: 40 start-page: 731 year: 2012 ident: 43396_CR27 publication-title: Geology doi: 10.1130/G33091.1 |
SSID | ssj0000391844 |
Score | 2.5005922 |
Snippet | The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global spatiotemporal... The rapid diversification and high species richness of flowering plants is regarded as 'Darwin's second abominable mystery'. Today the global spatiotemporal... Abstract The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7609 |
SubjectTerms | 631/158/670 631/158/851 631/181 631/181/759/2467 704/158/670 Angiosperms Arid zones Biological Evolution Cenozoic Cretaceous Diversification Ecology Endangered & extinct species Extinction, Biological Flowering Flowering plants Humanities and Social Sciences Life sciences Magnoliophyta Magnoliopsida - genetics Mass extinctions multidisciplinary Museums Paleogene Phylogenetics Phylogeny Plant diversity Plants Plants (botany) Science Science (multidisciplinary) Species extinction Species richness Trends Tropical environments |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7KQqCXkkeTuHmgQm-Nydoa29Ixj4YQaE8N5Cb0hMDiXbK7h_z7jiTvNiFpcunVloU0I81843kBfHOah1C5UGrvyEBpHZbCNLI0wotA-NxxjMnJP3-117d4c9fcPWn1FWPCcnngTLhT69racIuOsAgdNqdtjQ2i000raiOS9CWd98SYSjKYSzJdcMiSGXNxOsckE0hFxSQh2ZbimSZKBftfQ5kvPKRJ8VxtwqcBMbKzvNIt-OD7bdjIPSQfd6C5zJEVYfj5xqaBhUnsfUazsdkkxrmw-56R5LCe6d6x2E7-M9xe_fh9cV0OvRBKi6JZlLrqAoox2sB55WJJHWm0D7LWrUXbtEiUqSUhZeuaIJzTnR9L452pK14ZofkujPpp7_eBacIAMoZzaUT01mjkGHwn2kp43nW2gGpFF2WHQuGxX8VEJYc1FyrTUhEtVaKlEgV8X38zy2Uy3hx9Hsm9HhlLXKcHxHg1MF69x_gCDlfMUsO9mysyHwmSCLIyC_i6fk03JrpBdO-nyzxGItld4wL2MpPXK-Ed4TVEWcDJiut_J__3hr78jw0dwMfYyz4mOtb1IYwWD0t_RIhnYY7T4f4DFW739A priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXBOUVaCsjcYOoG3uS2CcEpVWFBCcq7c3yEyGtkm13e-i_x-N4UyGgtyhxrGTGnhnP6wN4542IsfGxNsGnA0rnsZa2VbWVQcZkn3uBVJz87Xt3foFfl-2yONw2Ja1yJxOzoPajIx_5cToYJGUj0_nh4_qyJtQoiq4WCI378IBal1FKV7_sZx8LdT-XiKVWZiHk8QazZEiKikqFVFfLP_RRbtv_L1vzrzhpVj9nT-BxsRvZp4nRT-FeGPbh4YQkeZOuTnP36Ztn0H6ZMi1iccaxMbK4Iiy0NC9bryjvhf0aWJIkLjAzeEbw8s_h4uz0x8l5XbARaoey3dam6SPKBbooROOpxY6yJkTFTefQtR1Kb7hKlrPzbZTemz4slA3e8kY0VhrxAvaGcQivgJlkEyhK7zKIGJw1KDCGXnaNDKLvXQXNjkLalcbhhF-x0jmALaSeqKoTVXWmqpYVvJ_fWU9tM-4c_ZkIP4-kltf5xnj1U5cdpJ3vuBUOfTJKk9TxxnFsEb1pO8mt5BUc7Nimyz7c6NtVU8Hb-XHaQRQWMUMYr6cxCtM5bFHBy4nd85eIPtlviKqCDzv-307-_x96ffe3vIFHhFpPJY2cH8De9uo6HCbbZmuP8gL-DYmr8rE priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB9qRfBSrPVja5UIvbWLb5PZ7OSoz5YitCcLvYV8ivDYV9rXg_99k-xHEavgdTcJuzNJ5jfJzG8ADr0RMTY-1ib45KBIjzXZVtWWAsWEz73AnJx8fiHPLvHbVXu1BXzKhSlB-4XSsmzTU3TYp1ssSzpZmJzjo2RNT-Bppm7Ps3opl_O5SmY8J8QxP2Yh6JGuv9mgQtX_GL784260mJzTF7AzYkX2efi6XdgK_Ut4NlSP_LUH7dchpiKOx25sHVlc5apnaTR2vcoRLuxnz9Ke4QIzvWe5kPwruDw9-b48q8cqCLVDaje1abqItEAXhWh8JtNR1oSouJEOXSuRvOEqYWTn20jemy4slA3e8kY0lox4Ddv9ug9vgZlk_VUO5DKIGJw1KDCGjmRDQXSdq6CZ5KLdSBGeK1WsdLmqFqQHWeokS11kqamCo7nP9UCQ8c_WX7K455aZ3Lo8WN_80KOytfOSW-HQJ_iZ9hdvHMcW0ZtWErfEKziYlKXHFXerk-OYwAgl_7KCj_PrtFbyBYjpw_puaKMweVyLCt4MSp6_RHQJqSGqCo4nrT8M_vcf2v-_5u_gea5Xn5MZOT-A7c3NXXifUM3GfijT-B7y6u2f priority: 102 providerName: Springer Nature |
Title | Diversification of flowering plants in space and time |
URI | https://link.springer.com/article/10.1038/s41467-023-43396-8 https://www.ncbi.nlm.nih.gov/pubmed/37993449 https://www.proquest.com/docview/2892418601 https://www.proquest.com/docview/2892946420 https://doaj.org/article/cd62b3c4d019488dac24544da5682b82 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_6gdIX8bPG1mMF3zR6yU6SzUOR69mzHLSIenBvy36KcOTq9Qr2v3d2k5yCV18SSDZLMjuz85vszvwAXlvFvc-sT5WzFKCUFlOhizrVwglP-NxyDMnJF5fl-Qyn82K-Az3dUSfA662hXeCTmq0W7379vP1ABn_SpoyL99cYzZ28T8j_qctU7MI-eaYqGOpFB_fjzMxrCmiwy53Z_ugB3OcVOW0M1TX_clWxov82GPrPEmr0TJOH8KCDlGzU6sAj2HHNY7jXkkzePoHiY7v1wnd_59jSM78I5GjUG7tahI0w7EfDaGoxjqnGssA3_xRmk7Nv4_O0I0tIDYpinaqs8iiGaDznmQ01d2qtnK9zVRo0RYnCqrwmKG1s4YW1qnLDWjur84xnWij-DPaaZeOeA1MEEuqw30shojNaIUfvKlFmwvGqMglkvVyk6SqJB0KLhYwr2lzIVqySxCqjWKVI4M3mmau2jsZ_W58GcW9ahhrY8cJy9V12JiWNLXPNDVpCqTQNWWVyLBCtKkqRa5EncNwPluz1SlJ8SZohKAxN4NXmNplUWCdRjVvetG1qpMBsmMBhO8ibN-l1I4G3_aj_6fzuD3pxZ0dHcBAY7EN6Y54fw956deNeEs5Z6wHsVvOKjmLyaQD7o9H065TOp2eXn7_Q1XE5HsQ_CIOo5L8BGWT5sQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KkUIbgg1hIoYCQ4QdTEfkmcA0JAW03pcmqluRmvCGmUDJ2p0PwU38hzlqkQ0FtvUeJYyduf3wbw2mkRQu5Cqr0jB6V0mEpT1KmRXgayz53AWJx8fFJOzvDLtJhuwK-xFiamVY4ysRPUrrXxjHyHHANSNpL8hw_zH2mcGhWjq-MIjZ4sDv3qJ7lsi_cHu4TfN5zv751-nqTDVIHUoiyWqc6rgDJDG4TIXWxOUxvtQ811adEWJUqneU02p3VFkM7pyme18c7wXORGakH73oCbpHizyFHVtFqf6cRu6xJxqM3JhNxZYCeJSDHG0qS6TOUf-q8bE_Av2_avuGyn7vbvwd3BTmUfe8K6Dxu-eQC3-smVK7ra67pdrx5CsdtndoTh8I-1gYVZnL1G-7L5LObZsO8NI8llPdONY3Gc_SM4uxaoPYbNpm38E2CabJA6ppNpRPTWaBQYfCXLXHpRVTaBfISQskOj8jgvY6a6gLmQqoeqIqiqDqpKJvB2_c68b9Nx5epPEfDrlbHFdnejPf-mBo5V1pXcCIuOjGCSck5bjgWi00UpuZE8ge0RbWrg-4W6pNIEXq0fE8fGMIxufHvRr6mR_L4sga0e3esvERXZi4h1Au9G_F9u_v8fenr1t7yE25PT4yN1dHBy-Azu8EiOeZ5yvg2by_ML_5zsqqV50REzg6_XzT2_Aa22MJE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFSKQFwqnsVQwEhwAivZ3bG9PiAEpFFLoeJApdyWfSKkyA5Nqiq_xtcx60cqBPTWm2WvV_a8Z-cF8MJpEQJzIdPekYNSOMykyavMSC8D2edOYCxO_nxcHJzgx1k-24JfQy1MTKscZGIrqF1j4xn5iBwDUjaS_IdR6NMivkymbxc_szhBKkZah3EaHYkc-fU5uW_LN4cTwvVLzqf7Xz8cZP2EgcyizFeZZmVAOUYbhGAuNqqpjPah4rqwaPMCpdO8IvvTujxI53Tpx5XxznAmmJFa0L7X4HopchZ5rJyVm_Od2HldIvZ1OmMhR0tspRIpyVimVBWZ_EMXtiMD_mXn_hWjbVXf9Dbs9DZr-q4jsjuw5eu7cKObYrmmq_228_X6HuSTLssj9AeBaRPSMI9z2GjfdDGPOTfpjzolKWZ9qmuXxtH29-HkSqD2ALbrpvYPIdVkj1QxtUwjordGo8DgS1kw6UVZ2gTYACFl-6blcXbGXLXBcyFVB1VFUFUtVJVM4NXmnUXXsuPS1e8j4DcrY7vt9kZz-l313KusK7gRFh0ZxCTxnLYcc0Sn80JyI3kCewPaVC8DluqCYhN4vnlM3BtDMrr2zVm3pkLyAccJ7Hbo3nyJKMl2RKwSeD3g_2Lz___Qo8u_5RncJL5Rnw6Pjx7DLR6pkbGM8z3YXp2e-SdkYq3M05aWU_h21czzGwfpNMc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversification+of+flowering+plants+in+space+and+time&rft.jtitle=Nature+communications&rft.au=Dimitrov%2C+Dimitar&rft.au=Xu%2C+Xiaoting&rft.au=Su%2C+Xiangyan&rft.au=Shrestha%2C+Nawal&rft.date=2023-11-22&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=7609&rft_id=info:doi/10.1038%2Fs41467-023-43396-8&rft_id=info%3Apmid%2F37993449&rft.externalDocID=37993449 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |