Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores

Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate ca...

Full description

Saved in:
Bibliographic Details
Published inNature genetics Vol. 54; no. 4; pp. 450 - 458
Main Authors Weissbrod, Omer, Kanai, Masahiro, Shi, Huwenbo, Gazal, Steven, Peyrot, Wouter J., Khera, Amit V., Okada, Yukinori, Martin, Alicia R., Finucane, Hilary K., Price, Alkes L.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.04.2022
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred + , which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred + to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred + attained similar improvements. PolyPred and PolyPred + methods that leverage fine-mapping and non-European training data significantly improve cross-population polygenic prediction accuracy when applied to diseases and complex traits in UK Biobank populations.
AbstractList Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred+, which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred+ to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred+ attained similar improvements.Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred+, which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred+ to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred+ attained similar improvements.
Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred+, which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred+ to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred+ attained similar improvements.
Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred , which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred attained similar improvements.
Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred + , which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred + to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred + attained similar improvements. PolyPred and PolyPred + methods that leverage fine-mapping and non-European training data significantly improve cross-population polygenic prediction accuracy when applied to diseases and complex traits in UK Biobank populations.
Author Kanai, Masahiro
Peyrot, Wouter J.
Weissbrod, Omer
Martin, Alicia R.
Okada, Yukinori
Finucane, Hilary K.
Price, Alkes L.
Shi, Huwenbo
Khera, Amit V.
Gazal, Steven
Author_xml – sequence: 1
  givenname: Omer
  orcidid: 0000-0001-9860-0626
  surname: Weissbrod
  fullname: Weissbrod, Omer
  email: oweissbrod@hsph.harvard.edu
  organization: Epidemiology Department, Harvard School of Public Health
– sequence: 2
  givenname: Masahiro
  orcidid: 0000-0001-5165-4408
  surname: Kanai
  fullname: Kanai, Masahiro
  organization: Broad Institute of MIT and Harvard, Department of Statistical Genetics, Osaka University Graduate School of Medicine
– sequence: 3
  givenname: Huwenbo
  orcidid: 0000-0001-9886-877X
  surname: Shi
  fullname: Shi, Huwenbo
  organization: Epidemiology Department, Harvard School of Public Health, OMNI Bioinformatics
– sequence: 4
  givenname: Steven
  surname: Gazal
  fullname: Gazal, Steven
  organization: Epidemiology Department, Harvard School of Public Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California
– sequence: 5
  givenname: Wouter J.
  orcidid: 0000-0001-7954-8383
  surname: Peyrot
  fullname: Peyrot, Wouter J.
  organization: Epidemiology Department, Harvard School of Public Health, Department of Psychiatry, Amsterdam UMC, Vrije Universiteit
– sequence: 6
  givenname: Amit V.
  surname: Khera
  fullname: Khera, Amit V.
  organization: Broad Institute of MIT and Harvard, Verve Therapeutics
– sequence: 7
  givenname: Yukinori
  orcidid: 0000-0002-0311-8472
  surname: Okada
  fullname: Okada, Yukinori
  organization: Department of Statistical Genetics, Osaka University Graduate School of Medicine, Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences
– sequence: 9
  givenname: Alicia R.
  orcidid: 0000-0003-0241-3522
  surname: Martin
  fullname: Martin, Alicia R.
  organization: Broad Institute of MIT and Harvard
– sequence: 10
  givenname: Hilary K.
  orcidid: 0000-0003-3864-9828
  surname: Finucane
  fullname: Finucane, Hilary K.
  organization: Broad Institute of MIT and Harvard, Department of Medicine, Massachusetts General Hospital
– sequence: 11
  givenname: Alkes L.
  orcidid: 0000-0002-2971-7975
  surname: Price
  fullname: Price, Alkes L.
  email: aprice@hsph.harvard.edu
  organization: Epidemiology Department, Harvard School of Public Health, Broad Institute of MIT and Harvard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35393596$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAUha2Kqjz_AIsqEptuXOz4MfYSoRaQRuqGrq2b5GZkSOzUTpD49_XMgEAsWPlxv3N1dM4xOQgxICHnnP3kTJjLLLkyhrK6pqx8aGq_kCOupKZ8xc1BuTPNqSyTQ3Kc8wNjXEpmvpFDoYQVyuoj8rjGJ0yw8WFT9T4gHWGatg8IXTUuw-ynOC0DzD6Gak7gw3bYwQzVHCs_Tik-YdWmmDN9R05xeN5g8G2VfH6schsT5lPytYch49nLeUL-_v51f31L139u7q6v1rSVRs3U2hqAMcsE74wWWlnopELbNw0y1na1VCuFfacZSFRNAxKM7Xu7soLr1oA4IT_2e4u5fwvm2Y0-tzgMEDAu2dVaGmNXNVcFvfiAPsQlheKuUKrmVkvGC_X9hVqaETs3JT9CenavMRbA7IFdEAl71_p5l8Q2ssFx5raNuX1jrjTmdo05W6T1B-nr9k9FYi_KBQ4bTG-2P1H9B0zLqbY
CitedBy_id crossref_primary_10_1097_MOL_0000000000000865
crossref_primary_10_1186_s13073_024_01304_9
crossref_primary_10_1038_s41588_024_02044_7
crossref_primary_10_1038_s41588_022_01054_7
crossref_primary_10_1093_hmg_ddac243
crossref_primary_10_5713_ab_24_0487
crossref_primary_10_1038_s41568_023_00599_x
crossref_primary_10_3389_fimmu_2022_889296
crossref_primary_10_1210_clinem_dgad456
crossref_primary_10_1016_j_cell_2024_01_023
crossref_primary_10_1002_gepi_22495
crossref_primary_10_3389_fimmu_2022_972107
crossref_primary_10_1038_s41586_023_05746_w
crossref_primary_10_1038_s41588_024_01704_y
crossref_primary_10_1038_s41588_023_01487_8
crossref_primary_10_1093_bib_bbaf048
crossref_primary_10_1073_pnas_2403210121
crossref_primary_10_1161_ATVBAHA_123_320287
crossref_primary_10_1016_j_xgen_2023_100327
crossref_primary_10_1093_nar_gkad1029
crossref_primary_10_1186_s13073_024_01345_0
crossref_primary_10_1016_j_xgen_2024_100692
crossref_primary_10_1038_s41588_022_01221_w
crossref_primary_10_1186_s13073_022_01074_2
crossref_primary_10_1126_science_abn2937
crossref_primary_10_1038_s41581_024_00886_2
crossref_primary_10_1038_s41576_023_00637_2
crossref_primary_10_1016_j_ajhg_2022_10_012
crossref_primary_10_3389_fgene_2022_906965
crossref_primary_10_1016_j_pscychresns_2024_111877
crossref_primary_10_1158_1055_9965_EPI_23_0309
crossref_primary_10_1038_s41591_023_02429_x
crossref_primary_10_1016_j_tig_2024_04_002
crossref_primary_10_1038_s41588_023_01501_z
crossref_primary_10_1146_annurev_med_042921_112629
crossref_primary_10_1038_s41467_024_45135_z
crossref_primary_10_1161_JAHA_123_033413
crossref_primary_10_1007_s12687_024_00709_8
crossref_primary_10_1016_j_xhgg_2024_100280
crossref_primary_10_1080_01621459_2024_2344703
crossref_primary_10_1186_s13073_023_01245_9
crossref_primary_10_1038_s41467_023_38930_7
crossref_primary_10_1038_s42003_025_07767_9
crossref_primary_10_1016_j_xgen_2022_100241
crossref_primary_10_1038_s41398_022_02029_2
crossref_primary_10_1016_j_ajcnut_2024_07_009
crossref_primary_10_3390_jpm13020327
crossref_primary_10_1038_s41588_023_01474_z
crossref_primary_10_1016_j_xhgg_2023_100233
crossref_primary_10_1038_s42003_023_05352_6
crossref_primary_10_1152_physrev_00024_2022
crossref_primary_10_1161_CIRCGEN_123_004272
crossref_primary_10_22204_2587_8956_2023_112_01_131_143
crossref_primary_10_1371_journal_pgen_1011212
crossref_primary_10_1016_j_ajhg_2023_08_016
crossref_primary_10_1016_j_xcrm_2022_100687
crossref_primary_10_3390_ijms25021151
crossref_primary_10_1093_ibd_izae269
crossref_primary_10_1038_s41588_024_02035_8
crossref_primary_10_1038_s41598_023_37580_5
crossref_primary_10_2337_dc22_0295
crossref_primary_10_1016_j_ajhg_2023_10_001
crossref_primary_10_1038_s41598_022_22637_8
crossref_primary_10_7554_eLife_92574
crossref_primary_10_1016_j_xgen_2023_100408
crossref_primary_10_1016_j_ccm_2024_03_002
crossref_primary_10_1017_pcm_2023_25
crossref_primary_10_1007_s00439_024_02716_8
crossref_primary_10_1016_j_ajhg_2025_01_014
crossref_primary_10_1016_j_xhgg_2023_100214
crossref_primary_10_1038_s41586_024_07708_2
crossref_primary_10_1161_CIRCRESAHA_123_321999
crossref_primary_10_1038_s41467_022_32095_5
crossref_primary_10_1111_acps_13793
crossref_primary_10_1038_s41588_023_01597_3
crossref_primary_10_1038_s41386_022_01365_7
crossref_primary_10_1038_s41582_022_00704_y
crossref_primary_10_1111_cas_16402
crossref_primary_10_1038_s41380_024_02703_5
crossref_primary_10_1016_j_xgen_2024_100539
crossref_primary_10_1016_j_ajhg_2023_09_013
crossref_primary_10_1186_s12863_023_01168_9
crossref_primary_10_1016_j_ebiom_2023_104551
crossref_primary_10_1038_s41467_023_42897_w
crossref_primary_10_1038_s41586_024_08516_4
crossref_primary_10_1038_s41588_023_01559_9
crossref_primary_10_1093_braincomms_fcad041
crossref_primary_10_1002_advs_202206343
crossref_primary_10_1186_s13073_024_01355_y
crossref_primary_10_7554_eLife_92574_3
crossref_primary_10_1038_s41398_024_02998_6
crossref_primary_10_1038_s41586_024_07510_0
crossref_primary_10_1038_s41598_024_62945_9
crossref_primary_10_1038_s41467_023_36544_7
crossref_primary_10_1038_s41588_024_01792_w
crossref_primary_10_1016_j_xgen_2024_100523
crossref_primary_10_1093_cid_ciad307
crossref_primary_10_1016_j_ajhg_2024_04_009
crossref_primary_10_1038_s41398_024_02865_4
Cites_doi 10.1016/j.je.2016.12.005
10.1093/bioinformatics/btz633
10.1038/s41467-018-04191-y
10.1016/j.ajhg.2010.11.011
10.1016/j.cell.2019.10.004
10.1016/j.cell.2020.06.045
10.1038/s41467-019-12576-w
10.1086/519795
10.1038/s41588-018-0183-z
10.1038/ng.3404
10.1038/s41576-020-0224-1
10.1038/s41576-018-0016-z
10.1038/ng.3300
10.1016/j.ajhg.2020.08.014
10.6026/97320630003139
10.1073/pnas.1510497113
10.1038/s41588-018-0101-4
10.1038/s41588-021-00931-x
10.1016/j.cell.2019.03.028
10.1016/j.ajhg.2021.02.013
10.1093/ije/dys234
10.1016/j.ajhg.2008.10.019
10.1038/s41467-019-12026-7
10.1038/s41588-018-0144-6
10.1038/s41467-019-08424-6
10.1371/journal.pgen.1009141
10.1038/s41588-018-0231-8
10.1016/j.ajhg.2020.03.013
10.1002/gepi.22050
10.7554/eLife.48376
10.1038/s41588-019-0512-x
10.1534/g3.120.401658
10.1371/journal.pone.0003395
10.1038/s41588-019-0464-1
10.1038/s41467-019-12653-0
10.1038/s41588-020-00735-5
10.1038/s41586-019-1310-4
10.1038/ng.3190
10.1038/s41588-020-00740-8
10.1038/s41467-020-15464-w
10.1016/j.cell.2019.08.051
10.1016/j.ajhg.2018.11.002
10.1038/s41576-019-0144-0
10.1016/j.cell.2020.08.008
10.1038/s41467-019-12276-5
10.1038/s41467-021-25171-9
10.1038/s41467-021-21286-1
10.1016/j.ajhg.2017.06.015
10.1038/nature14962
10.1371/journal.pgen.1009021
10.1038/nrg.2016.27
10.1038/s41467-021-24485-y
10.1038/ng.3656
10.1371/journal.pgen.1005230
10.1038/s41467-019-09718-5
10.1038/s41588-020-0580-y
10.1038/ejhg.2013.131
10.1002/gepi.22173
10.1038/ng.2232
10.1016/j.cell.2019.02.048
10.1038/s41467-019-11112-0
10.1038/s41586-018-0579-z
10.1038/s41588-019-0379-x
10.1038/s41576-018-0018-x
10.1038/nature08185
10.1038/nature15393
10.1002/gepi.22166
10.1016/j.ajhg.2015.09.001
10.1038/s41467-019-08535-0
10.1038/ng.3679
10.1371/journal.pgen.1000628
10.1371/journal.pcbi.1005589
10.1186/s13742-015-0047-8
10.1038/s41591-020-0785-8
10.1038/s41467-020-17719-y
10.1016/j.xhgg.2020.100017
10.1016/j.ajhg.2016.05.001
10.1038/ng1847
10.1016/j.ajhg.2020.05.004
10.1002/gepi.22382
10.5281/zenodo.6139679
10.1016/j.ajhg.2021.03.002
10.1002/gepi.22083
10.5281/ZENODO.3350914
10.1101/2021.06.22.21259323
ContentType Journal Article
Contributor Muto, Kaori
Nagai, Akiko
Furukawa, Yoichi
Higashiyama, Masahiko
Takahashi, Yasuo
Takahashi, Kazuhisa
Obata, Daisuke
Yoshimori, Kozo
Yamaji, Ken
Matsuda, Koichi
Kamatani, Yoichiro
Murayama, Shigeo
Obara, Wataru
Morisaki, Takayuki
Yamaguchi, Hiroki
Suzuki, Takao
Yamanashi, Yuji
Koretsune, Yukihiro
Nagayama, Satoshi
Masumoto, Akihide
Murakami, Yoshinori
Asai, Satoshi
Minami, Shiro
Sinozaki, Nobuaki
Contributor_xml – sequence: 1
  givenname: Koichi
  surname: Matsuda
  fullname: Matsuda, Koichi
– sequence: 2
  givenname: Yuji
  surname: Yamanashi
  fullname: Yamanashi, Yuji
– sequence: 3
  givenname: Yoichi
  surname: Furukawa
  fullname: Furukawa, Yoichi
– sequence: 4
  givenname: Takayuki
  surname: Morisaki
  fullname: Morisaki, Takayuki
– sequence: 5
  givenname: Yoshinori
  surname: Murakami
  fullname: Murakami, Yoshinori
– sequence: 6
  givenname: Yoichiro
  surname: Kamatani
  fullname: Kamatani, Yoichiro
– sequence: 7
  givenname: Kaori
  surname: Muto
  fullname: Muto, Kaori
– sequence: 8
  givenname: Akiko
  surname: Nagai
  fullname: Nagai, Akiko
– sequence: 9
  givenname: Wataru
  surname: Obara
  fullname: Obara, Wataru
– sequence: 10
  givenname: Ken
  surname: Yamaji
  fullname: Yamaji, Ken
– sequence: 11
  givenname: Kazuhisa
  surname: Takahashi
  fullname: Takahashi, Kazuhisa
– sequence: 12
  givenname: Satoshi
  surname: Asai
  fullname: Asai, Satoshi
– sequence: 13
  givenname: Yasuo
  surname: Takahashi
  fullname: Takahashi, Yasuo
– sequence: 14
  givenname: Takao
  surname: Suzuki
  fullname: Suzuki, Takao
– sequence: 15
  givenname: Nobuaki
  surname: Sinozaki
  fullname: Sinozaki, Nobuaki
– sequence: 16
  givenname: Hiroki
  surname: Yamaguchi
  fullname: Yamaguchi, Hiroki
– sequence: 17
  givenname: Shiro
  surname: Minami
  fullname: Minami, Shiro
– sequence: 18
  givenname: Shigeo
  surname: Murayama
  fullname: Murayama, Shigeo
– sequence: 19
  givenname: Kozo
  surname: Yoshimori
  fullname: Yoshimori, Kozo
– sequence: 20
  givenname: Satoshi
  surname: Nagayama
  fullname: Nagayama, Satoshi
– sequence: 21
  givenname: Daisuke
  surname: Obata
  fullname: Obata, Daisuke
– sequence: 22
  givenname: Masahiko
  surname: Higashiyama
  fullname: Higashiyama, Masahiko
– sequence: 23
  givenname: Akihide
  surname: Masumoto
  fullname: Masumoto, Akihide
– sequence: 24
  givenname: Yukihiro
  surname: Koretsune
  fullname: Koretsune, Yukihiro
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2022
2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
Copyright Nature Publishing Group Apr 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
– notice: Copyright Nature Publishing Group Apr 2022
CorporateAuthor The Biobank Japan Project
Biobank Japan Project
CorporateAuthor_xml – name: The Biobank Japan Project
– name: Biobank Japan Project
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/s41588-022-01036-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Research Library Prep
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1546-1718
EndPage 458
ExternalDocumentID 35393596
10_1038_s41588_022_01036_9
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GrantInformation_xml – fundername: MEXT | Japan Science and Technology Agency (JST)
  grantid: JPMJMS2021; JPMJMS2024
  funderid: https://doi.org/10.13039/501100002241
– fundername: Heiwa Nakajima Foundation (HNF)
  funderid: https://doi.org/10.13039/501100003485
– fundername: IBM Research
– fundername: P. A. Messerschmidt og Hustrus Fond
  funderid: https://doi.org/10.13039/501100008274
– fundername: NWO Veni grant (91619152)
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 19H01021; 20K21834
  funderid: https://doi.org/10.13039/501100001691
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
  grantid: K99/R00MH117229
  funderid: https://doi.org/10.13039/100000025
– fundername: U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
  grantid: 1K08HG010155; 1U01HG011719
  funderid: https://doi.org/10.13039/100000051
– fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
  grantid: R37 MH107649; R01 HG006399; U01 HG012009; U01 HG009379
  funderid: https://doi.org/10.13039/100000002
– fundername: Eric and Wendy Schmidt
– fundername: NIMH NIH HHS
  grantid: R37 MH107649
– fundername: NIMH NIH HHS
  grantid: R00 MH117229
– fundername: NHGRI NIH HHS
  grantid: U01 HG011719
– fundername: NIMH NIH HHS
  grantid: R01 MH101244
– fundername: NHGRI NIH HHS
  grantid: U01 HG012009
– fundername: NIMH NIH HHS
  grantid: K99 MH117229
– fundername: NHGRI NIH HHS
  grantid: U01 HG009379
– fundername: NHGRI NIH HHS
  grantid: K08 HG010155
– fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: NIDDK NIH HHS
  grantid: P30 DK043351
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AAHBH
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABTAH
ABUWG
ACBWK
ACGFO
ACGFS
ACIWK
ACMJI
ACNCT
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
INH
INR
IOV
ISR
ITC
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M7P
MVM
N9A
NADUK
NNMJJ
NXXTH
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
UKHRP
VQA
X7M
XJT
XOL
Y6R
YHZ
ZGI
ZXP
ZY4
~8M
~KM
AAYXX
ABFSG
ACMFV
ACSTC
AETEA
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
RC3
7X8
ID FETCH-LOGICAL-c485t-992aa009031d863659ad45e9fbbe00cd24575efd60a4e5bba4a89ff979316c8a3
IEDL.DBID 7X7
ISSN 1061-4036
1546-1718
IngestDate Thu Jul 10 22:09:24 EDT 2025
Sat Aug 23 14:59:44 EDT 2025
Mon Jul 21 06:03:36 EDT 2025
Tue Jul 01 01:50:17 EDT 2025
Thu Apr 24 22:51:38 EDT 2025
Fri Feb 21 02:39:12 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-992aa009031d863659ad45e9fbbe00cd24575efd60a4e5bba4a89ff979316c8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0241-3522
0000-0002-0311-8472
0000-0002-2971-7975
0000-0001-5165-4408
0000-0001-9886-877X
0000-0001-9860-0626
0000-0003-3864-9828
0000-0001-7954-8383
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9009299
PMID 35393596
PQID 2652196401
PQPubID 33429
PageCount 9
ParticipantIDs proquest_miscellaneous_2648897215
proquest_journals_2652196401
pubmed_primary_35393596
crossref_citationtrail_10_1038_s41588_022_01036_9
crossref_primary_10_1038_s41588_022_01036_9
springer_journals_10_1038_s41588_022_01036_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature genetics
PublicationTitleAbbrev Nat Genet
PublicationTitleAlternate Nat Genet
PublicationYear 2022
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Brown, Ye, Price, Zaitlen (CR64) 2016; 99
Hu (CR69) 2017; 13
Horikoshi (CR56) 2015; 11
Price (CR79) 2006; 38
Mostafavi (CR32) 2020; 9
Amariuta (CR15) 2020; 52
Torkamani, Wineinger, Topol (CR3) 2018; 19
Loh, Kichaev, Gazal, Schoech, Price (CR37) 2018; 50
Bycroft (CR40) 2018; 562
Nagai (CR41) 2017; 27
Chung (CR58) 2019; 10
Chun (CR59) 2020; 107
Guo (CR52) 2018; 9
Chang (CR86) 2015; 4
Bitarello, Mathieson (CR17) 2020; 10
Vilhjálmsson (CR33) 2015; 97
Lam (CR82) 2020; 36
Yang, Lee, Goddard, Visscher (CR84) 2011; 88
Mills, Rahal (CR21) 2020; 52
Gazal (CR47) 2018; 50
Cavazos, Witte (CR20) 2021; 2
Das (CR78) 2016; 48
CR7
Wang (CR14) 2020; 11
Finucane (CR74) 2015; 47
Loh (CR77) 2016; 48
Nievergelt (CR49) 2019; 10
Gurdasani (CR81) 2019; 179
Peterson (CR9) 2019; 179
Khera (CR2) 2018; 50
CR89
CR87
Purcell (CR75) 2007; 81
Pain (CR57) 2021; 17
Sved, McRae, Visscher (CR53) 2008; 83
Daetwyler, Villanueva, Woolliams (CR61) 2008; 3
Chatterjee, Shi, García-Closas (CR1) 2016; 17
Vuckovic (CR51) 2020; 182
CR83
Gurdasani, Barroso, Zeggini, Sandhu (CR12) 2019; 20
Chen (CR18) 2020; 182
Akiyama (CR76) 2019; 10
Lam (CR48) 2019; 51
(CR88) 2015; 526
Duan, Zhang, Cox, Dolan (CR44) 2008; 3
Surakka (CR55) 2015; 47
Asiki (CR42) 2013; 42
Im (CR60) 2020; 107
Zeng (CR66) 2018; 50
Ge, Chen, Ni, Feng, Smoller (CR39) 2019; 10
Galinsky (CR63) 2019; 43
Marnetto (CR16) 2020; 11
Yang, Zhou (CR72) 2020; 106
Grinde (CR8) 2019; 43
(CR65) 2015; 526
CR19
Duncan (CR11) 2019; 10
Khera (CR4) 2019; 177
Schaid, Chen, Larson (CR34) 2018; 19
Stahl (CR46) 2012; 44
Wojcik (CR29) 2019; 570
Qian (CR73) 2020; 16
Coram, Fang, Candille, Assimes, Tang (CR28) 2017; 101
Sirugo, Williams, Tishkoff (CR10) 2019; 177
Visscher, Hill (CR62) 2009; 5
Loh (CR36) 2015; 47
Mavaddat (CR5) 2019; 104
Martin (CR13) 2019; 51
Mak, Porsch, Choi, Zhou, Sham (CR71) 2017; 41
Purcell (CR45) 2009; 460
Márquez-Luna (CR70) 2021; 12
Heckerman (CR43) 2016; 113
Li, Chen, Ritchie, Moore (CR6) 2020; 21
Kuchenbaecker (CR31) 2019; 10
Lloyd-Jones (CR38) 2019; 10
Weissbrod (CR35) 2020; 52
Sakaue (CR80) 2021; 53
CR26
Sakaue (CR50) 2020; 26
CR25
CR24
CR23
CR22
Shi (CR30) 2021; 12
Gazal, Marquez-Luna, Finucane, Price (CR85) 2019; 51
Durvasula, Lohmueller (CR27) 2021; 108
Schoech (CR67) 2019; 10
Budin-Ljøsne (CR54) 2014; 22
Zhang, Privé, Vilhjálmsson, Speed (CR68) 2021; 12
AV Khera (1036_CR4) 2019; 177
AR Martin (1036_CR13) 2019; 51
TB Cavazos (1036_CR20) 2021; 2
O Pain (1036_CR57) 2021; 17
KJ Galinsky (1036_CR63) 2019; 43
BD Bitarello (1036_CR17) 2020; 10
MC Mills (1036_CR21) 2020; 52
T Amariuta (1036_CR15) 2020; 52
S Sakaue (1036_CR80) 2021; 53
P-R Loh (1036_CR37) 2018; 50
S Das (1036_CR78) 2016; 48
S Gazal (1036_CR47) 2018; 50
JA Sved (1036_CR53) 2008; 83
O Weissbrod (1036_CR35) 2020; 52
SM Purcell (1036_CR45) 2009; 460
1036_CR19
T Ge (1036_CR39) 2019; 10
K Kuchenbaecker (1036_CR31) 2019; 10
HD Daetwyler (1036_CR61) 2008; 3
1036_CR89
S Gazal (1036_CR85) 2019; 51
1036_CR87
D Marnetto (1036_CR16) 2020; 11
L Duncan (1036_CR11) 2019; 10
J Guo (1036_CR52) 2018; 9
1036_CR83
A Torkamani (1036_CR3) 2018; 19
M Horikoshi (1036_CR56) 2015; 11
KE Grinde (1036_CR8) 2019; 43
C Márquez-Luna (1036_CR70) 2021; 12
D Gurdasani (1036_CR81) 2019; 179
GL Wojcik (1036_CR29) 2019; 570
N Mavaddat (1036_CR5) 2019; 104
G Sirugo (1036_CR10) 2019; 177
Y Wang (1036_CR14) 2020; 11
S Chun (1036_CR59) 2020; 107
HK Finucane (1036_CR74) 2015; 47
I Surakka (1036_CR55) 2015; 47
1000 Genomes Project Consortium. (1036_CR65) 2015; 526
Y Hu (1036_CR69) 2017; 13
D Heckerman (1036_CR43) 2016; 113
The UK10K Consortium (1036_CR88) 2015; 526
N Chatterjee (1036_CR1) 2016; 17
W Chung (1036_CR58) 2019; 10
AP Schoech (1036_CR67) 2019; 10
CC Chang (1036_CR86) 2015; 4
RE Peterson (1036_CR9) 2019; 179
LR Lloyd-Jones (1036_CR38) 2019; 10
BJ Vilhjálmsson (1036_CR33) 2015; 97
S Purcell (1036_CR75) 2007; 81
DJ Schaid (1036_CR34) 2018; 19
D Gurdasani (1036_CR12) 2019; 20
S Duan (1036_CR44) 2008; 3
C Bycroft (1036_CR40) 2018; 562
R Li (1036_CR6) 2020; 21
J Yang (1036_CR84) 2011; 88
A Nagai (1036_CR41) 2017; 27
M Lam (1036_CR48) 2019; 51
CM Nievergelt (1036_CR49) 2019; 10
AL Price (1036_CR79) 2006; 38
TSH Mak (1036_CR71) 2017; 41
1036_CR7
1036_CR25
Q Zhang (1036_CR68) 2021; 12
1036_CR24
S Sakaue (1036_CR50) 2020; 26
M Lam (1036_CR82) 2020; 36
1036_CR23
1036_CR22
D Vuckovic (1036_CR51) 2020; 182
PM Visscher (1036_CR62) 2009; 5
P-R Loh (1036_CR36) 2015; 47
BC Brown (1036_CR64) 2016; 99
P-R Loh (1036_CR77) 2016; 48
C Im (1036_CR60) 2020; 107
EA Stahl (1036_CR46) 2012; 44
AV Khera (1036_CR2) 2018; 50
H Shi (1036_CR30) 2021; 12
M-H Chen (1036_CR18) 2020; 182
A Durvasula (1036_CR27) 2021; 108
MA Coram (1036_CR28) 2017; 101
J Zeng (1036_CR66) 2018; 50
I Budin-Ljøsne (1036_CR54) 2014; 22
H Mostafavi (1036_CR32) 2020; 9
J Qian (1036_CR73) 2020; 16
S Yang (1036_CR72) 2020; 106
M Akiyama (1036_CR76) 2019; 10
G Asiki (1036_CR42) 2013; 42
1036_CR26
References_xml – ident: CR22
– volume: 27
  start-page: S2
  year: 2017
  end-page: S8
  ident: CR41
  article-title: Overview of the BioBank Japan project: study design and profile
  publication-title: J. Epidemiol.
  doi: 10.1016/j.je.2016.12.005
– volume: 36
  start-page: 930
  year: 2020
  end-page: 933
  ident: CR82
  article-title: RICOPILI: Rapid Imputation for COnsortias PIpeLIne
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz633
– volume: 9
  start-page: 1865
  year: 2018
  ident: CR52
  article-title: Global genetic differentiation of complex traits shaped by natural selection in humans
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04191-y
– volume: 88
  start-page: 76
  year: 2011
  end-page: 82
  ident: CR84
  article-title: GCTA: a tool for genome-wide complex trait analysis
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 179
  start-page: 984
  year: 2019
  end-page: 1002
  ident: CR81
  article-title: Uganda genome resource enables insights into population history and genomic discovery in Africa
  publication-title: Cell
  doi: 10.1016/j.cell.2019.10.004
– volume: 182
  start-page: 1198
  year: 2020
  end-page: 1213
  ident: CR18
  article-title: Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.045
– volume: 10
  year: 2019
  ident: CR49
  article-title: International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12576-w
– volume: 81
  start-page: 559
  year: 2007
  end-page: 75
  ident: CR75
  article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/519795
– ident: CR87
– volume: 50
  start-page: 1219
  year: 2018
  end-page: 1224
  ident: CR2
  article-title: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0183-z
– volume: 47
  start-page: 1228
  year: 2015
  end-page: 1235
  ident: CR74
  article-title: Partitioning heritability by functional annotation using genome-wide association summary statistics
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3404
– volume: 21
  start-page: 493
  year: 2020
  end-page: 502
  ident: CR6
  article-title: Electronic health records and polygenic risk scores for predicting disease risk
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-020-0224-1
– volume: 19
  start-page: 491
  year: 2018
  end-page: 504
  ident: CR34
  article-title: From genome-wide associations to candidate causal variants by statistical fine-mapping
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0016-z
– volume: 47
  start-page: 589
  year: 2015
  end-page: 597
  ident: CR55
  article-title: The impact of low-frequency and rare variants on lipid levels
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3300
– volume: 107
  start-page: 636
  year: 2020
  end-page: 653
  ident: CR60
  article-title: Generalizability of ‘GWAS hits’ in clinical populations: lessons from childhood cancer survivors
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2020.08.014
– volume: 3
  start-page: 139
  year: 2008
  end-page: 141
  ident: CR44
  article-title: FstSNP-HapMap3: a database of SNPs with high population differentiation for HapMap3
  publication-title: Bioinformation
  doi: 10.6026/97320630003139
– volume: 113
  start-page: 7377
  year: 2016
  end-page: 7382
  ident: CR43
  article-title: Linear mixed model for heritability estimation that explicitly addresses environmental variation
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1510497113
– volume: 50
  start-page: 746
  year: 2018
  end-page: 753
  ident: CR66
  article-title: Signatures of negative selection in the genetic architecture of human complex traits
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0101-4
– volume: 53
  start-page: 1415
  year: 2021
  end-page: 1424
  ident: CR80
  article-title: A cross-population atlas of genetic associations for 220 human phenotypes
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00931-x
– ident: CR25
– volume: 177
  start-page: 587
  year: 2019
  end-page: 596
  ident: CR4
  article-title: Polygenic prediction of weight and obesity trajectories from birth to adulthood
  publication-title: Cell
  doi: 10.1016/j.cell.2019.03.028
– volume: 108
  start-page: 620
  year: 2021
  end-page: 631
  ident: CR27
  article-title: Negative selection on complex traits limits phenotype prediction accuracy between populations
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2021.02.013
– volume: 42
  start-page: 129
  year: 2013
  end-page: 141
  ident: CR42
  article-title: The general population cohort in rural south-western Uganda: a platform for communicable and non-communicable disease studies
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dys234
– volume: 83
  start-page: 737
  year: 2008
  end-page: 743
  ident: CR53
  article-title: Divergence between human populations estimated from linkage disequilibrium
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2008.10.019
– ident: CR19
– volume: 10
  start-page: 4330
  year: 2019
  ident: CR31
  article-title: The transferability of lipid loci across African, Asian and European cohorts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12026-7
– volume: 50
  start-page: 906
  year: 2018
  end-page: 908
  ident: CR37
  article-title: Mixed-model association for biobank-scale datasets
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0144-6
– volume: 10
  year: 2019
  ident: CR67
  article-title: Quantification of frequency-dependent genetic architectures in 25 UK Biobank traits reveals action of negative selection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08424-6
– volume: 16
  start-page: e1009141
  year: 2020
  ident: CR73
  article-title: A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1009141
– volume: 50
  start-page: 1600
  year: 2018
  end-page: 1607
  ident: CR47
  article-title: Functional architecture of low-frequency variants highlights strength of negative selection across coding and non-coding annotations
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0231-8
– volume: 106
  start-page: 679
  year: 2020
  end-page: 693
  ident: CR72
  article-title: Accurate and scalable construction of polygenic scores in large biobank data sets
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2020.03.013
– volume: 41
  start-page: 469
  year: 2017
  end-page: 480
  ident: CR71
  article-title: Polygenic scores via penalized regression on summary statistics
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.22050
– volume: 9
  start-page: e48376
  year: 2020
  ident: CR32
  article-title: Variable prediction accuracy of polygenic scores within an ancestry group
  publication-title: eLife
  doi: 10.7554/eLife.48376
– volume: 51
  start-page: 1670
  year: 2019
  end-page: 1678
  ident: CR48
  article-title: Comparative genetic architectures of schizophrenia in East Asian and European populations
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0512-x
– volume: 10
  start-page: 4027
  year: 2020
  end-page: 4036
  ident: CR17
  article-title: Polygenic scores for height in admixed populations
  publication-title: G3
  doi: 10.1534/g3.120.401658
– volume: 3
  start-page: e3395
  year: 2008
  ident: CR61
  article-title: Accuracy of predicting the genetic risk of disease using a genome-wide approach
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0003395
– volume: 51
  start-page: 1202
  year: 2019
  end-page: 1204
  ident: CR85
  article-title: Reconciling S-LDSC and LDAK functional enrichment estimates
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0464-1
– volume: 10
  start-page: 5086
  year: 2019
  ident: CR38
  article-title: Improved polygenic prediction by Bayesian multiple regression on summary statistics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12653-0
– volume: 52
  start-page: 1355
  year: 2020
  end-page: 1363
  ident: CR35
  article-title: Functionally informed fine-mapping and polygenic localization of complex trait heritability
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-00735-5
– volume: 570
  start-page: 514
  year: 2019
  end-page: 518
  ident: CR29
  article-title: Genetic analyses of diverse populations improves discovery for complex traits
  publication-title: Nature
  doi: 10.1038/s41586-019-1310-4
– volume: 47
  start-page: 284
  year: 2015
  end-page: 290
  ident: CR36
  article-title: Efficient Bayesian mixed-model analysis increases association power in large cohorts
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3190
– volume: 52
  start-page: 1346
  year: 2020
  end-page: 1354
  ident: CR15
  article-title: Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-00740-8
– volume: 11
  start-page: 1628
  year: 2020
  ident: CR16
  article-title: Ancestry deconvolution and partial polygenic score can improve susceptibility predictions in recently admixed individuals
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15464-w
– volume: 179
  start-page: 589
  year: 2019
  end-page: 603
  ident: CR9
  article-title: Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations
  publication-title: Cell
  doi: 10.1016/j.cell.2019.08.051
– volume: 104
  start-page: 21
  year: 2019
  end-page: 34
  ident: CR5
  article-title: Polygenic risk scores for prediction of breast cancer and breast cancer subtypes
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2018.11.002
– ident: CR26
– volume: 20
  start-page: 520
  year: 2019
  end-page: 535
  ident: CR12
  article-title: Genomics of disease risk in globally diverse populations
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0144-0
– volume: 182
  start-page: 1214
  year: 2020
  end-page: 1231.e11
  ident: CR51
  article-title: The polygenic and monogenic basis of blood traits and diseases
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.008
– volume: 10
  start-page: 4393
  year: 2019
  ident: CR76
  article-title: Characterizing rare and low-frequency height-associated variants in the Japanese population
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12276-5
– volume: 12
  start-page: 6052
  year: 2021
  ident: CR70
  article-title: Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25171-9
– volume: 12
  start-page: 1098
  year: 2021
  ident: CR30
  article-title: Population-specific causal disease effect sizes in functionally important regions impacted by selection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21286-1
– ident: CR89
– volume: 101
  start-page: 218
  year: 2017
  end-page: 226
  ident: CR28
  article-title: Leveraging multi-ethnic evidence for risk assessment of quantitative traits in minority populations
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.06.015
– volume: 526
  start-page: 82
  year: 2015
  end-page: 90
  ident: CR88
  article-title: The UK10K project identifies rare variants in health and disease
  publication-title: Nature
  doi: 10.1038/nature14962
– volume: 17
  start-page: e1009021
  year: 2021
  ident: CR57
  article-title: Evaluation of polygenic prediction methodology within a reference-standardized framework
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1009021
– volume: 17
  start-page: 392
  year: 2016
  end-page: 406
  ident: CR1
  article-title: Developing and evaluating polygenic risk prediction models for stratified disease prevention
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.27
– volume: 12
  year: 2021
  ident: CR68
  article-title: Improved genetic prediction of complex traits from individual-level data or summary statistics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24485-y
– volume: 48
  start-page: 1284
  year: 2016
  end-page: 1287
  ident: CR78
  article-title: Next-generation genotype imputation service and methods
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3656
– volume: 11
  start-page: e1005230
  year: 2015
  ident: CR56
  article-title: Discovery and fine-mapping of glycaemic and obesity-related trait loci using high-density imputation
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005230
– volume: 10
  start-page: 1776
  year: 2019
  ident: CR39
  article-title: Polygenic prediction via Bayesian regression and continuous shrinkage priors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09718-5
– volume: 52
  start-page: 242
  year: 2020
  end-page: 243
  ident: CR21
  article-title: The GWAS diversity monitor tracks diversity by disease in real time
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0580-y
– volume: 22
  start-page: 317
  year: 2014
  end-page: 321
  ident: CR54
  article-title: Data sharing in large research consortia: experiences and recommendations from ENGAGE
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/ejhg.2013.131
– volume: 43
  start-page: 180
  year: 2019
  end-page: 188
  ident: CR63
  article-title: Estimating cross-population genetic correlations of causal effect sizes
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.22173
– volume: 44
  start-page: 483
  year: 2012
  end-page: 489
  ident: CR46
  article-title: Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2232
– volume: 177
  start-page: 26
  year: 2019
  end-page: 31
  ident: CR10
  article-title: The missing diversity in human genetic studies
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.048
– ident: CR23
– volume: 10
  start-page: 3328
  year: 2019
  ident: CR11
  article-title: Analysis of polygenic risk score usage and performance in diverse human populations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11112-0
– volume: 562
  start-page: 203
  year: 2018
  end-page: 209
  ident: CR40
  article-title: The UK Biobank resource with deep phenotyping and genomic data
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– volume: 51
  start-page: 584
  year: 2019
  end-page: 591
  ident: CR13
  article-title: Clinical use of current polygenic risk scores may exacerbate health disparities
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0379-x
– volume: 19
  start-page: 581
  year: 2018
  end-page: 590
  ident: CR3
  article-title: The personal and clinical utility of polygenic risk scores
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0018-x
– volume: 460
  start-page: 748
  year: 2009
  end-page: 752
  ident: CR45
  article-title: Common polygenic variation contributes to risk of schizophrenia and bipolar disorder
  publication-title: Nature
  doi: 10.1038/nature08185
– volume: 526
  start-page: 68
  year: 2015
  end-page: 74
  ident: CR65
  article-title: A global reference for human genetic variation
  publication-title: Nature
  doi: 10.1038/nature15393
– volume: 43
  start-page: 50
  year: 2019
  end-page: 62
  ident: CR8
  article-title: Generalizing polygenic risk scores from Europeans to Hispanics/Latinos
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.22166
– volume: 97
  start-page: 576
  year: 2015
  end-page: 592
  ident: CR33
  article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2015.09.001
– volume: 10
  start-page: 569
  year: 2019
  ident: CR58
  article-title: Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08535-0
– volume: 48
  start-page: 1443
  year: 2016
  end-page: 1448
  ident: CR77
  article-title: Reference-based phasing using the Haplotype Reference Consortium panel
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3679
– volume: 5
  start-page: e1000628
  year: 2009
  ident: CR62
  article-title: The limits of individual identification from sample allele frequencies: theory and statistical analysis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000628
– volume: 13
  start-page: e1005589
  year: 2017
  ident: CR69
  article-title: Leveraging functional annotations in genetic risk prediction for human complex diseases
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005589
– volume: 4
  year: 2015
  ident: CR86
  article-title: Second-generation PLINK: rising to the challenge of larger and richer datasets
  publication-title: GigaScience
  doi: 10.1186/s13742-015-0047-8
– volume: 26
  start-page: 542
  year: 2020
  end-page: 548
  ident: CR50
  article-title: Trans-biobank analysis with 676,000 individuals elucidates the association of polygenic risk scores of complex traits with human lifespan
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0785-8
– volume: 11
  year: 2020
  ident: CR14
  article-title: Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17719-y
– volume: 2
  start-page: 100017
  year: 2021
  ident: CR20
  article-title: Inclusion of variants discovered from diverse populations improves polygenic risk score transferability
  publication-title: Hum. Genet. Genom. Adv.
  doi: 10.1016/j.xhgg.2020.100017
– volume: 99
  start-page: 76
  year: 2016
  end-page: 88
  ident: CR64
  article-title: Transethnic genetic-correlation estimates from summary statistics
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2016.05.001
– ident: CR7
– ident: CR83
– ident: CR24
– volume: 38
  start-page: 904
  year: 2006
  end-page: 909
  ident: CR79
  article-title: Principal components analysis corrects for stratification in genome-wide association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng1847
– volume: 107
  start-page: 46
  year: 2020
  end-page: 59
  ident: CR59
  article-title: Non-parametric polygenic risk prediction via partitioned GWAS summary statistics
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2020.05.004
– volume: 107
  start-page: 46
  year: 2020
  ident: 1036_CR59
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2020.05.004
– volume: 27
  start-page: S2
  year: 2017
  ident: 1036_CR41
  publication-title: J. Epidemiol.
  doi: 10.1016/j.je.2016.12.005
– volume: 38
  start-page: 904
  year: 2006
  ident: 1036_CR79
  publication-title: Nat. Genet.
  doi: 10.1038/ng1847
– volume: 179
  start-page: 984
  year: 2019
  ident: 1036_CR81
  publication-title: Cell
  doi: 10.1016/j.cell.2019.10.004
– volume: 51
  start-page: 1202
  year: 2019
  ident: 1036_CR85
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0464-1
– volume: 12
  start-page: 1098
  year: 2021
  ident: 1036_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21286-1
– volume: 16
  start-page: e1009141
  year: 2020
  ident: 1036_CR73
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1009141
– volume: 106
  start-page: 679
  year: 2020
  ident: 1036_CR72
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2020.03.013
– volume: 13
  start-page: e1005589
  year: 2017
  ident: 1036_CR69
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005589
– volume: 83
  start-page: 737
  year: 2008
  ident: 1036_CR53
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2008.10.019
– volume: 48
  start-page: 1284
  year: 2016
  ident: 1036_CR78
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3656
– volume: 562
  start-page: 203
  year: 2018
  ident: 1036_CR40
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– volume: 177
  start-page: 587
  year: 2019
  ident: 1036_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2019.03.028
– volume: 22
  start-page: 317
  year: 2014
  ident: 1036_CR54
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/ejhg.2013.131
– volume: 47
  start-page: 284
  year: 2015
  ident: 1036_CR36
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3190
– volume: 43
  start-page: 180
  year: 2019
  ident: 1036_CR63
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.22173
– volume: 50
  start-page: 746
  year: 2018
  ident: 1036_CR66
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0101-4
– volume: 52
  start-page: 1346
  year: 2020
  ident: 1036_CR15
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-00740-8
– volume: 51
  start-page: 1670
  year: 2019
  ident: 1036_CR48
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0512-x
– volume: 99
  start-page: 76
  year: 2016
  ident: 1036_CR64
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2016.05.001
– ident: 1036_CR23
  doi: 10.1002/gepi.22382
– volume: 182
  start-page: 1214
  year: 2020
  ident: 1036_CR51
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.008
– volume: 9
  start-page: e48376
  year: 2020
  ident: 1036_CR32
  publication-title: eLife
  doi: 10.7554/eLife.48376
– volume: 10
  start-page: 569
  year: 2019
  ident: 1036_CR58
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08535-0
– volume: 101
  start-page: 218
  year: 2017
  ident: 1036_CR28
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.06.015
– volume: 50
  start-page: 906
  year: 2018
  ident: 1036_CR37
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0144-6
– volume: 88
  start-page: 76
  year: 2011
  ident: 1036_CR84
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 97
  start-page: 576
  year: 2015
  ident: 1036_CR33
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2015.09.001
– volume: 526
  start-page: 82
  year: 2015
  ident: 1036_CR88
  publication-title: Nature
  doi: 10.1038/nature14962
– volume: 11
  start-page: 1628
  year: 2020
  ident: 1036_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15464-w
– ident: 1036_CR22
– volume: 12
  start-page: 6052
  year: 2021
  ident: 1036_CR70
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25171-9
– volume: 17
  start-page: e1009021
  year: 2021
  ident: 1036_CR57
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1009021
– volume: 11
  year: 2020
  ident: 1036_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17719-y
– volume: 5
  start-page: e1000628
  year: 2009
  ident: 1036_CR62
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000628
– volume: 104
  start-page: 21
  year: 2019
  ident: 1036_CR5
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2018.11.002
– volume: 12
  year: 2021
  ident: 1036_CR68
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24485-y
– volume: 21
  start-page: 493
  year: 2020
  ident: 1036_CR6
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-020-0224-1
– volume: 42
  start-page: 129
  year: 2013
  ident: 1036_CR42
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dys234
– volume: 570
  start-page: 514
  year: 2019
  ident: 1036_CR29
  publication-title: Nature
  doi: 10.1038/s41586-019-1310-4
– volume: 10
  start-page: 4330
  year: 2019
  ident: 1036_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12026-7
– ident: 1036_CR89
  doi: 10.5281/zenodo.6139679
– ident: 1036_CR25
  doi: 10.1016/j.ajhg.2021.03.002
– volume: 19
  start-page: 491
  year: 2018
  ident: 1036_CR34
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0016-z
– volume: 4
  year: 2015
  ident: 1036_CR86
  publication-title: GigaScience
  doi: 10.1186/s13742-015-0047-8
– volume: 460
  start-page: 748
  year: 2009
  ident: 1036_CR45
  publication-title: Nature
  doi: 10.1038/nature08185
– volume: 36
  start-page: 930
  year: 2020
  ident: 1036_CR82
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz633
– ident: 1036_CR19
– volume: 2
  start-page: 100017
  year: 2021
  ident: 1036_CR20
  publication-title: Hum. Genet. Genom. Adv.
  doi: 10.1016/j.xhgg.2020.100017
– volume: 10
  start-page: 3328
  year: 2019
  ident: 1036_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11112-0
– volume: 3
  start-page: 139
  year: 2008
  ident: 1036_CR44
  publication-title: Bioinformation
  doi: 10.6026/97320630003139
– volume: 179
  start-page: 589
  year: 2019
  ident: 1036_CR9
  publication-title: Cell
  doi: 10.1016/j.cell.2019.08.051
– volume: 11
  start-page: e1005230
  year: 2015
  ident: 1036_CR56
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005230
– volume: 19
  start-page: 581
  year: 2018
  ident: 1036_CR3
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0018-x
– volume: 10
  year: 2019
  ident: 1036_CR67
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08424-6
– volume: 50
  start-page: 1219
  year: 2018
  ident: 1036_CR2
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0183-z
– volume: 10
  start-page: 5086
  year: 2019
  ident: 1036_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12653-0
– volume: 52
  start-page: 242
  year: 2020
  ident: 1036_CR21
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0580-y
– ident: 1036_CR7
  doi: 10.1002/gepi.22083
– volume: 47
  start-page: 589
  year: 2015
  ident: 1036_CR55
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3300
– volume: 51
  start-page: 584
  year: 2019
  ident: 1036_CR13
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0379-x
– volume: 526
  start-page: 68
  year: 2015
  ident: 1036_CR65
  publication-title: Nature
  doi: 10.1038/nature15393
– ident: 1036_CR83
  doi: 10.5281/ZENODO.3350914
– volume: 26
  start-page: 542
  year: 2020
  ident: 1036_CR50
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0785-8
– ident: 1036_CR26
  doi: 10.1101/2021.06.22.21259323
– volume: 52
  start-page: 1355
  year: 2020
  ident: 1036_CR35
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-00735-5
– volume: 50
  start-page: 1600
  year: 2018
  ident: 1036_CR47
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0231-8
– volume: 48
  start-page: 1443
  year: 2016
  ident: 1036_CR77
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3679
– volume: 17
  start-page: 392
  year: 2016
  ident: 1036_CR1
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.27
– ident: 1036_CR24
– volume: 177
  start-page: 26
  year: 2019
  ident: 1036_CR10
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.048
– volume: 113
  start-page: 7377
  year: 2016
  ident: 1036_CR43
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1510497113
– volume: 81
  start-page: 559
  year: 2007
  ident: 1036_CR75
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/519795
– volume: 10
  start-page: 4027
  year: 2020
  ident: 1036_CR17
  publication-title: G3
  doi: 10.1534/g3.120.401658
– volume: 9
  start-page: 1865
  year: 2018
  ident: 1036_CR52
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04191-y
– volume: 10
  start-page: 4393
  year: 2019
  ident: 1036_CR76
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12276-5
– volume: 10
  start-page: 1776
  year: 2019
  ident: 1036_CR39
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09718-5
– volume: 41
  start-page: 469
  year: 2017
  ident: 1036_CR71
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.22050
– volume: 53
  start-page: 1415
  year: 2021
  ident: 1036_CR80
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00931-x
– ident: 1036_CR87
– volume: 43
  start-page: 50
  year: 2019
  ident: 1036_CR8
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.22166
– volume: 182
  start-page: 1198
  year: 2020
  ident: 1036_CR18
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.045
– volume: 107
  start-page: 636
  year: 2020
  ident: 1036_CR60
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2020.08.014
– volume: 3
  start-page: e3395
  year: 2008
  ident: 1036_CR61
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0003395
– volume: 10
  year: 2019
  ident: 1036_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12576-w
– volume: 47
  start-page: 1228
  year: 2015
  ident: 1036_CR74
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3404
– volume: 108
  start-page: 620
  year: 2021
  ident: 1036_CR27
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2021.02.013
– volume: 20
  start-page: 520
  year: 2019
  ident: 1036_CR12
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0144-0
– volume: 44
  start-page: 483
  year: 2012
  ident: 1036_CR46
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2232
SSID ssj0014408
Score 2.6568131
Snippet Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 450
SubjectTerms 631/208/2489
692/699
Accuracy
Agriculture
Animal Genetics and Genomics
Biobanks
Biomedical and Life Sciences
Biomedicine
Cancer Research
Estimates
Gene Function
Genome-Wide Association Study
Genomes
Human Genetics
Humans
Linkage Disequilibrium
Mapping
Methods
Multifactorial Inheritance - genetics
Polygenic inheritance
Polymorphism, Single Nucleotide - genetics
Populations
Risk
Risk Factors
Simulation
Training
Title Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores
URI https://link.springer.com/article/10.1038/s41588-022-01036-9
https://www.ncbi.nlm.nih.gov/pubmed/35393596
https://www.proquest.com/docview/2652196401
https://www.proquest.com/docview/2648897215
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwEB6VVkhcEC1bSlsZiRtYzeL42ScEVasKQYUQld4t8oqqluRBXg_998w4S0EVveQSJ3Fmxp7xbB_AG48nHFvZnC9CUHhAEZHbsnA8NxatebGIZUEFzl_O5Om5-LSsl6PDrR_TKqc9MW3UvnPkIz8sJSoaLfEF71e_OKFGUXR1hNB4AFvUuoykerGcD1wUtxxK4SSdkyhMuTuUmavDHhUXygjlshPSgeT6X8V0x9q8EylNCujkCTweLUf2YWD1NmyEdgceDliSN0_h8nNAqUyYQyyi6ch_Gmq98IOZ1rMhbXDG6mITMASjBFG27thF8i0ElubG_xq56q5uUMYuHKMkdNZT18v-GZyfHH8_OuUjkgJ3QtVrrnVpTE4umcIrWclaGy_qoKO1Ic-dLwVabSF6mRsRamuNMErHqHHxFtIpUz2HzbZrw0tgaFL4MtTaeWep0aQKsvAuSi9MmVsdMygmMjZubDNOP3XVpHB3pZqB9A2Svkmkb3QGb-dnVkOTjXtH703cacYF1ze34pHB6_k2LhWKf5g2dNc0Bncr6lZUZ_Bi4Or8uapONcoyg3cTm29f_v-57N4_l1fwqEwiRpk-e7C5_n0d9tGIWduDJKl4VUfFAWx9PD77-u0PNFTvsQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXVF4lpYCR4ARWE8dx40OFUKHa0m1PrdRb8CuooiQL2Qrtn-I3MuNsUlBFbz3HcZyZbzxjzwvgtccTjs1tyrdDKPGAImtuReZ4aixa83K7FhklOB8eqcmJ_HxanK7A7yEXhsIqhz0xbtS-dXRHviUUKhqtcIL3sx-cukaRd3VoodHD4iAsfuGRrdvZ_4j8fSPE3qfj3QlfdhXgTpbFnGstjEnpeiLzpcpVoY2XRdC1tSFNnRcSLZhQe5UaGQprjTSlrmuNQM6UK02O896C2zJH0aTM9N0xpIT8pH3qnaJzGblFN_q09nKrQ0WJmKTYeeqsoLj-VxFesW6veGajwttbg_tLS5V96KH1AFZC8xDu9L0rF4_g2zSgFMQeR6xGU5V_N1Tq4SszjWd9mOLYG4wNjSgYBaSyecvO4l1GYHFt_K-Rs_Z8gZg-c4yC3llHVTa7x3ByIzR-AqtN24SnwNCE8SIU2nlnqbBlGVTmXa28NCK1uk4gG8hYuWVZc_qp8yq61_Oy6klfIemrSPpKJ_B2fGfWF_W4dvTmwJ1qKeBddQnHBF6Nj1E0yd9imtBe0BjcHak6UpHAes_V8XN5EXOiVQLvBjZfTv7_tWxcv5aXcHdyfDitpvtHB8_gnohwoyijTVid_7wIz9GAmtsXEbUMvty0mPwBKF0qSg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLOkFDASnCDaxEm89gEh1LJqaak4UKm34CeqKMlCtkL71_h1zDibFFTRW89xHGcenrHn8QG8cHjCMYXJ0qn3Eg8oZUgNz22aaYPefDkNPKcC54-HYveo_HBcHa_B76EWhtIqhz0xbtSutXRHPuECDY0SOMEkrNIiPu3M3s5_pIQgRZHWAU6jF5F9v_yFx7fuzd4O8vol57P3n7d30xXCQGpLWS1SpbjWGV1V5E6KQlRKu7LyKhjjs8w6XqI344MTmS59ZYwutVQhKBTqXFipC5z3GlyfFlNJOia3x_QSipn2ZXiCzmgUIt3sS9zlpEOjifJJefSEsiBS9a9RvODpXojSRuM3uwO3V14re9eL2V1Y8809uNHjWC7vw7cDjxoR8Y5YQLc1_a6p7cNXphvH-pTFESeMDaAUjJJT2aJlJ_Few7O4tvSvkfP2dInyfWIZJcCzjjpudg_g6Epo_BDWm7bxj4ChO-O4r5R11lCTS-lF7mwQrtQ8MyokkA9krO2qxTn91GkdQ-2FrHvS10j6OpK-Vgm8Gt-Z9w0-Lh29NXCnXil7V5-LZgLPx8eophR70Y1vz2gM7pTUKalKYKPn6vi5oor10SKB1wObzyf__1o2L1_LM7iJClIf7B3uP4ZbPEobJRxtwfri55l_gr7UwjyNQsvgy1VryR8T9C6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+fine-mapping+and+multipopulation+training+data+to+improve+cross-population+polygenic+risk+scores&rft.jtitle=Nature+genetics&rft.au=Weissbrod%2C+Omer&rft.au=Kanai%2C+Masahiro&rft.au=Shi%2C+Huwenbo&rft.au=Gazal%2C+Steven&rft.date=2022-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1061-4036&rft.eissn=1546-1718&rft.volume=54&rft.issue=4&rft.spage=450&rft.epage=3&rft_id=info:doi/10.1038%2Fs41588-022-01036-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon