Diversification of flowering plants in space and time

The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 floweri...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 7609 - 16
Main Authors Dimitrov, Dimitar, Xu, Xiaoting, Su, Xiangyan, Shrestha, Nawal, Liu, Yunpeng, Kennedy, Jonathan D., Lyu, Lisha, Nogués-Bravo, David, Rosindell, James, Yang, Yong, Fjeldså, Jon, Liu, Jianquan, Schmid, Bernhard, Fang, Jingyun, Rahbek, Carsten, Wang, Zhiheng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.11.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous–Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics. Global spatiotemporal patterns of plant diversification are unclear. Here, the authors use a genus-level phylogeny and global distribution data for 14,244 flowering plant genera, finding a negative correlation between spatial patterns of diversification and genus diversity.
AbstractList The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous–Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics.Global spatiotemporal patterns of plant diversification are unclear. Here, the authors use a genus-level phylogeny and global distribution data for 14,244 flowering plant genera, finding a negative correlation between spatial patterns of diversification and genus diversity.
Abstract The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous–Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics.
The rapid diversification and high species richness of flowering plants is regarded as 'Darwin's second abominable mystery'. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous-Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics.
The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous–Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics. Global spatiotemporal patterns of plant diversification are unclear. Here, the authors use a genus-level phylogeny and global distribution data for 14,244 flowering plant genera, finding a negative correlation between spatial patterns of diversification and genus diversity.
The rapid diversification and high species richness of flowering plants is regarded as 'Darwin's second abominable mystery'. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous-Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics.The rapid diversification and high species richness of flowering plants is regarded as 'Darwin's second abominable mystery'. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous-Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics.
ArticleNumber 7609
Author Nogués-Bravo, David
Liu, Yunpeng
Fang, Jingyun
Wang, Zhiheng
Dimitrov, Dimitar
Fjeldså, Jon
Xu, Xiaoting
Shrestha, Nawal
Liu, Jianquan
Lyu, Lisha
Su, Xiangyan
Schmid, Bernhard
Kennedy, Jonathan D.
Rahbek, Carsten
Rosindell, James
Yang, Yong
Author_xml – sequence: 1
  givenname: Dimitar
  orcidid: 0000-0001-5830-5702
  surname: Dimitrov
  fullname: Dimitrov, Dimitar
  organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Department of Natural History, University Museum of Bergen, University of Bergen, Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Natural History Museum, University of Oslo
– sequence: 2
  givenname: Xiaoting
  orcidid: 0000-0001-8126-614X
  surname: Xu
  fullname: Xu, Xiaoting
  organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University
– sequence: 3
  givenname: Xiangyan
  surname: Su
  fullname: Su, Xiangyan
  organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Land Consolidation and Rehabilitation Center, Ministry of Natural Resources
– sequence: 4
  givenname: Nawal
  orcidid: 0000-0002-6866-5100
  surname: Shrestha
  fullname: Shrestha, Nawal
  organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University
– sequence: 5
  givenname: Yunpeng
  orcidid: 0000-0001-6188-3511
  surname: Liu
  fullname: Liu, Yunpeng
  organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University
– sequence: 6
  givenname: Jonathan D.
  orcidid: 0000-0002-2843-122X
  surname: Kennedy
  fullname: Kennedy, Jonathan D.
  organization: Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Natural History Museum of Denmark, University of Copenhagen, Department of Animal and Plant Sciences, University of Sheffield
– sequence: 7
  givenname: Lisha
  surname: Lyu
  fullname: Lyu, Lisha
  organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, School of Urban Planning and Design, Shenzhen Graduate School, Peking University
– sequence: 8
  givenname: David
  orcidid: 0000-0002-4060-0153
  surname: Nogués-Bravo
  fullname: Nogués-Bravo, David
  organization: Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen
– sequence: 9
  givenname: James
  orcidid: 0000-0002-5060-9346
  surname: Rosindell
  fullname: Rosindell, James
  organization: Department of Life Sciences, Imperial College London
– sequence: 10
  givenname: Yong
  surname: Yang
  fullname: Yang, Yong
  organization: Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University
– sequence: 11
  givenname: Jon
  surname: Fjeldså
  fullname: Fjeldså, Jon
  organization: Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Natural History Museum, University of Oslo
– sequence: 12
  givenname: Jianquan
  orcidid: 0000-0001-9337-9555
  surname: Liu
  fullname: Liu, Jianquan
  organization: Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University
– sequence: 13
  givenname: Bernhard
  orcidid: 0000-0002-8430-3214
  surname: Schmid
  fullname: Schmid, Bernhard
  organization: Department of Geography, University of Zurich
– sequence: 14
  givenname: Jingyun
  surname: Fang
  fullname: Fang, Jingyun
  organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University
– sequence: 15
  givenname: Carsten
  orcidid: 0000-0003-4585-0300
  surname: Rahbek
  fullname: Rahbek, Carsten
  organization: Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Natural History Museum of Denmark, University of Copenhagen, Danish Institute for Advanced Study, University of Southern Denmark
– sequence: 16
  givenname: Zhiheng
  orcidid: 0000-0003-0808-7780
  surname: Wang
  fullname: Wang, Zhiheng
  email: zhiheng.wang@pku.edu.cn
  organization: Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37993449$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3TAQha0KVB69f4BFFambblL8mCT2sgIKSEjdwNqa-IF8lRundm6r_vuam0tBLPBmrNF3jmbmnJCDMY6OkDNGvzEq5HkGBm1XUy5qEEK1tfxAjjkFVrOOi4NX_yOyynlNyxOKSYCP5Eh0SgkAdUyay_DbpRx8MDiHOFbRV36If1wK42M1DTjOuQpjlSc0rsLRVnPYuE_k0OOQ3WpfT8nDj6v7i5v67uf17cX3u9qAbOYaWedBUjBeCGYpdFL16Lzi2BowTQvSIlcdV8Y2XlqLnaOqd7bnTLBeojglt4uvjbjWUwobTH91xKB3jZgeNaY5mMFpY1veCwOWMgWyGBsODYDFppW8l7x4fV28phR_bV2e9SZk44ayoovbrLlUXEELnBb0yxt0HbdpLJvuKGCypaxQn_fUtt84-3-85-MWQC6ASTHn5Lw2Yd5deU4YBs2ofopSL1HqEqXeRallkfI30mf3d0ViEeXpKT2XXsZ-R_UPqaat0A
CitedBy_id crossref_primary_10_2989_10220119_2024_2406822
crossref_primary_10_1111_jse_13155
crossref_primary_10_1038_s41467_024_53860_8
crossref_primary_10_1038_s41586_024_07324_0
crossref_primary_10_3389_fpls_2024_1301395
crossref_primary_10_1111_nph_20200
crossref_primary_10_1111_ecog_07062
crossref_primary_10_1093_pcp_pcae054
crossref_primary_10_1093_isd_ixae022
Cites_doi 10.1038/s41559-020-1241-3
10.1038/ncomms2958
10.1007/s00606-014-1180-z
10.1111/2041-210X.12199
10.1073/pnas.1518659113
10.1093/hesc/9780199292233.001.0001
10.1016/j.tree.2013.09.012
10.1093/jxb/erw156
10.1073/pnas.0608361104
10.1073/pnas.0308127100
10.1098/rstb.2008.0075
10.1093/sysbio/syx037
10.1111/nph.13247
10.1111/nph.13446
10.1111/nph.15708
10.1086/705243
10.1111/geb.12923
10.1093/sysbio/syp056
10.1038/nature02243
10.1101/2020.07.03.185074
10.1111/j.1095-8312.2004.00337.x
10.1890/11-0870.1
10.3732/ajb.0900346
10.1038/nature12872
10.1111/ele.13476
10.1126/science.1163197
10.1038/ngeo2813
10.1126/science.1130880
10.3732/ajb.1600108
10.1111/nph.13572
10.1111/ecog.01055
10.1371/journal.pone.0089543
10.1073/pnas.2300981120
10.1093/molbev/mss075
10.1038/s41467-023-38375-y
10.1093/sysbio/sys088
10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2
10.1111/nph.15011
10.1002/joc.5086
10.1086/345091
10.1038/374027a0
10.1038/nature11631
10.1146/annurev-earth-040809-152402
10.1186/s12870-014-0289-0
10.1038/s41586-018-0273-1
10.3732/ajb.0800126
10.1371/journal.pbio.1001406
10.1002/ajb2.1019
10.1038/s41559-018-0787-9
10.1038/s41586-022-05017-0
10.1111/j.2041-210X.2011.00103.x
10.1086/659883
10.1130/G23175A.1
10.1111/jbi.12620
10.1071/FP10084
10.1038/nature08069
10.1111/2041-210X.12526
10.1038/s41586-020-2176-1
10.1111/ter.12086
10.1038/nature06588
10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2
10.1016/j.jtbi.2015.06.005
10.1073/pnas.1424487112
10.1007/978-3-642-79060-7_27
10.1111/jbi.12149
10.1002/ecy.1569
10.1073/pnas.1218633110
10.1093/bioinformatics/btu033
10.1029/149GM03
10.1130/G19992.1
10.1093/sysbio/syw021
10.3732/ajb.1000404
10.1111/evo.13378
10.1093/sysbio/syq027
10.1111/j.1461-0248.2007.01138.x
10.1371/journal.pone.0097722
10.1111/nph.12942
10.1073/pnas.1324002111
10.3897/BDJ.8.e39677
10.1093/bioinformatics/bts492
10.1016/j.tree.2004.09.011
10.1098/rspb.2008.1762
10.1111/evo.13566
10.1126/science.1135590
10.1093/oxfordjournals.molbev.a003974
10.1038/nature13705
10.1111/nph.13264
10.1016/j.ympev.2012.12.004
10.1130/G33091.1
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-023-43396-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 2041-1723
EndPage 16
ExternalDocumentID oai_doaj_org_article_cd62b3c4d019488dac24544da5682b82
37993449
10_1038_s41467_023_43396_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 31988102; 31770566; 32030006
  funderid: https://doi.org/10.13039/501100001809
– fundername: National key Research Development Program of China grant # 2017YFC0505203 Natural Science Foundation of Sichuan Province grant #2023NSFSC1280
– fundername: Danmarks Grundforskningsfond (Danish National Research Foundation)
  grantid: DNRF96
  funderid: https://doi.org/10.13039/501100001732
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
  grantid: MSCA-792534
  funderid: https://doi.org/10.13039/100010665
– fundername: Carlsbergfondet (Carlsberg Foundation)
  grantid: CF19-0334
  funderid: https://doi.org/10.13039/501100002808
– fundername: National key Research Development Program of China grant # 2022YFF0802300
– fundername: Norwegian Metacenter for Computational Science (NOTUR) project NN9601K
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 31988102
– fundername: Danmarks Grundforskningsfond (Danish National Research Foundation)
  grantid: DNRF96
– fundername: Carlsbergfondet (Carlsberg Foundation)
  grantid: CF19-0334
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 31770566
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 32030006
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
  grantid: MSCA-792534
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c485t-a17f4804cf331d04789baef92a6c4c5648da29729cd5f8dda7e09bedb2131b8a3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:29:03 EDT 2025
Tue Aug 05 09:44:17 EDT 2025
Wed Aug 13 07:01:48 EDT 2025
Fri May 09 01:30:32 EDT 2025
Tue Jul 01 02:10:46 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
Fri Feb 21 02:40:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-a17f4804cf331d04789baef92a6c4c5648da29729cd5f8dda7e09bedb2131b8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5060-9346
0000-0002-4060-0153
0000-0001-6188-3511
0000-0001-8126-614X
0000-0003-4585-0300
0000-0002-6866-5100
0000-0001-9337-9555
0000-0003-0808-7780
0000-0002-2843-122X
0000-0002-8430-3214
0000-0001-5830-5702
OpenAccessLink https://www.nature.com/articles/s41467-023-43396-8
PMID 37993449
PQID 2892418601
PQPubID 546298
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_cd62b3c4d019488dac24544da5682b82
proquest_miscellaneous_2892946420
proquest_journals_2892418601
pubmed_primary_37993449
crossref_citationtrail_10_1038_s41467_023_43396_8
crossref_primary_10_1038_s41467_023_43396_8
springer_journals_10_1038_s41467_023_43396_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-22
PublicationDateYYYYMMDD 2023-11-22
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References RaboskyDLMitchellJSChangJIs BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification modelsSyst. Biol.20176647749828334223579013810.1093/sysbio/syx037
RaboskyDLAutomatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic treesPLoS ONE20149e895432014PLoSO...989543R24586858393587810.1371/journal.pone.0089543
IgeaJTanentzapAJAngiosperm speciation cools down in the tropicsEcol. Lett.20202369270032043734707899310.1111/ele.13476
BoneRESmithJACArrigoNBuerkiSA macro-ecological perspective on crassulacean acid metabolism (CAM) photosynthesis evolution in Afro-Madagascan drylands: Eulophiinae orchids as a case studyNew Phytol.20152084694811:CAS:528:DC%2BC2MXhsFGrur3E2619246710.1111/nph.13572
FickSEHijmansRJWorldClim 2: new 1-km spatial resolution climate surfaces for global land areasInt. J. Climatol.2017374302431510.1002/joc.5086
CouvreurTLPOdd man out: why are there fewer plant species in African rain forests?Plant Syst. Evol.20153011299131310.1007/s00606-014-1180-z
StrömbergCAEvolution of grasses and grassland ecosystemsAnnu. Rev. Earth Planet. Sci.2011395175442011AREPS..39..517S10.1146/annurev-earth-040809-152402
XuXDimitrovDRahbekCWangZNCBIminer: sequences harvest from GenbankEcography2015384264302015Ecogr..38..426X10.1111/ecog.01055
PyronRAGenus-level phylogeny of snakes reveals the origins of species richness in Sri LankaMol. Phylogenet. Evol.2013669699782326171310.1016/j.ympev.2012.12.004
SilveraKEvolution along the crassulacean acid metabolism continuumFunct. Plant Biol.20103799510101:CAS:528:DC%2BC3cXhtlaqtL%2FN10.1071/FP10084
Willis, K. & McElwain, J. The Evolution of Plants. (OUP Oxford, 2013).
RaboskyDLRates of speciation and morphological evolution are correlated across the largest vertebrate radiationNat. Commun.201342013NatCo...4.1958R2373962310.1038/ncomms2958
MagallónSGómez-AcevedoSSánchez-ReyesLLHernández-HernándezTA metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversityN. Phytol.201520743745310.1111/nph.13264
Shear, W. A. Shaking The Tree: Readings From Nature In The History Of Life (ed. Gee, H.) 169–179 (University of Chicago Press, 2000).
RoyerDLBernerRAMontañezIPTaborNJBeerlingDJCO2 as a primary driver of Phanerozoic climateGSA Today200414410.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2
RaboskyDLAn inverse latitudinal gradient in speciation rate for marine fishesNature20185593923952018Natur.559..392R1:CAS:528:DC%2BC1cXht1OjtrvJ2997372610.1038/s41586-018-0273-1
OsborneCPFreckletonRPEcological selection pressures for C4 photosynthesis in the grassesProc. R. Soc. B: Biol. Sci.20092761753176010.1098/rspb.2008.1762
StamatakisARAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogeniesBioinformatics201430131213131:CAS:528:DC%2BC2cXmvFCjsbc%3D24451623399814410.1093/bioinformatics/btu033
JablonskiDRoyKValentineJWOut of the tropics: evolutionary dynamics of the latitudinal diversity gradientScience20063141021062006Sci...314..102J1:CAS:528:DC%2BD28XhtVCiurvO1702365310.1126/science.1130880
WiensJJThe causes of species richness patterns across space, time, and clades and the role of “ecological limits”Quart. Rev. Biol.20118675962180063510.1086/659883
SpriggsELChristinP-AEdwardsEJC4 photosynthesis promoted species diversification during the miocene grassland expansionPLoS ONE20149e977222014PLoSO...997722S24835188402396210.1371/journal.pone.0097722
RosindellJHarmonLJOneZoom: a fractal explorer for the tree of lifePLoS Biol.201210e10014061:CAS:528:DC%2BC38Xhs1Whtb7I23091419347297610.1371/journal.pbio.1001406
XuXWangZRahbekCLessardJ-PFangJEvolutionary history influences the effects of water–energy dynamics on oak diversity in AsiaJ. Biogeogr.2013402146215510.1111/jbi.12149
Humboldt, A. von & Bonpland, A. Essai Sur La Géographie Des. Plantes (Schoell et Cie, 1805).
MagallónSUsing fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiospermsSyst. Biol.2010593843992053875910.1093/sysbio/syq027
Smith, J. A. C. & Winter, K. Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution (eds. Winter, K. & Smith, J. A. C.) 427–436 (Springer, 1996).
SmithSABrownJWConstructing a broadly inclusive seed plant phylogenyAm. J. Bot.20181053023142974672010.1002/ajb2.1019
JetzWThomasGHJoyJBHartmannKMooersAOThe global diversity of birds in space and timeNature20124914444482012Natur.491..444J1:CAS:528:DC%2BC38Xhs1ajtrjJ2312385710.1038/nature11631
SmithSADonoghueMJRates of molecular evolution are linked to life history in flowering plantsScience200832286892008Sci...322...86S1:CAS:528:DC%2BD1cXhtFyhu77N1883264310.1126/science.1163197
SmithSAO’MearaBC. treePL: divergence time estimation using penalized likelihood for large phylogeniesBioinformatics201228268926901:CAS:528:DC%2BC38XhsFWktrrO2290821610.1093/bioinformatics/bts492
MorlonHCondamineFLLewitusEManceauMRPANDA: an R package for macroevolutionary analyses on phylogenetic treesMethods Ecol. Evol.2015758959710.1111/2041-210X.12526
OsborneCPA global database of C4 photosynthesis in grassesNew Phytol.20142044414461:CAS:528:DC%2BC2cXhslOjs7jI2504668510.1111/nph.12942
Barba‐MontoyaJReisMdos, SchneiderHDonoghuePCJYangZConstraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial RevolutionNew Phytol.201821881983429399804605584110.1111/nph.15011
Cascales-MiñanaBClealCJThe plant fossil record reflects just two great extinction eventsTerra Nova2014261952002014TeNov..26..195C10.1111/ter.12086
ChaboureauA-CSepulchrePDonnadieuYFrancATectonic-driven climate change and the diversification of angiospermsProc. Natl Acad. Sci. USA201411114066140702014PNAS..11114066C1:CAS:528:DC%2BC2cXhsFCisbjP25225405419176210.1073/pnas.1324002111
WiensJJDonoghueMJHistorical biogeography, ecology and species richnessTrends Ecol. Evol.2004196396441670132610.1016/j.tree.2004.09.011
ZhanSHDroriMGoldbergEEOttoSPMayroseIPhylogenetic evidence for cladogenetic polyploidization in land plantsAm. J. Bot.20161031252125810.3732/ajb.1600108
WeirJTSchluterDThe latitudinal gradient in recent speciation and extinction rates of birds and mammalsScience2007315157415762007Sci...315.1574W1:CAS:528:DC%2BD2sXivVSnsbo%3D1736367310.1126/science.1135590
EldrettJSGreenwoodDRHardingICHuberMIncreased seasonality through the Eocene to Oligocene transition in northern high latitudesNature20094599699732009Natur.459..969E1:CAS:528:DC%2BD1MXnsVagsLY%3D1953626110.1038/nature08069
CrepetWLNiklasKJDarwin’s second “abominable mystery”: why are there so many angiosperm species?Am. J. Bot.2009963663812162819410.3732/ajb.0800126
AudersetAEnhanced ocean oxygenation during Cenozoic warm periodsNature202260977822022Natur.609...77A1:CAS:528:DC%2BB38Xit12jtrvF36045236943332510.1038/s41586-022-05017-0
SilvestroDCascales-MiñanaBBaconCDAntonelliARevisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil recordNew Phytol.201520742543625619401494967010.1111/nph.13247
LoucaSPennellMWExtant timetrees are consistent with a myriad of diversification historiesNature20205805025052020Natur.580..502L1:CAS:528:DC%2BB3cXntFOrsLY%3D3232206510.1038/s41586-020-2176-1
CoiffardCGomezBDaviero-GomezVDilcherDLRise to dominance of angiosperm pioneers in European Cretaceous environmentsProc. Natl Acad. Sci. USA201210920955209592012PNAS..10920955C1:CAS:528:DC%2BC3sXnt1ensg%3D%3D23213256352908010.1073/pnas.1218633110
RaboskyDLBAMM at the court of false equivalency: a response to Meyer and WiensEvolution201872224622563010143510.1111/evo.13566
CranePRFriisEMPedersenKRThe origin and early diversification of angiospermsNature199537427331995Natur.374...27C1:CAS:528:DyaK2MXktFCrtr4%3D10.1038/374027a0
Ramírez-BarahonaSSauquetHMagallónSThe delayed and geographically heterogeneous diversification of flowering plant familiesNat. Ecol. Evol.20204123212383263226010.1038/s41559-020-1241-3
KlakCReevesGHeddersonTUnmatched tempo of evolution in Southern African semi-desert ice plantsNature200442763652004Natur.427...63K1:CAS:528:DC%2BD3sXhtVWhurrF1470208410.1038/nature02243
StephensPRWiensJJExplaining species richness from continents to communities: the time‐for‐speciation effect in emydid turtlesAm. Nat.20031611121281265046610.1086/345091
BrochmannCPolyploidy in arctic plantsBiol. J. Linn. Soc.20048252153610.1111/j.1095-8312.2004.00337.x
SchubertMMarcussenTMeseguerASFjellheimSThe grass subfamily Pooideae: Cretaceous–Palaeocene origin and climate-driven Cenozoic diversificationGlob. Ecol. Biogeogr.2019281168118210.1111/geb.12923
Morlon, H., Hartig, F. & Robin, S. Prior hypotheses or regularization allow inference of diversification histories from extant timetrees. bioRxivhttps://doi.org/10.1101/2020.07.03.185074 (2020).
Stevens, P. F. Angiosperm Phylogeny Website. Version 14. http://www.mobot.org/MOBOT/research/APweb/ (2017).
JanssonRDaviesTJGlobal variation in diversification rates of flowering plants: energy vs. climate changeEcol. Lett.2008111731831807010010.1111/j.1461-0248.2007.01138.x
JiaGPengPZhaoQJianZChanges in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China SeaGeology200331109310962003Geo....31.1093J1:CAS:528:DC%2BD2cXhs1KltA%3D%3D10.1130/G19992.1
LiuYAn updated floristic map of the worldNat. Commun.20231429902023NatCo..14.2990L1:CAS:528:DC%2BB3sXhtFGnsb7N372537551022959110.1038/s41467-023-38375-y
JanssensSBA large-scale species level dated angiosperm phylogeny for evolutionary and ecological analysesBiodivers. Data J.20208e3967732015666698724810.3897/BDJ.8.e39677
HerbertTDLate Miocene global cooling and the rise of modern ecosystemsNat. Geosci.201698438472016NatGe...9..843H1:CAS:528:DC%2BC28XhsFyms7fL10.1038/ngeo2813
MeyerALSWiensJJEstimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shiftsEvolution20187239532905513310.1111/evo.13378
KrugAZJablonskiDLong-term origination rates are reset only at mass extinctionsGeology2012407317342012G
S Epstein (43396_CR98) 1953; 64
M Schubert (43396_CR31) 2019; 28
AE Zanne (43396_CR10) 2014; 506
D Silvestro (43396_CR16) 2015; 207
A Vargha (43396_CR84) 2000; 25
G Jia (43396_CR36) 2003; 31
DL Rabosky (43396_CR92) 2017; 66
43396_CR2
43396_CR1
Z Wu (43396_CR68) 2014; 14
43396_CR4
W Jetz (43396_CR28) 2012; 491
L Cai (43396_CR35) 2023; 120
DL Rabosky (43396_CR95) 2018; 72
HP Linder (43396_CR11) 2008; 363
AZ Krug (43396_CR27) 2012; 40
C Brochmann (43396_CR41) 2004; 82
DL Rabosky (43396_CR66) 2013; 4
TS Kuhn (43396_CR69) 2011; 2
JJ Wiens (43396_CR7) 2004; 19
RA Pyron (43396_CR59) 2013; 66
A Rice (43396_CR39) 2019; 3
JS Eldrett (43396_CR30) 2009; 459
K Katoh (43396_CR61) 2009; 537
43396_CR87
SA Smith (43396_CR64) 2012; 28
CP Osborne (43396_CR43) 2014; 204
PR Stephens (43396_CR47) 2003; 161
43396_CR83
V Campbell (43396_CR58) 2009; 58
K Engemann (43396_CR81) 2016; 97
PD Mannion (43396_CR54) 2014; 29
43396_CR82
K Silvera (43396_CR78) 2010; 37
B Cascales-Miñana (43396_CR17) 2014; 26
PR Crane (43396_CR23) 1995; 374
CE Hinchliff (43396_CR60) 2013; 62
X Xu (43396_CR74) 2013; 40
DL Royer (43396_CR24) 2004; 14
M Coiro (43396_CR53) 2019; 223
J Barba‐Montoya (43396_CR19) 2018; 218
43396_CR76
43396_CR77
H Morlon (43396_CR96) 2015; 7
A Auderset (43396_CR29) 2022; 609
43396_CR71
SH Zhan (43396_CR40) 2016; 103
MJ Sanderson (43396_CR65) 2002; 19
J Rosindell (43396_CR73) 2012; 10
S Ramírez-Barahona (43396_CR14) 2020; 4
A-C Chaboureau (43396_CR25) 2014; 111
Y Liu (43396_CR72) 2023; 14
JC Zachos (43396_CR99) 2008; 451
S Magallón (43396_CR13) 2015; 207
43396_CR18
JT Weir (43396_CR49) 2007; 315
X Xu (43396_CR57) 2015; 38
H Kreft (43396_CR5) 2007; 104
CA Strömberg (43396_CR37) 2011; 39
JJ Wiens (43396_CR46) 2011; 86
DL Rabosky (43396_CR89) 2014; 5
EL Spriggs (43396_CR44) 2014; 9
H Zheng (43396_CR51) 2015; 112
BR Moore (43396_CR91) 2016; 113
S Louca (43396_CR86) 2020; 580
DL Rabosky (43396_CR88) 2014; 9
C Coiffard (43396_CR22) 2012; 109
RS Etienne (43396_CR56) 2019; 194
43396_CR93
A Stamatakis (43396_CR62) 2014; 30
R Jansson (43396_CR6) 2008; 11
AJ Drummond (43396_CR70) 2012; 29
ALS Meyer (43396_CR94) 2018; 72
D Jablonski (43396_CR8) 2006; 314
CP Osborne (43396_CR45) 2009; 276
S Höhna (43396_CR100) 2015; 380
SB Janssens (43396_CR21) 2020; 8
SA Smith (43396_CR38) 2008; 322
DL Rabosky (43396_CR48) 2018; 559
SL Wing (43396_CR26) 2012; 82
SE Fick (43396_CR85) 2017; 37
S Höhna (43396_CR97) 2016; 65
X Xu (43396_CR75) 2016; 43
PN Pearson (43396_CR50) 2007; 35
S Magallón (43396_CR67) 2010; 59
TLP Couvreur (43396_CR55) 2015; 301
43396_CR32
M Plummer (43396_CR90) 2006; 6
TD Herbert (43396_CR33) 2016; 9
C Klak (43396_CR34) 2004; 427
J Igea (43396_CR15) 2020; 23
RE Bone (43396_CR42) 2015; 208
RF Sage (43396_CR80) 2016; 67
SA Smith (43396_CR20) 2018; 105
WL Crepet (43396_CR3) 2009; 96
TJ Davies (43396_CR9) 2004; 101
DE Soltis (43396_CR63) 2011; 98
CD Bell (43396_CR12) 2010; 97
Z Zhang (43396_CR52) 2014; 513
K Winter (43396_CR79) 2015; 208
References_xml – reference: CaiLClimatic stability and geological history shape global centers of neo- and paleoendemism in seed plantsProc. Natl Acad. Sci. USA2023120e23009811201:CAS:528:DC%2BB3sXhvVCksLzK3745951010.1073/pnas.2300981120
– reference: SilvestroDCascales-MiñanaBBaconCDAntonelliARevisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil recordNew Phytol.201520742543625619401494967010.1111/nph.13247
– reference: RaboskyDLAutomatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic treesPLoS ONE20149e895432014PLoSO...989543R24586858393587810.1371/journal.pone.0089543
– reference: Rambaut, A. & Drummond, A. J. Tracer v1.4, Available at http://beast.bio.ed.ac.uk/Tracer (2007).
– reference: WiensJJDonoghueMJHistorical biogeography, ecology and species richnessTrends Ecol. Evol.2004196396441670132610.1016/j.tree.2004.09.011
– reference: IgeaJTanentzapAJAngiosperm speciation cools down in the tropicsEcol. Lett.20202369270032043734707899310.1111/ele.13476
– reference: PearsonPNStable warm tropical climate through the Eocene EpochGeology2007352112142007Geo....35..211P10.1130/G23175A.1
– reference: RiceAThe global biogeography of polyploid plantsNat. Ecol. Evol.201932652733069700610.1038/s41559-018-0787-9
– reference: Humboldt, A. von & Bonpland, A. Essai Sur La Géographie Des. Plantes (Schoell et Cie, 1805).
– reference: HerbertTDLate Miocene global cooling and the rise of modern ecosystemsNat. Geosci.201698438472016NatGe...9..843H1:CAS:528:DC%2BC28XhsFyms7fL10.1038/ngeo2813
– reference: ZhanSHDroriMGoldbergEEOttoSPMayroseIPhylogenetic evidence for cladogenetic polyploidization in land plantsAm. J. Bot.20161031252125810.3732/ajb.1600108
– reference: EpsteinSBuchsbaumRLowenstamHAUreyHCRevised carbonate-water isotopic temperature scaleGeol. Soc. Am. Bull.195364131513261953GSAB...64.1315E1:CAS:528:DyaG2cXmvVSj10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2
– reference: SpriggsELChristinP-AEdwardsEJC4 photosynthesis promoted species diversification during the miocene grassland expansionPLoS ONE20149e977222014PLoSO...997722S24835188402396210.1371/journal.pone.0097722
– reference: RaboskyDLBAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic treesMethods Ecol. Evol.2014570170710.1111/2041-210X.12199
– reference: Rabosky, D. L. BAMM Documentation — bamm 2.5.0 documentation. http://bamm-project.org/documentation.html (2015).
– reference: JetzWThomasGHJoyJBHartmannKMooersAOThe global diversity of birds in space and timeNature20124914444482012Natur.491..444J1:CAS:528:DC%2BC38Xhs1ajtrjJ2312385710.1038/nature11631
– reference: MooreBRHöhnaSMayMRRannalaBHuelsenbeckJPCritically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixturesProc. Natl Acad. Sci. USA2016113956995742016PNAS..113.9569M1:CAS:528:DC%2BC28Xhtlait7%2FM27512038500322810.1073/pnas.1518659113
– reference: JanssensSBA large-scale species level dated angiosperm phylogeny for evolutionary and ecological analysesBiodivers. Data J.20208e3967732015666698724810.3897/BDJ.8.e39677
– reference: HinchliffCERoalsonEHUsing supermatrices for phylogenetic inquiry: an example using the sedgesSyst. Biol.2013622052192310359010.1093/sysbio/sys088
– reference: MagallónSGómez-AcevedoSSánchez-ReyesLLHernández-HernándezTA metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversityN. Phytol.201520743745310.1111/nph.13264
– reference: SilveraKEvolution along the crassulacean acid metabolism continuumFunct. Plant Biol.20103799510101:CAS:528:DC%2BC3cXhtlaqtL%2FN10.1071/FP10084
– reference: ZhengHLate oligocene–early miocene birth of the Taklimakan DesertProc. Natl Acad. Sci. USA2015112766276672015PNAS..112.7662Z1:CAS:528:DC%2BC2MXps1Cltbg%3D26056281448509310.1073/pnas.1424487112
– reference: JiaGPengPZhaoQJianZChanges in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China SeaGeology200331109310962003Geo....31.1093J1:CAS:528:DC%2BD2cXhs1KltA%3D%3D10.1130/G19992.1
– reference: LoucaSPennellMWExtant timetrees are consistent with a myriad of diversification historiesNature20205805025052020Natur.580..502L1:CAS:528:DC%2BB3cXntFOrsLY%3D3232206510.1038/s41586-020-2176-1
– reference: AudersetAEnhanced ocean oxygenation during Cenozoic warm periodsNature202260977822022Natur.609...77A1:CAS:528:DC%2BB38Xit12jtrvF36045236943332510.1038/s41586-022-05017-0
– reference: XuXDimitrovDRahbekCWangZNCBIminer: sequences harvest from GenbankEcography2015384264302015Ecogr..38..426X10.1111/ecog.01055
– reference: SmithSABrownJWConstructing a broadly inclusive seed plant phylogenyAm. J. Bot.20181053023142974672010.1002/ajb2.1019
– reference: CoiffardCGomezBDaviero-GomezVDilcherDLRise to dominance of angiosperm pioneers in European Cretaceous environmentsProc. Natl Acad. Sci. USA201210920955209592012PNAS..10920955C1:CAS:528:DC%2BC3sXnt1ensg%3D%3D23213256352908010.1073/pnas.1218633110
– reference: WuZA precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal eudicotsBMC Plant Biol.20141425407166424583210.1186/s12870-014-0289-0
– reference: MannionPDUpchurchPBensonRBJGoswamiAThe latitudinal biodiversity gradient through deep timeTrends Ecol. Evol.20142942502413912610.1016/j.tree.2013.09.012
– reference: WingSLFloral and environmental gradients on a Late Cretaceous landscapeEcol. Monogr.201282234710.1890/11-0870.1
– reference: LinderHPPlant species radiations: where, when, why?Philos. Trans. R. Soc. B20083633097310510.1098/rstb.2008.0075
– reference: Ramírez-BarahonaSSauquetHMagallónSThe delayed and geographically heterogeneous diversification of flowering plant familiesNat. Ecol. Evol.20204123212383263226010.1038/s41559-020-1241-3
– reference: PlummerMBestNCowlesKVinesKCODA: convergence diagnosis and output analysis for MCMCR. N.20066711
– reference: StrömbergCAEvolution of grasses and grassland ecosystemsAnnu. Rev. Earth Planet. Sci.2011395175442011AREPS..39..517S10.1146/annurev-earth-040809-152402
– reference: SoltisDEAngiosperm phylogeny: 17 genes, 640 taxaAm. J. Bot.2011987047302161316910.3732/ajb.1000404
– reference: JablonskiDRoyKValentineJWOut of the tropics: evolutionary dynamics of the latitudinal diversity gradientScience20063141021062006Sci...314..102J1:CAS:528:DC%2BD28XhtVCiurvO1702365310.1126/science.1130880
– reference: KrugAZJablonskiDLong-term origination rates are reset only at mass extinctionsGeology2012407317342012Geo....40..731K10.1130/G33091.1
– reference: BellCDSoltisDESoltisPSThe age and diversification of the angiosperms re-revisitedAm. J. Bot.201097129613032161688210.3732/ajb.0900346
– reference: Smith, J. A. C. & Winter, K. Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution (eds. Winter, K. & Smith, J. A. C.) 427–436 (Springer, 1996).
– reference: Cohen, J. Statiscal Power Analysis for the Behavioral Sciences, Secon (La Wrence Erlabaum Associates, Publishers, 1988).
– reference: RaboskyDLMitchellJSChangJIs BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification modelsSyst. Biol.20176647749828334223579013810.1093/sysbio/syx037
– reference: SmithSADonoghueMJRates of molecular evolution are linked to life history in flowering plantsScience200832286892008Sci...322...86S1:CAS:528:DC%2BD1cXhtFyhu77N1883264310.1126/science.1163197
– reference: Cascales-MiñanaBClealCJThe plant fossil record reflects just two great extinction eventsTerra Nova2014261952002014TeNov..26..195C10.1111/ter.12086
– reference: SandersonMJEstimating absolute rates of molecular evolution and divergence times: a penalized likelihood approachMol. Biol. Evol.2002191011091:CAS:528:DC%2BD38XhtFCitQ%3D%3D1175219510.1093/oxfordjournals.molbev.a003974
– reference: HöhnaSRevBayes: bayesian phylogenetic inference using graphical models and an interactive model-specification languageSyst. Biol.20166572673627235697491194210.1093/sysbio/syw021
– reference: EldrettJSGreenwoodDRHardingICHuberMIncreased seasonality through the Eocene to Oligocene transition in northern high latitudesNature20094599699732009Natur.459..969E1:CAS:528:DC%2BD1MXnsVagsLY%3D1953626110.1038/nature08069
– reference: OsborneCPFreckletonRPEcological selection pressures for C4 photosynthesis in the grassesProc. R. Soc. B: Biol. Sci.20092761753176010.1098/rspb.2008.1762
– reference: DaviesTJDarwin’s abominable mystery: insights from a supertree of the angiospermsProc. Natl Acad. Sci. USA2004101190419092004PNAS..101.1904D1:CAS:528:DC%2BD2cXhs1Sktbo%3D1476697135702510.1073/pnas.0308127100
– reference: SchubertMMarcussenTMeseguerASFjellheimSThe grass subfamily Pooideae: Cretaceous–Palaeocene origin and climate-driven Cenozoic diversificationGlob. Ecol. Biogeogr.2019281168118210.1111/geb.12923
– reference: RoyerDLBernerRAMontañezIPTaborNJBeerlingDJCO2 as a primary driver of Phanerozoic climateGSA Today200414410.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2
– reference: Shear, W. A. Shaking The Tree: Readings From Nature In The History Of Life (ed. Gee, H.) 169–179 (University of Chicago Press, 2000).
– reference: MeyerALSWiensJJEstimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shiftsEvolution20187239532905513310.1111/evo.13378
– reference: StamatakisARAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogeniesBioinformatics201430131213131:CAS:528:DC%2BC2cXmvFCjsbc%3D24451623399814410.1093/bioinformatics/btu033
– reference: WinterKHoltumJAMSmithJACCrassulacean acid metabolism: a continuous or discrete trait?New Phytol.201520873781:CAS:528:DC%2BC2MXhsVChsr%2FJ2597519710.1111/nph.13446
– reference: EtienneRSA minimal model for the latitudinal diversity gradient suggests a dominant role for ecological limitsAm. Nat.2019194E122E1333161367210.1086/705243
– reference: StephensPRWiensJJExplaining species richness from continents to communities: the time‐for‐speciation effect in emydid turtlesAm. Nat.20031611121281265046610.1086/345091
– reference: VarghaADelaneyHDA critique and improvement of the cl common language effect size statistics of McGraw and WongJ. Educ. Behav. Stat.200025101132
– reference: ZachosJCDickensGRZeebeREAn early Cenozoic perspective on greenhouse warming and carbon-cycle dynamicsNature20084512792008Natur.451..279Z1:CAS:528:DC%2BD1cXnt1Cqtg%3D%3D1820264310.1038/nature06588
– reference: BoneRESmithJACArrigoNBuerkiSA macro-ecological perspective on crassulacean acid metabolism (CAM) photosynthesis evolution in Afro-Madagascan drylands: Eulophiinae orchids as a case studyNew Phytol.20152084694811:CAS:528:DC%2BC2MXhsFGrur3E2619246710.1111/nph.13572
– reference: Stevens, P. F. Angiosperm Phylogeny Website. Version 14. http://www.mobot.org/MOBOT/research/APweb/ (2017).
– reference: Willis, K. & McElwain, J. The Evolution of Plants. (OUP Oxford, 2013).
– reference: KuhnTSMooersAØThomasGHA simple polytomy resolver for dated phylogeniesMethods Ecol. Evol.2011242743610.1111/j.2041-210X.2011.00103.x
– reference: RaboskyDLBAMM at the court of false equivalency: a response to Meyer and WiensEvolution201872224622563010143510.1111/evo.13566
– reference: MorlonHCondamineFLLewitusEManceauMRPANDA: an R package for macroevolutionary analyses on phylogenetic treesMethods Ecol. Evol.2015758959710.1111/2041-210X.12526
– reference: MagallónSUsing fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiospermsSyst. Biol.2010593843992053875910.1093/sysbio/syq027
– reference: XuXWangZRahbekCSandersNJFangJGeographical variation in the importance of water and energy for oak diversityJ. Biogeogr.20164327928810.1111/jbi.12620
– reference: SmithSAO’MearaBC. treePL: divergence time estimation using penalized likelihood for large phylogeniesBioinformatics201228268926901:CAS:528:DC%2BC38XhsFWktrrO2290821610.1093/bioinformatics/bts492
– reference: DrummondAJSuchardMAXieDRambautABayesian phylogenetics with BEAUti and the BEAST 1.7Mol. Biol. Evol.201229196919731:CAS:528:DC%2BC38XhtFagu7fO22367748340807010.1093/molbev/mss075
– reference: Barba‐MontoyaJReisMdos, SchneiderHDonoghuePCJYangZConstraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial RevolutionNew Phytol.201821881983429399804605584110.1111/nph.15011
– reference: KreftHJetzWGlobal patterns and determinants of vascular plant diversityProc. Natl Acad. Sci. USA2007104592559302007PNAS..104.5925K1:CAS:528:DC%2BD2sXkt1Gjsrs%3D17379667185159310.1073/pnas.0608361104
– reference: HöhnaSThe time-dependent reconstructed evolutionary process with a key-role for mass-extinction eventsJ. Theor. Biol.20153803213312015JThBi.380..321H3374008260737241343.9234710.1016/j.jtbi.2015.06.005
– reference: CranePRFriisEMPedersenKRThe origin and early diversification of angiospermsNature199537427331995Natur.374...27C1:CAS:528:DyaK2MXktFCrtr4%3D10.1038/374027a0
– reference: Heine, C., Müller, R. D. & Gaina, C. Continent-Ocean Interactions Within East Asian Marginal Seas (eds. Clift, P., Kuhnt, W., Wang, P. & Hayes, D.) 37–54 (American Geophysical Union, 2004).
– reference: PyronRAGenus-level phylogeny of snakes reveals the origins of species richness in Sri LankaMol. Phylogenet. Evol.2013669699782326171310.1016/j.ympev.2012.12.004
– reference: Brummitt, R. K. World Geographical Scheme For Recording Plant Distributions (Hunt Inst. for Botanical Documentation, 2001).
– reference: KatohKAsimenosGTohHMultiple alignment of DNA sequences with MAFFT. MethMol. Biol.200953739641:CAS:528:DC%2BD1MXmvVSqtLc%3D
– reference: XuXWangZRahbekCLessardJ-PFangJEvolutionary history influences the effects of water–energy dynamics on oak diversity in AsiaJ. Biogeogr.2013402146215510.1111/jbi.12149
– reference: CrepetWLNiklasKJDarwin’s second “abominable mystery”: why are there so many angiosperm species?Am. J. Bot.2009963663812162819410.3732/ajb.0800126
– reference: BrochmannCPolyploidy in arctic plantsBiol. J. Linn. Soc.20048252153610.1111/j.1095-8312.2004.00337.x
– reference: RaboskyDLRates of speciation and morphological evolution are correlated across the largest vertebrate radiationNat. Commun.201342013NatCo...4.1958R2373962310.1038/ncomms2958
– reference: Morlon, H., Hartig, F. & Robin, S. Prior hypotheses or regularization allow inference of diversification histories from extant timetrees. bioRxivhttps://doi.org/10.1101/2020.07.03.185074 (2020).
– reference: OsborneCPA global database of C4 photosynthesis in grassesNew Phytol.20142044414461:CAS:528:DC%2BC2cXhslOjs7jI2504668510.1111/nph.12942
– reference: ZanneAEThree keys to the radiation of angiosperms into freezing environmentsNature201450689922014Natur.506...89Z1:CAS:528:DC%2BC2cXhsl2msb8%3D2436256410.1038/nature12872
– reference: LiuYAn updated floristic map of the worldNat. Commun.20231429902023NatCo..14.2990L1:CAS:528:DC%2BB3sXhtFGnsb7N372537551022959110.1038/s41467-023-38375-y
– reference: RaboskyDLAn inverse latitudinal gradient in speciation rate for marine fishesNature20185593923952018Natur.559..392R1:CAS:528:DC%2BC1cXht1OjtrvJ2997372610.1038/s41586-018-0273-1
– reference: FickSEHijmansRJWorldClim 2: new 1-km spatial resolution climate surfaces for global land areasInt. J. Climatol.2017374302431510.1002/joc.5086
– reference: JanssonRDaviesTJGlobal variation in diversification rates of flowering plants: energy vs. climate changeEcol. Lett.2008111731831807010010.1111/j.1461-0248.2007.01138.x
– reference: ZhangZAridification of the Sahara desert caused by Tethys Sea shrinkage during the Late MioceneNature20145134012014Natur.513..401Z1:CAS:528:DC%2BC2cXhsFOlu7nE2523066110.1038/nature13705
– reference: WiensJJThe causes of species richness patterns across space, time, and clades and the role of “ecological limits”Quart. Rev. Biol.20118675962180063510.1086/659883
– reference: RosindellJHarmonLJOneZoom: a fractal explorer for the tree of lifePLoS Biol.201210e10014061:CAS:528:DC%2BC38Xhs1Whtb7I23091419347297610.1371/journal.pbio.1001406
– reference: ChaboureauA-CSepulchrePDonnadieuYFrancATectonic-driven climate change and the diversification of angiospermsProc. Natl Acad. Sci. USA201411114066140702014PNAS..11114066C1:CAS:528:DC%2BC2cXhsFCisbjP25225405419176210.1073/pnas.1324002111
– reference: CouvreurTLPOdd man out: why are there fewer plant species in African rain forests?Plant Syst. Evol.20153011299131310.1007/s00606-014-1180-z
– reference: WeirJTSchluterDThe latitudinal gradient in recent speciation and extinction rates of birds and mammalsScience2007315157415762007Sci...315.1574W1:CAS:528:DC%2BD2sXivVSnsbo%3D1736367310.1126/science.1135590
– reference: EngemannKA plant growth form dataset for the New WorldEcology201697324332431:STN:280:DC%2BC2snos12gsg%3D%3D2787005410.1002/ecy.1569
– reference: CampbellVLapointeF-JThe use and validity of composite taxa in phylogenetic analysisSyst. Biol.2009585605721:CAS:528:DC%2BD1MXhsVKmu73L2052560910.1093/sysbio/syp056
– reference: R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
– reference: CoiroMDoyleJAHiltonJHow deep is the conflict between molecular and fossil evidence on the age of angiosperms?New Phytol.201922383993068114810.1111/nph.15708
– reference: KlakCReevesGHeddersonTUnmatched tempo of evolution in Southern African semi-desert ice plantsNature200442763652004Natur.427...63K1:CAS:528:DC%2BD3sXhtVWhurrF1470208410.1038/nature02243
– reference: SageRFA portrait of the C 4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of FameJ. Exp. Bot.201667403940561:CAS:528:DC%2BC28Xhs12qur7P2705372110.1093/jxb/erw156
– volume: 4
  start-page: 1232
  year: 2020
  ident: 43396_CR14
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-020-1241-3
– volume: 4
  year: 2013
  ident: 43396_CR66
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2958
– ident: 43396_CR76
– volume: 301
  start-page: 1299
  year: 2015
  ident: 43396_CR55
  publication-title: Plant Syst. Evol.
  doi: 10.1007/s00606-014-1180-z
– ident: 43396_CR18
– volume: 5
  start-page: 701
  year: 2014
  ident: 43396_CR89
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12199
– volume: 113
  start-page: 9569
  year: 2016
  ident: 43396_CR91
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1518659113
– ident: 43396_CR4
– ident: 43396_CR1
  doi: 10.1093/hesc/9780199292233.001.0001
– volume: 29
  start-page: 42
  year: 2014
  ident: 43396_CR54
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2013.09.012
– volume: 67
  start-page: 4039
  year: 2016
  ident: 43396_CR80
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw156
– volume: 104
  start-page: 5925
  year: 2007
  ident: 43396_CR5
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0608361104
– volume: 101
  start-page: 1904
  year: 2004
  ident: 43396_CR9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0308127100
– volume: 363
  start-page: 3097
  year: 2008
  ident: 43396_CR11
  publication-title: Philos. Trans. R. Soc. B
  doi: 10.1098/rstb.2008.0075
– ident: 43396_CR71
– volume: 66
  start-page: 477
  year: 2017
  ident: 43396_CR92
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syx037
– volume: 207
  start-page: 425
  year: 2015
  ident: 43396_CR16
  publication-title: New Phytol.
  doi: 10.1111/nph.13247
– volume: 208
  start-page: 73
  year: 2015
  ident: 43396_CR79
  publication-title: New Phytol.
  doi: 10.1111/nph.13446
– volume: 223
  start-page: 83
  year: 2019
  ident: 43396_CR53
  publication-title: New Phytol.
  doi: 10.1111/nph.15708
– volume: 194
  start-page: E122
  year: 2019
  ident: 43396_CR56
  publication-title: Am. Nat.
  doi: 10.1086/705243
– ident: 43396_CR82
– volume: 28
  start-page: 1168
  year: 2019
  ident: 43396_CR31
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12923
– volume: 58
  start-page: 560
  year: 2009
  ident: 43396_CR58
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syp056
– volume: 427
  start-page: 63
  year: 2004
  ident: 43396_CR34
  publication-title: Nature
  doi: 10.1038/nature02243
– volume: 25
  start-page: 101
  year: 2000
  ident: 43396_CR84
  publication-title: J. Educ. Behav. Stat.
– ident: 43396_CR87
  doi: 10.1101/2020.07.03.185074
– volume: 82
  start-page: 521
  year: 2004
  ident: 43396_CR41
  publication-title: Biol. J. Linn. Soc.
  doi: 10.1111/j.1095-8312.2004.00337.x
– ident: 43396_CR93
– volume: 82
  start-page: 23
  year: 2012
  ident: 43396_CR26
  publication-title: Ecol. Monogr.
  doi: 10.1890/11-0870.1
– volume: 97
  start-page: 1296
  year: 2010
  ident: 43396_CR12
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.0900346
– volume: 506
  start-page: 89
  year: 2014
  ident: 43396_CR10
  publication-title: Nature
  doi: 10.1038/nature12872
– volume: 23
  start-page: 692
  year: 2020
  ident: 43396_CR15
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.13476
– volume: 322
  start-page: 86
  year: 2008
  ident: 43396_CR38
  publication-title: Science
  doi: 10.1126/science.1163197
– volume: 9
  start-page: 843
  year: 2016
  ident: 43396_CR33
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2813
– volume: 314
  start-page: 102
  year: 2006
  ident: 43396_CR8
  publication-title: Science
  doi: 10.1126/science.1130880
– volume: 103
  start-page: 1252
  year: 2016
  ident: 43396_CR40
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.1600108
– volume: 208
  start-page: 469
  year: 2015
  ident: 43396_CR42
  publication-title: New Phytol.
  doi: 10.1111/nph.13572
– volume: 38
  start-page: 426
  year: 2015
  ident: 43396_CR57
  publication-title: Ecography
  doi: 10.1111/ecog.01055
– volume: 9
  start-page: e89543
  year: 2014
  ident: 43396_CR88
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0089543
– volume: 120
  start-page: e2300981120
  year: 2023
  ident: 43396_CR35
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2300981120
– volume: 29
  start-page: 1969
  year: 2012
  ident: 43396_CR70
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mss075
– volume: 14
  start-page: 2990
  year: 2023
  ident: 43396_CR72
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38375-y
– volume: 62
  start-page: 205
  year: 2013
  ident: 43396_CR60
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/sys088
– volume: 14
  start-page: 4
  year: 2004
  ident: 43396_CR24
  publication-title: GSA Today
  doi: 10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2
– volume: 218
  start-page: 819
  year: 2018
  ident: 43396_CR19
  publication-title: New Phytol.
  doi: 10.1111/nph.15011
– volume: 37
  start-page: 4302
  year: 2017
  ident: 43396_CR85
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5086
– volume: 161
  start-page: 112
  year: 2003
  ident: 43396_CR47
  publication-title: Am. Nat.
  doi: 10.1086/345091
– volume: 374
  start-page: 27
  year: 1995
  ident: 43396_CR23
  publication-title: Nature
  doi: 10.1038/374027a0
– volume: 491
  start-page: 444
  year: 2012
  ident: 43396_CR28
  publication-title: Nature
  doi: 10.1038/nature11631
– volume: 39
  start-page: 517
  year: 2011
  ident: 43396_CR37
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev-earth-040809-152402
– volume: 14
  year: 2014
  ident: 43396_CR68
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-014-0289-0
– volume: 559
  start-page: 392
  year: 2018
  ident: 43396_CR48
  publication-title: Nature
  doi: 10.1038/s41586-018-0273-1
– volume: 96
  start-page: 366
  year: 2009
  ident: 43396_CR3
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.0800126
– volume: 10
  start-page: e1001406
  year: 2012
  ident: 43396_CR73
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001406
– volume: 105
  start-page: 302
  year: 2018
  ident: 43396_CR20
  publication-title: Am. J. Bot.
  doi: 10.1002/ajb2.1019
– volume: 3
  start-page: 265
  year: 2019
  ident: 43396_CR39
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-018-0787-9
– volume: 609
  start-page: 77
  year: 2022
  ident: 43396_CR29
  publication-title: Nature
  doi: 10.1038/s41586-022-05017-0
– volume: 2
  start-page: 427
  year: 2011
  ident: 43396_CR69
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/j.2041-210X.2011.00103.x
– volume: 86
  start-page: 75
  year: 2011
  ident: 43396_CR46
  publication-title: Quart. Rev. Biol.
  doi: 10.1086/659883
– volume: 35
  start-page: 211
  year: 2007
  ident: 43396_CR50
  publication-title: Geology
  doi: 10.1130/G23175A.1
– volume: 43
  start-page: 279
  year: 2016
  ident: 43396_CR75
  publication-title: J. Biogeogr.
  doi: 10.1111/jbi.12620
– volume: 37
  start-page: 995
  year: 2010
  ident: 43396_CR78
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP10084
– volume: 459
  start-page: 969
  year: 2009
  ident: 43396_CR30
  publication-title: Nature
  doi: 10.1038/nature08069
– volume: 7
  start-page: 589
  year: 2015
  ident: 43396_CR96
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12526
– volume: 580
  start-page: 502
  year: 2020
  ident: 43396_CR86
  publication-title: Nature
  doi: 10.1038/s41586-020-2176-1
– volume: 26
  start-page: 195
  year: 2014
  ident: 43396_CR17
  publication-title: Terra Nova
  doi: 10.1111/ter.12086
– volume: 6
  start-page: 7
  year: 2006
  ident: 43396_CR90
  publication-title: R. N.
– volume: 537
  start-page: 39
  year: 2009
  ident: 43396_CR61
  publication-title: Mol. Biol.
– volume: 451
  start-page: 279
  year: 2008
  ident: 43396_CR99
  publication-title: Nature
  doi: 10.1038/nature06588
– volume: 64
  start-page: 1315
  year: 1953
  ident: 43396_CR98
  publication-title: Geol. Soc. Am. Bull.
  doi: 10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2
– ident: 43396_CR2
– volume: 380
  start-page: 321
  year: 2015
  ident: 43396_CR100
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2015.06.005
– volume: 112
  start-page: 7662
  year: 2015
  ident: 43396_CR51
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1424487112
– ident: 43396_CR77
  doi: 10.1007/978-3-642-79060-7_27
– volume: 40
  start-page: 2146
  year: 2013
  ident: 43396_CR74
  publication-title: J. Biogeogr.
  doi: 10.1111/jbi.12149
– volume: 97
  start-page: 3243
  year: 2016
  ident: 43396_CR81
  publication-title: Ecology
  doi: 10.1002/ecy.1569
– volume: 109
  start-page: 20955
  year: 2012
  ident: 43396_CR22
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1218633110
– volume: 30
  start-page: 1312
  year: 2014
  ident: 43396_CR62
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu033
– ident: 43396_CR32
  doi: 10.1029/149GM03
– volume: 31
  start-page: 1093
  year: 2003
  ident: 43396_CR36
  publication-title: Geology
  doi: 10.1130/G19992.1
– volume: 65
  start-page: 726
  year: 2016
  ident: 43396_CR97
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syw021
– volume: 98
  start-page: 704
  year: 2011
  ident: 43396_CR63
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.1000404
– volume: 72
  start-page: 39
  year: 2018
  ident: 43396_CR94
  publication-title: Evolution
  doi: 10.1111/evo.13378
– volume: 59
  start-page: 384
  year: 2010
  ident: 43396_CR67
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syq027
– volume: 11
  start-page: 173
  year: 2008
  ident: 43396_CR6
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2007.01138.x
– volume: 9
  start-page: e97722
  year: 2014
  ident: 43396_CR44
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0097722
– volume: 204
  start-page: 441
  year: 2014
  ident: 43396_CR43
  publication-title: New Phytol.
  doi: 10.1111/nph.12942
– volume: 111
  start-page: 14066
  year: 2014
  ident: 43396_CR25
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1324002111
– ident: 43396_CR83
– volume: 8
  start-page: e39677
  year: 2020
  ident: 43396_CR21
  publication-title: Biodivers. Data J.
  doi: 10.3897/BDJ.8.e39677
– volume: 28
  start-page: 2689
  year: 2012
  ident: 43396_CR64
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts492
– volume: 19
  start-page: 639
  year: 2004
  ident: 43396_CR7
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2004.09.011
– volume: 276
  start-page: 1753
  year: 2009
  ident: 43396_CR45
  publication-title: Proc. R. Soc. B: Biol. Sci.
  doi: 10.1098/rspb.2008.1762
– volume: 72
  start-page: 2246
  year: 2018
  ident: 43396_CR95
  publication-title: Evolution
  doi: 10.1111/evo.13566
– volume: 315
  start-page: 1574
  year: 2007
  ident: 43396_CR49
  publication-title: Science
  doi: 10.1126/science.1135590
– volume: 19
  start-page: 101
  year: 2002
  ident: 43396_CR65
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a003974
– volume: 513
  start-page: 401
  year: 2014
  ident: 43396_CR52
  publication-title: Nature
  doi: 10.1038/nature13705
– volume: 207
  start-page: 437
  year: 2015
  ident: 43396_CR13
  publication-title: N. Phytol.
  doi: 10.1111/nph.13264
– volume: 66
  start-page: 969
  year: 2013
  ident: 43396_CR59
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2012.12.004
– volume: 40
  start-page: 731
  year: 2012
  ident: 43396_CR27
  publication-title: Geology
  doi: 10.1130/G33091.1
SSID ssj0000391844
Score 2.5005922
Snippet The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global spatiotemporal...
The rapid diversification and high species richness of flowering plants is regarded as 'Darwin's second abominable mystery'. Today the global spatiotemporal...
Abstract The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7609
SubjectTerms 631/158/670
631/158/851
631/181
631/181/759/2467
704/158/670
Angiosperms
Arid zones
Biological Evolution
Cenozoic
Cretaceous
Diversification
Ecology
Endangered & extinct species
Extinction, Biological
Flowering
Flowering plants
Humanities and Social Sciences
Life sciences
Magnoliophyta
Magnoliopsida - genetics
Mass extinctions
multidisciplinary
Museums
Paleogene
Phylogenetics
Phylogeny
Plant diversity
Plants
Plants (botany)
Science
Science (multidisciplinary)
Species extinction
Species richness
Trends
Tropical environments
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7KQqCXkkeTuHmgQm-Nydoa29Ixj4YQaE8N5Cb0hMDiXbK7h_z7jiTvNiFpcunVloU0I81843kBfHOah1C5UGrvyEBpHZbCNLI0wotA-NxxjMnJP3-117d4c9fcPWn1FWPCcnngTLhT69racIuOsAgdNqdtjQ2i000raiOS9CWd98SYSjKYSzJdcMiSGXNxOsckE0hFxSQh2ZbimSZKBftfQ5kvPKRJ8VxtwqcBMbKzvNIt-OD7bdjIPSQfd6C5zJEVYfj5xqaBhUnsfUazsdkkxrmw-56R5LCe6d6x2E7-M9xe_fh9cV0OvRBKi6JZlLrqAoox2sB55WJJHWm0D7LWrUXbtEiUqSUhZeuaIJzTnR9L452pK14ZofkujPpp7_eBacIAMoZzaUT01mjkGHwn2kp43nW2gGpFF2WHQuGxX8VEJYc1FyrTUhEtVaKlEgV8X38zy2Uy3hx9Hsm9HhlLXKcHxHg1MF69x_gCDlfMUsO9mysyHwmSCLIyC_i6fk03JrpBdO-nyzxGItld4wL2MpPXK-Ed4TVEWcDJiut_J__3hr78jw0dwMfYyz4mOtb1IYwWD0t_RIhnYY7T4f4DFW739A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXBOUVaCsjcYOoG3uS2CcEpVWFBCcq7c3yEyGtkm13e-i_x-N4UyGgtyhxrGTGnhnP6wN4542IsfGxNsGnA0rnsZa2VbWVQcZkn3uBVJz87Xt3foFfl-2yONw2Ja1yJxOzoPajIx_5cToYJGUj0_nh4_qyJtQoiq4WCI378IBal1FKV7_sZx8LdT-XiKVWZiHk8QazZEiKikqFVFfLP_RRbtv_L1vzrzhpVj9nT-BxsRvZp4nRT-FeGPbh4YQkeZOuTnP36Ztn0H6ZMi1iccaxMbK4Iiy0NC9bryjvhf0aWJIkLjAzeEbw8s_h4uz0x8l5XbARaoey3dam6SPKBbooROOpxY6yJkTFTefQtR1Kb7hKlrPzbZTemz4slA3e8kY0VhrxAvaGcQivgJlkEyhK7zKIGJw1KDCGXnaNDKLvXQXNjkLalcbhhF-x0jmALaSeqKoTVXWmqpYVvJ_fWU9tM-4c_ZkIP4-kltf5xnj1U5cdpJ3vuBUOfTJKk9TxxnFsEb1pO8mt5BUc7Nimyz7c6NtVU8Hb-XHaQRQWMUMYr6cxCtM5bFHBy4nd85eIPtlviKqCDzv-307-_x96ffe3vIFHhFpPJY2cH8De9uo6HCbbZmuP8gL-DYmr8rE
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB9qRfBSrPVja5UIvbWLb5PZ7OSoz5YitCcLvYV8ivDYV9rXg_99k-xHEavgdTcJuzNJ5jfJzG8ADr0RMTY-1ib45KBIjzXZVtWWAsWEz73AnJx8fiHPLvHbVXu1BXzKhSlB-4XSsmzTU3TYp1ssSzpZmJzjo2RNT-Bppm7Ps3opl_O5SmY8J8QxP2Yh6JGuv9mgQtX_GL784260mJzTF7AzYkX2efi6XdgK_Ut4NlSP_LUH7dchpiKOx25sHVlc5apnaTR2vcoRLuxnz9Ke4QIzvWe5kPwruDw9-b48q8cqCLVDaje1abqItEAXhWh8JtNR1oSouJEOXSuRvOEqYWTn20jemy4slA3e8kY0lox4Ddv9ug9vgZlk_VUO5DKIGJw1KDCGjmRDQXSdq6CZ5KLdSBGeK1WsdLmqFqQHWeokS11kqamCo7nP9UCQ8c_WX7K455aZ3Lo8WN_80KOytfOSW-HQJ_iZ9hdvHMcW0ZtWErfEKziYlKXHFXerk-OYwAgl_7KCj_PrtFbyBYjpw_puaKMweVyLCt4MSp6_RHQJqSGqCo4nrT8M_vcf2v-_5u_gea5Xn5MZOT-A7c3NXXifUM3GfijT-B7y6u2f
  priority: 102
  providerName: Springer Nature
Title Diversification of flowering plants in space and time
URI https://link.springer.com/article/10.1038/s41467-023-43396-8
https://www.ncbi.nlm.nih.gov/pubmed/37993449
https://www.proquest.com/docview/2892418601
https://www.proquest.com/docview/2892946420
https://doaj.org/article/cd62b3c4d019488dac24544da5682b82
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_6gdIX8bPG1mMF3zR6yU6SzUOR69mzHLSIenBvy36KcOTq9Qr2v3d2k5yCV18SSDZLMjuz85vszvwAXlvFvc-sT5WzFKCUFlOhizrVwglP-NxyDMnJF5fl-Qyn82K-Az3dUSfA662hXeCTmq0W7379vP1ABn_SpoyL99cYzZ28T8j_qctU7MI-eaYqGOpFB_fjzMxrCmiwy53Z_ugB3OcVOW0M1TX_clWxov82GPrPEmr0TJOH8KCDlGzU6sAj2HHNY7jXkkzePoHiY7v1wnd_59jSM78I5GjUG7tahI0w7EfDaGoxjqnGssA3_xRmk7Nv4_O0I0tIDYpinaqs8iiGaDznmQ01d2qtnK9zVRo0RYnCqrwmKG1s4YW1qnLDWjur84xnWij-DPaaZeOeA1MEEuqw30shojNaIUfvKlFmwvGqMglkvVyk6SqJB0KLhYwr2lzIVqySxCqjWKVI4M3mmau2jsZ_W58GcW9ahhrY8cJy9V12JiWNLXPNDVpCqTQNWWVyLBCtKkqRa5EncNwPluz1SlJ8SZohKAxN4NXmNplUWCdRjVvetG1qpMBsmMBhO8ibN-l1I4G3_aj_6fzuD3pxZ0dHcBAY7EN6Y54fw956deNeEs5Z6wHsVvOKjmLyaQD7o9H065TOp2eXn7_Q1XE5HsQ_CIOo5L8BGWT5sQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KkUIbgg1hIoYCQ4QdTEfkmcA0JAW03pcmqluRmvCGmUDJ2p0PwU38hzlqkQ0FtvUeJYyduf3wbw2mkRQu5Cqr0jB6V0mEpT1KmRXgayz53AWJx8fFJOzvDLtJhuwK-xFiamVY4ysRPUrrXxjHyHHANSNpL8hw_zH2mcGhWjq-MIjZ4sDv3qJ7lsi_cHu4TfN5zv751-nqTDVIHUoiyWqc6rgDJDG4TIXWxOUxvtQ811adEWJUqneU02p3VFkM7pyme18c7wXORGakH73oCbpHizyFHVtFqf6cRu6xJxqM3JhNxZYCeJSDHG0qS6TOUf-q8bE_Av2_avuGyn7vbvwd3BTmUfe8K6Dxu-eQC3-smVK7ra67pdrx5CsdtndoTh8I-1gYVZnL1G-7L5LObZsO8NI8llPdONY3Gc_SM4uxaoPYbNpm38E2CabJA6ppNpRPTWaBQYfCXLXHpRVTaBfISQskOj8jgvY6a6gLmQqoeqIqiqDqpKJvB2_c68b9Nx5epPEfDrlbHFdnejPf-mBo5V1pXcCIuOjGCSck5bjgWi00UpuZE8ge0RbWrg-4W6pNIEXq0fE8fGMIxufHvRr6mR_L4sga0e3esvERXZi4h1Au9G_F9u_v8fenr1t7yE25PT4yN1dHBy-Azu8EiOeZ5yvg2by_ML_5zsqqV50REzg6_XzT2_Aa22MJE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFSKQFwqnsVQwEhwAivZ3bG9PiAEpFFLoeJApdyWfSKkyA5Nqiq_xtcx60cqBPTWm2WvV_a8Z-cF8MJpEQJzIdPekYNSOMykyavMSC8D2edOYCxO_nxcHJzgx1k-24JfQy1MTKscZGIrqF1j4xn5iBwDUjaS_IdR6NMivkymbxc_szhBKkZah3EaHYkc-fU5uW_LN4cTwvVLzqf7Xz8cZP2EgcyizFeZZmVAOUYbhGAuNqqpjPah4rqwaPMCpdO8IvvTujxI53Tpx5XxznAmmJFa0L7X4HopchZ5rJyVm_Od2HldIvZ1OmMhR0tspRIpyVimVBWZ_EMXtiMD_mXn_hWjbVXf9Dbs9DZr-q4jsjuw5eu7cKObYrmmq_228_X6HuSTLssj9AeBaRPSMI9z2GjfdDGPOTfpjzolKWZ9qmuXxtH29-HkSqD2ALbrpvYPIdVkj1QxtUwjordGo8DgS1kw6UVZ2gTYACFl-6blcXbGXLXBcyFVB1VFUFUtVJVM4NXmnUXXsuPS1e8j4DcrY7vt9kZz-l313KusK7gRFh0ZxCTxnLYcc0Sn80JyI3kCewPaVC8DluqCYhN4vnlM3BtDMrr2zVm3pkLyAccJ7Hbo3nyJKMl2RKwSeD3g_2Lz___Qo8u_5RncJL5Rnw6Pjx7DLR6pkbGM8z3YXp2e-SdkYq3M05aWU_h21czzGwfpNMc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversification+of+flowering+plants+in+space+and+time&rft.jtitle=Nature+communications&rft.au=Dimitrov%2C+Dimitar&rft.au=Xu%2C+Xiaoting&rft.au=Su%2C+Xiangyan&rft.au=Shrestha%2C+Nawal&rft.date=2023-11-22&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=7609&rft_id=info:doi/10.1038%2Fs41467-023-43396-8&rft_id=info%3Apmid%2F37993449&rft.externalDocID=37993449
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon