Fault Injection with Multiple Fault Patterns for Experimental Evaluation of Demand-Controlled Ventilation and Heating Systems
Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical i...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 21; p. 8180 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
25.10.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today’s FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system’s behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO2 sensor fault with a heater actuator fault increased energy consumption by more than 70%. |
---|---|
AbstractList | Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today’s FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system’s behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO2 sensor fault with a heater actuator fault increased energy consumption by more than 70%. Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today’s FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system’s behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO 2 sensor fault with a heater actuator fault increased energy consumption by more than 70%. Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today’s FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system’s behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO[sub.2] sensor fault with a heater actuator fault increased energy consumption by more than 70%. Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today's FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system's behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO2 sensor fault with a heater actuator fault increased energy consumption by more than 70%.Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today's FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system's behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO2 sensor fault with a heater actuator fault increased energy consumption by more than 70%. |
Audience | Academic |
Author | Obermaisser, Roman Kiamanesh, Bahareh Behravan, Ali |
AuthorAffiliation | Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany |
AuthorAffiliation_xml | – name: Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany |
Author_xml | – sequence: 1 givenname: Bahareh orcidid: 0000-0002-2914-0192 surname: Kiamanesh fullname: Kiamanesh, Bahareh – sequence: 2 givenname: Ali orcidid: 0000-0002-3887-3419 surname: Behravan fullname: Behravan, Ali – sequence: 3 givenname: Roman surname: Obermaisser fullname: Obermaisser, Roman |
BookMark | eNptksluFDEQhlsoiCxw4A0scYHDJN67fUGKhoSMFAQSy7Xl9jLxyG0PtjuQA--OZzqKSIR8sFX11V9VrjpuDkIMpmleI3hKiIBnGWOMOtTBZ80RopguOozhwT_vw-Y45w2EmBDSvWgOCSecdW131Py5lJMvYBU2RhUXA_jlyg34VG1u6w2YvV9kKSaFDGxM4OL31iQ3mlCkBxe30k9yHxgt-GBGGfRiGUNJ0XujwY-KOT8D1QWuTH2HNfh6l4sZ88vmuZU-m1f390nz_fLi2_Jqcf3542p5fr1QtGNlIZhtMWF8oERpyyzlemACMyWwQIpjISUn1OKWaQiplFpBxC0WXNC2E5yTk2Y16-ooN_22li_TXR-l6_eGmNa9TMUpb3ostbEcywHLljKLBo2gHaQhBAmNBKta72et7TSMRqvaYZL-kehjT3A3_Tre9oIz3om2Cry9F0jx52Ry6UeXlfFeBhOn3OOW1NkQ0e1yvXmCbuKUQv2qHUVb2nK0o05nai1rAy7YWPOqerQZnaqrYl21n7eUs9oFETXg3RygUsw5GftQPYL9bqP6h42q7NkTVrmyH2hN4vx_Iv4CAubOdQ |
CitedBy_id | crossref_primary_10_3390_s23042166 |
Cites_doi | 10.3390/buildings11110522 10.3390/molecules25122823 10.1016/j.energy.2022.124762 10.2172/1457127 10.1109/IEMCON.2018.8614756 10.1109/32.44380 10.1007/s12273-016-0285-4 10.1049/cp.2016.0046 10.1109/ECS.2015.7125048 10.1093/ijlct/ctz078 10.1109/WISES.2006.329115 10.1016/j.procir.2014.07.015 10.3390/en14175581 10.1109/ICECS.2008.4674864 10.1109/VLSID.2011.34 10.3390/app12042091 10.1109/DTIS.2014.6850649 10.3390/civileng2040053 10.1109/TC.2003.1228509 10.1109/ICCD.2011.6081435 10.1016/S1359-4311(98)00022-2 10.24237/djes.2021.14308 10.4028/www.scientific.net/AMM.330.1054 10.1109/QEST.2012.37 10.1109/IMCCC.2011.88 10.1109/LATW.2015.7102494 10.11591/eei.v5i2.526 10.1109/RAMS.2008.4925824 10.1088/1742-6596/2042/1/012130 10.1109/TDSC.2020.3043023 10.1145/3307772.3328289 10.1109/KBEI.2017.8324986 10.1016/j.applthermaleng.2021.118011 10.1109/12.841127 10.1016/j.autcon.2011.06.018 10.3390/en15082878 10.7873/DATE2014.219 10.1007/s12273-018-0458-4 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22218180 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_2adef62ab2a745f1bd10fbae3319d195 PMC9656897 A746533139 10_3390_s22218180 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c485t-95f72356b43cdf5f46db5925c9291c629aa634f275d004aadc016f29694789663 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:05 EDT 2025 Thu Aug 21 18:39:36 EDT 2025 Fri Jul 11 00:33:42 EDT 2025 Fri Jul 25 20:05:58 EDT 2025 Tue Jul 01 05:43:22 EDT 2025 Tue Jul 01 01:19:29 EDT 2025 Thu Apr 24 23:11:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-95f72356b43cdf5f46db5925c9291c629aa634f275d004aadc016f29694789663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2914-0192 0000-0002-3887-3419 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22218180 |
PMID | 36365878 |
PQID | 2734747615 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2adef62ab2a745f1bd10fbae3319d195 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9656897 proquest_miscellaneous_2735873985 proquest_journals_2734747615 gale_infotracacademiconefile_A746533139 crossref_primary_10_3390_s22218180 crossref_citationtrail_10_3390_s22218180 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221025 |
PublicationDateYYYYMMDD | 2022-10-25 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221025 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Skovajsa (ref_6) 2022; 205 ref_58 ref_13 Wang (ref_37) 2012; 22 ref_57 ref_12 ref_56 ref_55 ref_10 ref_54 ref_53 ref_52 ref_51 ref_19 ref_17 Lee (ref_18) 2020; 15 ref_15 ref_59 (ref_24) 2021; 14 Gourabpasi (ref_45) 2021; 2 Bondavalli (ref_49) 2000; 49 Ahmad (ref_1) 2016; 9 Sangchoolie (ref_33) 2020; 19 ref_25 Arlat (ref_16) 1990; 16 ref_22 ref_21 ref_20 ref_29 ref_28 ref_27 Li (ref_41) 2018; 11 Jeong (ref_14) 2016; 5 Zhong (ref_32) 2022; 258 Takakusagi (ref_38) 1991; 430 Karimi (ref_11) 2013; 330 ref_36 ref_35 ref_34 Arlat (ref_31) 2003; 52 ref_30 Antonopoulos (ref_23) 1998; 18 ref_39 Ahmad (ref_50) 2014; 22 Arteconi (ref_26) 2013; 37 ref_47 ref_46 ref_44 ref_42 ref_40 Otto (ref_43) 2012; 5 ref_3 ref_2 ref_48 ref_9 ref_8 ref_5 ref_4 ref_7 |
References_xml | – ident: ref_19 doi: 10.3390/buildings11110522 – ident: ref_5 doi: 10.3390/molecules25122823 – volume: 258 start-page: 124762 year: 2022 ident: ref_32 article-title: Assessment of HVAC system operational fault impacts and multiple faults interactions under climate change publication-title: Energy doi: 10.1016/j.energy.2022.124762 – ident: ref_39 – ident: ref_54 doi: 10.2172/1457127 – ident: ref_13 doi: 10.1109/IEMCON.2018.8614756 – volume: 16 start-page: 166 year: 1990 ident: ref_16 article-title: Fault injection for dependability validation: A methodology and some applications publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/32.44380 – ident: ref_42 – volume: 9 start-page: 359 year: 2016 ident: ref_1 article-title: Computational intelligence techniques for HVAC systems: A review publication-title: Build. Simul. doi: 10.1007/s12273-016-0285-4 – ident: ref_35 – ident: ref_59 doi: 10.1049/cp.2016.0046 – ident: ref_58 – ident: ref_46 doi: 10.1109/ECS.2015.7125048 – volume: 15 start-page: 421 year: 2020 ident: ref_18 article-title: Experimental evaluations on the outdoor air-based methods for water saving and plume abatement of cooling tower publication-title: Int. J. Low-Carbon Technol. doi: 10.1093/ijlct/ctz078 – ident: ref_9 doi: 10.1109/WISES.2006.329115 – volume: 22 start-page: 71 year: 2014 ident: ref_50 article-title: Study on Intermittent Faults and Electrical Continuity publication-title: Procedia CIRP doi: 10.1016/j.procir.2014.07.015 – ident: ref_55 doi: 10.3390/en14175581 – ident: ref_34 doi: 10.1109/ICECS.2008.4674864 – ident: ref_30 doi: 10.1109/VLSID.2011.34 – ident: ref_56 – volume: 37 start-page: 1971 year: 2013 ident: ref_26 article-title: Experimental evaluation and dynamic simulation of a ground coupled heat pump for a commercial building publication-title: Int. J. Energy Res. – ident: ref_20 doi: 10.3390/app12042091 – ident: ref_48 – ident: ref_10 – ident: ref_15 doi: 10.1109/DTIS.2014.6850649 – ident: ref_17 – volume: 2 start-page: 986 year: 2021 ident: ref_45 article-title: Knowledge Discovery by Analyzing the State of the Art of Data-Driven Fault Detection and Diagnostics of Building HVAC publication-title: CivilEng doi: 10.3390/civileng2040053 – ident: ref_7 – ident: ref_28 – volume: 5 start-page: 545 year: 2012 ident: ref_43 article-title: Prioritizing building system energy failure modes using whole building energy simulation publication-title: Proc. SimBuild – volume: 52 start-page: 1115 year: 2003 ident: ref_31 article-title: Comparison of physical and software-implemented fault injection techniques publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2003.1228509 – ident: ref_3 – volume: 430 start-page: 45 year: 1991 ident: ref_38 article-title: Analytical study on preventive maintenance of air-conditioning system publication-title: J. Arch. Plan. Environ. Eng. (Trans. AIJ) – ident: ref_27 doi: 10.1109/ICCD.2011.6081435 – volume: 18 start-page: 1129 year: 1998 ident: ref_23 article-title: Experimental evaluation of energy savings in air-conditioning using metal ceiling panels publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(98)00022-2 – volume: 14 start-page: 94 year: 2021 ident: ref_24 article-title: Experimental assessment of combining geothermal with conventional air conditioner regardingnergy consumption in summer and winter publication-title: Diyala J. Eng. Sci. doi: 10.24237/djes.2021.14308 – ident: ref_40 – volume: 330 start-page: 1054 year: 2013 ident: ref_11 article-title: Markov Process Modeling for Wireless Sensor Network Availability with QOS Constraints publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.330.1054 – ident: ref_44 – ident: ref_52 doi: 10.1109/QEST.2012.37 – ident: ref_21 – ident: ref_47 doi: 10.1109/IMCCC.2011.88 – ident: ref_29 doi: 10.1109/LATW.2015.7102494 – volume: 5 start-page: 169 year: 2016 ident: ref_14 article-title: A Survey of Fault-Injection Methodologies for Soft Error Rate Modeling in Systems-on-Chips publication-title: Bull. Electr. Eng. Inform. doi: 10.11591/eei.v5i2.526 – ident: ref_51 doi: 10.1109/RAMS.2008.4925824 – ident: ref_25 – ident: ref_53 doi: 10.1088/1742-6596/2042/1/012130 – ident: ref_2 – volume: 19 start-page: 1988 year: 2020 ident: ref_33 article-title: An Empirical Study of the Impact of Single and Multiple Bit-Flip Errors in Programs publication-title: IEEE Trans. Dependable Secur. Comput. doi: 10.1109/TDSC.2020.3043023 – ident: ref_4 doi: 10.1145/3307772.3328289 – ident: ref_12 doi: 10.1109/KBEI.2017.8324986 – volume: 205 start-page: 118011 year: 2022 ident: ref_6 article-title: Design and experimental evaluation of phase change material-based cooling ceiling system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.118011 – volume: 49 start-page: 230 year: 2000 ident: ref_49 article-title: Threshold-based mechanisms to discriminate transient from intermittent faults publication-title: IEEE Trans. Comput. doi: 10.1109/12.841127 – volume: 22 start-page: 203 year: 2012 ident: ref_37 article-title: An online fault diagnosis tool of VAV terminals for building management and control systems publication-title: Autom. Constr. doi: 10.1016/j.autcon.2011.06.018 – ident: ref_22 – ident: ref_57 – ident: ref_8 doi: 10.3390/en15082878 – ident: ref_36 doi: 10.7873/DATE2014.219 – volume: 11 start-page: 953 year: 2018 ident: ref_41 article-title: A critical review of fault modeling of HVAC systems in buildings publication-title: Build. Simul. doi: 10.1007/s12273-018-0458-4 |
SSID | ssj0023338 |
Score | 2.3881736 |
Snippet | Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics,... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 8180 |
SubjectTerms | Air quality Airports Analysis Building management systems Buildings Climate Energy consumption Energy efficiency Environmental conditions fault injection framework fault model fault occurrence probability Heating HVAC HVAC equipment HVAC system Hypotheses multiple faults scenario generation Sensors Simulation Software Ventilation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPEVoQQYhwSXqxo84PpayqwWpiANFvVl-8tDirdjdY_97ZxJvtFsqceGaGUV-zHi-SWY-E_KmS1EyGybgaVrVQkVdO5k0HIahccxrLix2I599bufn4tOFvNi56gtrwgZ64GHhjuFFMbXMOmaVkKlxoZkkZyMH2wmN7tlLIeZtk6mSanHIvAYeIQ5J_fEKomCDXc170acn6f_7KL5ZHrkTb2YPyP0CFOnJMMCH5E7Mj8i9HfrAx-RqZjeLNf2Yf_X1VJniR1V6VkoE6SD90hNo5hUFdEqnO3z-dDoSfdNloh_ib5tDfTqUri9ioN-wkGgolaMgonOEl_k7LSTnT8j5bPr1dF6X6xRqLzq5rrVMinHZOsF9SDKJNjipmfSAkBrfMm1ty0ViSgbwHGuDBziYmG61UB1kRfwpOcjLHJ8R2iju4YR1zrVWKOmcFL7xSXCWHADCSUXebZfZ-MI1jldeLAzkHLgjZtyRirweVS8Hgo3blN7jXo0KyIndPwBLMcVSzL8spSJvcacNei4MxtvSgABTQg4sc6KQa44DJK7I0dYYTHHplUEeIMi9AAFW5NUoBmfEPyw2x-Wm15Gd4roDHbVnRHtD35fknz96Wm8N0LrT6vn_mOshucuwTwOCLJNH5GD9ZxNfAHpau5e9o1wDnyMcSQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8RQpBRmEBJeoGz_i-IRK2WVBKuJAUW-RnwW0OKW7e-S_M5N4wy4grpmR4mQ8M9_Y48-EPG9ikMz4CXiaVqVQQZdWRg3B0FeWOc2FwdPIpx_q-Zl4fy7P84LbMrdVbmJiH6h953CN_AhpWAD6QgJ-dfmjxFujcHc1X6FxndyoINNgS1czezsWXBzqr4FNiENpf7SEXFjh2eadHNRT9f8dkP9sktzKOrPbZD_DRXo82PcOuRbSXXJri0TwHvk5M-vFir5L3_quqkRxaZWe5kZBOkg_9jSaaUkBo9LpFqs_nY5037SL9E34bpIvT4YG9kXw9DO2Ew0NcxREdI4gM13QTHV-n5zNpp9O5mW-VKF0opGrUsuoGJe1Fdz5KKOovZWaSQc4qXI108bUXESmpAf_McY7AIWR6VoL1UBtxB-QvdSl8JDQSnEHcdZaWxuhpLVSuMpFwVm0AAsnBXm5-c2ty4zjePHFooXKAy3SjhYpyLNR9XKg2fiX0mu01aiAzNj9g-7qos2O1sLEC7FmxjKjhIyV9dUkWhM4xBpfaVmQF2jpFv0XBuNMPoYAn4RMWO2xQsY5DsC4IIebydBmx162v6dhQZ6OYnBJ3GcxKXTrXkc2iusGdNTOJNoZ-q4kff3Sk3trANiNVgf_f_kjcpPhOQxIokwekr3V1To8BnS0sk96F_gFt3ISvw priority: 102 providerName: ProQuest |
Title | Fault Injection with Multiple Fault Patterns for Experimental Evaluation of Demand-Controlled Ventilation and Heating Systems |
URI | https://www.proquest.com/docview/2734747615 https://www.proquest.com/docview/2735873985 https://pubmed.ncbi.nlm.nih.gov/PMC9656897 https://doaj.org/article/2adef62ab2a745f1bd10fbae3319d195 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tQ0LLAfEUgaUyCAkugcaPOD4gtLu0FKSuVoii3iLbsRdQcaEPCQ78d8ZJGrWwJy45xBPJ8cx4vknG3wA8LbwTVFd99DQlUy6dSo3wCjfDKjPUKsZ1PI08Ps9HE_5-KqZ7sOmx2S7g8srULvaTmixmL37--PUaHf5VzDgxZX-5xBiXxTPL-3CIAUnGRgZj3v1MoAzTsIZUaFf8CK6xnGEIjj3WtqJSTd7_7xb9d9nkVhwa3oQbLYAkJ43Gb8GeC7fh-hat4B34PdTr2Yq8C1_rOqtA4sdWMm5LB0kzelETa4YlQdRKBls8_2TQEYCTuSdv3DcdqvSsKWmfuYp8igVGTQkdwSEyirAzXJKW_PwuTIaDj2ejtG2zkFpeiFWqhJeUidxwZisvPM8rIxQVFpFTZnOqtM4Z91SKCj1K68oiTPRU5YrLArMldg8Owjy4-0AyySzuvMaYXHMpjBHcZtZzRr1BoNhP4PlmmUvbcpDHVhizEnORqJyyU04CTzrR7w3xxlVCp1FXnUDkyq5vzBeXZet6JZqi8znVhmrJhc9MlfW90Y7h7lNlSiTwLGq6jDaGk7G6PZiArxS5scoTGTnoGELlBI43xlBuLLWM_ECYkyEyTOBxN4xOGv-86ODm61oGrYypAmXkjhHtTH13JHz5XNN9K4TchZIP_vvJh3BE46ENjLhUHMPBarF2jxBKrUwP9uVU4rUYvu3B4eng_OJDr_4s0atd6A_SMiXq |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiKdIKbAgEFysxvvweg8IlTYhoU3FoUW9ufssVMEpTSLEgb_Eb2TGdkwCiFuvmVHieGZnvrFnviHkeR6DZMZ34aRplQgVdGJl1BAMfWqZ01wYnEYeHWSDI_H-WB6vkZ-LWRhsq1zExCpQ-4nDZ-RbSMMC0BcS8JvzrwlujcK3q4sVGrVb7IXv36Bkm74e7oJ9XzDW7x3uDJJmq0DiRC5niZZRMS4zK7jzUUaReSs1kw6AQuoypo3JuIhMSQ8OZIx3gIoi05kWKofigMP3XiFXBYdMjpPp_Xdtgceh3qvZi0DY3ZpC7k1xlnol51WrAf5OAH82ZS5luf4tcrOBp3S79qfbZC2Ud8iNJdLCu-RH38zHMzosz6ourpLio1w6ahoTaS39UNF2llMKmJj2lrYI0F5LL04nke6GL6b0yU7dMD8Onn7E9qW6QY-CiA4Q1JantKFWv0eOLuV23yfr5aQMDwhNFXcQ1621mRFKWiuFS10UnEULMLTbIa8Wt7lwDcM5LtoYF1DpoEWK1iId8qxVPa9pPf6l9BZt1SogE3f1weTitGgOdgGOHmLGjGVGCRlT69NutCZwiG0-1bJDXqKlC4wXcDHONGMP8JeQeavYVshwxwGId8jmwhmKJpBMi99u3yFPWzGEAHyvY8owmVc6Mldc56CjVpxo5dJXJeXnTxWZuAZAn2u18f8ff0KuDQ5H-8X-8GDvIbnOcAYEEjiTm2R9djEPjwCZzezj6jhQcnLZ5-8X1KdNyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJwQDyFocCCQHCxEu_D6z0g1DaJEkqjCFHUm9lnaRXs0iRCHPhj_DpmbcckgLj1mh0ljuf1jT3zDULPM-84UbYHniZFzISTseZeQjC0iSZGUqbCNPLhJB0dsbfH_HgL_VzNwoS2ylVMrAK1LU14Rt4NNCwAfSEBd33TFjHtD9-cf43DBqnwpnW1TqM2kQP3_RuUb_PX4z7o-gUhw8GH_VHcbBiIDcv4IpbcC0J5qhk11nPPUqu5JNwAaEhMSqRSKWWeCG7BmJSyBhCSJzKVTGRQKFD43itoW4SqqIO29waT6fu23KNQ_dVcRpTKXncOmTgJk9UbGbBaFPB3OvizRXMt5w1vohsNWMW7tXXdQluuuI2ur1EY3kE_hmo5W-BxcVb1dBU4PNjFh02bIq5PpxWJZzHHgJDxYG2nAB60ZOO49LjvvqjCxvt1-_zMWfwxNDPV7XoYjvAoQNziBDdE63fR0aXc8HuoU5SFu49wIqiBKK-1ThUTXGvOTGI8o8RrAKW9CL1a3ebcNHznYe3GLIe6J2gkbzUSoWet6HlN8vEvob2gq1Yg8HJXH5QXJ3nj5jmYvfMpUZoowbhPtE16XitHIdLZRPIIvQyazkP0gIsxqhmCgL8UeLjyXRH47ijA8gjtrIwhb8LKPP_tBBF62h5DQAhveVThymUlwzNBZQYyYsOINi5986Q4_VxRi0uA95kUD_7_40_QVfC9_N14cvAQXSNhIASyOeE7qLO4WLpHANMW-nHjDxh9umwX_AXD7VNd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Injection+with+Multiple+Fault+Patterns+for+Experimental+Evaluation+of+Demand-Controlled+Ventilation+and+Heating+Systems&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kiamanesh%2C+Bahareh&rft.au=Behravan%2C+Ali&rft.au=Obermaisser%2C+Roman&rft.date=2022-10-25&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=21&rft_id=info:doi/10.3390%2Fs22218180&rft_id=info%3Apmid%2F36365878&rft.externalDocID=PMC9656897 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |