High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave

Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetall...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 10; no. 28; pp. e2303217 - n/a
Main Authors Huang, Wenhuan, Zhang, Xingxing, Chen, Jiamin, Qiu, Qiang, Kang, Yifan, Pei, Ke, Zuo, Shouwei, Zhang, Jincang, Che, Renchao
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.10.2023
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetallic energetic metallic triazole framework (CoFe@E‐MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe‐inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss ( RL min ) of −53.15 dB and specific reflection loss ( SRL ) of −101.24 dB mg −1 mm −1 for CoFe@HPC1000 are achieved. More importantly, the single‐atomic chemical bonding among Co─Fe on the nanopores is captured by extended X‐ray absorption fine structure, which reveals the formation mechanism of nanopore‐confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future.
AbstractList Abstract Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetallic energetic metallic triazole framework (CoFe@E‐MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe‐inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RLmin) of −53.15 dB and specific reflection loss (SRL) of −101.24 dB mg−1 mm−1 for CoFe@HPC1000 are achieved. More importantly, the single‐atomic chemical bonding among Co─Fe on the nanopores is captured by extended X‐ray absorption fine structure, which reveals the formation mechanism of nanopore‐confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future.
Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetallic energetic metallic triazole framework (CoFe@E‐MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe‐inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss ( RL min ) of −53.15 dB and specific reflection loss ( SRL ) of −101.24 dB mg −1 mm −1 for CoFe@HPC1000 are achieved. More importantly, the single‐atomic chemical bonding among Co─Fe on the nanopores is captured by extended X‐ray absorption fine structure, which reveals the formation mechanism of nanopore‐confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future.
Atomic-level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero-units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe-bimetallic energetic metallic triazole framework (CoFe@E-MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe-inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RLmin) of −53.15 dB and specific reflection loss (SRL) of −101.24 dB mg−1 mm−1 for CoFe@HPC1000 are achieved. More importantly, the single-atomic chemical bonding among Co─Fe on the nanopores is captured by extended X-ray absorption fine structure, which reveals the formation mechanism of nanopore-confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future.
Atomic-level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero-units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe-bimetallic energetic metallic triazole framework (CoFe@E-MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe-inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RLmin ) of -53.15 dB and specific reflection loss (SRL) of -101.24 dB mg-1 mm-1 for CoFe@HPC1000 are achieved. More importantly, the single-atomic chemical bonding among Co─Fe on the nanopores is captured by extended X-ray absorption fine structure, which reveals the formation mechanism of nanopore-confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future.Atomic-level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero-units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe-bimetallic energetic metallic triazole framework (CoFe@E-MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe-inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RLmin ) of -53.15 dB and specific reflection loss (SRL) of -101.24 dB mg-1 mm-1 for CoFe@HPC1000 are achieved. More importantly, the single-atomic chemical bonding among Co─Fe on the nanopores is captured by extended X-ray absorption fine structure, which reveals the formation mechanism of nanopore-confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future.
Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetallic energetic metallic triazole framework (CoFe@E‐MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe‐inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss ( RL min ) of −53.15 dB and specific reflection loss ( SRL ) of −101.24 dB mg −1 mm −1 for CoFe@HPC1000 are achieved. More importantly, the single‐atomic chemical bonding among Co─Fe on the nanopores is captured by extended X‐ray absorption fine structure, which reveals the formation mechanism of nanopore‐confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future. Four CoFe‐inserted hierarchical porous carbon captured under different temperatures revealed the evolution of Co/Fe from clusters to single atom states through XANES and EXAFS. The LTEM and hologram in situ monitor the high‐density nano‐vortex dipoles and magnetic domains on 3D network. The bifunctional regulation of fully covered X/Ku bands and superb specific reflection loss of −101.24 dB mg −1 mm −1 are achieved.
Atomic-level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero-units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe-bimetallic energetic metallic triazole framework (CoFe@E-MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe-inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RL ) of -53.15 dB and specific reflection loss (SRL) of -101.24 dB mg mm for CoFe@HPC1000 are achieved. More importantly, the single-atomic chemical bonding among Co─Fe on the nanopores is captured by extended X-ray absorption fine structure, which reveals the formation mechanism of nanopore-confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future.
Author Zuo, Shouwei
Zhang, Xingxing
Che, Renchao
Zhang, Jincang
Kang, Yifan
Huang, Wenhuan
Qiu, Qiang
Pei, Ke
Chen, Jiamin
AuthorAffiliation 2 Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering & Technology Fudan University Shanghai 200438 P. R. China
1 Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
3 Zhejiang Laboratory Hangzhou 311100 P. R. China
AuthorAffiliation_xml – name: 2 Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering & Technology Fudan University Shanghai 200438 P. R. China
– name: 1 Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
– name: 3 Zhejiang Laboratory Hangzhou 311100 P. R. China
Author_xml – sequence: 1
  givenname: Wenhuan
  surname: Huang
  fullname: Huang, Wenhuan
  organization: Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
– sequence: 2
  givenname: Xingxing
  surname: Zhang
  fullname: Zhang, Xingxing
  organization: Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
– sequence: 3
  givenname: Jiamin
  surname: Chen
  fullname: Chen, Jiamin
  organization: Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
– sequence: 4
  givenname: Qiang
  surname: Qiu
  fullname: Qiu, Qiang
  organization: Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
– sequence: 5
  givenname: Yifan
  surname: Kang
  fullname: Kang, Yifan
  organization: Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
– sequence: 6
  givenname: Ke
  surname: Pei
  fullname: Pei, Ke
  organization: Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering & Technology Fudan University Shanghai 200438 P. R. China
– sequence: 7
  givenname: Shouwei
  surname: Zuo
  fullname: Zuo, Shouwei
  organization: Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
– sequence: 8
  givenname: Jincang
  surname: Zhang
  fullname: Zhang, Jincang
  organization: Zhejiang Laboratory Hangzhou 311100 P. R. China
– sequence: 9
  givenname: Renchao
  orcidid: 0000-0002-6583-7114
  surname: Che
  fullname: Che, Renchao
  organization: Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering & Technology Fudan University Shanghai 200438 P. R. China, Zhejiang Laboratory Hangzhou 311100 P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37526339$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9uEzEQxleoiJbSK0dkiQuXpP6btU-oSkpTKQEOFI7WrNebONrYqb2J1BuPwMvwQjwJ3jZEbSUutjX-5vfZM_O6OPLB26J4S_CQYEzPod6lIcWUYUZJ-aI4oUTJAZOcHz06HxdnKa0wxkSwkhP5qjhmpaAjxtRJ8XvqFss_P39NrE-uu0OfwYdNiBaNg2-ctzX6HmLnDLRo4jahtQmBr9EcFt7mMJqENTifUPBo6myEaJb34jmYGM7nNuXF9ccejL6GGLYJ3bRdhGw6y94duoqwWbouW40hVhnUhIgu6hRi5fwCXbbWdDHb7B1_wM6-KV420CZ7tt9Pi5tPl9_G08Hsy9X1-GI2MFyKbqBEJZXCpOGyNryRCqCkDVNUiKpSIIQtMWtq2QdUSQipeMmxqXmteF0BZafF9QO3DrDSm-jWEO90AKfvAyEuNPTVaa2GTLFKUGNsyWVDpBFUMgUjaCQZkVFmfXxgbbbV2tbG-lyE9gn06Y13S70IO02wEHJUikz4sCfEcLu1qdNrl4xtW_A2l1XT3OyRJBSzLH3_TLoK2-hzrbKqZH3veZlV7x4_6fCWf-ORBcMHQe5gStE2BwnBuh9B3Y-gPoxgTuDPEozroHOh_5Jr_5f2F-Sj46E
CitedBy_id crossref_primary_10_1021_acsanm_4c05744
crossref_primary_10_1016_j_carbon_2024_119867
crossref_primary_10_1016_j_cej_2024_150955
crossref_primary_10_1002_advs_202400403
crossref_primary_10_1016_j_diamond_2023_110487
crossref_primary_10_1016_j_carbon_2024_119963
crossref_primary_10_1002_adfm_202405972
crossref_primary_10_1016_j_mtnano_2025_100585
crossref_primary_10_1007_s12274_023_6387_2
crossref_primary_10_1016_j_mtnano_2024_100520
crossref_primary_10_1016_j_carbon_2025_120076
crossref_primary_10_1002_adfm_202312237
crossref_primary_10_1021_acsnano_4c18320
crossref_primary_10_1002_adfm_202412307
crossref_primary_10_1016_j_carbon_2024_119594
crossref_primary_10_1016_j_carbon_2024_119296
crossref_primary_10_1016_j_mtnano_2024_100528
crossref_primary_10_1016_j_cej_2025_160343
crossref_primary_10_1007_s41742_024_00597_3
crossref_primary_10_1016_j_carbon_2024_119976
crossref_primary_10_1021_acsanm_4c04148
crossref_primary_10_1016_j_carbon_2024_119117
crossref_primary_10_1016_j_jcis_2024_04_150
crossref_primary_10_1016_j_carbon_2023_118506
crossref_primary_10_1016_j_diamond_2024_110907
crossref_primary_10_1039_D4RA06928E
crossref_primary_10_1016_j_cej_2024_155786
crossref_primary_10_1016_j_xcrp_2024_102097
crossref_primary_10_1039_D3DT04228F
crossref_primary_10_1039_D4QM01054J
crossref_primary_10_1002_adma_202312207
crossref_primary_10_1016_j_cej_2024_155629
crossref_primary_10_1039_D3TA04895K
crossref_primary_10_1016_j_compositesb_2025_112380
crossref_primary_10_1021_acsnano_4c16834
Cites_doi 10.1007/s40820-022-00900-x
10.1002/adfm.202112294
10.1038/s41467-022-29535-7
10.1126/science.abe0192
10.1002/adfm.202103436
10.1002/adma.202107538
10.1002/adfm.202106677
10.1007/s40820-021-00727-y
10.1007/s12274-022-4533-x
10.1016/j.apsusc.2019.03.018
10.1021/acsnano.0c09982
10.1016/j.cej.2020.127595
10.1038/s41586-023-05731-3
10.1016/j.cej.2021.129339
10.1002/adfm.202108194
10.1002/adfm.202000475
10.1002/adfm.202202588
10.1016/j.cej.2022.136394
10.1002/advs.202004640
10.1016/j.jmst.2022.01.002
10.1007/s42114-022-00510-6
10.1007/s40820-019-0307-8
10.1038/s41560-021-00881-y
10.1007/s40820-020-00568-1
10.1016/j.cej.2020.124743
10.1039/D1CC01578H
10.1038/s41586-022-04763-5
10.1007/s40820-022-00841-5
10.1016/j.carbon.2023.02.066
10.1007/s40820-022-00808-6
10.1016/j.jmst.2021.03.048
10.1002/anie.202006124
10.1007/s42114-022-00417-2
10.1002/adfm.202210456
10.1007/s40820-020-00488-0
10.1002/adfm.202102812
10.1007/s40820-022-00863-z
10.1021/acsami.9b03944
ContentType Journal Article
Copyright 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
Copyright_xml – notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202303217
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_a892e952cce748f18c52839a6af81616
PMC10558675
37526339
10_1002_advs_202303217
Genre Journal Article
GrantInformation_xml – fundername: International Cooperation Key Project of Science and Technology Department of Shaanxi, China
  grantid: 2022KWZ-06
– fundername: National Natural Science Foundation of China
  grantid: 52231007
– fundername: National Natural Science Foundation of China
  grantid: 22271178
– fundername: Science and Technology New Star in Shaanxi Province
  grantid: 2023KJXX-045
– fundername: National Natural Science Foundation of China
  grantid: 51725101
– fundername: Research project of Xi'an Science and Technology Bureau
  grantid: 2022GXFW0011
– fundername: National Natural Science Foundation of China
  grantid: 22001156
– fundername: Youth Talent Promotion Project of Science and Technology Association of Universities of Shaanxi Province
  grantid: 20210602
– fundername: National Natural Science Foundation of China
  grantid: 11727807
– fundername: International Cooperation Key Project of Science and Technology Department of Shaanxi, China
  grantid: 2022KWZ‐06
– fundername: ;
  grantid: 52231007; 51725101; 11727807; 22001156; 22271178
– fundername: Science and Technology New Star in Shaanxi Province
  grantid: 2023KJXX‐045
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAYXX
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
NPM
WIN
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c485t-95b89901f48dc4f89aa72f39255bb9a55e703fd8925597111b4740cd4d94dba23
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:27:51 EDT 2025
Thu Aug 21 18:35:53 EDT 2025
Thu Jul 10 18:51:02 EDT 2025
Fri Jul 25 06:21:19 EDT 2025
Wed Feb 19 02:24:14 EST 2025
Tue Jul 01 03:59:56 EDT 2025
Thu Apr 24 22:59:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords vortical dipole
electron holography
electromagnetic wave absorber
magnetic domain
energetic metal-organic framework
Language English
License 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-95b89901f48dc4f89aa72f39255bb9a55e703fd8925597111b4740cd4d94dba23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6583-7114
OpenAccessLink https://www.proquest.com/docview/2873633947?pq-origsite=%requestingapplication%
PMID 37526339
PQID 2873633947
PQPubID 4365299
ParticipantIDs doaj_primary_oai_doaj_org_article_a892e952cce748f18c52839a6af81616
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10558675
proquest_miscellaneous_2844681203
proquest_journals_2873633947
pubmed_primary_37526339
crossref_primary_10_1002_advs_202303217
crossref_citationtrail_10_1002_advs_202303217
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References e_1_2_8_1_3
e_1_2_8_2_2
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_4_2
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_2_3
e_1_2_8_3_2
e_1_2_8_4_1
e_1_2_8_2_6
e_1_2_8_7_1
e_1_2_8_2_5
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_1
e_1_2_8_12_3
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_19_3
e_1_2_8_19_4
e_1_2_8_19_5
e_1_2_8_19_6
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_12_1
References_xml – ident: e_1_2_8_7_1
  doi: 10.1007/s40820-022-00900-x
– ident: e_1_2_8_2_6
  doi: 10.1002/adfm.202112294
– ident: e_1_2_8_11_2
  doi: 10.1038/s41467-022-29535-7
– ident: e_1_2_8_12_3
  doi: 10.1126/science.abe0192
– ident: e_1_2_8_2_4
  doi: 10.1002/adfm.202103436
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.202107538
– ident: e_1_2_8_2_2
  doi: 10.1002/adfm.202106677
– ident: e_1_2_8_4_1
  doi: 10.1007/s40820-021-00727-y
– ident: e_1_2_8_19_4
  doi: 10.1007/s12274-022-4533-x
– ident: e_1_2_8_19_6
  doi: 10.1016/j.apsusc.2019.03.018
– ident: e_1_2_8_1_1
  doi: 10.1021/acsnano.0c09982
– ident: e_1_2_8_17_1
  doi: 10.1016/j.cej.2020.127595
– ident: e_1_2_8_18_1
  doi: 10.1038/s41586-023-05731-3
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cej.2021.129339
– ident: e_1_2_8_2_3
  doi: 10.1002/adfm.202108194
– ident: e_1_2_8_1_2
  doi: 10.1002/adfm.202000475
– ident: e_1_2_8_2_5
  doi: 10.1002/adfm.202202588
– ident: e_1_2_8_6_1
  doi: 10.1016/j.cej.2022.136394
– ident: e_1_2_8_4_2
  doi: 10.1002/advs.202004640
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jmst.2022.01.002
– ident: e_1_2_8_19_3
  doi: 10.1007/s42114-022-00510-6
– ident: e_1_2_8_2_1
  doi: 10.1007/s40820-019-0307-8
– ident: e_1_2_8_12_1
  doi: 10.1038/s41560-021-00881-y
– ident: e_1_2_8_8_1
  doi: 10.1007/s40820-020-00568-1
– ident: e_1_2_8_1_3
  doi: 10.1016/j.cej.2020.124743
– ident: e_1_2_8_17_2
  doi: 10.1039/D1CC01578H
– ident: e_1_2_8_12_2
  doi: 10.1038/s41586-022-04763-5
– ident: e_1_2_8_9_1
  doi: 10.1007/s40820-022-00841-5
– ident: e_1_2_8_15_1
  doi: 10.1016/j.carbon.2023.02.066
– ident: e_1_2_8_3_1
  doi: 10.1007/s40820-022-00808-6
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jmst.2021.03.048
– ident: e_1_2_8_11_1
  doi: 10.1002/anie.202006124
– ident: e_1_2_8_19_2
  doi: 10.1007/s42114-022-00417-2
– ident: e_1_2_8_10_1
  doi: 10.1002/adfm.202210456
– ident: e_1_2_8_1_4
  doi: 10.1007/s40820-020-00488-0
– ident: e_1_2_8_3_2
  doi: 10.1002/adfm.202102812
– ident: e_1_2_8_19_1
  doi: 10.1007/s40820-022-00863-z
– ident: e_1_2_8_19_5
  doi: 10.1021/acsami.9b03944
SSID ssj0001537418
Score 2.42024
Snippet Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in...
Atomic-level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero-units in...
Abstract Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2303217
SubjectTerms Bandwidths
Carbon
electromagnetic wave absorber
electron holography
energetic metal‐organic framework
High temperature
magnetic domain
Metals
Morphology
Spectrum analysis
vortical dipole
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQnrgglt_AgoyEBByiFv809nHZ7lIhijhQ2FvkvyyVuskq6a7EjUfgZXghnoQZOw0tAnHhkkMyiSeZsf1NPP6GkKegnJLeFnngociF0i5Xnvm8GkvnnHIwy-OK7vzdZLYQb07l6VapL8wJS_TA6cONjNIsaMmcC4VQ1UvlkI5Em4mpFKCVSLYNc95WMJX2B3OkZdmwNI7ZyPgrZOcGxM1ZrE72axaKZP1_Qpi_J0puzTwnN8mNHjLSw6TqPrkW6ltkv--UHX3eM0e_uE2-Y9bGj6_fppiVvv5CYehsAF8Hivv6AE56-rFp489rOl1eIJUTNbWnc3NW415GOm3OzbLuaFPT2RJ3JsdCKSsQgNcYzUMHB0zgG-GD6fumbS47uliB0tDoWwzz6WskwEYYS49Ma-FBAIrpoe-aFkLwM3qcqu6cb1r8ZK7CHbI4Of5wNMv7ugy5E0qucy2twuW0SijvRKW0MQWrAGhJaa02UgYYRiqvdAxXYDC1ohBj54XXwlvD-F2yVzd1uE-osqYwVrNKSAuBkNfcci0dluy0YCuXkXxjp9L1pOVYO2NVJrplVqJdy8GuGXk2yF8kuo6_Sr5Csw9SSLMdT4Dzlb3zlf9yvowcbJym7Ps-NKEKPuFcC2jjyXAZei0uxZg6gGlABsJwwFZjnpF7yccGTXghGd6fEbXjfTuq7l6pl58jMzhWO1UQAj74Hy_3kFzHr5UyFw_I3rq9DI8Aga3t49jZfgKFBzMS
  priority: 102
  providerName: Directory of Open Access Journals
Title High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave
URI https://www.ncbi.nlm.nih.gov/pubmed/37526339
https://www.proquest.com/docview/2873633947
https://www.proquest.com/docview/2844681203
https://pubmed.ncbi.nlm.nih.gov/PMC10558675
https://doaj.org/article/a892e952cce748f18c52839a6af81616
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELagvXBBLM_AUhkJCThELbHd2CfU3Xap0Ha1Agp7i_xKqdRNStJdiZ_FP2Qmr6UIuPTQTJNJxx5_Mx5_Q8hLUE4KZ-LQMx-HXCobShe5MB0Ja620sMrjju7ibDxf8g8X4qJJuJVNWWXrEytH7XKLOfIhIHs2Zkzx-N32e4hdo3B3tWmhcZv0wQVL2SP9o9nZ-cebLItgSM_SsjWOoqF218jSDcibRVWXspvVqCLt_xvS_LNg8rcV6OQeudtARzqpbX1AbvnsPjloJmdJXzcM0m8ekJ9YvRFOsTZ994OCA80BZXuKp_sAVDr6JS-qFDadrrdI6ER15uhCrzI80Uin-aVeZyXNMzpf4_nkql3KBgTgJYYLX8IHlvEN8cb0PC_yq5IuN6ByeIqhPn2PJNgIZemxLgzcBoAxnbgyLyAMX9FZ3Xnnsn3eV33tH5Llyezz8TxsejOElkuxC5UwErfUUi6d5alUWsdRCmBLCGOUFsKDK0mdVFXIAg7V8JiPrONOcWd0xB6RXpZn_gmh0uhYGxWlXBgIhpxihilhsW2nATvZgIStjRLbEJdj_4xNUlMuRwnaNOlsGpBXnfy2puz4p-QRmryTQqrt6ou8WCXNzE00vINXIrLWx1ymb6VFPhylxzqVAJfHATlsB0zSzH94RDdaA_KiuwwzF7djdObBMCADoTjgqxELyON6fHWasFhE-PuAyL2Rt6fq_pVs_a1iB8eOpxLCwKf_1-sZuYP_Q12XeEh6u-LKPwd8tTMD0p9MF6efBs1kGlR5il8T4iuD
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QEuiPI0FFgkEHCwEuzdePeAUNukpDSJKtRAb-6-HCKldrDTov4pJP4hM36kBAG3XnKIJ_Y4Mzv7ze7sN4S8AOUEtzryXeginwlpfGED6ycdbowRBmZ53NEdjbuDCft4wk82yI_mLAyWVTYxsQzUNjO4Rt4GZB92w1Cy6P3im49do3B3tWmhUbnFobv8Dilb8e6gB_Z9GQT7_eO9gV93FfANE3zpS64FbgYlTFjDEiGVioIEYALnWkvFuYNBkFghS7ANoUCziHWMZVYyqxUSHUDI32RhtxO0yOZuf3z06WpVh4dIB9OwQ3aCtrIXyAoOSD8Myq5oV7Nf2STgb8j2zwLN32a8_dvkVg1V6U7lW1tkw6V3yFYdDAr6umasfnOX_MRqEb-HtfDLSwoBOwNU7yieJgQQa-nnLC-XzGlvtkACKapSS0dqmuIJStrLztQsLWiW0sEMz0OX7VnmIAAv0R65Aj6wbLCNN6ZHWZ6dF3QyB5X9IS4t0A9Iuo3Qme6pXMNtAIjTHVtkOaT9U9qvOv2cNc_7oi7cPTK5FqvdJ600S91DQoVWkdIySBjXkHxZGepQcoNtQjXYyXjEb2wUm5ooHft1zOOK4jmI0abxyqYeebWSX1QUIf-U3EWTr6SQ2rv8IsuncR0pYgXv4CQPjHERE8lbYZB_R6quSgTA865HthuHiet4A49YjQ6PPF9dhkiB2z8qdWAYkIHUH_BcJ_TIg8q_VpqEEQ_w9x4Ra563pur6lXT2tWQjxw6rAtLOR__X6xm5MTgeDePhwfjwMbmJ_0lVE7lNWsv83D0BbLfUT-sBRcnpdY_hX1BMZLs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrYS4IMrTUGCRQMDBSrB3490DQm2TkNImihCB3sy-XCKldrDTov4srvw6ZvwqQcCtlxziiT3OPPbb3dlvCHkGygludeS70EU-E9L4wgbWT7rcGCMMjPK4ozue9EYz9v6YH2-Qn81ZGCyrbHJimahtZnCNvAPIPuyFoWRRJ6nLIqb94dvlNx87SOFOa9NOo3KRQ3fxHaZvxZuDPtj6eRAMBx_3R37dYcA3TPCVL7kWuDGUMGENS4RUKgoSgAycay0V5w4CIrFClsAb0oJmEesay6xkViskPYD0vxXhrGiTbO0NJtMPlys8PERqmIYpsht0lD1HhnBA_WFQdki7HAnLhgF_Q7l_Fmv-NvoNb5IbNWylu5WfbZMNl94i23ViKOjLmr361W3yAytH_D7Wxa8uKCTvDBC-o3iyEACtpZ-yvFw-p_35EsmkqEotHauTFE9T0n52quZpQbOUjuZ4Nrps1bIAAXiJztgV8IElhB28MZ1meXZW0NkCVPaPcJmBvkMCboTRdF_lGm4DoJzu2iLLNQzSdFB1_TltnvdZnbs7ZHYlVrtLNtMsdfcJFVpFSssgYVzDRMzKUIeSG2wZqsFOxiN-Y6PY1KTp2LtjEVd0z0GMNo1bm3rkRSu_rOhC_im5hyZvpZDmu_wiy0_iOmvECt7BSR4Y4yImktfCIBePVD2VCIDqPY_sNA4T17kHHtFGikeetpcha-BWkEodGAZkGEPmuW7okXuVf7WahBEP8PceEWuet6bq-pV0_rVkJsduqwKmoA_-r9cTcg1iNz46mBw-JNfxL6nKI3fI5io_c48A5q304zqeKPly1SH8C9SmaPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Density+Nanopore+Confined+Vortical+Dipoles+and+Magnetic+Domains+on+Hierarchical+Macro%2FMeso%2FMicro%2FNano+Porous+Ultra-Light+Graphited+Carbon+for+Adsorbing+Electromagnetic+Wave&rft.jtitle=Advanced+science&rft.au=Huang%2C+Wenhuan&rft.au=Zhang%2C+Xingxing&rft.au=Chen%2C+Jiamin&rft.au=Qiu%2C+Qiang&rft.date=2023-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=10&rft.issue=28&rft_id=info:doi/10.1002%2Fadvs.202303217&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon