The use of baseline covariates in crossover studies

It is our experience that in many settings, crossover trials that have within-period baseline measurements are analyzed wrongly. A "conventional" analysis of covariance in this setting uses each baseline as a covariate for the following outcome variable in the same period but not for any o...

Full description

Saved in:
Bibliographic Details
Published inBiostatistics (Oxford, England) Vol. 11; no. 1; pp. 1 - 17
Main Authors Kenward, Michael G., Roger, James H.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.01.2010
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1465-4644
1468-4357
1468-4357
DOI10.1093/biostatistics/kxp046

Cover

Abstract It is our experience that in many settings, crossover trials that have within-period baseline measurements are analyzed wrongly. A "conventional" analysis of covariance in this setting uses each baseline as a covariate for the following outcome variable in the same period but not for any other outcome. If used with random subject effects such an analysis leads to biased treatment comparisons; this is an example of cross-level bias. Using a postulated covariance structure that reflects the symmetry of the crossover setting, we quantify such bias and, at the same time, investigate potential gains and losses in efficiency through the use of the baselines. We then describe alternative methods of analysis that avoid the cross-level bias. The development is illustrated throughout with 2 example trials, one balanced and orthogonal and one highly unbalanced and nonorthogonal.
AbstractList It is our experience that in many settings, crossover trials that have within-period baseline measurements are analyzed wrongly. A "conventional" analysis of covariance in this setting uses each baseline as a covariate for the following outcome variable in the same period but not for any other outcome. If used with random subject effects such an analysis leads to biased treatment comparisons; this is an example of cross-level bias. Using a postulated covariance structure that reflects the symmetry of the crossover setting, we quantify such bias and, at the same time, investigate potential gains and losses in efficiency through the use of the baselines. We then describe alternative methods of analysis that avoid the cross-level bias. The development is illustrated throughout with 2 example trials, one balanced and orthogonal and one highly unbalanced and nonorthogonal.
It is our experience that in many settings, crossover trials that have within-period baseline measurements are analyzed wrongly. A "conventional" analysis of covariance in this setting uses each baseline as a covariate for the following outcome variable in the same period but not for any other outcome. If used with random subject effects such an analysis leads to biased treatment comparisons; this is an example of cross-level bias. Using a postulated covariance structure that reflects the symmetry of the crossover setting, we quantify such bias and, at the same time, investigate potential gains and losses in efficiency through the use of the baselines. We then describe alternative methods of analysis that avoid the cross-level bias. The development is illustrated throughout with 2 example trials, one balanced and orthogonal and one highly unbalanced and nonorthogonal. [PUBLICATION ABSTRACT]
It is our experience that in many settings, crossover trials that have within-period baseline measurements are analyzed wrongly. A "conventional" analysis of covariance in this setting uses each baseline as a covariate for the following outcome variable in the same period but not for any other outcome. If used with random subject effects such an analysis leads to biased treatment comparisons; this is an example of cross-level bias. Using a postulated covariance structure that reflects the symmetry of the crossover setting, we quantify such bias and, at the same time, investigate potential gains and losses in efficiency through the use of the baselines. We then describe alternative methods of analysis that avoid the cross-level bias. The development is illustrated throughout with 2 example trials, one balanced and orthogonal and one highly unbalanced and nonorthogonal.It is our experience that in many settings, crossover trials that have within-period baseline measurements are analyzed wrongly. A "conventional" analysis of covariance in this setting uses each baseline as a covariate for the following outcome variable in the same period but not for any other outcome. If used with random subject effects such an analysis leads to biased treatment comparisons; this is an example of cross-level bias. Using a postulated covariance structure that reflects the symmetry of the crossover setting, we quantify such bias and, at the same time, investigate potential gains and losses in efficiency through the use of the baselines. We then describe alternative methods of analysis that avoid the cross-level bias. The development is illustrated throughout with 2 example trials, one balanced and orthogonal and one highly unbalanced and nonorthogonal.
Author Kenward, Michael G.
Roger, James H.
Author_xml – sequence: 1
  givenname: Michael G.
  surname: Kenward
  fullname: Kenward, Michael G.
  email: mike.kenward@lshtm.ac.uk
– sequence: 2
  givenname: James H.
  surname: Roger
  fullname: Roger, James H.
  email: mike.kenward@lshtm.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19915170$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtOwzAQRS1URB_wBwhFbFiF2vHEidmhipdUiU1ZR64zES5pHOykgr8nbYoQ3cBqZnHOPO6YDCpbISHnjF4zKvl0aaxvVGN8Y7Sfvn3UFMQRGTEQaQg8Tga7Pg5BAAzJ2PsVpVHEBT8hQyYli1lCR4QvXjFoPQa2CJbKY2kqDLTdKGdUgz4wVaCd9d5u0AW-aXOD_pQcF6r0eLavE_Jyf7eYPYbz54en2e081JDGTShjKmMErSGhiRCMK5Yg50g1gFY8zWWqaCRFAiDjQmqMUHVnCcyVpFAgn5Crfm7t7HuLvsnWxmssS1WhbX2WcJ6KWKSyIy8PyJVtXdUdl0UUADiTSQdd7KF2ucY8q51ZK_eZfYfRAdADu48dFj8IzbaZZ78yz_rMO-3mQNNmC9mqccqUf8nTXrZt_b91X1f2ng8
CitedBy_id crossref_primary_10_1007_s10928_021_09758_9
crossref_primary_10_1097_HJH_0000000000001463
crossref_primary_10_1152_japplphysiol_00030_2021
crossref_primary_10_1097_j_pain_0000000000001638
crossref_primary_10_1177_0962280214521349
crossref_primary_10_1016_j_mhpa_2018_05_003
crossref_primary_10_1016_j_jcf_2014_12_008
crossref_primary_10_1515_ijb_2014_0057
crossref_primary_10_1111_eos_12556
crossref_primary_10_1113_JP285430
crossref_primary_10_1002_sim_7081
crossref_primary_10_1016_j_bja_2018_12_006
crossref_primary_10_1177_1358863X211053381
crossref_primary_10_1016_j_autneu_2022_103020
crossref_primary_10_1177_1358863X20988899
crossref_primary_10_1186_s12877_022_03052_0
crossref_primary_10_3945_ajcn_112_051763
crossref_primary_10_1002_bimj_202200170
crossref_primary_10_1016_j_resplu_2024_100722
crossref_primary_10_1111_bcp_13247
crossref_primary_10_1177_0269881120946300
crossref_primary_10_3945_jn_115_220475
crossref_primary_10_1155_2018_8025827
crossref_primary_10_1002_pst_532
crossref_primary_10_1136_bjsports_2018_100168
crossref_primary_10_1002_mds_27457
crossref_primary_10_3389_fphar_2021_754849
crossref_primary_10_1111_eth_13490
crossref_primary_10_1002_mnfr_201100726
crossref_primary_10_2337_dc15_2336
crossref_primary_10_1186_1475_2891_13_49
crossref_primary_10_1177_09622802211047177
crossref_primary_10_3390_nu12040955
crossref_primary_10_1080_10543406_2013_735765
crossref_primary_10_1152_japplphysiol_00001_2019
crossref_primary_10_1186_s13063_015_0710_5
crossref_primary_10_3390_nu16132030
crossref_primary_10_1183_09031936_00072510
crossref_primary_10_1155_2020_8475154
crossref_primary_10_1111_bph_14119
crossref_primary_10_1002_sim_3998
crossref_primary_10_3390_jcdd11100307
crossref_primary_10_1002_sim_7834
crossref_primary_10_1080_15502783_2022_2097018
crossref_primary_10_3390_nu12041139
crossref_primary_10_1002_pst_502
crossref_primary_10_1007_s10654_022_00941_x
crossref_primary_10_1002_sim_8762
crossref_primary_10_1002_sim_7396
crossref_primary_10_1186_s12966_020_01057_9
crossref_primary_10_3389_fnut_2023_1020678
crossref_primary_10_1093_ajcn_nqz282
crossref_primary_10_1177_0962280217736790
crossref_primary_10_1016_j_jlr_2025_100770
crossref_primary_10_1016_j_clinthera_2013_10_011
crossref_primary_10_1038_s41393_020_00569_2
crossref_primary_10_1123_jpah_2023_0308
crossref_primary_10_1002_pst_1647
crossref_primary_10_3390_jfb9020039
crossref_primary_10_1111_ics_12501
crossref_primary_10_1017_S0007114515001889
crossref_primary_10_1111_psyp_13830
crossref_primary_10_1016_j_jad_2024_12_036
crossref_primary_10_1177_0962280214520728
crossref_primary_10_1177_0962280214520734
crossref_primary_10_1111_cts_12712
crossref_primary_10_1002_mpr_1984
crossref_primary_10_1002_pst_1638
crossref_primary_10_1007_s00421_023_05230_3
crossref_primary_10_1016_j_pain_2014_09_003
crossref_primary_10_1016_j_pain_2012_04_020
crossref_primary_10_3390_cells13020157
crossref_primary_10_1007_s00246_012_0196_9
crossref_primary_10_1016_j_ajcnut_2023_02_013
crossref_primary_10_1016_j_numecd_2018_02_003
crossref_primary_10_1111_bcp_13448
crossref_primary_10_3390_nu13030814
crossref_primary_10_1177_0962280215572272
crossref_primary_10_1093_humrep_des004
crossref_primary_10_1080_19466315_2019_1671217
crossref_primary_10_3389_fnagi_2017_00422
crossref_primary_10_1123_jpah_2017_0639
crossref_primary_10_1016_j_autneu_2022_103055
crossref_primary_10_3945_ajcn_116_138495
crossref_primary_10_1177_09622802231158736
crossref_primary_10_1186_1475_2840_12_70
crossref_primary_10_1016_j_ocarto_2020_100063
crossref_primary_10_1212_WNL_0000000000007271
crossref_primary_10_1007_s00520_022_06824_x
crossref_primary_10_21032_jhis_2018_43_2_134
crossref_primary_10_4141_cjas2012_004
crossref_primary_10_2337_dc20_1410
crossref_primary_10_1002_jcph_465
crossref_primary_10_1002_mds_26236
crossref_primary_10_1093_biomtc_ujae023
crossref_primary_10_1111_jns_12100
crossref_primary_10_1016_j_cct_2022_107048
crossref_primary_10_1371_journal_pone_0138124
crossref_primary_10_1002_sim_5579
crossref_primary_10_1186_s13058_024_01940_4
crossref_primary_10_1016_S0140_6736_17_30260_X
crossref_primary_10_1177_0962280219880213
Cites_doi 10.1016/j.csda.2008.12.013
10.1201/9780203489437
10.1201/9781420036091
10.1097/00001648-199901000-00008
10.1002/sim.1296
10.1093/biostatistics/4.2.265
10.1080/10543400801995460
10.1002/9780470035986
10.1002/sim.4780071010
10.2307/2533558
10.1002/0470854596
10.1002/sim.4780060806
10.1016/S0140-6736(07)61306-3
10.1002/sim.4780081202
ContentType Journal Article
Copyright The Author 2009. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org. 2009
Copyright Oxford Publishing Limited(England) Jan 2010
Copyright_xml – notice: The Author 2009. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org. 2009
– notice: Copyright Oxford Publishing Limited(England) Jan 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1093/biostatistics/kxp046
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Nursing & Allied Health Premium
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1468-4357
EndPage 17
ExternalDocumentID 1927034981
19915170
10_1093_biostatistics_kxp046
10.1093/biostatistics/kxp046
Genre Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5VS
5WA
6PF
70D
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWTL
ABDTM
ABEUO
ABIXL
ABJNI
ABLJU
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIPB
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
N9A
NGC
NMDNZ
NOMLY
NTWIH
NU-
O0~
O9-
ODMLO
OJQWA
OJZSN
OK1
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
RHF
RIG
RNI
ROL
ROX
RUSNO
RW1
RXO
RZO
SV3
TEORI
TJP
TN5
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ACUXJ
ADNBA
ADYJX
AGORE
AJBYB
AJNCP
ALXQX
ANAKG
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c485t-95095e4cc47076613a17e33e0c44ca38d98a029674495f9ce2ea9156eda904fe3
ISSN 1465-4644
1468-4357
IngestDate Thu Jul 10 23:50:10 EDT 2025
Mon Jun 30 11:08:56 EDT 2025
Wed Feb 19 01:47:12 EST 2025
Thu Apr 24 22:58:37 EDT 2025
Tue Jul 01 03:45:51 EDT 2025
Wed Aug 28 03:24:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Restricted maximum likelihood
Cross-level bias
REML
Analysis of covariance
Experimental design
Covariance structure
Causal pathway
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c485t-95095e4cc47076613a17e33e0c44ca38d98a029674495f9ce2ea9156eda904fe3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/biostatistics/article-pdf/11/1/1/23686069/kxp046.pdf
PMID 19915170
PQID 204443197
PQPubID 26167
PageCount 17
ParticipantIDs proquest_miscellaneous_733865689
proquest_journals_204443197
pubmed_primary_19915170
crossref_primary_10_1093_biostatistics_kxp046
crossref_citationtrail_10_1093_biostatistics_kxp046
oup_primary_10_1093_biostatistics_kxp046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-01-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Biostatistics (Oxford, England)
PublicationTitleAlternate Biostatistics
PublicationYear 2010
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References McCann ( key 20180129100655_bib10) 2007; 370
Jones ( key 20180129100655_bib6) 2003
Sheppard ( key 20180129100655_bib14) 2003; 4
Senn ( key 20180129100655_bib13) 2002
Freeman ( key 20180129100655_bib2) 1989; 8
Kenward ( key 20180129100655_bib7) 1987; 6
Skrondal ( key 20180129100655_bib15) 2004
Carpenter ( key 20180129100655_bib1) 2008
Greenland ( key 20180129100655_bib5) 1999; 10
Pocock ( key 20180129100655_bib11) 2002; 21
Kenward ( key 20180129100655_bib8) 1997; 53
Goldstein ( key 20180129100655_bib4) 1987
Kenward ( key 20180129100655_bib9) 2009; 53
Galwey ( key 20180129100655_bib3) 2006
Senn ( key 20180129100655_bib12) 1988; 7
Stylianou ( key 20180129100655_bib16) 2008; 18
References_xml – year: 2008
  ident: key 20180129100655_bib1
  article-title: Missing Data in Randomised Controlled Trials—A Practical Guide
– volume: 53
  start-page: 2583
  year: 2009
  ident: key 20180129100655_bib9
  article-title: An improved approximation to the precision of fixed effects from restricted maximum likelihood
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2008.12.013
– volume-title: Generalized Latent Variable Modelling
  year: 2004
  ident: key 20180129100655_bib15
  doi: 10.1201/9780203489437
– volume-title: Design and Analysis of Cross-over Trials
  year: 2003
  ident: key 20180129100655_bib6
  doi: 10.1201/9781420036091
– volume: 10
  start-page: 37
  year: 1999
  ident: key 20180129100655_bib5
  article-title: Causal diagrams for epidemiologic research
  publication-title: Epidemiology
  doi: 10.1097/00001648-199901000-00008
– volume: 21
  start-page: 2917
  year: 2002
  ident: key 20180129100655_bib11
  article-title: Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: curent practice and problems
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.1296
– volume: 4
  start-page: 265
  year: 2003
  ident: key 20180129100655_bib14
  article-title: Insights on bias and information in group-level studies
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.2.265
– volume: 18
  start-page: 502
  year: 2008
  ident: key 20180129100655_bib16
  article-title: A statistical assessment of QT data following placebo and moxifloxacin dosing in thorough QR studies
  publication-title: Journal of Biopharmaceutical Statistics
  doi: 10.1080/10543400801995460
– volume-title: Introduction to Mixed Modelling: Beyond Regression and Analysis of Variance
  year: 2006
  ident: key 20180129100655_bib3
  doi: 10.1002/9780470035986
– volume: 7
  start-page: 1099
  year: 1988
  ident: key 20180129100655_bib12
  article-title: Cross-over trials, carry-over effects and the art of self-delusion
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4780071010
– volume: 53
  start-page: 983
  year: 1997
  ident: key 20180129100655_bib8
  article-title: Small sample inference for fixed effects estimators from restricted maximum likelihood
  publication-title: Biometrics
  doi: 10.2307/2533558
– volume-title: Cross-over Trials in Clinical Research
  year: 2002
  ident: key 20180129100655_bib13
  doi: 10.1002/0470854596
– volume: 6
  start-page: 911
  year: 1987
  ident: key 20180129100655_bib7
  article-title: The analysis of data from 2x2 cross-over trials with baseline measurements
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4780060806
– volume-title: Multilevel Models
  year: 1987
  ident: key 20180129100655_bib4
  article-title: Charles Griffin & Co
– volume: 370
  start-page: 1560
  year: 2007
  ident: key 20180129100655_bib10
  article-title: Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(07)61306-3
– volume: 8
  start-page: 1421
  year: 1989
  ident: key 20180129100655_bib2
  article-title: The performance of the two-stage analysis of two-treatment, two-period cross-over trials
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4780081202
SSID ssj0022363
Score 2.2429733
Snippet It is our experience that in many settings, crossover trials that have within-period baseline measurements are analyzed wrongly. A "conventional" analysis of...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis of Variance
Antihypertensive Agents - therapeutic use
Aza Compounds - therapeutic use
Bias
Biostatistics
Blood Pressure - drug effects
Bronchial Hyperreactivity - drug therapy
Bronchial Hyperreactivity - metabolism
Bronchial Hyperreactivity - physiopathology
Controlled Clinical Trials as Topic - methods
Cross-Over Studies
Efficiency
Electrocardiography - drug effects
Epidemiologic Research Design
Fluoroquinolones
Forced Expiratory Volume - drug effects
Forced Expiratory Volume - physiology
Heart Diseases - drug therapy
Humans
Hypertension - drug therapy
Likelihood Functions
Models, Statistical
Nitric Oxide - metabolism
Pain - drug therapy
Quinolines - therapeutic use
Random variables
Statistical Distributions
Variance analysis
Title The use of baseline covariates in crossover studies
URI https://www.ncbi.nlm.nih.gov/pubmed/19915170
https://www.proquest.com/docview/204443197
https://www.proquest.com/docview/733865689
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFLaACokLasvSgbbygQOXQBI7cXysKhAtm4RmpLlZjuMgBEpQmQHaX9_nLWHESCyXKLGTOPGXvM1vQWgHOEqiC5VEwD2qiJa5jsqkzqOqrky2K1XldgX_9Cw_GtHf42zcV3uz0SWTck_9mxtX8h5UoQ1wNVGyb0C2uyk0wD7gC1tAGLavxnjqjPGGG1mJUbX3oP4aCdKYMiwTNF6aNo9scBgMi7hXrYkn8qmaTd7Rx-Dq7mt7PLETAEV-kK7Tu9r3Zbku2kuHvPW59fEO3pRgPdKCKcFRPxOGBfKT44B6TlsgmcmzT8PRv2QuVXYZq8qnLwXH14-3MZ2TBvvsXByOTk7E8GA8XEQfUsbc-vuv406TToktkdc9W4iJ5GR_ZpR9N8aMzDETx_hMnbBixfAjWvX6AP7hwP2EFnTzGS27CqF_1xABiDFAjNsaB4hxDzG-anAHMfYQr6PR4cHw51Hk61xEihbZJOIgtGWaKkVZzEBeIjJhmhAdK0qVJEXFCxmnPGcUtNmaK51qyUHv1pXkMa012UBLTdvoLwhLrhJaaVZLyWhRF5IRTlOWZzou85LyASJhJoTySeBNLZIb4ZwRiJiZP-Hmb4Ci7qpblwTlhfN3YZJfeep2QEL4P-tOpCaJIfAGNkC46wWyZ9ayZKPb6Z1gxBSrzQt4o02HXz8cqDxZwuKtly_eRiv9f_AVLU3-TPU3EDIn5Xf7wf0HGpSBsA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+baseline+covariates+in+crossover+studies&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Kenward%2C+Michael+G&rft.au=Roger%2C+James+H&rft.date=2010-01-01&rft.issn=1468-4357&rft.eissn=1468-4357&rft.volume=11&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxp046&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon