High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave
Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetall...
Saved in:
Published in | Advanced science Vol. 10; no. 28; pp. e2303217 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.10.2023
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetallic energetic metallic triazole framework (CoFe@E‐MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe‐inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (
RL
min
) of −53.15 dB and specific reflection loss (
SRL
) of −101.24 dB mg
−1
mm
−1
for CoFe@HPC1000 are achieved. More importantly, the single‐atomic chemical bonding among Co─Fe on the nanopores is captured by extended X‐ray absorption fine structure, which reveals the formation mechanism of nanopore‐confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future. |
---|---|
AbstractList | Abstract Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetallic energetic metallic triazole framework (CoFe@E‐MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe‐inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RLmin) of −53.15 dB and specific reflection loss (SRL) of −101.24 dB mg−1 mm−1 for CoFe@HPC1000 are achieved. More importantly, the single‐atomic chemical bonding among Co─Fe on the nanopores is captured by extended X‐ray absorption fine structure, which reveals the formation mechanism of nanopore‐confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future. Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetallic energetic metallic triazole framework (CoFe@E‐MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe‐inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss ( RL min ) of −53.15 dB and specific reflection loss ( SRL ) of −101.24 dB mg −1 mm −1 for CoFe@HPC1000 are achieved. More importantly, the single‐atomic chemical bonding among Co─Fe on the nanopores is captured by extended X‐ray absorption fine structure, which reveals the formation mechanism of nanopore‐confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future. Atomic-level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero-units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe-bimetallic energetic metallic triazole framework (CoFe@E-MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe-inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RLmin) of −53.15 dB and specific reflection loss (SRL) of −101.24 dB mg−1 mm−1 for CoFe@HPC1000 are achieved. More importantly, the single-atomic chemical bonding among Co─Fe on the nanopores is captured by extended X-ray absorption fine structure, which reveals the formation mechanism of nanopore-confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future. Atomic-level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero-units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe-bimetallic energetic metallic triazole framework (CoFe@E-MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe-inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RLmin ) of -53.15 dB and specific reflection loss (SRL) of -101.24 dB mg-1 mm-1 for CoFe@HPC1000 are achieved. More importantly, the single-atomic chemical bonding among Co─Fe on the nanopores is captured by extended X-ray absorption fine structure, which reveals the formation mechanism of nanopore-confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future.Atomic-level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero-units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe-bimetallic energetic metallic triazole framework (CoFe@E-MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe-inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RLmin ) of -53.15 dB and specific reflection loss (SRL) of -101.24 dB mg-1 mm-1 for CoFe@HPC1000 are achieved. More importantly, the single-atomic chemical bonding among Co─Fe on the nanopores is captured by extended X-ray absorption fine structure, which reveals the formation mechanism of nanopore-confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future. Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetallic energetic metallic triazole framework (CoFe@E‐MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe‐inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss ( RL min ) of −53.15 dB and specific reflection loss ( SRL ) of −101.24 dB mg −1 mm −1 for CoFe@HPC1000 are achieved. More importantly, the single‐atomic chemical bonding among Co─Fe on the nanopores is captured by extended X‐ray absorption fine structure, which reveals the formation mechanism of nanopore‐confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future. Four CoFe‐inserted hierarchical porous carbon captured under different temperatures revealed the evolution of Co/Fe from clusters to single atom states through XANES and EXAFS. The LTEM and hologram in situ monitor the high‐density nano‐vortex dipoles and magnetic domains on 3D network. The bifunctional regulation of fully covered X/Ku bands and superb specific reflection loss of −101.24 dB mg −1 mm −1 are achieved. Atomic-level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero-units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe-bimetallic energetic metallic triazole framework (CoFe@E-MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe-inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RL ) of -53.15 dB and specific reflection loss (SRL) of -101.24 dB mg mm for CoFe@HPC1000 are achieved. More importantly, the single-atomic chemical bonding among Co─Fe on the nanopores is captured by extended X-ray absorption fine structure, which reveals the formation mechanism of nanopore-confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future. |
Author | Zuo, Shouwei Zhang, Xingxing Che, Renchao Zhang, Jincang Kang, Yifan Huang, Wenhuan Qiu, Qiang Pei, Ke Chen, Jiamin |
AuthorAffiliation | 2 Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering & Technology Fudan University Shanghai 200438 P. R. China 1 Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China 3 Zhejiang Laboratory Hangzhou 311100 P. R. China |
AuthorAffiliation_xml | – name: 2 Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering & Technology Fudan University Shanghai 200438 P. R. China – name: 1 Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China – name: 3 Zhejiang Laboratory Hangzhou 311100 P. R. China |
Author_xml | – sequence: 1 givenname: Wenhuan surname: Huang fullname: Huang, Wenhuan organization: Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China – sequence: 2 givenname: Xingxing surname: Zhang fullname: Zhang, Xingxing organization: Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China – sequence: 3 givenname: Jiamin surname: Chen fullname: Chen, Jiamin organization: Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China – sequence: 4 givenname: Qiang surname: Qiu fullname: Qiu, Qiang organization: Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China – sequence: 5 givenname: Yifan surname: Kang fullname: Kang, Yifan organization: Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China – sequence: 6 givenname: Ke surname: Pei fullname: Pei, Ke organization: Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering & Technology Fudan University Shanghai 200438 P. R. China – sequence: 7 givenname: Shouwei surname: Zuo fullname: Zuo, Shouwei organization: Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China – sequence: 8 givenname: Jincang surname: Zhang fullname: Zhang, Jincang organization: Zhejiang Laboratory Hangzhou 311100 P. R. China – sequence: 9 givenname: Renchao orcidid: 0000-0002-6583-7114 surname: Che fullname: Che, Renchao organization: Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering & Technology Fudan University Shanghai 200438 P. R. China, Zhejiang Laboratory Hangzhou 311100 P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37526339$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks9uEzEQxleoiJbSK0dkiQuXpP6btU-oSkpTKQEOFI7WrNebONrYqb2J1BuPwMvwQjwJ3jZEbSUutjX-5vfZM_O6OPLB26J4S_CQYEzPod6lIcWUYUZJ-aI4oUTJAZOcHz06HxdnKa0wxkSwkhP5qjhmpaAjxtRJ8XvqFss_P39NrE-uu0OfwYdNiBaNg2-ctzX6HmLnDLRo4jahtQmBr9EcFt7mMJqENTifUPBo6myEaJb34jmYGM7nNuXF9ccejL6GGLYJ3bRdhGw6y94duoqwWbouW40hVhnUhIgu6hRi5fwCXbbWdDHb7B1_wM6-KV420CZ7tt9Pi5tPl9_G08Hsy9X1-GI2MFyKbqBEJZXCpOGyNryRCqCkDVNUiKpSIIQtMWtq2QdUSQipeMmxqXmteF0BZafF9QO3DrDSm-jWEO90AKfvAyEuNPTVaa2GTLFKUGNsyWVDpBFUMgUjaCQZkVFmfXxgbbbV2tbG-lyE9gn06Y13S70IO02wEHJUikz4sCfEcLu1qdNrl4xtW_A2l1XT3OyRJBSzLH3_TLoK2-hzrbKqZH3veZlV7x4_6fCWf-ORBcMHQe5gStE2BwnBuh9B3Y-gPoxgTuDPEozroHOh_5Jr_5f2F-Sj46E |
CitedBy_id | crossref_primary_10_1021_acsanm_4c05744 crossref_primary_10_1016_j_carbon_2024_119867 crossref_primary_10_1016_j_cej_2024_150955 crossref_primary_10_1002_advs_202400403 crossref_primary_10_1016_j_diamond_2023_110487 crossref_primary_10_1016_j_carbon_2024_119963 crossref_primary_10_1002_adfm_202405972 crossref_primary_10_1016_j_mtnano_2025_100585 crossref_primary_10_1007_s12274_023_6387_2 crossref_primary_10_1016_j_mtnano_2024_100520 crossref_primary_10_1016_j_carbon_2025_120076 crossref_primary_10_1002_adfm_202312237 crossref_primary_10_1021_acsnano_4c18320 crossref_primary_10_1002_adfm_202412307 crossref_primary_10_1016_j_carbon_2024_119594 crossref_primary_10_1016_j_carbon_2024_119296 crossref_primary_10_1016_j_mtnano_2024_100528 crossref_primary_10_1016_j_cej_2025_160343 crossref_primary_10_1007_s41742_024_00597_3 crossref_primary_10_1016_j_carbon_2024_119976 crossref_primary_10_1021_acsanm_4c04148 crossref_primary_10_1016_j_carbon_2024_119117 crossref_primary_10_1016_j_jcis_2024_04_150 crossref_primary_10_1016_j_carbon_2023_118506 crossref_primary_10_1016_j_diamond_2024_110907 crossref_primary_10_1039_D4RA06928E crossref_primary_10_1016_j_cej_2024_155786 crossref_primary_10_1016_j_xcrp_2024_102097 crossref_primary_10_1039_D3DT04228F crossref_primary_10_1039_D4QM01054J crossref_primary_10_1002_adma_202312207 crossref_primary_10_1016_j_cej_2024_155629 crossref_primary_10_1039_D3TA04895K crossref_primary_10_1016_j_compositesb_2025_112380 crossref_primary_10_1021_acsnano_4c16834 |
Cites_doi | 10.1007/s40820-022-00900-x 10.1002/adfm.202112294 10.1038/s41467-022-29535-7 10.1126/science.abe0192 10.1002/adfm.202103436 10.1002/adma.202107538 10.1002/adfm.202106677 10.1007/s40820-021-00727-y 10.1007/s12274-022-4533-x 10.1016/j.apsusc.2019.03.018 10.1021/acsnano.0c09982 10.1016/j.cej.2020.127595 10.1038/s41586-023-05731-3 10.1016/j.cej.2021.129339 10.1002/adfm.202108194 10.1002/adfm.202000475 10.1002/adfm.202202588 10.1016/j.cej.2022.136394 10.1002/advs.202004640 10.1016/j.jmst.2022.01.002 10.1007/s42114-022-00510-6 10.1007/s40820-019-0307-8 10.1038/s41560-021-00881-y 10.1007/s40820-020-00568-1 10.1016/j.cej.2020.124743 10.1039/D1CC01578H 10.1038/s41586-022-04763-5 10.1007/s40820-022-00841-5 10.1016/j.carbon.2023.02.066 10.1007/s40820-022-00808-6 10.1016/j.jmst.2021.03.048 10.1002/anie.202006124 10.1007/s42114-022-00417-2 10.1002/adfm.202210456 10.1007/s40820-020-00488-0 10.1002/adfm.202102812 10.1007/s40820-022-00863-z 10.1021/acsami.9b03944 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202303217 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_a892e952cce748f18c52839a6af81616 PMC10558675 37526339 10_1002_advs_202303217 |
Genre | Journal Article |
GrantInformation_xml | – fundername: International Cooperation Key Project of Science and Technology Department of Shaanxi, China grantid: 2022KWZ-06 – fundername: National Natural Science Foundation of China grantid: 52231007 – fundername: National Natural Science Foundation of China grantid: 22271178 – fundername: Science and Technology New Star in Shaanxi Province grantid: 2023KJXX-045 – fundername: National Natural Science Foundation of China grantid: 51725101 – fundername: Research project of Xi'an Science and Technology Bureau grantid: 2022GXFW0011 – fundername: National Natural Science Foundation of China grantid: 22001156 – fundername: Youth Talent Promotion Project of Science and Technology Association of Universities of Shaanxi Province grantid: 20210602 – fundername: National Natural Science Foundation of China grantid: 11727807 – fundername: International Cooperation Key Project of Science and Technology Department of Shaanxi, China grantid: 2022KWZ‐06 – fundername: ; grantid: 52231007; 51725101; 11727807; 22001156; 22271178 – fundername: Science and Technology New Star in Shaanxi Province grantid: 2023KJXX‐045 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAYXX AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU CITATION DWQXO EBS EJD GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM NPM WIN 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c485t-95b89901f48dc4f89aa72f39255bb9a55e703fd8925597111b4740cd4d94dba23 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:27:51 EDT 2025 Thu Aug 21 18:35:53 EDT 2025 Thu Jul 10 18:51:02 EDT 2025 Fri Jul 25 06:21:19 EDT 2025 Wed Feb 19 02:24:14 EST 2025 Tue Jul 01 03:59:56 EDT 2025 Thu Apr 24 22:59:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | vortical dipole electron holography electromagnetic wave absorber magnetic domain energetic metal-organic framework |
Language | English |
License | 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-95b89901f48dc4f89aa72f39255bb9a55e703fd8925597111b4740cd4d94dba23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6583-7114 |
OpenAccessLink | https://www.proquest.com/docview/2873633947?pq-origsite=%requestingapplication% |
PMID | 37526339 |
PQID | 2873633947 |
PQPubID | 4365299 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a892e952cce748f18c52839a6af81616 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10558675 proquest_miscellaneous_2844681203 proquest_journals_2873633947 pubmed_primary_37526339 crossref_primary_10_1002_advs_202303217 crossref_citationtrail_10_1002_advs_202303217 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | e_1_2_8_1_3 e_1_2_8_2_2 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_4_2 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_2_3 e_1_2_8_3_2 e_1_2_8_4_1 e_1_2_8_2_6 e_1_2_8_7_1 e_1_2_8_2_5 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_13_1 e_1_2_8_12_3 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_19_3 e_1_2_8_19_4 e_1_2_8_19_5 e_1_2_8_19_6 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_12_1 |
References_xml | – ident: e_1_2_8_7_1 doi: 10.1007/s40820-022-00900-x – ident: e_1_2_8_2_6 doi: 10.1002/adfm.202112294 – ident: e_1_2_8_11_2 doi: 10.1038/s41467-022-29535-7 – ident: e_1_2_8_12_3 doi: 10.1126/science.abe0192 – ident: e_1_2_8_2_4 doi: 10.1002/adfm.202103436 – ident: e_1_2_8_5_1 doi: 10.1002/adma.202107538 – ident: e_1_2_8_2_2 doi: 10.1002/adfm.202106677 – ident: e_1_2_8_4_1 doi: 10.1007/s40820-021-00727-y – ident: e_1_2_8_19_4 doi: 10.1007/s12274-022-4533-x – ident: e_1_2_8_19_6 doi: 10.1016/j.apsusc.2019.03.018 – ident: e_1_2_8_1_1 doi: 10.1021/acsnano.0c09982 – ident: e_1_2_8_17_1 doi: 10.1016/j.cej.2020.127595 – ident: e_1_2_8_18_1 doi: 10.1038/s41586-023-05731-3 – ident: e_1_2_8_16_1 doi: 10.1016/j.cej.2021.129339 – ident: e_1_2_8_2_3 doi: 10.1002/adfm.202108194 – ident: e_1_2_8_1_2 doi: 10.1002/adfm.202000475 – ident: e_1_2_8_2_5 doi: 10.1002/adfm.202202588 – ident: e_1_2_8_6_1 doi: 10.1016/j.cej.2022.136394 – ident: e_1_2_8_4_2 doi: 10.1002/advs.202004640 – ident: e_1_2_8_14_1 doi: 10.1016/j.jmst.2022.01.002 – ident: e_1_2_8_19_3 doi: 10.1007/s42114-022-00510-6 – ident: e_1_2_8_2_1 doi: 10.1007/s40820-019-0307-8 – ident: e_1_2_8_12_1 doi: 10.1038/s41560-021-00881-y – ident: e_1_2_8_8_1 doi: 10.1007/s40820-020-00568-1 – ident: e_1_2_8_1_3 doi: 10.1016/j.cej.2020.124743 – ident: e_1_2_8_17_2 doi: 10.1039/D1CC01578H – ident: e_1_2_8_12_2 doi: 10.1038/s41586-022-04763-5 – ident: e_1_2_8_9_1 doi: 10.1007/s40820-022-00841-5 – ident: e_1_2_8_15_1 doi: 10.1016/j.carbon.2023.02.066 – ident: e_1_2_8_3_1 doi: 10.1007/s40820-022-00808-6 – ident: e_1_2_8_13_1 doi: 10.1016/j.jmst.2021.03.048 – ident: e_1_2_8_11_1 doi: 10.1002/anie.202006124 – ident: e_1_2_8_19_2 doi: 10.1007/s42114-022-00417-2 – ident: e_1_2_8_10_1 doi: 10.1002/adfm.202210456 – ident: e_1_2_8_1_4 doi: 10.1007/s40820-020-00488-0 – ident: e_1_2_8_3_2 doi: 10.1002/adfm.202102812 – ident: e_1_2_8_19_1 doi: 10.1007/s40820-022-00863-z – ident: e_1_2_8_19_5 doi: 10.1021/acsami.9b03944 |
SSID | ssj0001537418 |
Score | 2.42024 |
Snippet | Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in... Atomic-level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero-units in... Abstract Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e2303217 |
SubjectTerms | Bandwidths Carbon electromagnetic wave absorber electron holography energetic metal‐organic framework High temperature magnetic domain Metals Morphology Spectrum analysis vortical dipole |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQnrgglt_AgoyEBByiFv809nHZ7lIhijhQ2FvkvyyVuskq6a7EjUfgZXghnoQZOw0tAnHhkkMyiSeZsf1NPP6GkKegnJLeFnngociF0i5Xnvm8GkvnnHIwy-OK7vzdZLYQb07l6VapL8wJS_TA6cONjNIsaMmcC4VQ1UvlkI5Em4mpFKCVSLYNc95WMJX2B3OkZdmwNI7ZyPgrZOcGxM1ZrE72axaKZP1_Qpi_J0puzTwnN8mNHjLSw6TqPrkW6ltkv--UHX3eM0e_uE2-Y9bGj6_fppiVvv5CYehsAF8Hivv6AE56-rFp489rOl1eIJUTNbWnc3NW415GOm3OzbLuaFPT2RJ3JsdCKSsQgNcYzUMHB0zgG-GD6fumbS47uliB0tDoWwzz6WskwEYYS49Ma-FBAIrpoe-aFkLwM3qcqu6cb1r8ZK7CHbI4Of5wNMv7ugy5E0qucy2twuW0SijvRKW0MQWrAGhJaa02UgYYRiqvdAxXYDC1ohBj54XXwlvD-F2yVzd1uE-osqYwVrNKSAuBkNfcci0dluy0YCuXkXxjp9L1pOVYO2NVJrplVqJdy8GuGXk2yF8kuo6_Sr5Csw9SSLMdT4Dzlb3zlf9yvowcbJym7Ps-NKEKPuFcC2jjyXAZei0uxZg6gGlABsJwwFZjnpF7yccGTXghGd6fEbXjfTuq7l6pl58jMzhWO1UQAj74Hy_3kFzHr5UyFw_I3rq9DI8Aga3t49jZfgKFBzMS priority: 102 providerName: Directory of Open Access Journals |
Title | High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37526339 https://www.proquest.com/docview/2873633947 https://www.proquest.com/docview/2844681203 https://pubmed.ncbi.nlm.nih.gov/PMC10558675 https://doaj.org/article/a892e952cce748f18c52839a6af81616 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELagvXBBLM_AUhkJCThELbHd2CfU3Xap0Ha1Agp7i_xKqdRNStJdiZ_FP2Qmr6UIuPTQTJNJxx5_Mx5_Q8hLUE4KZ-LQMx-HXCobShe5MB0Ja620sMrjju7ibDxf8g8X4qJJuJVNWWXrEytH7XKLOfIhIHs2Zkzx-N32e4hdo3B3tWmhcZv0wQVL2SP9o9nZ-cebLItgSM_SsjWOoqF218jSDcibRVWXspvVqCLt_xvS_LNg8rcV6OQeudtARzqpbX1AbvnsPjloJmdJXzcM0m8ekJ9YvRFOsTZ994OCA80BZXuKp_sAVDr6JS-qFDadrrdI6ER15uhCrzI80Uin-aVeZyXNMzpf4_nkql3KBgTgJYYLX8IHlvEN8cb0PC_yq5IuN6ByeIqhPn2PJNgIZemxLgzcBoAxnbgyLyAMX9FZ3Xnnsn3eV33tH5Llyezz8TxsejOElkuxC5UwErfUUi6d5alUWsdRCmBLCGOUFsKDK0mdVFXIAg7V8JiPrONOcWd0xB6RXpZn_gmh0uhYGxWlXBgIhpxihilhsW2nATvZgIStjRLbEJdj_4xNUlMuRwnaNOlsGpBXnfy2puz4p-QRmryTQqrt6ou8WCXNzE00vINXIrLWx1ymb6VFPhylxzqVAJfHATlsB0zSzH94RDdaA_KiuwwzF7djdObBMCADoTjgqxELyON6fHWasFhE-PuAyL2Rt6fq_pVs_a1iB8eOpxLCwKf_1-sZuYP_Q12XeEh6u-LKPwd8tTMD0p9MF6efBs1kGlR5il8T4iuD |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QEuiPI0FFgkEHCwEuzdePeAUNukpDSJKtRAb-6-HCKldrDTov4pJP4hM36kBAG3XnKIJ_Y4Mzv7ze7sN4S8AOUEtzryXeginwlpfGED6ycdbowRBmZ53NEdjbuDCft4wk82yI_mLAyWVTYxsQzUNjO4Rt4GZB92w1Cy6P3im49do3B3tWmhUbnFobv8Dilb8e6gB_Z9GQT7_eO9gV93FfANE3zpS64FbgYlTFjDEiGVioIEYALnWkvFuYNBkFghS7ANoUCziHWMZVYyqxUSHUDI32RhtxO0yOZuf3z06WpVh4dIB9OwQ3aCtrIXyAoOSD8Myq5oV7Nf2STgb8j2zwLN32a8_dvkVg1V6U7lW1tkw6V3yFYdDAr6umasfnOX_MRqEb-HtfDLSwoBOwNU7yieJgQQa-nnLC-XzGlvtkACKapSS0dqmuIJStrLztQsLWiW0sEMz0OX7VnmIAAv0R65Aj6wbLCNN6ZHWZ6dF3QyB5X9IS4t0A9Iuo3Qme6pXMNtAIjTHVtkOaT9U9qvOv2cNc_7oi7cPTK5FqvdJ600S91DQoVWkdIySBjXkHxZGepQcoNtQjXYyXjEb2wUm5ooHft1zOOK4jmI0abxyqYeebWSX1QUIf-U3EWTr6SQ2rv8IsuncR0pYgXv4CQPjHERE8lbYZB_R6quSgTA865HthuHiet4A49YjQ6PPF9dhkiB2z8qdWAYkIHUH_BcJ_TIg8q_VpqEEQ_w9x4Ra563pur6lXT2tWQjxw6rAtLOR__X6xm5MTgeDePhwfjwMbmJ_0lVE7lNWsv83D0BbLfUT-sBRcnpdY_hX1BMZLs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrYS4IMrTUGCRQMDBSrB3490DQm2TkNImihCB3sy-XCKldrDTov4srvw6ZvwqQcCtlxziiT3OPPbb3dlvCHkGygludeS70EU-E9L4wgbWT7rcGCMMjPK4ozue9EYz9v6YH2-Qn81ZGCyrbHJimahtZnCNvAPIPuyFoWRRJ6nLIqb94dvlNx87SOFOa9NOo3KRQ3fxHaZvxZuDPtj6eRAMBx_3R37dYcA3TPCVL7kWuDGUMGENS4RUKgoSgAycay0V5w4CIrFClsAb0oJmEesay6xkViskPYD0vxXhrGiTbO0NJtMPlys8PERqmIYpsht0lD1HhnBA_WFQdki7HAnLhgF_Q7l_Fmv-NvoNb5IbNWylu5WfbZMNl94i23ViKOjLmr361W3yAytH_D7Wxa8uKCTvDBC-o3iyEACtpZ-yvFw-p_35EsmkqEotHauTFE9T0n52quZpQbOUjuZ4Nrps1bIAAXiJztgV8IElhB28MZ1meXZW0NkCVPaPcJmBvkMCboTRdF_lGm4DoJzu2iLLNQzSdFB1_TltnvdZnbs7ZHYlVrtLNtMsdfcJFVpFSssgYVzDRMzKUIeSG2wZqsFOxiN-Y6PY1KTp2LtjEVd0z0GMNo1bm3rkRSu_rOhC_im5hyZvpZDmu_wiy0_iOmvECt7BSR4Y4yImktfCIBePVD2VCIDqPY_sNA4T17kHHtFGikeetpcha-BWkEodGAZkGEPmuW7okXuVf7WahBEP8PceEWuet6bq-pV0_rVkJsduqwKmoA_-r9cTcg1iNz46mBw-JNfxL6nKI3fI5io_c48A5q304zqeKPly1SH8C9SmaPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Density+Nanopore+Confined+Vortical+Dipoles+and+Magnetic+Domains+on+Hierarchical+Macro%2FMeso%2FMicro%2FNano+Porous+Ultra-Light+Graphited+Carbon+for+Adsorbing+Electromagnetic+Wave&rft.jtitle=Advanced+science&rft.au=Huang%2C+Wenhuan&rft.au=Zhang%2C+Xingxing&rft.au=Chen%2C+Jiamin&rft.au=Qiu%2C+Qiang&rft.date=2023-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=10&rft.issue=28&rft_id=info:doi/10.1002%2Fadvs.202303217&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |