Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores
Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate ca...
Saved in:
Published in | Nature genetics Vol. 54; no. 4; pp. 450 - 458 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.04.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred
+
, which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred
+
to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred
+
attained similar improvements.
PolyPred and PolyPred
+
methods that leverage fine-mapping and non-European training data significantly improve cross-population polygenic prediction accuracy when applied to diseases and complex traits in UK Biobank populations. |
---|---|
AbstractList | Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred+, which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred+ to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred+ attained similar improvements.Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred+, which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred+ to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred+ attained similar improvements. Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred+, which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred+ to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred+ attained similar improvements. Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred , which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred attained similar improvements. Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred + , which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred + to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred + attained similar improvements. PolyPred and PolyPred + methods that leverage fine-mapping and non-European training data significantly improve cross-population polygenic prediction accuracy when applied to diseases and complex traits in UK Biobank populations. |
Author | Kanai, Masahiro Peyrot, Wouter J. Weissbrod, Omer Martin, Alicia R. Okada, Yukinori Finucane, Hilary K. Price, Alkes L. Shi, Huwenbo Khera, Amit V. Gazal, Steven |
Author_xml | – sequence: 1 givenname: Omer orcidid: 0000-0001-9860-0626 surname: Weissbrod fullname: Weissbrod, Omer email: oweissbrod@hsph.harvard.edu organization: Epidemiology Department, Harvard School of Public Health – sequence: 2 givenname: Masahiro orcidid: 0000-0001-5165-4408 surname: Kanai fullname: Kanai, Masahiro organization: Broad Institute of MIT and Harvard, Department of Statistical Genetics, Osaka University Graduate School of Medicine – sequence: 3 givenname: Huwenbo orcidid: 0000-0001-9886-877X surname: Shi fullname: Shi, Huwenbo organization: Epidemiology Department, Harvard School of Public Health, OMNI Bioinformatics – sequence: 4 givenname: Steven surname: Gazal fullname: Gazal, Steven organization: Epidemiology Department, Harvard School of Public Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California – sequence: 5 givenname: Wouter J. orcidid: 0000-0001-7954-8383 surname: Peyrot fullname: Peyrot, Wouter J. organization: Epidemiology Department, Harvard School of Public Health, Department of Psychiatry, Amsterdam UMC, Vrije Universiteit – sequence: 6 givenname: Amit V. surname: Khera fullname: Khera, Amit V. organization: Broad Institute of MIT and Harvard, Verve Therapeutics – sequence: 7 givenname: Yukinori orcidid: 0000-0002-0311-8472 surname: Okada fullname: Okada, Yukinori organization: Department of Statistical Genetics, Osaka University Graduate School of Medicine, Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences – sequence: 9 givenname: Alicia R. orcidid: 0000-0003-0241-3522 surname: Martin fullname: Martin, Alicia R. organization: Broad Institute of MIT and Harvard – sequence: 10 givenname: Hilary K. orcidid: 0000-0003-3864-9828 surname: Finucane fullname: Finucane, Hilary K. organization: Broad Institute of MIT and Harvard, Department of Medicine, Massachusetts General Hospital – sequence: 11 givenname: Alkes L. orcidid: 0000-0002-2971-7975 surname: Price fullname: Price, Alkes L. email: aprice@hsph.harvard.edu organization: Epidemiology Department, Harvard School of Public Health, Broad Institute of MIT and Harvard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35393596$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3DAUha2Kqjz_AIsqEptuXOz4MfYSoRaQRuqGrq2b5GZkSOzUTpD49_XMgEAsWPlxv3N1dM4xOQgxICHnnP3kTJjLLLkyhrK6pqx8aGq_kCOupKZ8xc1BuTPNqSyTQ3Kc8wNjXEpmvpFDoYQVyuoj8rjGJ0yw8WFT9T4gHWGatg8IXTUuw-ynOC0DzD6Gak7gw3bYwQzVHCs_Tik-YdWmmDN9R05xeN5g8G2VfH6schsT5lPytYch49nLeUL-_v51f31L139u7q6v1rSVRs3U2hqAMcsE74wWWlnopELbNw0y1na1VCuFfacZSFRNAxKM7Xu7soLr1oA4IT_2e4u5fwvm2Y0-tzgMEDAu2dVaGmNXNVcFvfiAPsQlheKuUKrmVkvGC_X9hVqaETs3JT9CenavMRbA7IFdEAl71_p5l8Q2ssFx5raNuX1jrjTmdo05W6T1B-nr9k9FYi_KBQ4bTG-2P1H9B0zLqbY |
CitedBy_id | crossref_primary_10_1097_MOL_0000000000000865 crossref_primary_10_1186_s13073_024_01304_9 crossref_primary_10_1038_s41588_024_02044_7 crossref_primary_10_1038_s41588_022_01054_7 crossref_primary_10_1093_hmg_ddac243 crossref_primary_10_5713_ab_24_0487 crossref_primary_10_1038_s41568_023_00599_x crossref_primary_10_3389_fimmu_2022_889296 crossref_primary_10_1210_clinem_dgad456 crossref_primary_10_1016_j_cell_2024_01_023 crossref_primary_10_1002_gepi_22495 crossref_primary_10_3389_fimmu_2022_972107 crossref_primary_10_1038_s41586_023_05746_w crossref_primary_10_1038_s41588_024_01704_y crossref_primary_10_1038_s41588_023_01487_8 crossref_primary_10_1093_bib_bbaf048 crossref_primary_10_1073_pnas_2403210121 crossref_primary_10_1161_ATVBAHA_123_320287 crossref_primary_10_1016_j_xgen_2023_100327 crossref_primary_10_1093_nar_gkad1029 crossref_primary_10_1186_s13073_024_01345_0 crossref_primary_10_1016_j_xgen_2024_100692 crossref_primary_10_1038_s41588_022_01221_w crossref_primary_10_1186_s13073_022_01074_2 crossref_primary_10_1126_science_abn2937 crossref_primary_10_1038_s41581_024_00886_2 crossref_primary_10_1038_s41576_023_00637_2 crossref_primary_10_1016_j_ajhg_2022_10_012 crossref_primary_10_3389_fgene_2022_906965 crossref_primary_10_1016_j_pscychresns_2024_111877 crossref_primary_10_1158_1055_9965_EPI_23_0309 crossref_primary_10_1038_s41591_023_02429_x crossref_primary_10_1016_j_tig_2024_04_002 crossref_primary_10_1038_s41588_023_01501_z crossref_primary_10_1146_annurev_med_042921_112629 crossref_primary_10_1038_s41467_024_45135_z crossref_primary_10_1161_JAHA_123_033413 crossref_primary_10_1007_s12687_024_00709_8 crossref_primary_10_1016_j_xhgg_2024_100280 crossref_primary_10_1080_01621459_2024_2344703 crossref_primary_10_1186_s13073_023_01245_9 crossref_primary_10_1038_s41467_023_38930_7 crossref_primary_10_1038_s42003_025_07767_9 crossref_primary_10_1016_j_xgen_2022_100241 crossref_primary_10_1038_s41398_022_02029_2 crossref_primary_10_1016_j_ajcnut_2024_07_009 crossref_primary_10_3390_jpm13020327 crossref_primary_10_1038_s41588_023_01474_z crossref_primary_10_1016_j_xhgg_2023_100233 crossref_primary_10_1038_s42003_023_05352_6 crossref_primary_10_1152_physrev_00024_2022 crossref_primary_10_1161_CIRCGEN_123_004272 crossref_primary_10_22204_2587_8956_2023_112_01_131_143 crossref_primary_10_1371_journal_pgen_1011212 crossref_primary_10_1016_j_ajhg_2023_08_016 crossref_primary_10_1016_j_xcrm_2022_100687 crossref_primary_10_3390_ijms25021151 crossref_primary_10_1093_ibd_izae269 crossref_primary_10_1038_s41588_024_02035_8 crossref_primary_10_1038_s41598_023_37580_5 crossref_primary_10_2337_dc22_0295 crossref_primary_10_1016_j_ajhg_2023_10_001 crossref_primary_10_1038_s41598_022_22637_8 crossref_primary_10_7554_eLife_92574 crossref_primary_10_1016_j_xgen_2023_100408 crossref_primary_10_1016_j_ccm_2024_03_002 crossref_primary_10_1017_pcm_2023_25 crossref_primary_10_1007_s00439_024_02716_8 crossref_primary_10_1016_j_ajhg_2025_01_014 crossref_primary_10_1016_j_xhgg_2023_100214 crossref_primary_10_1038_s41586_024_07708_2 crossref_primary_10_1161_CIRCRESAHA_123_321999 crossref_primary_10_1038_s41467_022_32095_5 crossref_primary_10_1111_acps_13793 crossref_primary_10_1038_s41588_023_01597_3 crossref_primary_10_1038_s41386_022_01365_7 crossref_primary_10_1038_s41582_022_00704_y crossref_primary_10_1111_cas_16402 crossref_primary_10_1038_s41380_024_02703_5 crossref_primary_10_1016_j_xgen_2024_100539 crossref_primary_10_1016_j_ajhg_2023_09_013 crossref_primary_10_1186_s12863_023_01168_9 crossref_primary_10_1016_j_ebiom_2023_104551 crossref_primary_10_1038_s41467_023_42897_w crossref_primary_10_1038_s41586_024_08516_4 crossref_primary_10_1038_s41588_023_01559_9 crossref_primary_10_1093_braincomms_fcad041 crossref_primary_10_1002_advs_202206343 crossref_primary_10_1186_s13073_024_01355_y crossref_primary_10_7554_eLife_92574_3 crossref_primary_10_1038_s41398_024_02998_6 crossref_primary_10_1038_s41586_024_07510_0 crossref_primary_10_1038_s41598_024_62945_9 crossref_primary_10_1038_s41467_023_36544_7 crossref_primary_10_1038_s41588_024_01792_w crossref_primary_10_1016_j_xgen_2024_100523 crossref_primary_10_1093_cid_ciad307 crossref_primary_10_1016_j_ajhg_2024_04_009 crossref_primary_10_1038_s41398_024_02865_4 |
Cites_doi | 10.1016/j.je.2016.12.005 10.1093/bioinformatics/btz633 10.1038/s41467-018-04191-y 10.1016/j.ajhg.2010.11.011 10.1016/j.cell.2019.10.004 10.1016/j.cell.2020.06.045 10.1038/s41467-019-12576-w 10.1086/519795 10.1038/s41588-018-0183-z 10.1038/ng.3404 10.1038/s41576-020-0224-1 10.1038/s41576-018-0016-z 10.1038/ng.3300 10.1016/j.ajhg.2020.08.014 10.6026/97320630003139 10.1073/pnas.1510497113 10.1038/s41588-018-0101-4 10.1038/s41588-021-00931-x 10.1016/j.cell.2019.03.028 10.1016/j.ajhg.2021.02.013 10.1093/ije/dys234 10.1016/j.ajhg.2008.10.019 10.1038/s41467-019-12026-7 10.1038/s41588-018-0144-6 10.1038/s41467-019-08424-6 10.1371/journal.pgen.1009141 10.1038/s41588-018-0231-8 10.1016/j.ajhg.2020.03.013 10.1002/gepi.22050 10.7554/eLife.48376 10.1038/s41588-019-0512-x 10.1534/g3.120.401658 10.1371/journal.pone.0003395 10.1038/s41588-019-0464-1 10.1038/s41467-019-12653-0 10.1038/s41588-020-00735-5 10.1038/s41586-019-1310-4 10.1038/ng.3190 10.1038/s41588-020-00740-8 10.1038/s41467-020-15464-w 10.1016/j.cell.2019.08.051 10.1016/j.ajhg.2018.11.002 10.1038/s41576-019-0144-0 10.1016/j.cell.2020.08.008 10.1038/s41467-019-12276-5 10.1038/s41467-021-25171-9 10.1038/s41467-021-21286-1 10.1016/j.ajhg.2017.06.015 10.1038/nature14962 10.1371/journal.pgen.1009021 10.1038/nrg.2016.27 10.1038/s41467-021-24485-y 10.1038/ng.3656 10.1371/journal.pgen.1005230 10.1038/s41467-019-09718-5 10.1038/s41588-020-0580-y 10.1038/ejhg.2013.131 10.1002/gepi.22173 10.1038/ng.2232 10.1016/j.cell.2019.02.048 10.1038/s41467-019-11112-0 10.1038/s41586-018-0579-z 10.1038/s41588-019-0379-x 10.1038/s41576-018-0018-x 10.1038/nature08185 10.1038/nature15393 10.1002/gepi.22166 10.1016/j.ajhg.2015.09.001 10.1038/s41467-019-08535-0 10.1038/ng.3679 10.1371/journal.pgen.1000628 10.1371/journal.pcbi.1005589 10.1186/s13742-015-0047-8 10.1038/s41591-020-0785-8 10.1038/s41467-020-17719-y 10.1016/j.xhgg.2020.100017 10.1016/j.ajhg.2016.05.001 10.1038/ng1847 10.1016/j.ajhg.2020.05.004 10.1002/gepi.22382 10.5281/zenodo.6139679 10.1016/j.ajhg.2021.03.002 10.1002/gepi.22083 10.5281/ZENODO.3350914 10.1101/2021.06.22.21259323 |
ContentType | Journal Article |
Contributor | Muto, Kaori Nagai, Akiko Furukawa, Yoichi Higashiyama, Masahiko Takahashi, Yasuo Takahashi, Kazuhisa Obata, Daisuke Yoshimori, Kozo Yamaji, Ken Matsuda, Koichi Kamatani, Yoichiro Murayama, Shigeo Obara, Wataru Morisaki, Takayuki Yamaguchi, Hiroki Suzuki, Takao Yamanashi, Yuji Koretsune, Yukihiro Nagayama, Satoshi Masumoto, Akihide Murakami, Yoshinori Asai, Satoshi Minami, Shiro Sinozaki, Nobuaki |
Contributor_xml | – sequence: 1 givenname: Koichi surname: Matsuda fullname: Matsuda, Koichi – sequence: 2 givenname: Yuji surname: Yamanashi fullname: Yamanashi, Yuji – sequence: 3 givenname: Yoichi surname: Furukawa fullname: Furukawa, Yoichi – sequence: 4 givenname: Takayuki surname: Morisaki fullname: Morisaki, Takayuki – sequence: 5 givenname: Yoshinori surname: Murakami fullname: Murakami, Yoshinori – sequence: 6 givenname: Yoichiro surname: Kamatani fullname: Kamatani, Yoichiro – sequence: 7 givenname: Kaori surname: Muto fullname: Muto, Kaori – sequence: 8 givenname: Akiko surname: Nagai fullname: Nagai, Akiko – sequence: 9 givenname: Wataru surname: Obara fullname: Obara, Wataru – sequence: 10 givenname: Ken surname: Yamaji fullname: Yamaji, Ken – sequence: 11 givenname: Kazuhisa surname: Takahashi fullname: Takahashi, Kazuhisa – sequence: 12 givenname: Satoshi surname: Asai fullname: Asai, Satoshi – sequence: 13 givenname: Yasuo surname: Takahashi fullname: Takahashi, Yasuo – sequence: 14 givenname: Takao surname: Suzuki fullname: Suzuki, Takao – sequence: 15 givenname: Nobuaki surname: Sinozaki fullname: Sinozaki, Nobuaki – sequence: 16 givenname: Hiroki surname: Yamaguchi fullname: Yamaguchi, Hiroki – sequence: 17 givenname: Shiro surname: Minami fullname: Minami, Shiro – sequence: 18 givenname: Shigeo surname: Murayama fullname: Murayama, Shigeo – sequence: 19 givenname: Kozo surname: Yoshimori fullname: Yoshimori, Kozo – sequence: 20 givenname: Satoshi surname: Nagayama fullname: Nagayama, Satoshi – sequence: 21 givenname: Daisuke surname: Obata fullname: Obata, Daisuke – sequence: 22 givenname: Masahiko surname: Higashiyama fullname: Higashiyama, Masahiko – sequence: 23 givenname: Akihide surname: Masumoto fullname: Masumoto, Akihide – sequence: 24 givenname: Yukihiro surname: Koretsune fullname: Koretsune, Yukihiro |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2022 2022. The Author(s), under exclusive licence to Springer Nature America, Inc. Copyright Nature Publishing Group Apr 2022 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Nature America, Inc. – notice: Copyright Nature Publishing Group Apr 2022 |
CorporateAuthor | The Biobank Japan Project Biobank Japan Project |
CorporateAuthor_xml | – name: The Biobank Japan Project – name: Biobank Japan Project |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 |
DOI | 10.1038/s41588-022-01036-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1546-1718 |
EndPage | 458 |
ExternalDocumentID | 35393596 10_1038_s41588_022_01036_9 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GrantInformation_xml | – fundername: MEXT | Japan Science and Technology Agency (JST) grantid: JPMJMS2021; JPMJMS2024 funderid: https://doi.org/10.13039/501100002241 – fundername: Heiwa Nakajima Foundation (HNF) funderid: https://doi.org/10.13039/501100003485 – fundername: IBM Research – fundername: P. A. Messerschmidt og Hustrus Fond funderid: https://doi.org/10.13039/501100008274 – fundername: NWO Veni grant (91619152) – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 19H01021; 20K21834 funderid: https://doi.org/10.13039/501100001691 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH) grantid: K99/R00MH117229 funderid: https://doi.org/10.13039/100000025 – fundername: U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI) grantid: 1K08HG010155; 1U01HG011719 funderid: https://doi.org/10.13039/100000051 – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: R37 MH107649; R01 HG006399; U01 HG012009; U01 HG009379 funderid: https://doi.org/10.13039/100000002 – fundername: Eric and Wendy Schmidt – fundername: NIMH NIH HHS grantid: R37 MH107649 – fundername: NIMH NIH HHS grantid: R00 MH117229 – fundername: NHGRI NIH HHS grantid: U01 HG011719 – fundername: NIMH NIH HHS grantid: R01 MH101244 – fundername: NHGRI NIH HHS grantid: U01 HG012009 – fundername: NIMH NIH HHS grantid: K99 MH117229 – fundername: NHGRI NIH HHS grantid: U01 HG009379 – fundername: NHGRI NIH HHS grantid: K08 HG010155 – fundername: Medical Research Council grantid: MC_PC_17228 – fundername: NIDDK NIH HHS grantid: P30 DK043351 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AAHBH AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABTAH ABUWG ACBWK ACGFO ACGFS ACIWK ACMJI ACNCT ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IH2 IHR INH INR IOV ISR ITC L7B LGEZI LK8 LOTEE M0L M1P M2O M7P MVM N9A NADUK NNMJJ NXXTH ODYON P2P PKN PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TN5 TSG TUS UKHRP VQA X7M XJT XOL Y6R YHZ ZGI ZXP ZY4 ~8M ~KM AAYXX ABFSG ACMFV ACSTC AETEA AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS PUEGO Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c485t-992aa009031d863659ad45e9fbbe00cd24575efd60a4e5bba4a89ff979316c8a3 |
IEDL.DBID | 7X7 |
ISSN | 1061-4036 1546-1718 |
IngestDate | Thu Jul 10 22:09:24 EDT 2025 Sat Aug 23 14:59:44 EDT 2025 Mon Jul 21 06:03:36 EDT 2025 Tue Jul 01 01:50:17 EDT 2025 Thu Apr 24 22:51:38 EDT 2025 Fri Feb 21 02:39:12 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Nature America, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-992aa009031d863659ad45e9fbbe00cd24575efd60a4e5bba4a89ff979316c8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0241-3522 0000-0002-0311-8472 0000-0002-2971-7975 0000-0001-5165-4408 0000-0001-9886-877X 0000-0001-9860-0626 0000-0003-3864-9828 0000-0001-7954-8383 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9009299 |
PMID | 35393596 |
PQID | 2652196401 |
PQPubID | 33429 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2648897215 proquest_journals_2652196401 pubmed_primary_35393596 crossref_citationtrail_10_1038_s41588_022_01036_9 crossref_primary_10_1038_s41588_022_01036_9 springer_journals_10_1038_s41588_022_01036_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature genetics |
PublicationTitleAbbrev | Nat Genet |
PublicationTitleAlternate | Nat Genet |
PublicationYear | 2022 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Brown, Ye, Price, Zaitlen (CR64) 2016; 99 Hu (CR69) 2017; 13 Horikoshi (CR56) 2015; 11 Price (CR79) 2006; 38 Mostafavi (CR32) 2020; 9 Amariuta (CR15) 2020; 52 Torkamani, Wineinger, Topol (CR3) 2018; 19 Loh, Kichaev, Gazal, Schoech, Price (CR37) 2018; 50 Bycroft (CR40) 2018; 562 Nagai (CR41) 2017; 27 Chung (CR58) 2019; 10 Chun (CR59) 2020; 107 Guo (CR52) 2018; 9 Chang (CR86) 2015; 4 Bitarello, Mathieson (CR17) 2020; 10 Vilhjálmsson (CR33) 2015; 97 Lam (CR82) 2020; 36 Yang, Lee, Goddard, Visscher (CR84) 2011; 88 Mills, Rahal (CR21) 2020; 52 Gazal (CR47) 2018; 50 Cavazos, Witte (CR20) 2021; 2 Das (CR78) 2016; 48 CR7 Wang (CR14) 2020; 11 Finucane (CR74) 2015; 47 Loh (CR77) 2016; 48 Nievergelt (CR49) 2019; 10 Gurdasani (CR81) 2019; 179 Peterson (CR9) 2019; 179 Khera (CR2) 2018; 50 CR89 CR87 Purcell (CR75) 2007; 81 Pain (CR57) 2021; 17 Sved, McRae, Visscher (CR53) 2008; 83 Daetwyler, Villanueva, Woolliams (CR61) 2008; 3 Chatterjee, Shi, García-Closas (CR1) 2016; 17 Vuckovic (CR51) 2020; 182 CR83 Gurdasani, Barroso, Zeggini, Sandhu (CR12) 2019; 20 Chen (CR18) 2020; 182 Akiyama (CR76) 2019; 10 Lam (CR48) 2019; 51 (CR88) 2015; 526 Duan, Zhang, Cox, Dolan (CR44) 2008; 3 Surakka (CR55) 2015; 47 Asiki (CR42) 2013; 42 Im (CR60) 2020; 107 Zeng (CR66) 2018; 50 Ge, Chen, Ni, Feng, Smoller (CR39) 2019; 10 Galinsky (CR63) 2019; 43 Marnetto (CR16) 2020; 11 Yang, Zhou (CR72) 2020; 106 Grinde (CR8) 2019; 43 (CR65) 2015; 526 CR19 Duncan (CR11) 2019; 10 Khera (CR4) 2019; 177 Schaid, Chen, Larson (CR34) 2018; 19 Stahl (CR46) 2012; 44 Wojcik (CR29) 2019; 570 Qian (CR73) 2020; 16 Coram, Fang, Candille, Assimes, Tang (CR28) 2017; 101 Sirugo, Williams, Tishkoff (CR10) 2019; 177 Visscher, Hill (CR62) 2009; 5 Loh (CR36) 2015; 47 Mavaddat (CR5) 2019; 104 Martin (CR13) 2019; 51 Mak, Porsch, Choi, Zhou, Sham (CR71) 2017; 41 Purcell (CR45) 2009; 460 Márquez-Luna (CR70) 2021; 12 Heckerman (CR43) 2016; 113 Li, Chen, Ritchie, Moore (CR6) 2020; 21 Kuchenbaecker (CR31) 2019; 10 Lloyd-Jones (CR38) 2019; 10 Weissbrod (CR35) 2020; 52 Sakaue (CR80) 2021; 53 CR26 Sakaue (CR50) 2020; 26 CR25 CR24 CR23 CR22 Shi (CR30) 2021; 12 Gazal, Marquez-Luna, Finucane, Price (CR85) 2019; 51 Durvasula, Lohmueller (CR27) 2021; 108 Schoech (CR67) 2019; 10 Budin-Ljøsne (CR54) 2014; 22 Zhang, Privé, Vilhjálmsson, Speed (CR68) 2021; 12 AV Khera (1036_CR4) 2019; 177 AR Martin (1036_CR13) 2019; 51 TB Cavazos (1036_CR20) 2021; 2 O Pain (1036_CR57) 2021; 17 KJ Galinsky (1036_CR63) 2019; 43 BD Bitarello (1036_CR17) 2020; 10 MC Mills (1036_CR21) 2020; 52 T Amariuta (1036_CR15) 2020; 52 S Sakaue (1036_CR80) 2021; 53 P-R Loh (1036_CR37) 2018; 50 S Das (1036_CR78) 2016; 48 S Gazal (1036_CR47) 2018; 50 JA Sved (1036_CR53) 2008; 83 O Weissbrod (1036_CR35) 2020; 52 SM Purcell (1036_CR45) 2009; 460 1036_CR19 T Ge (1036_CR39) 2019; 10 K Kuchenbaecker (1036_CR31) 2019; 10 HD Daetwyler (1036_CR61) 2008; 3 1036_CR89 S Gazal (1036_CR85) 2019; 51 1036_CR87 D Marnetto (1036_CR16) 2020; 11 L Duncan (1036_CR11) 2019; 10 J Guo (1036_CR52) 2018; 9 1036_CR83 A Torkamani (1036_CR3) 2018; 19 M Horikoshi (1036_CR56) 2015; 11 KE Grinde (1036_CR8) 2019; 43 C Márquez-Luna (1036_CR70) 2021; 12 D Gurdasani (1036_CR81) 2019; 179 GL Wojcik (1036_CR29) 2019; 570 N Mavaddat (1036_CR5) 2019; 104 G Sirugo (1036_CR10) 2019; 177 Y Wang (1036_CR14) 2020; 11 S Chun (1036_CR59) 2020; 107 HK Finucane (1036_CR74) 2015; 47 I Surakka (1036_CR55) 2015; 47 1000 Genomes Project Consortium. (1036_CR65) 2015; 526 Y Hu (1036_CR69) 2017; 13 D Heckerman (1036_CR43) 2016; 113 The UK10K Consortium (1036_CR88) 2015; 526 N Chatterjee (1036_CR1) 2016; 17 W Chung (1036_CR58) 2019; 10 AP Schoech (1036_CR67) 2019; 10 CC Chang (1036_CR86) 2015; 4 RE Peterson (1036_CR9) 2019; 179 LR Lloyd-Jones (1036_CR38) 2019; 10 BJ Vilhjálmsson (1036_CR33) 2015; 97 S Purcell (1036_CR75) 2007; 81 DJ Schaid (1036_CR34) 2018; 19 D Gurdasani (1036_CR12) 2019; 20 S Duan (1036_CR44) 2008; 3 C Bycroft (1036_CR40) 2018; 562 R Li (1036_CR6) 2020; 21 J Yang (1036_CR84) 2011; 88 A Nagai (1036_CR41) 2017; 27 M Lam (1036_CR48) 2019; 51 CM Nievergelt (1036_CR49) 2019; 10 AL Price (1036_CR79) 2006; 38 TSH Mak (1036_CR71) 2017; 41 1036_CR7 1036_CR25 Q Zhang (1036_CR68) 2021; 12 1036_CR24 S Sakaue (1036_CR50) 2020; 26 M Lam (1036_CR82) 2020; 36 1036_CR23 1036_CR22 D Vuckovic (1036_CR51) 2020; 182 PM Visscher (1036_CR62) 2009; 5 P-R Loh (1036_CR36) 2015; 47 BC Brown (1036_CR64) 2016; 99 P-R Loh (1036_CR77) 2016; 48 C Im (1036_CR60) 2020; 107 EA Stahl (1036_CR46) 2012; 44 AV Khera (1036_CR2) 2018; 50 H Shi (1036_CR30) 2021; 12 M-H Chen (1036_CR18) 2020; 182 A Durvasula (1036_CR27) 2021; 108 MA Coram (1036_CR28) 2017; 101 J Zeng (1036_CR66) 2018; 50 I Budin-Ljøsne (1036_CR54) 2014; 22 H Mostafavi (1036_CR32) 2020; 9 J Qian (1036_CR73) 2020; 16 S Yang (1036_CR72) 2020; 106 M Akiyama (1036_CR76) 2019; 10 G Asiki (1036_CR42) 2013; 42 1036_CR26 |
References_xml | – ident: CR22 – volume: 27 start-page: S2 year: 2017 end-page: S8 ident: CR41 article-title: Overview of the BioBank Japan project: study design and profile publication-title: J. Epidemiol. doi: 10.1016/j.je.2016.12.005 – volume: 36 start-page: 930 year: 2020 end-page: 933 ident: CR82 article-title: RICOPILI: Rapid Imputation for COnsortias PIpeLIne publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz633 – volume: 9 start-page: 1865 year: 2018 ident: CR52 article-title: Global genetic differentiation of complex traits shaped by natural selection in humans publication-title: Nat. Commun. doi: 10.1038/s41467-018-04191-y – volume: 88 start-page: 76 year: 2011 end-page: 82 ident: CR84 article-title: GCTA: a tool for genome-wide complex trait analysis publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2010.11.011 – volume: 179 start-page: 984 year: 2019 end-page: 1002 ident: CR81 article-title: Uganda genome resource enables insights into population history and genomic discovery in Africa publication-title: Cell doi: 10.1016/j.cell.2019.10.004 – volume: 182 start-page: 1198 year: 2020 end-page: 1213 ident: CR18 article-title: Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations publication-title: Cell doi: 10.1016/j.cell.2020.06.045 – volume: 10 year: 2019 ident: CR49 article-title: International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci publication-title: Nat. Commun. doi: 10.1038/s41467-019-12576-w – volume: 81 start-page: 559 year: 2007 end-page: 75 ident: CR75 article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses publication-title: Am. J. Hum. Genet. doi: 10.1086/519795 – ident: CR87 – volume: 50 start-page: 1219 year: 2018 end-page: 1224 ident: CR2 article-title: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations publication-title: Nat. Genet. doi: 10.1038/s41588-018-0183-z – volume: 47 start-page: 1228 year: 2015 end-page: 1235 ident: CR74 article-title: Partitioning heritability by functional annotation using genome-wide association summary statistics publication-title: Nat. Genet. doi: 10.1038/ng.3404 – volume: 21 start-page: 493 year: 2020 end-page: 502 ident: CR6 article-title: Electronic health records and polygenic risk scores for predicting disease risk publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-0224-1 – volume: 19 start-page: 491 year: 2018 end-page: 504 ident: CR34 article-title: From genome-wide associations to candidate causal variants by statistical fine-mapping publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0016-z – volume: 47 start-page: 589 year: 2015 end-page: 597 ident: CR55 article-title: The impact of low-frequency and rare variants on lipid levels publication-title: Nat. Genet. doi: 10.1038/ng.3300 – volume: 107 start-page: 636 year: 2020 end-page: 653 ident: CR60 article-title: Generalizability of ‘GWAS hits’ in clinical populations: lessons from childhood cancer survivors publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2020.08.014 – volume: 3 start-page: 139 year: 2008 end-page: 141 ident: CR44 article-title: FstSNP-HapMap3: a database of SNPs with high population differentiation for HapMap3 publication-title: Bioinformation doi: 10.6026/97320630003139 – volume: 113 start-page: 7377 year: 2016 end-page: 7382 ident: CR43 article-title: Linear mixed model for heritability estimation that explicitly addresses environmental variation publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1510497113 – volume: 50 start-page: 746 year: 2018 end-page: 753 ident: CR66 article-title: Signatures of negative selection in the genetic architecture of human complex traits publication-title: Nat. Genet. doi: 10.1038/s41588-018-0101-4 – volume: 53 start-page: 1415 year: 2021 end-page: 1424 ident: CR80 article-title: A cross-population atlas of genetic associations for 220 human phenotypes publication-title: Nat. Genet. doi: 10.1038/s41588-021-00931-x – ident: CR25 – volume: 177 start-page: 587 year: 2019 end-page: 596 ident: CR4 article-title: Polygenic prediction of weight and obesity trajectories from birth to adulthood publication-title: Cell doi: 10.1016/j.cell.2019.03.028 – volume: 108 start-page: 620 year: 2021 end-page: 631 ident: CR27 article-title: Negative selection on complex traits limits phenotype prediction accuracy between populations publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2021.02.013 – volume: 42 start-page: 129 year: 2013 end-page: 141 ident: CR42 article-title: The general population cohort in rural south-western Uganda: a platform for communicable and non-communicable disease studies publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dys234 – volume: 83 start-page: 737 year: 2008 end-page: 743 ident: CR53 article-title: Divergence between human populations estimated from linkage disequilibrium publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2008.10.019 – ident: CR19 – volume: 10 start-page: 4330 year: 2019 ident: CR31 article-title: The transferability of lipid loci across African, Asian and European cohorts publication-title: Nat. Commun. doi: 10.1038/s41467-019-12026-7 – volume: 50 start-page: 906 year: 2018 end-page: 908 ident: CR37 article-title: Mixed-model association for biobank-scale datasets publication-title: Nat. Genet. doi: 10.1038/s41588-018-0144-6 – volume: 10 year: 2019 ident: CR67 article-title: Quantification of frequency-dependent genetic architectures in 25 UK Biobank traits reveals action of negative selection publication-title: Nat. Commun. doi: 10.1038/s41467-019-08424-6 – volume: 16 start-page: e1009141 year: 2020 ident: CR73 article-title: A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1009141 – volume: 50 start-page: 1600 year: 2018 end-page: 1607 ident: CR47 article-title: Functional architecture of low-frequency variants highlights strength of negative selection across coding and non-coding annotations publication-title: Nat. Genet. doi: 10.1038/s41588-018-0231-8 – volume: 106 start-page: 679 year: 2020 end-page: 693 ident: CR72 article-title: Accurate and scalable construction of polygenic scores in large biobank data sets publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2020.03.013 – volume: 41 start-page: 469 year: 2017 end-page: 480 ident: CR71 article-title: Polygenic scores via penalized regression on summary statistics publication-title: Genet. Epidemiol. doi: 10.1002/gepi.22050 – volume: 9 start-page: e48376 year: 2020 ident: CR32 article-title: Variable prediction accuracy of polygenic scores within an ancestry group publication-title: eLife doi: 10.7554/eLife.48376 – volume: 51 start-page: 1670 year: 2019 end-page: 1678 ident: CR48 article-title: Comparative genetic architectures of schizophrenia in East Asian and European populations publication-title: Nat. Genet. doi: 10.1038/s41588-019-0512-x – volume: 10 start-page: 4027 year: 2020 end-page: 4036 ident: CR17 article-title: Polygenic scores for height in admixed populations publication-title: G3 doi: 10.1534/g3.120.401658 – volume: 3 start-page: e3395 year: 2008 ident: CR61 article-title: Accuracy of predicting the genetic risk of disease using a genome-wide approach publication-title: PloS ONE doi: 10.1371/journal.pone.0003395 – volume: 51 start-page: 1202 year: 2019 end-page: 1204 ident: CR85 article-title: Reconciling S-LDSC and LDAK functional enrichment estimates publication-title: Nat. Genet. doi: 10.1038/s41588-019-0464-1 – volume: 10 start-page: 5086 year: 2019 ident: CR38 article-title: Improved polygenic prediction by Bayesian multiple regression on summary statistics publication-title: Nat. Commun. doi: 10.1038/s41467-019-12653-0 – volume: 52 start-page: 1355 year: 2020 end-page: 1363 ident: CR35 article-title: Functionally informed fine-mapping and polygenic localization of complex trait heritability publication-title: Nat. Genet. doi: 10.1038/s41588-020-00735-5 – volume: 570 start-page: 514 year: 2019 end-page: 518 ident: CR29 article-title: Genetic analyses of diverse populations improves discovery for complex traits publication-title: Nature doi: 10.1038/s41586-019-1310-4 – volume: 47 start-page: 284 year: 2015 end-page: 290 ident: CR36 article-title: Efficient Bayesian mixed-model analysis increases association power in large cohorts publication-title: Nat. Genet. doi: 10.1038/ng.3190 – volume: 52 start-page: 1346 year: 2020 end-page: 1354 ident: CR15 article-title: Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements publication-title: Nat. Genet. doi: 10.1038/s41588-020-00740-8 – volume: 11 start-page: 1628 year: 2020 ident: CR16 article-title: Ancestry deconvolution and partial polygenic score can improve susceptibility predictions in recently admixed individuals publication-title: Nat. Commun. doi: 10.1038/s41467-020-15464-w – volume: 179 start-page: 589 year: 2019 end-page: 603 ident: CR9 article-title: Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations publication-title: Cell doi: 10.1016/j.cell.2019.08.051 – volume: 104 start-page: 21 year: 2019 end-page: 34 ident: CR5 article-title: Polygenic risk scores for prediction of breast cancer and breast cancer subtypes publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2018.11.002 – ident: CR26 – volume: 20 start-page: 520 year: 2019 end-page: 535 ident: CR12 article-title: Genomics of disease risk in globally diverse populations publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0144-0 – volume: 182 start-page: 1214 year: 2020 end-page: 1231.e11 ident: CR51 article-title: The polygenic and monogenic basis of blood traits and diseases publication-title: Cell doi: 10.1016/j.cell.2020.08.008 – volume: 10 start-page: 4393 year: 2019 ident: CR76 article-title: Characterizing rare and low-frequency height-associated variants in the Japanese population publication-title: Nat. Commun. doi: 10.1038/s41467-019-12276-5 – volume: 12 start-page: 6052 year: 2021 ident: CR70 article-title: Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets publication-title: Nat. Commun. doi: 10.1038/s41467-021-25171-9 – volume: 12 start-page: 1098 year: 2021 ident: CR30 article-title: Population-specific causal disease effect sizes in functionally important regions impacted by selection publication-title: Nat. Commun. doi: 10.1038/s41467-021-21286-1 – ident: CR89 – volume: 101 start-page: 218 year: 2017 end-page: 226 ident: CR28 article-title: Leveraging multi-ethnic evidence for risk assessment of quantitative traits in minority populations publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2017.06.015 – volume: 526 start-page: 82 year: 2015 end-page: 90 ident: CR88 article-title: The UK10K project identifies rare variants in health and disease publication-title: Nature doi: 10.1038/nature14962 – volume: 17 start-page: e1009021 year: 2021 ident: CR57 article-title: Evaluation of polygenic prediction methodology within a reference-standardized framework publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1009021 – volume: 17 start-page: 392 year: 2016 end-page: 406 ident: CR1 article-title: Developing and evaluating polygenic risk prediction models for stratified disease prevention publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.27 – volume: 12 year: 2021 ident: CR68 article-title: Improved genetic prediction of complex traits from individual-level data or summary statistics publication-title: Nat. Commun. doi: 10.1038/s41467-021-24485-y – volume: 48 start-page: 1284 year: 2016 end-page: 1287 ident: CR78 article-title: Next-generation genotype imputation service and methods publication-title: Nat. Genet. doi: 10.1038/ng.3656 – volume: 11 start-page: e1005230 year: 2015 ident: CR56 article-title: Discovery and fine-mapping of glycaemic and obesity-related trait loci using high-density imputation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005230 – volume: 10 start-page: 1776 year: 2019 ident: CR39 article-title: Polygenic prediction via Bayesian regression and continuous shrinkage priors publication-title: Nat. Commun. doi: 10.1038/s41467-019-09718-5 – volume: 52 start-page: 242 year: 2020 end-page: 243 ident: CR21 article-title: The GWAS diversity monitor tracks diversity by disease in real time publication-title: Nat. Genet. doi: 10.1038/s41588-020-0580-y – volume: 22 start-page: 317 year: 2014 end-page: 321 ident: CR54 article-title: Data sharing in large research consortia: experiences and recommendations from ENGAGE publication-title: Eur. J. Hum. Genet. doi: 10.1038/ejhg.2013.131 – volume: 43 start-page: 180 year: 2019 end-page: 188 ident: CR63 article-title: Estimating cross-population genetic correlations of causal effect sizes publication-title: Genet. Epidemiol. doi: 10.1002/gepi.22173 – volume: 44 start-page: 483 year: 2012 end-page: 489 ident: CR46 article-title: Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis publication-title: Nat. Genet. doi: 10.1038/ng.2232 – volume: 177 start-page: 26 year: 2019 end-page: 31 ident: CR10 article-title: The missing diversity in human genetic studies publication-title: Cell doi: 10.1016/j.cell.2019.02.048 – ident: CR23 – volume: 10 start-page: 3328 year: 2019 ident: CR11 article-title: Analysis of polygenic risk score usage and performance in diverse human populations publication-title: Nat. Commun. doi: 10.1038/s41467-019-11112-0 – volume: 562 start-page: 203 year: 2018 end-page: 209 ident: CR40 article-title: The UK Biobank resource with deep phenotyping and genomic data publication-title: Nature doi: 10.1038/s41586-018-0579-z – volume: 51 start-page: 584 year: 2019 end-page: 591 ident: CR13 article-title: Clinical use of current polygenic risk scores may exacerbate health disparities publication-title: Nat. Genet. doi: 10.1038/s41588-019-0379-x – volume: 19 start-page: 581 year: 2018 end-page: 590 ident: CR3 article-title: The personal and clinical utility of polygenic risk scores publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0018-x – volume: 460 start-page: 748 year: 2009 end-page: 752 ident: CR45 article-title: Common polygenic variation contributes to risk of schizophrenia and bipolar disorder publication-title: Nature doi: 10.1038/nature08185 – volume: 526 start-page: 68 year: 2015 end-page: 74 ident: CR65 article-title: A global reference for human genetic variation publication-title: Nature doi: 10.1038/nature15393 – volume: 43 start-page: 50 year: 2019 end-page: 62 ident: CR8 article-title: Generalizing polygenic risk scores from Europeans to Hispanics/Latinos publication-title: Genet. Epidemiol. doi: 10.1002/gepi.22166 – volume: 97 start-page: 576 year: 2015 end-page: 592 ident: CR33 article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2015.09.001 – volume: 10 start-page: 569 year: 2019 ident: CR58 article-title: Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes publication-title: Nat. Commun. doi: 10.1038/s41467-019-08535-0 – volume: 48 start-page: 1443 year: 2016 end-page: 1448 ident: CR77 article-title: Reference-based phasing using the Haplotype Reference Consortium panel publication-title: Nat. Genet. doi: 10.1038/ng.3679 – volume: 5 start-page: e1000628 year: 2009 ident: CR62 article-title: The limits of individual identification from sample allele frequencies: theory and statistical analysis publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000628 – volume: 13 start-page: e1005589 year: 2017 ident: CR69 article-title: Leveraging functional annotations in genetic risk prediction for human complex diseases publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005589 – volume: 4 year: 2015 ident: CR86 article-title: Second-generation PLINK: rising to the challenge of larger and richer datasets publication-title: GigaScience doi: 10.1186/s13742-015-0047-8 – volume: 26 start-page: 542 year: 2020 end-page: 548 ident: CR50 article-title: Trans-biobank analysis with 676,000 individuals elucidates the association of polygenic risk scores of complex traits with human lifespan publication-title: Nat. Med. doi: 10.1038/s41591-020-0785-8 – volume: 11 year: 2020 ident: CR14 article-title: Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations publication-title: Nat. Commun. doi: 10.1038/s41467-020-17719-y – volume: 2 start-page: 100017 year: 2021 ident: CR20 article-title: Inclusion of variants discovered from diverse populations improves polygenic risk score transferability publication-title: Hum. Genet. Genom. Adv. doi: 10.1016/j.xhgg.2020.100017 – volume: 99 start-page: 76 year: 2016 end-page: 88 ident: CR64 article-title: Transethnic genetic-correlation estimates from summary statistics publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2016.05.001 – ident: CR7 – ident: CR83 – ident: CR24 – volume: 38 start-page: 904 year: 2006 end-page: 909 ident: CR79 article-title: Principal components analysis corrects for stratification in genome-wide association studies publication-title: Nat. Genet. doi: 10.1038/ng1847 – volume: 107 start-page: 46 year: 2020 end-page: 59 ident: CR59 article-title: Non-parametric polygenic risk prediction via partitioned GWAS summary statistics publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2020.05.004 – volume: 107 start-page: 46 year: 2020 ident: 1036_CR59 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2020.05.004 – volume: 27 start-page: S2 year: 2017 ident: 1036_CR41 publication-title: J. Epidemiol. doi: 10.1016/j.je.2016.12.005 – volume: 38 start-page: 904 year: 2006 ident: 1036_CR79 publication-title: Nat. Genet. doi: 10.1038/ng1847 – volume: 179 start-page: 984 year: 2019 ident: 1036_CR81 publication-title: Cell doi: 10.1016/j.cell.2019.10.004 – volume: 51 start-page: 1202 year: 2019 ident: 1036_CR85 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0464-1 – volume: 12 start-page: 1098 year: 2021 ident: 1036_CR30 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21286-1 – volume: 16 start-page: e1009141 year: 2020 ident: 1036_CR73 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1009141 – volume: 106 start-page: 679 year: 2020 ident: 1036_CR72 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2020.03.013 – volume: 13 start-page: e1005589 year: 2017 ident: 1036_CR69 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005589 – volume: 83 start-page: 737 year: 2008 ident: 1036_CR53 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2008.10.019 – volume: 48 start-page: 1284 year: 2016 ident: 1036_CR78 publication-title: Nat. Genet. doi: 10.1038/ng.3656 – volume: 562 start-page: 203 year: 2018 ident: 1036_CR40 publication-title: Nature doi: 10.1038/s41586-018-0579-z – volume: 177 start-page: 587 year: 2019 ident: 1036_CR4 publication-title: Cell doi: 10.1016/j.cell.2019.03.028 – volume: 22 start-page: 317 year: 2014 ident: 1036_CR54 publication-title: Eur. J. Hum. Genet. doi: 10.1038/ejhg.2013.131 – volume: 47 start-page: 284 year: 2015 ident: 1036_CR36 publication-title: Nat. Genet. doi: 10.1038/ng.3190 – volume: 43 start-page: 180 year: 2019 ident: 1036_CR63 publication-title: Genet. Epidemiol. doi: 10.1002/gepi.22173 – volume: 50 start-page: 746 year: 2018 ident: 1036_CR66 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0101-4 – volume: 52 start-page: 1346 year: 2020 ident: 1036_CR15 publication-title: Nat. Genet. doi: 10.1038/s41588-020-00740-8 – volume: 51 start-page: 1670 year: 2019 ident: 1036_CR48 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0512-x – volume: 99 start-page: 76 year: 2016 ident: 1036_CR64 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2016.05.001 – ident: 1036_CR23 doi: 10.1002/gepi.22382 – volume: 182 start-page: 1214 year: 2020 ident: 1036_CR51 publication-title: Cell doi: 10.1016/j.cell.2020.08.008 – volume: 9 start-page: e48376 year: 2020 ident: 1036_CR32 publication-title: eLife doi: 10.7554/eLife.48376 – volume: 10 start-page: 569 year: 2019 ident: 1036_CR58 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08535-0 – volume: 101 start-page: 218 year: 2017 ident: 1036_CR28 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2017.06.015 – volume: 50 start-page: 906 year: 2018 ident: 1036_CR37 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0144-6 – volume: 88 start-page: 76 year: 2011 ident: 1036_CR84 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2010.11.011 – volume: 97 start-page: 576 year: 2015 ident: 1036_CR33 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2015.09.001 – volume: 526 start-page: 82 year: 2015 ident: 1036_CR88 publication-title: Nature doi: 10.1038/nature14962 – volume: 11 start-page: 1628 year: 2020 ident: 1036_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15464-w – ident: 1036_CR22 – volume: 12 start-page: 6052 year: 2021 ident: 1036_CR70 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25171-9 – volume: 17 start-page: e1009021 year: 2021 ident: 1036_CR57 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1009021 – volume: 11 year: 2020 ident: 1036_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17719-y – volume: 5 start-page: e1000628 year: 2009 ident: 1036_CR62 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000628 – volume: 104 start-page: 21 year: 2019 ident: 1036_CR5 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2018.11.002 – volume: 12 year: 2021 ident: 1036_CR68 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24485-y – volume: 21 start-page: 493 year: 2020 ident: 1036_CR6 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-0224-1 – volume: 42 start-page: 129 year: 2013 ident: 1036_CR42 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dys234 – volume: 570 start-page: 514 year: 2019 ident: 1036_CR29 publication-title: Nature doi: 10.1038/s41586-019-1310-4 – volume: 10 start-page: 4330 year: 2019 ident: 1036_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12026-7 – ident: 1036_CR89 doi: 10.5281/zenodo.6139679 – ident: 1036_CR25 doi: 10.1016/j.ajhg.2021.03.002 – volume: 19 start-page: 491 year: 2018 ident: 1036_CR34 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0016-z – volume: 4 year: 2015 ident: 1036_CR86 publication-title: GigaScience doi: 10.1186/s13742-015-0047-8 – volume: 460 start-page: 748 year: 2009 ident: 1036_CR45 publication-title: Nature doi: 10.1038/nature08185 – volume: 36 start-page: 930 year: 2020 ident: 1036_CR82 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz633 – ident: 1036_CR19 – volume: 2 start-page: 100017 year: 2021 ident: 1036_CR20 publication-title: Hum. Genet. Genom. Adv. doi: 10.1016/j.xhgg.2020.100017 – volume: 10 start-page: 3328 year: 2019 ident: 1036_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11112-0 – volume: 3 start-page: 139 year: 2008 ident: 1036_CR44 publication-title: Bioinformation doi: 10.6026/97320630003139 – volume: 179 start-page: 589 year: 2019 ident: 1036_CR9 publication-title: Cell doi: 10.1016/j.cell.2019.08.051 – volume: 11 start-page: e1005230 year: 2015 ident: 1036_CR56 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005230 – volume: 19 start-page: 581 year: 2018 ident: 1036_CR3 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0018-x – volume: 10 year: 2019 ident: 1036_CR67 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08424-6 – volume: 50 start-page: 1219 year: 2018 ident: 1036_CR2 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0183-z – volume: 10 start-page: 5086 year: 2019 ident: 1036_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12653-0 – volume: 52 start-page: 242 year: 2020 ident: 1036_CR21 publication-title: Nat. Genet. doi: 10.1038/s41588-020-0580-y – ident: 1036_CR7 doi: 10.1002/gepi.22083 – volume: 47 start-page: 589 year: 2015 ident: 1036_CR55 publication-title: Nat. Genet. doi: 10.1038/ng.3300 – volume: 51 start-page: 584 year: 2019 ident: 1036_CR13 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0379-x – volume: 526 start-page: 68 year: 2015 ident: 1036_CR65 publication-title: Nature doi: 10.1038/nature15393 – ident: 1036_CR83 doi: 10.5281/ZENODO.3350914 – volume: 26 start-page: 542 year: 2020 ident: 1036_CR50 publication-title: Nat. Med. doi: 10.1038/s41591-020-0785-8 – ident: 1036_CR26 doi: 10.1101/2021.06.22.21259323 – volume: 52 start-page: 1355 year: 2020 ident: 1036_CR35 publication-title: Nat. Genet. doi: 10.1038/s41588-020-00735-5 – volume: 50 start-page: 1600 year: 2018 ident: 1036_CR47 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0231-8 – volume: 48 start-page: 1443 year: 2016 ident: 1036_CR77 publication-title: Nat. Genet. doi: 10.1038/ng.3679 – volume: 17 start-page: 392 year: 2016 ident: 1036_CR1 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.27 – ident: 1036_CR24 – volume: 177 start-page: 26 year: 2019 ident: 1036_CR10 publication-title: Cell doi: 10.1016/j.cell.2019.02.048 – volume: 113 start-page: 7377 year: 2016 ident: 1036_CR43 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1510497113 – volume: 81 start-page: 559 year: 2007 ident: 1036_CR75 publication-title: Am. J. Hum. Genet. doi: 10.1086/519795 – volume: 10 start-page: 4027 year: 2020 ident: 1036_CR17 publication-title: G3 doi: 10.1534/g3.120.401658 – volume: 9 start-page: 1865 year: 2018 ident: 1036_CR52 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04191-y – volume: 10 start-page: 4393 year: 2019 ident: 1036_CR76 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12276-5 – volume: 10 start-page: 1776 year: 2019 ident: 1036_CR39 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09718-5 – volume: 41 start-page: 469 year: 2017 ident: 1036_CR71 publication-title: Genet. Epidemiol. doi: 10.1002/gepi.22050 – volume: 53 start-page: 1415 year: 2021 ident: 1036_CR80 publication-title: Nat. Genet. doi: 10.1038/s41588-021-00931-x – ident: 1036_CR87 – volume: 43 start-page: 50 year: 2019 ident: 1036_CR8 publication-title: Genet. Epidemiol. doi: 10.1002/gepi.22166 – volume: 182 start-page: 1198 year: 2020 ident: 1036_CR18 publication-title: Cell doi: 10.1016/j.cell.2020.06.045 – volume: 107 start-page: 636 year: 2020 ident: 1036_CR60 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2020.08.014 – volume: 3 start-page: e3395 year: 2008 ident: 1036_CR61 publication-title: PloS ONE doi: 10.1371/journal.pone.0003395 – volume: 10 year: 2019 ident: 1036_CR49 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12576-w – volume: 47 start-page: 1228 year: 2015 ident: 1036_CR74 publication-title: Nat. Genet. doi: 10.1038/ng.3404 – volume: 108 start-page: 620 year: 2021 ident: 1036_CR27 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2021.02.013 – volume: 20 start-page: 520 year: 2019 ident: 1036_CR12 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0144-0 – volume: 44 start-page: 483 year: 2012 ident: 1036_CR46 publication-title: Nat. Genet. doi: 10.1038/ng.2232 |
SSID | ssj0014408 |
Score | 2.6568131 |
Snippet | Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 450 |
SubjectTerms | 631/208/2489 692/699 Accuracy Agriculture Animal Genetics and Genomics Biobanks Biomedical and Life Sciences Biomedicine Cancer Research Estimates Gene Function Genome-Wide Association Study Genomes Human Genetics Humans Linkage Disequilibrium Mapping Methods Multifactorial Inheritance - genetics Polygenic inheritance Polymorphism, Single Nucleotide - genetics Populations Risk Risk Factors Simulation Training |
Title | Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores |
URI | https://link.springer.com/article/10.1038/s41588-022-01036-9 https://www.ncbi.nlm.nih.gov/pubmed/35393596 https://www.proquest.com/docview/2652196401 https://www.proquest.com/docview/2648897215 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwEB6VVkhcEC1bSlsZiRtYzeL42ScEVasKQYUQld4t8oqqluRBXg_998w4S0EVveQSJ3Fmxp7xbB_AG48nHFvZnC9CUHhAEZHbsnA8NxatebGIZUEFzl_O5Om5-LSsl6PDrR_TKqc9MW3UvnPkIz8sJSoaLfEF71e_OKFGUXR1hNB4AFvUuoykerGcD1wUtxxK4SSdkyhMuTuUmavDHhUXygjlshPSgeT6X8V0x9q8EylNCujkCTweLUf2YWD1NmyEdgceDliSN0_h8nNAqUyYQyyi6ch_Gmq98IOZ1rMhbXDG6mITMASjBFG27thF8i0ElubG_xq56q5uUMYuHKMkdNZT18v-GZyfHH8_OuUjkgJ3QtVrrnVpTE4umcIrWclaGy_qoKO1Ic-dLwVabSF6mRsRamuNMErHqHHxFtIpUz2HzbZrw0tgaFL4MtTaeWep0aQKsvAuSi9MmVsdMygmMjZubDNOP3XVpHB3pZqB9A2Svkmkb3QGb-dnVkOTjXtH703cacYF1ze34pHB6_k2LhWKf5g2dNc0Bncr6lZUZ_Bi4Or8uapONcoyg3cTm29f_v-57N4_l1fwqEwiRpk-e7C5_n0d9tGIWduDJKl4VUfFAWx9PD77-u0PNFTvsQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXVF4lpYCR4ARWE8dx40OFUKHa0m1PrdRb8CuooiQL2Qrtn-I3MuNsUlBFbz3HcZyZbzxjzwvgtccTjs1tyrdDKPGAImtuReZ4aixa83K7FhklOB8eqcmJ_HxanK7A7yEXhsIqhz0xbtS-dXRHviUUKhqtcIL3sx-cukaRd3VoodHD4iAsfuGRrdvZ_4j8fSPE3qfj3QlfdhXgTpbFnGstjEnpeiLzpcpVoY2XRdC1tSFNnRcSLZhQe5UaGQprjTSlrmuNQM6UK02O896C2zJH0aTM9N0xpIT8pH3qnaJzGblFN_q09nKrQ0WJmKTYeeqsoLj-VxFesW6veGajwttbg_tLS5V96KH1AFZC8xDu9L0rF4_g2zSgFMQeR6xGU5V_N1Tq4SszjWd9mOLYG4wNjSgYBaSyecvO4l1GYHFt_K-Rs_Z8gZg-c4yC3llHVTa7x3ByIzR-AqtN24SnwNCE8SIU2nlnqbBlGVTmXa28NCK1uk4gG8hYuWVZc_qp8yq61_Oy6klfIemrSPpKJ_B2fGfWF_W4dvTmwJ1qKeBddQnHBF6Nj1E0yd9imtBe0BjcHak6UpHAes_V8XN5EXOiVQLvBjZfTv7_tWxcv5aXcHdyfDitpvtHB8_gnohwoyijTVid_7wIz9GAmtsXEbUMvty0mPwBKF0qSg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLOkFDASnCDaxEm89gEh1LJqaak4UKm34CeqKMlCtkL71_h1zDibFFTRW89xHGcenrHn8QG8cHjCMYXJ0qn3Eg8oZUgNz22aaYPefDkNPKcC54-HYveo_HBcHa_B76EWhtIqhz0xbtSutXRHPuECDY0SOMEkrNIiPu3M3s5_pIQgRZHWAU6jF5F9v_yFx7fuzd4O8vol57P3n7d30xXCQGpLWS1SpbjWGV1V5E6KQlRKu7LyKhjjs8w6XqI344MTmS59ZYwutVQhKBTqXFipC5z3GlyfFlNJOia3x_QSipn2ZXiCzmgUIt3sS9zlpEOjifJJefSEsiBS9a9RvODpXojSRuM3uwO3V14re9eL2V1Y8809uNHjWC7vw7cDjxoR8Y5YQLc1_a6p7cNXphvH-pTFESeMDaAUjJJT2aJlJ_Few7O4tvSvkfP2dInyfWIZJcCzjjpudg_g6Epo_BDWm7bxj4ChO-O4r5R11lCTS-lF7mwQrtQ8MyokkA9krO2qxTn91GkdQ-2FrHvS10j6OpK-Vgm8Gt-Z9w0-Lh29NXCnXil7V5-LZgLPx8eophR70Y1vz2gM7pTUKalKYKPn6vi5oor10SKB1wObzyf__1o2L1_LM7iJClIf7B3uP4ZbPEobJRxtwfri55l_gr7UwjyNQsvgy1VryR8T9C6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+fine-mapping+and+multipopulation+training+data+to+improve+cross-population+polygenic+risk+scores&rft.jtitle=Nature+genetics&rft.au=Weissbrod%2C+Omer&rft.au=Kanai%2C+Masahiro&rft.au=Shi%2C+Huwenbo&rft.au=Gazal%2C+Steven&rft.date=2022-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1061-4036&rft.eissn=1546-1718&rft.volume=54&rft.issue=4&rft.spage=450&rft.epage=3&rft_id=info:doi/10.1038%2Fs41588-022-01036-9&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon |