Fault Injection with Multiple Fault Patterns for Experimental Evaluation of Demand-Controlled Ventilation and Heating Systems

Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical i...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 21; p. 8180
Main Authors Kiamanesh, Bahareh, Behravan, Ali, Obermaisser, Roman
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 25.10.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today’s FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system’s behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO2 sensor fault with a heater actuator fault increased energy consumption by more than 70%.
AbstractList Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today’s FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system’s behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO2 sensor fault with a heater actuator fault increased energy consumption by more than 70%.
Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today’s FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system’s behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO 2 sensor fault with a heater actuator fault increased energy consumption by more than 70%.
Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today’s FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system’s behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO[sub.2] sensor fault with a heater actuator fault increased energy consumption by more than 70%.
Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today's FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system's behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO2 sensor fault with a heater actuator fault increased energy consumption by more than 70%.Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today's FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system's behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO2 sensor fault with a heater actuator fault increased energy consumption by more than 70%.
Audience Academic
Author Obermaisser, Roman
Kiamanesh, Bahareh
Behravan, Ali
AuthorAffiliation Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany
AuthorAffiliation_xml – name: Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany
Author_xml – sequence: 1
  givenname: Bahareh
  orcidid: 0000-0002-2914-0192
  surname: Kiamanesh
  fullname: Kiamanesh, Bahareh
– sequence: 2
  givenname: Ali
  orcidid: 0000-0002-3887-3419
  surname: Behravan
  fullname: Behravan, Ali
– sequence: 3
  givenname: Roman
  surname: Obermaisser
  fullname: Obermaisser, Roman
BookMark eNptksluFDEQhlsoiCxw4A0scYHDJN67fUGKhoSMFAQSy7Xl9jLxyG0PtjuQA--OZzqKSIR8sFX11V9VrjpuDkIMpmleI3hKiIBnGWOMOtTBZ80RopguOozhwT_vw-Y45w2EmBDSvWgOCSecdW131Py5lJMvYBU2RhUXA_jlyg34VG1u6w2YvV9kKSaFDGxM4OL31iQ3mlCkBxe30k9yHxgt-GBGGfRiGUNJ0XujwY-KOT8D1QWuTH2HNfh6l4sZ88vmuZU-m1f390nz_fLi2_Jqcf3542p5fr1QtGNlIZhtMWF8oERpyyzlemACMyWwQIpjISUn1OKWaQiplFpBxC0WXNC2E5yTk2Y16-ooN_22li_TXR-l6_eGmNa9TMUpb3ostbEcywHLljKLBo2gHaQhBAmNBKta72et7TSMRqvaYZL-kehjT3A3_Tre9oIz3om2Cry9F0jx52Ry6UeXlfFeBhOn3OOW1NkQ0e1yvXmCbuKUQv2qHUVb2nK0o05nai1rAy7YWPOqerQZnaqrYl21n7eUs9oFETXg3RygUsw5GftQPYL9bqP6h42q7NkTVrmyH2hN4vx_Iv4CAubOdQ
CitedBy_id crossref_primary_10_3390_s23042166
Cites_doi 10.3390/buildings11110522
10.3390/molecules25122823
10.1016/j.energy.2022.124762
10.2172/1457127
10.1109/IEMCON.2018.8614756
10.1109/32.44380
10.1007/s12273-016-0285-4
10.1049/cp.2016.0046
10.1109/ECS.2015.7125048
10.1093/ijlct/ctz078
10.1109/WISES.2006.329115
10.1016/j.procir.2014.07.015
10.3390/en14175581
10.1109/ICECS.2008.4674864
10.1109/VLSID.2011.34
10.3390/app12042091
10.1109/DTIS.2014.6850649
10.3390/civileng2040053
10.1109/TC.2003.1228509
10.1109/ICCD.2011.6081435
10.1016/S1359-4311(98)00022-2
10.24237/djes.2021.14308
10.4028/www.scientific.net/AMM.330.1054
10.1109/QEST.2012.37
10.1109/IMCCC.2011.88
10.1109/LATW.2015.7102494
10.11591/eei.v5i2.526
10.1109/RAMS.2008.4925824
10.1088/1742-6596/2042/1/012130
10.1109/TDSC.2020.3043023
10.1145/3307772.3328289
10.1109/KBEI.2017.8324986
10.1016/j.applthermaleng.2021.118011
10.1109/12.841127
10.1016/j.autcon.2011.06.018
10.3390/en15082878
10.7873/DATE2014.219
10.1007/s12273-018-0458-4
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22218180
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2adef62ab2a745f1bd10fbae3319d195
PMC9656897
A746533139
10_3390_s22218180
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c485t-95f72356b43cdf5f46db5925c9291c629aa634f275d004aadc016f29694789663
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:05 EDT 2025
Thu Aug 21 18:39:36 EDT 2025
Fri Jul 11 00:33:42 EDT 2025
Fri Jul 25 20:05:58 EDT 2025
Tue Jul 01 05:43:22 EDT 2025
Tue Jul 01 01:19:29 EDT 2025
Thu Apr 24 23:11:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-95f72356b43cdf5f46db5925c9291c629aa634f275d004aadc016f29694789663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2914-0192
0000-0002-3887-3419
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22218180
PMID 36365878
PQID 2734747615
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_2adef62ab2a745f1bd10fbae3319d195
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9656897
proquest_miscellaneous_2735873985
proquest_journals_2734747615
gale_infotracacademiconefile_A746533139
crossref_primary_10_3390_s22218180
crossref_citationtrail_10_3390_s22218180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221025
PublicationDateYYYYMMDD 2022-10-25
PublicationDate_xml – month: 10
  year: 2022
  text: 20221025
  day: 25
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Skovajsa (ref_6) 2022; 205
ref_58
ref_13
Wang (ref_37) 2012; 22
ref_57
ref_12
ref_56
ref_55
ref_10
ref_54
ref_53
ref_52
ref_51
ref_19
ref_17
Lee (ref_18) 2020; 15
ref_15
ref_59
(ref_24) 2021; 14
Gourabpasi (ref_45) 2021; 2
Bondavalli (ref_49) 2000; 49
Ahmad (ref_1) 2016; 9
Sangchoolie (ref_33) 2020; 19
ref_25
Arlat (ref_16) 1990; 16
ref_22
ref_21
ref_20
ref_29
ref_28
ref_27
Li (ref_41) 2018; 11
Jeong (ref_14) 2016; 5
Zhong (ref_32) 2022; 258
Takakusagi (ref_38) 1991; 430
Karimi (ref_11) 2013; 330
ref_36
ref_35
ref_34
Arlat (ref_31) 2003; 52
ref_30
Antonopoulos (ref_23) 1998; 18
ref_39
Ahmad (ref_50) 2014; 22
Arteconi (ref_26) 2013; 37
ref_47
ref_46
ref_44
ref_42
ref_40
Otto (ref_43) 2012; 5
ref_3
ref_2
ref_48
ref_9
ref_8
ref_5
ref_4
ref_7
References_xml – ident: ref_19
  doi: 10.3390/buildings11110522
– ident: ref_5
  doi: 10.3390/molecules25122823
– volume: 258
  start-page: 124762
  year: 2022
  ident: ref_32
  article-title: Assessment of HVAC system operational fault impacts and multiple faults interactions under climate change
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124762
– ident: ref_39
– ident: ref_54
  doi: 10.2172/1457127
– ident: ref_13
  doi: 10.1109/IEMCON.2018.8614756
– volume: 16
  start-page: 166
  year: 1990
  ident: ref_16
  article-title: Fault injection for dependability validation: A methodology and some applications
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/32.44380
– ident: ref_42
– volume: 9
  start-page: 359
  year: 2016
  ident: ref_1
  article-title: Computational intelligence techniques for HVAC systems: A review
  publication-title: Build. Simul.
  doi: 10.1007/s12273-016-0285-4
– ident: ref_35
– ident: ref_59
  doi: 10.1049/cp.2016.0046
– ident: ref_58
– ident: ref_46
  doi: 10.1109/ECS.2015.7125048
– volume: 15
  start-page: 421
  year: 2020
  ident: ref_18
  article-title: Experimental evaluations on the outdoor air-based methods for water saving and plume abatement of cooling tower
  publication-title: Int. J. Low-Carbon Technol.
  doi: 10.1093/ijlct/ctz078
– ident: ref_9
  doi: 10.1109/WISES.2006.329115
– volume: 22
  start-page: 71
  year: 2014
  ident: ref_50
  article-title: Study on Intermittent Faults and Electrical Continuity
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2014.07.015
– ident: ref_55
  doi: 10.3390/en14175581
– ident: ref_34
  doi: 10.1109/ICECS.2008.4674864
– ident: ref_30
  doi: 10.1109/VLSID.2011.34
– ident: ref_56
– volume: 37
  start-page: 1971
  year: 2013
  ident: ref_26
  article-title: Experimental evaluation and dynamic simulation of a ground coupled heat pump for a commercial building
  publication-title: Int. J. Energy Res.
– ident: ref_20
  doi: 10.3390/app12042091
– ident: ref_48
– ident: ref_10
– ident: ref_15
  doi: 10.1109/DTIS.2014.6850649
– ident: ref_17
– volume: 2
  start-page: 986
  year: 2021
  ident: ref_45
  article-title: Knowledge Discovery by Analyzing the State of the Art of Data-Driven Fault Detection and Diagnostics of Building HVAC
  publication-title: CivilEng
  doi: 10.3390/civileng2040053
– ident: ref_7
– ident: ref_28
– volume: 5
  start-page: 545
  year: 2012
  ident: ref_43
  article-title: Prioritizing building system energy failure modes using whole building energy simulation
  publication-title: Proc. SimBuild
– volume: 52
  start-page: 1115
  year: 2003
  ident: ref_31
  article-title: Comparison of physical and software-implemented fault injection techniques
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2003.1228509
– ident: ref_3
– volume: 430
  start-page: 45
  year: 1991
  ident: ref_38
  article-title: Analytical study on preventive maintenance of air-conditioning system
  publication-title: J. Arch. Plan. Environ. Eng. (Trans. AIJ)
– ident: ref_27
  doi: 10.1109/ICCD.2011.6081435
– volume: 18
  start-page: 1129
  year: 1998
  ident: ref_23
  article-title: Experimental evaluation of energy savings in air-conditioning using metal ceiling panels
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(98)00022-2
– volume: 14
  start-page: 94
  year: 2021
  ident: ref_24
  article-title: Experimental assessment of combining geothermal with conventional air conditioner regardingnergy consumption in summer and winter
  publication-title: Diyala J. Eng. Sci.
  doi: 10.24237/djes.2021.14308
– ident: ref_40
– volume: 330
  start-page: 1054
  year: 2013
  ident: ref_11
  article-title: Markov Process Modeling for Wireless Sensor Network Availability with QOS Constraints
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.330.1054
– ident: ref_44
– ident: ref_52
  doi: 10.1109/QEST.2012.37
– ident: ref_21
– ident: ref_47
  doi: 10.1109/IMCCC.2011.88
– ident: ref_29
  doi: 10.1109/LATW.2015.7102494
– volume: 5
  start-page: 169
  year: 2016
  ident: ref_14
  article-title: A Survey of Fault-Injection Methodologies for Soft Error Rate Modeling in Systems-on-Chips
  publication-title: Bull. Electr. Eng. Inform.
  doi: 10.11591/eei.v5i2.526
– ident: ref_51
  doi: 10.1109/RAMS.2008.4925824
– ident: ref_25
– ident: ref_53
  doi: 10.1088/1742-6596/2042/1/012130
– ident: ref_2
– volume: 19
  start-page: 1988
  year: 2020
  ident: ref_33
  article-title: An Empirical Study of the Impact of Single and Multiple Bit-Flip Errors in Programs
  publication-title: IEEE Trans. Dependable Secur. Comput.
  doi: 10.1109/TDSC.2020.3043023
– ident: ref_4
  doi: 10.1145/3307772.3328289
– ident: ref_12
  doi: 10.1109/KBEI.2017.8324986
– volume: 205
  start-page: 118011
  year: 2022
  ident: ref_6
  article-title: Design and experimental evaluation of phase change material-based cooling ceiling system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.118011
– volume: 49
  start-page: 230
  year: 2000
  ident: ref_49
  article-title: Threshold-based mechanisms to discriminate transient from intermittent faults
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/12.841127
– volume: 22
  start-page: 203
  year: 2012
  ident: ref_37
  article-title: An online fault diagnosis tool of VAV terminals for building management and control systems
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2011.06.018
– ident: ref_22
– ident: ref_57
– ident: ref_8
  doi: 10.3390/en15082878
– ident: ref_36
  doi: 10.7873/DATE2014.219
– volume: 11
  start-page: 953
  year: 2018
  ident: ref_41
  article-title: A critical review of fault modeling of HVAC systems in buildings
  publication-title: Build. Simul.
  doi: 10.1007/s12273-018-0458-4
SSID ssj0023338
Score 2.3881736
Snippet Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics,...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 8180
SubjectTerms Air quality
Airports
Analysis
Building management systems
Buildings
Climate
Energy consumption
Energy efficiency
Environmental conditions
fault injection framework
fault model
fault occurrence probability
Heating
HVAC
HVAC equipment
HVAC system
Hypotheses
multiple faults
scenario generation
Sensors
Simulation
Software
Ventilation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPEVoQQYhwSXqxo84PpayqwWpiANFvVl-8tDirdjdY_97ZxJvtFsqceGaGUV-zHi-SWY-E_KmS1EyGybgaVrVQkVdO5k0HIahccxrLix2I599bufn4tOFvNi56gtrwgZ64GHhjuFFMbXMOmaVkKlxoZkkZyMH2wmN7tlLIeZtk6mSanHIvAYeIQ5J_fEKomCDXc170acn6f_7KL5ZHrkTb2YPyP0CFOnJMMCH5E7Mj8i9HfrAx-RqZjeLNf2Yf_X1VJniR1V6VkoE6SD90hNo5hUFdEqnO3z-dDoSfdNloh_ib5tDfTqUri9ioN-wkGgolaMgonOEl_k7LSTnT8j5bPr1dF6X6xRqLzq5rrVMinHZOsF9SDKJNjipmfSAkBrfMm1ty0ViSgbwHGuDBziYmG61UB1kRfwpOcjLHJ8R2iju4YR1zrVWKOmcFL7xSXCWHADCSUXebZfZ-MI1jldeLAzkHLgjZtyRirweVS8Hgo3blN7jXo0KyIndPwBLMcVSzL8spSJvcacNei4MxtvSgABTQg4sc6KQa44DJK7I0dYYTHHplUEeIMi9AAFW5NUoBmfEPyw2x-Wm15Gd4roDHbVnRHtD35fknz96Wm8N0LrT6vn_mOshucuwTwOCLJNH5GD9ZxNfAHpau5e9o1wDnyMcSQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8RQpBRmEBJeoGz_i-IRK2WVBKuJAUW-RnwW0OKW7e-S_M5N4wy4grpmR4mQ8M9_Y48-EPG9ikMz4CXiaVqVQQZdWRg3B0FeWOc2FwdPIpx_q-Zl4fy7P84LbMrdVbmJiH6h953CN_AhpWAD6QgJ-dfmjxFujcHc1X6FxndyoINNgS1czezsWXBzqr4FNiENpf7SEXFjh2eadHNRT9f8dkP9sktzKOrPbZD_DRXo82PcOuRbSXXJri0TwHvk5M-vFir5L3_quqkRxaZWe5kZBOkg_9jSaaUkBo9LpFqs_nY5037SL9E34bpIvT4YG9kXw9DO2Ew0NcxREdI4gM13QTHV-n5zNpp9O5mW-VKF0opGrUsuoGJe1Fdz5KKOovZWaSQc4qXI108bUXESmpAf_McY7AIWR6VoL1UBtxB-QvdSl8JDQSnEHcdZaWxuhpLVSuMpFwVm0AAsnBXm5-c2ty4zjePHFooXKAy3SjhYpyLNR9XKg2fiX0mu01aiAzNj9g-7qos2O1sLEC7FmxjKjhIyV9dUkWhM4xBpfaVmQF2jpFv0XBuNMPoYAn4RMWO2xQsY5DsC4IIebydBmx162v6dhQZ6OYnBJ3GcxKXTrXkc2iusGdNTOJNoZ-q4kff3Sk3trANiNVgf_f_kjcpPhOQxIokwekr3V1To8BnS0sk96F_gFt3ISvw
  priority: 102
  providerName: ProQuest
Title Fault Injection with Multiple Fault Patterns for Experimental Evaluation of Demand-Controlled Ventilation and Heating Systems
URI https://www.proquest.com/docview/2734747615
https://www.proquest.com/docview/2735873985
https://pubmed.ncbi.nlm.nih.gov/PMC9656897
https://doaj.org/article/2adef62ab2a745f1bd10fbae3319d195
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tQ0LLAfEUgaUyCAkugcaPOD4gtLu0FKSuVoii3iLbsRdQcaEPCQ78d8ZJGrWwJy45xBPJ8cx4vknG3wA8LbwTVFd99DQlUy6dSo3wCjfDKjPUKsZ1PI08Ps9HE_5-KqZ7sOmx2S7g8srULvaTmixmL37--PUaHf5VzDgxZX-5xBiXxTPL-3CIAUnGRgZj3v1MoAzTsIZUaFf8CK6xnGEIjj3WtqJSTd7_7xb9d9nkVhwa3oQbLYAkJ43Gb8GeC7fh-hat4B34PdTr2Yq8C1_rOqtA4sdWMm5LB0kzelETa4YlQdRKBls8_2TQEYCTuSdv3DcdqvSsKWmfuYp8igVGTQkdwSEyirAzXJKW_PwuTIaDj2ejtG2zkFpeiFWqhJeUidxwZisvPM8rIxQVFpFTZnOqtM4Z91SKCj1K68oiTPRU5YrLArMldg8Owjy4-0AyySzuvMaYXHMpjBHcZtZzRr1BoNhP4PlmmUvbcpDHVhizEnORqJyyU04CTzrR7w3xxlVCp1FXnUDkyq5vzBeXZet6JZqi8znVhmrJhc9MlfW90Y7h7lNlSiTwLGq6jDaGk7G6PZiArxS5scoTGTnoGELlBI43xlBuLLWM_ECYkyEyTOBxN4xOGv-86ODm61oGrYypAmXkjhHtTH13JHz5XNN9K4TchZIP_vvJh3BE46ENjLhUHMPBarF2jxBKrUwP9uVU4rUYvu3B4eng_OJDr_4s0atd6A_SMiXq
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiKdIKbAgEFysxvvweg8IlTYhoU3FoUW9ufssVMEpTSLEgb_Eb2TGdkwCiFuvmVHieGZnvrFnviHkeR6DZMZ34aRplQgVdGJl1BAMfWqZ01wYnEYeHWSDI_H-WB6vkZ-LWRhsq1zExCpQ-4nDZ-RbSMMC0BcS8JvzrwlujcK3q4sVGrVb7IXv36Bkm74e7oJ9XzDW7x3uDJJmq0DiRC5niZZRMS4zK7jzUUaReSs1kw6AQuoypo3JuIhMSQ8OZIx3gIoi05kWKofigMP3XiFXBYdMjpPp_Xdtgceh3qvZi0DY3ZpC7k1xlnol51WrAf5OAH82ZS5luf4tcrOBp3S79qfbZC2Ud8iNJdLCu-RH38zHMzosz6ourpLio1w6ahoTaS39UNF2llMKmJj2lrYI0F5LL04nke6GL6b0yU7dMD8Onn7E9qW6QY-CiA4Q1JantKFWv0eOLuV23yfr5aQMDwhNFXcQ1621mRFKWiuFS10UnEULMLTbIa8Wt7lwDcM5LtoYF1DpoEWK1iId8qxVPa9pPf6l9BZt1SogE3f1weTitGgOdgGOHmLGjGVGCRlT69NutCZwiG0-1bJDXqKlC4wXcDHONGMP8JeQeavYVshwxwGId8jmwhmKJpBMi99u3yFPWzGEAHyvY8owmVc6Mldc56CjVpxo5dJXJeXnTxWZuAZAn2u18f8ff0KuDQ5H-8X-8GDvIbnOcAYEEjiTm2R9djEPjwCZzezj6jhQcnLZ5-8X1KdNyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJwQDyFocCCQHCxEu_D6z0g1DaJEkqjCFHUm9lnaRXs0iRCHPhj_DpmbcckgLj1mh0ljuf1jT3zDULPM-84UbYHniZFzISTseZeQjC0iSZGUqbCNPLhJB0dsbfH_HgL_VzNwoS2ylVMrAK1LU14Rt4NNCwAfSEBd33TFjHtD9-cf43DBqnwpnW1TqM2kQP3_RuUb_PX4z7o-gUhw8GH_VHcbBiIDcv4IpbcC0J5qhk11nPPUqu5JNwAaEhMSqRSKWWeCG7BmJSyBhCSJzKVTGRQKFD43itoW4SqqIO29waT6fu23KNQ_dVcRpTKXncOmTgJk9UbGbBaFPB3OvizRXMt5w1vohsNWMW7tXXdQluuuI2ur1EY3kE_hmo5W-BxcVb1dBU4PNjFh02bIq5PpxWJZzHHgJDxYG2nAB60ZOO49LjvvqjCxvt1-_zMWfwxNDPV7XoYjvAoQNziBDdE63fR0aXc8HuoU5SFu49wIqiBKK-1ThUTXGvOTGI8o8RrAKW9CL1a3ebcNHznYe3GLIe6J2gkbzUSoWet6HlN8vEvob2gq1Yg8HJXH5QXJ3nj5jmYvfMpUZoowbhPtE16XitHIdLZRPIIvQyazkP0gIsxqhmCgL8UeLjyXRH47ijA8gjtrIwhb8LKPP_tBBF62h5DQAhveVThymUlwzNBZQYyYsOINi5986Q4_VxRi0uA95kUD_7_40_QVfC9_N14cvAQXSNhIASyOeE7qLO4WLpHANMW-nHjDxh9umwX_AXD7VNd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Injection+with+Multiple+Fault+Patterns+for+Experimental+Evaluation+of+Demand-Controlled+Ventilation+and+Heating+Systems&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kiamanesh%2C+Bahareh&rft.au=Behravan%2C+Ali&rft.au=Obermaisser%2C+Roman&rft.date=2022-10-25&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=21&rft_id=info:doi/10.3390%2Fs22218180&rft_id=info%3Apmid%2F36365878&rft.externalDocID=PMC9656897
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon