Room-temperature quantum nanoplasmonic coherent perfect absorption

Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of co...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 6324 - 8
Main Authors Lai, Yiming, Clarke, Daniel D. A., Grimm, Philipp, Devi, Asha, Wigger, Daniel, Helbig, Tobias, Hofmann, Tobias, Thomale, Ronny, Huang, Jer-Shing, Hecht, Bert, Hess, Ortwin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions. Our study establishes a previously unexplored paradigm for quantum state preparation and coherence preservation in plasmonic cavity quantum electrodynamics, offering compelling prospects for elevating quantum nanophotonic technologies to ambient temperatures. Quantum states are incredibly sensitive to their environment, making them perfect for ultrasensitive quantum detection—if they can be maintained long enough. Here, the authors showed that they can ‘immortalize’ the excited state of a coupled light-matter system using a technique called ‘coherent perfect absorption’.
AbstractList Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions. Our study establishes a previously unexplored paradigm for quantum state preparation and coherence preservation in plasmonic cavity quantum electrodynamics, offering compelling prospects for elevating quantum nanophotonic technologies to ambient temperatures.Quantum states are incredibly sensitive to their environment, making them perfect for ultrasensitive quantum detection—if they can be maintained long enough. Here, the authors showed that they can ‘immortalize’ the excited state of a coupled light-matter system using a technique called ‘coherent perfect absorption’.
Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions. Our study establishes a previously unexplored paradigm for quantum state preparation and coherence preservation in plasmonic cavity quantum electrodynamics, offering compelling prospects for elevating quantum nanophotonic technologies to ambient temperatures.Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions. Our study establishes a previously unexplored paradigm for quantum state preparation and coherence preservation in plasmonic cavity quantum electrodynamics, offering compelling prospects for elevating quantum nanophotonic technologies to ambient temperatures.
Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions. Our study establishes a previously unexplored paradigm for quantum state preparation and coherence preservation in plasmonic cavity quantum electrodynamics, offering compelling prospects for elevating quantum nanophotonic technologies to ambient temperatures.
Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions. Our study establishes a previously unexplored paradigm for quantum state preparation and coherence preservation in plasmonic cavity quantum electrodynamics, offering compelling prospects for elevating quantum nanophotonic technologies to ambient temperatures. Quantum states are incredibly sensitive to their environment, making them perfect for ultrasensitive quantum detection—if they can be maintained long enough. Here, the authors showed that they can ‘immortalize’ the excited state of a coupled light-matter system using a technique called ‘coherent perfect absorption’.
Abstract Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions. Our study establishes a previously unexplored paradigm for quantum state preparation and coherence preservation in plasmonic cavity quantum electrodynamics, offering compelling prospects for elevating quantum nanophotonic technologies to ambient temperatures.
ArticleNumber 6324
Author Devi, Asha
Lai, Yiming
Clarke, Daniel D. A.
Thomale, Ronny
Grimm, Philipp
Hofmann, Tobias
Huang, Jer-Shing
Helbig, Tobias
Hecht, Bert
Wigger, Daniel
Hess, Ortwin
Author_xml – sequence: 1
  givenname: Yiming
  surname: Lai
  fullname: Lai, Yiming
  organization: School of Physics and CRANN Institute, Trinity College Dublin
– sequence: 2
  givenname: Daniel D. A.
  orcidid: 0000-0003-2641-6090
  surname: Clarke
  fullname: Clarke, Daniel D. A.
  organization: School of Physics and CRANN Institute, Trinity College Dublin
– sequence: 3
  givenname: Philipp
  orcidid: 0000-0003-4744-7005
  surname: Grimm
  fullname: Grimm, Philipp
  organization: Nano-Optics & Biophotonics Group, Department of Experimental Physics 5, and Röntgen Research Center for Complex Material Research, Physics Institute, University of Würzburg
– sequence: 4
  givenname: Asha
  surname: Devi
  fullname: Devi, Asha
  organization: School of Physics and CRANN Institute, Trinity College Dublin
– sequence: 5
  givenname: Daniel
  surname: Wigger
  fullname: Wigger, Daniel
  organization: School of Physics and CRANN Institute, Trinity College Dublin
– sequence: 6
  givenname: Tobias
  orcidid: 0000-0003-1894-0183
  surname: Helbig
  fullname: Helbig, Tobias
  organization: Theoretische Physik I, Julius-Maximilians-Universität Würzburg
– sequence: 7
  givenname: Tobias
  orcidid: 0000-0002-1888-9464
  surname: Hofmann
  fullname: Hofmann, Tobias
  organization: Theoretische Physik I, Julius-Maximilians-Universität Würzburg
– sequence: 8
  givenname: Ronny
  orcidid: 0000-0002-3979-8836
  surname: Thomale
  fullname: Thomale, Ronny
  organization: Theoretische Physik I, Julius-Maximilians-Universität Würzburg
– sequence: 9
  givenname: Jer-Shing
  orcidid: 0000-0002-7027-3042
  surname: Huang
  fullname: Huang, Jer-Shing
  organization: Leibniz Institute of Photonic Technology, Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Research Center for Applied Sciences, Academia Sinica, Department of Electrophysics, National Chiao Tung University
– sequence: 10
  givenname: Bert
  orcidid: 0000-0002-4883-8676
  surname: Hecht
  fullname: Hecht, Bert
  email: hecht@physik.uni-wuerzburg.de
  organization: Nano-Optics & Biophotonics Group, Department of Experimental Physics 5, and Röntgen Research Center for Complex Material Research, Physics Institute, University of Würzburg
– sequence: 11
  givenname: Ortwin
  orcidid: 0000-0002-6024-0677
  surname: Hess
  fullname: Hess, Ortwin
  email: ortwin.hess@tcd.ie
  organization: School of Physics and CRANN Institute, Trinity College Dublin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39060227$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1URB_0D7BAV2LDJuB37CVUUCpVQkKwtibOpOQqsVPbWfTf4960gLrobDyyvnM0M-eUHIUYkJA3jH5gVJiPWTKp24Zy2SiqWtnYF-SEU8ka1nJx9F9_TM5z3tNawjIj5StyLCzVlPP2hHz-EePcFJwXTFDWhLvbFUJZ512AEJcJ8hzD6Hc-_saEoewqN6AvO-hyTEsZY3hNXg4wZTx_eM_Ir69ffl58a66_X15dfLpuvDSqNMYzZQdqtKAwgGcddlYMnlINzHa0x1YLRLRGMtWb1vtuEAOzoIRCKQHEGbnafPsIe7ekcYZ05yKM7vAR042DVEY_oTPedLpXohfeSG16A5Rya3oOquN2kNXr_ea1pHi7Yi5uHrPHaYKAcc1OUKMY01Kwir57gu7jmkLd9EBRrrWklXr7QK3djP3f8R4vXQGzAT7FnBMOzo8F7u9XEoyTY9Td5-q2XF3N1R1ydbZK-RPpo_uzIrGJcoXDDaZ_Yz-j-gPZ_LPu
CitedBy_id crossref_primary_10_1515_nanoph_2024_0574
Cites_doi 10.1038/nphys227
10.1021/nl202864n
10.1038/s41467-024-47191-x
10.1038/nphoton.2012.181
10.1364/OL.43.001806
10.1038/ncomms9233
10.1364/OE.25.001769
10.1088/1367-2630/ac9fe9
10.1038/ncomms11823
10.1021/acsphotonics.7b00514
10.1021/acs.jpclett.5b02512
10.1021/acs.nanolett.0c00196
10.1103/PhysRevLett.124.177401
10.1103/PhysRevA.98.063846
10.1021/acs.nanolett.1c00182
10.1021/acs.nanolett.1c04920
10.1088/0034-4885/78/1/013901
10.1515/nanoph-2020-0403
10.1038/ncomms7086
10.1038/s41467-021-26060-x
10.1038/nature05586
10.1126/science.aau7742
10.1021/acs.accounts.6b00295
10.1021/acsphotonics.9b01338
10.1021/acs.nanolett.9b01137
10.1515/nanoph-2021-0048
10.1126/science.abj1028
10.1088/2058-9565/aa91bb
10.1103/PhysRev.112.1555
10.1103/PhysRevB.101.245301
10.1103/PhysRevLett.114.196403
10.1103/PhysRevLett.117.023601
10.1021/acs.nanolett.9b01162
10.1021/acsphotonics.7b00668
10.1103/PhysRevLett.105.053901
10.1103/PhysRevLett.106.020501
10.1103/PhysRevA.106.012402
10.1038/nature02969
10.1364/OL.38.004970
10.1021/acs.nanolett.7b01284
10.1038/nature13177
10.1063/1.5118838
10.1021/cr100156x
10.1021/acs.jpclett.6b01869
10.1016/B978-0-444-63379-8.00001-5
10.1103/PhysRevLett.107.096801
10.1126/science.abd0336
10.1103/PhysRevApplied.1.014007
10.1038/s42254-018-0006-2
10.1038/nature17974
10.1103/PhysRevA.102.063511
10.1126/sciadv.aav5931
10.1038/ncomms8031
10.1038/s41566-020-00731-5
10.1038/natrevmats.2017.64
10.1515/nanoph-2018-0067
10.1038/s41563-019-0290-y
10.1515/nanoph-2022-0614
10.1021/acs.nanolett.5b03724
10.1038/s41467-018-06450-4
10.1021/acs.nanolett.0c01705
10.1038/nmat2717
10.1126/sciadv.aar4906
10.1103/PhysRevA.99.011801
10.1017/CBO9781139016926
10.5281/zenodo.12366459
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-024-50574-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
PubMed
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_8c8b6d53d3c8468d8a00298d2a5b29f4
39060227
10_1038_s41467_024_50574_9
Genre Journal Article
GrantInformation_xml – fundername: Science Foundation Ireland (SFI)
  grantid: 18/RP/6236
  funderid: 501100001602
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: 437527638
  funderid: 501100001659
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: HE5618/12-1
  funderid: 501100001659
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: 398816777
  funderid: 501100001659
– fundername: Science Foundation Ireland (SFI)
  grantid: 22/QERA/3821
  funderid: 501100001602
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: ST0462019
  funderid: 501100001659
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: 398816777
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: ST0462019
– fundername: Science Foundation Ireland (SFI)
  grantid: 22/QERA/3821
– fundername: Science Foundation Ireland (SFI)
  grantid: 18/RP/6236
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: HE5618/12-1
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: 437527638
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c485t-8c159f08630afac1beb93fc006a19b0de763eee98415d87ccbf3f19a535e44aa3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:26:59 EDT 2025
Fri Jul 11 11:26:21 EDT 2025
Wed Aug 13 03:25:37 EDT 2025
Wed Feb 19 02:02:55 EST 2025
Tue Jul 01 02:37:24 EDT 2025
Thu Apr 24 22:58:06 EDT 2025
Fri Feb 21 02:40:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-8c159f08630afac1beb93fc006a19b0de763eee98415d87ccbf3f19a535e44aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2641-6090
0000-0002-3979-8836
0000-0002-1888-9464
0000-0002-4883-8676
0000-0002-7027-3042
0000-0003-1894-0183
0000-0002-6024-0677
0000-0003-4744-7005
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-50574-9
PMID 39060227
PQID 3085026640
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_8c8b6d53d3c8468d8a00298d2a5b29f4
proquest_miscellaneous_3085116431
proquest_journals_3085026640
pubmed_primary_39060227
crossref_citationtrail_10_1038_s41467_024_50574_9
crossref_primary_10_1038_s41467_024_50574_9
springer_journals_10_1038_s41467_024_50574_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-27
PublicationDateYYYYMMDD 2024-07-27
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Baranov, Krasnok, Shegai, Alù, Chong (CR37) 2017; 2
Everett (CR49) 2018; 98
Baumberg, Aizpurua, Mikkelsen, Smith (CR27) 2019; 18
Vetlugin, Martinelli, Dong, Soci (CR48) 2023; 12
Lyons (CR45) 2019; 99
Gutman, Sukhorukov, Chong, de Sterke (CR36) 2013; 38
Garcia-Vidal, Ciuti, Ebbesen (CR3) 2021; 373
Gonzalez-Tudela (CR21) 2011; 106
Sweeney, Hsu, Stone (CR58) 2020; 102
Hoang, Akselrod, Mikkelsen (CR11) 2016; 16
Wang, Sweeney, Stone, Yang (CR39) 2021; 373
Kasprzak (CR22) 2010; 9
Akhlaghi, Schelew, Young (CR47) 2015; 6
Groß, Hamm, Tufarelli, Hess, Hecht (CR31) 2018; 4
Bello, Kongsuwan, Hess (CR34) 2022; 22
Santhosh, Bitton, Chuntonov, Haran (CR29) 2016; 7
Li, Argyropoulos (CR38) 2018; 43
Vetlugin (CR42) 2019; 115
Rewitz (CR61) 2012; 12
Volz (CR12) 2012; 6
Hopfield (CR4) 1958; 112
Reiserer, Kalb, Rempe, Ritter (CR20) 2014; 508
Chikkaraddy (CR28) 2016; 535
Chong, Ge, Cao, Stone (CR35) 2010; 105
Ochs (CR66) 2021; 21
Khitrova, Gibbs, Kira, Koch, Scherer (CR24) 2006; 2
Asano, Ochi, Takahashi, Kishimoto, Noda (CR26) 2017; 25
Ebbesen (CR1) 2016; 49
Krainova, Grede, Tsokkou, Banerji, Giebink (CR15) 2020; 124
Groll (CR23) 2020; 101
Vetlugin, Guo, Soci, Zheludev (CR46) 2022; 24
Park (CR32) 2019; 5
Bello, Kongsuwan, Donegan, Hess (CR33) 2020; 20
Cui, Zhang, Luo, Gao, Cui (CR40) 2024; 15
Leng, Szychowski, Daniel, Pelton (CR57) 2018; 9
Schachenmayer, Genes, Tignone, Pupillo (CR14) 2015; 114
Hennessy (CR10) 2007; 445
Krauss, Razinskas, Köck, Grossmann, Hecht (CR64) 2019; 19
CR52
Roger (CR43) 2016; 117
Zhang (CR60) 2011; 107
Vetlugin, Guo, Soci, Zheludev (CR50) 2022; 106
Yoo (CR7) 2021; 15
Flick, Rivera, Narang (CR2) 2018; 7
Schörner, Lippitz (CR65) 2020; 20
Altuzarra (CR44) 2017; 4
Törmä, Barnes (CR5) 2014; 78
Stone, Sweeney, Hsu, Wisal, Wang (CR59) 2021; 10
Wu (CR63) 2017; 17
Frisk Kockum, Miranowicz, De Liberato, Savasta, Nori (CR8) 2019; 1
Wuestner, Hess (CR53) 2014; 59
Barra-Burillo (CR6) 2021; 12
Kongsuwan (CR13) 2019; 19
Crai, Demetriadou, Hess (CR54) 2020; 7
Cassette, Pensack, Mahler, Scholes (CR55) 2015; 6
CR25
Thomas (CR16) 2019; 363
CR67
Agranovich, Gartstein, Litinskaya (CR17) 2011; 111
Lodahl (CR19) 2017; 3
Rewitz (CR62) 2014; 1
Melnikau (CR56) 2016; 7
Kongsuwan (CR30) 2018; 5
Vergauwe (CR18) 2016; 7
Grimm, Razinskas, Huang, Hecht (CR51) 2021; 10
Reithmaier (CR9) 2004; 432
Roger (CR41) 2015; 6
D Groll (50574_CR23) 2020; 101
50574_CR52
WR Sweeney (50574_CR58) 2020; 102
T Roger (50574_CR43) 2016; 117
AD Stone (50574_CR59) 2021; 10
P Törmä (50574_CR5) 2014; 78
A Crai (50574_CR54) 2020; 7
AN Vetlugin (50574_CR42) 2019; 115
A Frisk Kockum (50574_CR8) 2019; 1
JP Reithmaier (50574_CR9) 2004; 432
A Thomas (50574_CR16) 2019; 363
C Schörner (50574_CR65) 2020; 20
WY Cui (50574_CR40) 2024; 15
F Bello (50574_CR33) 2020; 20
TB Hoang (50574_CR11) 2016; 16
N Krainova (50574_CR15) 2020; 124
Y Li (50574_CR38) 2018; 43
K Hennessy (50574_CR10) 2007; 445
YD Chong (50574_CR35) 2010; 105
MK Akhlaghi (50574_CR47) 2015; 6
M Ochs (50574_CR66) 2021; 21
A Gonzalez-Tudela (50574_CR21) 2011; 106
H Groß (50574_CR31) 2018; 4
N Kongsuwan (50574_CR13) 2019; 19
P Grimm (50574_CR51) 2021; 10
D Melnikau (50574_CR56) 2016; 7
FD Bello (50574_CR34) 2022; 22
C Altuzarra (50574_CR44) 2017; 4
G Khitrova (50574_CR24) 2006; 2
JJ Baumberg (50574_CR27) 2019; 18
H Leng (50574_CR57) 2018; 9
K-D Park (50574_CR32) 2019; 5
R Chikkaraddy (50574_CR28) 2016; 535
E Krauss (50574_CR64) 2019; 19
C Wang (50574_CR39) 2021; 373
AN Vetlugin (50574_CR46) 2022; 24
J Hopfield (50574_CR4) 1958; 112
K Santhosh (50574_CR29) 2016; 7
X Wu (50574_CR63) 2017; 17
V Agranovich (50574_CR17) 2011; 111
C Rewitz (50574_CR61) 2012; 12
RM Vergauwe (50574_CR18) 2016; 7
JL Everett (50574_CR49) 2018; 98
DG Baranov (50574_CR37) 2017; 2
D Yoo (50574_CR7) 2021; 15
T Volz (50574_CR12) 2012; 6
T Roger (50574_CR41) 2015; 6
S Zhang (50574_CR60) 2011; 107
A Lyons (50574_CR45) 2019; 99
TW Ebbesen (50574_CR1) 2016; 49
J Flick (50574_CR2) 2018; 7
S Wuestner (50574_CR53) 2014; 59
T Asano (50574_CR26) 2017; 25
E Cassette (50574_CR55) 2015; 6
A Reiserer (50574_CR20) 2014; 508
J Kasprzak (50574_CR22) 2010; 9
J Schachenmayer (50574_CR14) 2015; 114
N Gutman (50574_CR36) 2013; 38
50574_CR67
50574_CR25
AN Vetlugin (50574_CR48) 2023; 12
AN Vetlugin (50574_CR50) 2022; 106
C Rewitz (50574_CR62) 2014; 1
P Lodahl (50574_CR19) 2017; 3
N Kongsuwan (50574_CR30) 2018; 5
FJ Garcia-Vidal (50574_CR3) 2021; 373
M Barra-Burillo (50574_CR6) 2021; 12
References_xml – volume: 2
  start-page: 81
  year: 2006
  end-page: 90
  ident: CR24
  article-title: Vacuum rabi splitting in semiconductors
  publication-title: Nat. Phys.
  doi: 10.1038/nphys227
– volume: 12
  start-page: 45
  year: 2012
  end-page: 49
  ident: CR61
  article-title: Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry
  publication-title: Nano Lett.
  doi: 10.1021/nl202864n
– volume: 15
  year: 2024
  ident: CR40
  article-title: Dynamic switching from coherent perfect absorption to parametric amplification in a nonlinear spoof plasmonic waveguide
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-47191-x
– volume: 6
  start-page: 605
  year: 2012
  end-page: 609
  ident: CR12
  article-title: Ultrafast all-optical switching by single photons
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.181
– volume: 43
  start-page: 1806
  year: 2018
  end-page: 1809
  ident: CR38
  article-title: Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.001806
– volume: 6
  year: 2015
  ident: CR47
  article-title: Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9233
– volume: 25
  start-page: 1769
  year: 2017
  end-page: 1777
  ident: CR26
  article-title: Photonic crystal nanocavity with a q factor exceeding eleven million
  publication-title: Opt. Express
  doi: 10.1364/OE.25.001769
– volume: 24
  start-page: 122001
  year: 2022
  ident: CR46
  article-title: Anti-hong-ou-mandel interference by coherent perfect absorption of entangled photons
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/ac9fe9
– volume: 7
  start-page: 1
  year: 2016
  end-page: 5
  ident: CR29
  article-title: Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11823
– volume: 4
  start-page: 2124
  year: 2017
  end-page: 2128
  ident: CR44
  article-title: Coherent perfect absorption in metamaterials with entangled photons
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00514
– volume: 7
  start-page: 354
  year: 2016
  end-page: 362
  ident: CR56
  article-title: Rabi splitting in photoluminescence spectra of hybrid systems of gold nanorods and j-aggregates
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02512
– volume: 20
  start-page: 2152
  year: 2020
  end-page: 2156
  ident: CR65
  article-title: Single molecule nonlinearity in a plasmonic waveguide
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00196
– volume: 124
  start-page: 177401
  year: 2020
  ident: CR15
  article-title: Polaron photoconductivity in the weak and strong light-matter coupling regime
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.177401
– volume: 98
  start-page: 063846
  year: 2018
  ident: CR49
  article-title: Time-reversed and coherently enhanced memory: a single-mode quantum atom-optic memory without a cavity
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.063846
– volume: 21
  start-page: 4225
  year: 2021
  end-page: 4230
  ident: CR66
  article-title: Nanoscale electrical excitation of distinct modes in plasmonic waveguides
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00182
– ident: CR25
– volume: 22
  start-page: 2801
  year: 2022
  end-page: 2808
  ident: CR34
  article-title: Near-field generation and control of ultrafast, multipartite entanglement for quantum nanoplasmonic networks
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04920
– volume: 78
  start-page: 013901
  year: 2014
  ident: CR5
  article-title: Strong coupling between surface plasmon polaritons and emitters: a review
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/78/1/013901
– volume: 10
  start-page: 343
  year: 2021
  end-page: 360
  ident: CR59
  article-title: Reflectionless excitation of arbitrary photonic structures: a general theory
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2020-0403
– volume: 6
  year: 2015
  ident: CR55
  article-title: Room-temperature exciton coherence and dephasing in two-dimensional nanostructures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7086
– volume: 12
  year: 2021
  ident: CR6
  article-title: Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26060-x
– volume: 445
  start-page: 896
  year: 2007
  end-page: 899
  ident: CR10
  article-title: Quantum nature of a strongly coupled single quantum dot–cavity system
  publication-title: Nature
  doi: 10.1038/nature05586
– volume: 363
  start-page: 615
  year: 2019
  end-page: 619
  ident: CR16
  article-title: Tilting a ground-state reactivity landscape by vibrational strong coupling
  publication-title: Science
  doi: 10.1126/science.aau7742
– ident: CR67
– volume: 49
  start-page: 2403
  year: 2016
  end-page: 2412
  ident: CR1
  article-title: Hybrid light-matter states in a molecular and material science perspective
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00295
– volume: 7
  start-page: 401
  year: 2020
  end-page: 410
  ident: CR54
  article-title: Electron beam interrogation and control of ultrafast plexcitonic dynamics
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.9b01338
– volume: 19
  start-page: 5853
  year: 2019
  end-page: 5861
  ident: CR13
  article-title: Quantum plasmonic immunoassay sensing
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01137
– volume: 10
  start-page: 1879
  year: 2021
  end-page: 1887
  ident: CR51
  article-title: Driving plasmonic nanoantennas at perfect impedance matching using generalized coherent perfect absorption
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2021-0048
– volume: 373
  start-page: 1261
  year: 2021
  end-page: 1265
  ident: CR39
  article-title: Coherent perfect absorption at an exceptional point
  publication-title: Science
  doi: 10.1126/science.abj1028
– volume: 3
  start-page: 013001
  year: 2017
  ident: CR19
  article-title: Quantum-dot based photonic quantum networks
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aa91bb
– volume: 112
  start-page: 1555
  year: 1958
  ident: CR4
  article-title: Theory of the contribution of excitons to the complex dielectric constant of crystals
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.112.1555
– volume: 101
  start-page: 245301
  year: 2020
  ident: CR23
  article-title: Four-wave mixing dynamics of a strongly coupled quantum-dot–microcavity system driven by up to 20 photons
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.245301
– volume: 114
  start-page: 196403
  year: 2015
  ident: CR14
  article-title: Cavity-enhanced transport of excitons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.196403
– volume: 117
  start-page: 023601
  year: 2016
  ident: CR43
  article-title: Coherent absorption of n00n states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.023601
– volume: 19
  start-page: 3364
  year: 2019
  end-page: 3369
  ident: CR64
  article-title: Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01162
– volume: 5
  start-page: 186
  year: 2018
  end-page: 191
  ident: CR30
  article-title: Suppressed quenching and strong-coupling of purcell-enhanced single-molecule emission in plasmonic nanocavities
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00668
– volume: 105
  start-page: 053901
  year: 2010
  ident: CR35
  article-title: Coherent perfect absorbers: time-reversed lasers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.053901
– volume: 106
  start-page: 020501
  year: 2011
  ident: CR21
  article-title: Entanglement of two qubits mediated by one-dimensional plasmonic waveguides
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.020501
– volume: 106
  start-page: 012402
  year: 2022
  ident: CR50
  article-title: Deterministic generation of entanglement in a quantum network by coherent absorption of a single photon
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.106.012402
– volume: 432
  start-page: 197
  year: 2004
  end-page: 200
  ident: CR9
  article-title: Strong coupling in a single quantum dot–semiconductor microcavity system
  publication-title: Nature
  doi: 10.1038/nature02969
– volume: 38
  start-page: 4970
  year: 2013
  end-page: 4973
  ident: CR36
  article-title: Coherent perfect absorption and reflection in slow-light waveguides
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.004970
– volume: 17
  start-page: 4291
  year: 2017
  end-page: 4296
  ident: CR63
  article-title: On-chip single-plasmon nanocircuit driven by a self-assembled quantum dot
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01284
– volume: 508
  start-page: 237
  year: 2014
  end-page: 240
  ident: CR20
  article-title: A quantum gate between a flying optical photon and a single trapped atom
  publication-title: Nature
  doi: 10.1038/nature13177
– volume: 115
  start-page: 191101
  year: 2019
  ident: CR42
  article-title: Coherent perfect absorption of single photons in a fiber network
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5118838
– volume: 111
  start-page: 5179
  year: 2011
  end-page: 5214
  ident: CR17
  article-title: Hybrid resonant organic–inorganic nanostructures for optoelectronic applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr100156x
– volume: 7
  start-page: 4159
  year: 2016
  end-page: 4164
  ident: CR18
  article-title: Quantum strong coupling with protein vibrational modes
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01869
– volume: 59
  start-page: 1
  year: 2014
  end-page: 88
  ident: CR53
  article-title: Active optical metamaterials
  publication-title: Prog. Opt.
  doi: 10.1016/B978-0-444-63379-8.00001-5
– volume: 107
  start-page: 096801
  year: 2011
  ident: CR60
  article-title: Chiral surface plasmon polaritons on metallic nanowires
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.096801
– volume: 373
  start-page: eabd0336
  year: 2021
  ident: CR3
  article-title: Manipulating matter by strong coupling to vacuum fields
  publication-title: Science
  doi: 10.1126/science.abd0336
– volume: 1
  start-page: 014007
  year: 2014
  ident: CR62
  article-title: Coherent control of plasmon propagation in a nanocircuit
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.1.014007
– volume: 1
  start-page: 19
  year: 2019
  end-page: 40
  ident: CR8
  article-title: Ultrastrong coupling between light and matter
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-018-0006-2
– volume: 535
  start-page: 127
  year: 2016
  end-page: 130
  ident: CR28
  article-title: Single-molecule strong coupling at room temperature in plasmonic nanocavities
  publication-title: Nature
  doi: 10.1038/nature17974
– volume: 102
  start-page: 063511
  year: 2020
  ident: CR58
  article-title: Theory of reflectionless scattering modes
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.063511
– volume: 5
  start-page: eaav5931
  year: 2019
  ident: CR32
  article-title: Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav5931
– volume: 6
  year: 2015
  ident: CR41
  article-title: Coherent perfect absorption in deeply subwavelength films in the single-photon regime
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8031
– ident: CR52
– volume: 15
  start-page: 125
  year: 2021
  end-page: 130
  ident: CR7
  article-title: Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-020-00731-5
– volume: 2
  start-page: 17064
  year: 2017
  ident: CR37
  article-title: Coherent perfect absorbers: linear control of light with light
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.64
– volume: 7
  start-page: 1479
  year: 2018
  end-page: 1501
  ident: CR2
  article-title: Strong light-matter coupling in quantum chemistry and quantum tonic’s
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2018-0067
– volume: 18
  start-page: 668
  year: 2019
  end-page: 678
  ident: CR27
  article-title: Extreme nanophotonics from ultrathin metallic gaps
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0290-y
– volume: 12
  start-page: 505
  year: 2023
  end-page: 519
  ident: CR48
  article-title: Photon number resolution without optical mode multiplication
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2022-0614
– volume: 16
  start-page: 270
  year: 2016
  end-page: 275
  ident: CR11
  article-title: Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03724
– volume: 9
  year: 2018
  ident: CR57
  article-title: Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06450-4
– volume: 20
  start-page: 5830
  year: 2020
  end-page: 5836
  ident: CR33
  article-title: Controlled cavity-free, single-photon emission and bipartite entanglement of near-field-excited quantum emitters
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01705
– volume: 9
  start-page: 304
  year: 2010
  end-page: 308
  ident: CR22
  article-title: Up on the jaynes–cummings ladder of a quantum-dot/microcavity system
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2717
– volume: 4
  start-page: eaar4906
  year: 2018
  ident: CR31
  article-title: Near-field strong coupling of single quantum dots
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar4906
– volume: 99
  start-page: 011801
  year: 2019
  ident: CR45
  article-title: Coherent metamaterial absorption of two-photon states with 40% efficiency
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.011801
– volume: 20
  start-page: 5830
  year: 2020
  ident: 50574_CR33
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01705
– volume: 1
  start-page: 014007
  year: 2014
  ident: 50574_CR62
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.1.014007
– volume: 105
  start-page: 053901
  year: 2010
  ident: 50574_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.053901
– volume: 7
  start-page: 401
  year: 2020
  ident: 50574_CR54
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.9b01338
– volume: 25
  start-page: 1769
  year: 2017
  ident: 50574_CR26
  publication-title: Opt. Express
  doi: 10.1364/OE.25.001769
– volume: 114
  start-page: 196403
  year: 2015
  ident: 50574_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.196403
– volume: 99
  start-page: 011801
  year: 2019
  ident: 50574_CR45
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.011801
– volume: 19
  start-page: 5853
  year: 2019
  ident: 50574_CR13
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01137
– volume: 363
  start-page: 615
  year: 2019
  ident: 50574_CR16
  publication-title: Science
  doi: 10.1126/science.aau7742
– volume: 5
  start-page: eaav5931
  year: 2019
  ident: 50574_CR32
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav5931
– volume: 106
  start-page: 012402
  year: 2022
  ident: 50574_CR50
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.106.012402
– volume: 9
  start-page: 304
  year: 2010
  ident: 50574_CR22
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2717
– volume: 10
  start-page: 1879
  year: 2021
  ident: 50574_CR51
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2021-0048
– volume: 9
  year: 2018
  ident: 50574_CR57
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06450-4
– volume: 1
  start-page: 19
  year: 2019
  ident: 50574_CR8
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-018-0006-2
– volume: 24
  start-page: 122001
  year: 2022
  ident: 50574_CR46
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/ac9fe9
– volume: 2
  start-page: 81
  year: 2006
  ident: 50574_CR24
  publication-title: Nat. Phys.
  doi: 10.1038/nphys227
– volume: 112
  start-page: 1555
  year: 1958
  ident: 50574_CR4
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.112.1555
– volume: 115
  start-page: 191101
  year: 2019
  ident: 50574_CR42
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5118838
– volume: 16
  start-page: 270
  year: 2016
  ident: 50574_CR11
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03724
– volume: 373
  start-page: eabd0336
  year: 2021
  ident: 50574_CR3
  publication-title: Science
  doi: 10.1126/science.abd0336
– volume: 535
  start-page: 127
  year: 2016
  ident: 50574_CR28
  publication-title: Nature
  doi: 10.1038/nature17974
– ident: 50574_CR52
– volume: 38
  start-page: 4970
  year: 2013
  ident: 50574_CR36
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.004970
– volume: 59
  start-page: 1
  year: 2014
  ident: 50574_CR53
  publication-title: Prog. Opt.
  doi: 10.1016/B978-0-444-63379-8.00001-5
– volume: 7
  start-page: 1479
  year: 2018
  ident: 50574_CR2
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2018-0067
– volume: 49
  start-page: 2403
  year: 2016
  ident: 50574_CR1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00295
– volume: 3
  start-page: 013001
  year: 2017
  ident: 50574_CR19
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aa91bb
– volume: 6
  year: 2015
  ident: 50574_CR55
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7086
– volume: 98
  start-page: 063846
  year: 2018
  ident: 50574_CR49
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.063846
– volume: 18
  start-page: 668
  year: 2019
  ident: 50574_CR27
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0290-y
– volume: 373
  start-page: 1261
  year: 2021
  ident: 50574_CR39
  publication-title: Science
  doi: 10.1126/science.abj1028
– volume: 432
  start-page: 197
  year: 2004
  ident: 50574_CR9
  publication-title: Nature
  doi: 10.1038/nature02969
– volume: 6
  year: 2015
  ident: 50574_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8031
– volume: 22
  start-page: 2801
  year: 2022
  ident: 50574_CR34
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04920
– volume: 4
  start-page: 2124
  year: 2017
  ident: 50574_CR44
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00514
– volume: 102
  start-page: 063511
  year: 2020
  ident: 50574_CR58
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.063511
– volume: 15
  start-page: 125
  year: 2021
  ident: 50574_CR7
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-020-00731-5
– volume: 21
  start-page: 4225
  year: 2021
  ident: 50574_CR66
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00182
– volume: 10
  start-page: 343
  year: 2021
  ident: 50574_CR59
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2020-0403
– volume: 20
  start-page: 2152
  year: 2020
  ident: 50574_CR65
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00196
– volume: 19
  start-page: 3364
  year: 2019
  ident: 50574_CR64
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01162
– volume: 107
  start-page: 096801
  year: 2011
  ident: 50574_CR60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.096801
– volume: 43
  start-page: 1806
  year: 2018
  ident: 50574_CR38
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.001806
– volume: 12
  year: 2021
  ident: 50574_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26060-x
– volume: 445
  start-page: 896
  year: 2007
  ident: 50574_CR10
  publication-title: Nature
  doi: 10.1038/nature05586
– volume: 17
  start-page: 4291
  year: 2017
  ident: 50574_CR63
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01284
– volume: 508
  start-page: 237
  year: 2014
  ident: 50574_CR20
  publication-title: Nature
  doi: 10.1038/nature13177
– volume: 4
  start-page: eaar4906
  year: 2018
  ident: 50574_CR31
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar4906
– volume: 124
  start-page: 177401
  year: 2020
  ident: 50574_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.177401
– volume: 101
  start-page: 245301
  year: 2020
  ident: 50574_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.245301
– volume: 15
  year: 2024
  ident: 50574_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-47191-x
– volume: 5
  start-page: 186
  year: 2018
  ident: 50574_CR30
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00668
– volume: 6
  year: 2015
  ident: 50574_CR47
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9233
– volume: 7
  start-page: 1
  year: 2016
  ident: 50574_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11823
– volume: 111
  start-page: 5179
  year: 2011
  ident: 50574_CR17
  publication-title: Chem. Rev.
  doi: 10.1021/cr100156x
– volume: 78
  start-page: 013901
  year: 2014
  ident: 50574_CR5
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/78/1/013901
– volume: 7
  start-page: 4159
  year: 2016
  ident: 50574_CR18
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01869
– ident: 50574_CR25
  doi: 10.1017/CBO9781139016926
– ident: 50574_CR67
  doi: 10.5281/zenodo.12366459
– volume: 12
  start-page: 45
  year: 2012
  ident: 50574_CR61
  publication-title: Nano Lett.
  doi: 10.1021/nl202864n
– volume: 12
  start-page: 505
  year: 2023
  ident: 50574_CR48
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2022-0614
– volume: 6
  start-page: 605
  year: 2012
  ident: 50574_CR12
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.181
– volume: 106
  start-page: 020501
  year: 2011
  ident: 50574_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.020501
– volume: 2
  start-page: 17064
  year: 2017
  ident: 50574_CR37
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.64
– volume: 7
  start-page: 354
  year: 2016
  ident: 50574_CR56
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02512
– volume: 117
  start-page: 023601
  year: 2016
  ident: 50574_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.023601
SSID ssj0000391844
Score 2.4697611
Snippet Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material...
Abstract Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6324
SubjectTerms 639/624/400/1021
639/624/400/2797
639/766/400/1021
639/766/400/3925
Absorption
Ambient temperature
Coherent light
Data processing
Dissipation
Electrons
Emitters
Energy transfer
Humanities and Social Sciences
Information processing
Information storage
Light
multidisciplinary
Nanowires
Near fields
Optics
Physics
Plasmonics
Polaritons
Quantum dots
Quantum electrodynamics
Quantum phenomena
Room temperature
Science
Science (multidisciplinary)
Temperature
Waveguides
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CoJBL6CMPN2lwIbdExLIkWzo2pWHJIYeShb0JSZbIIWtvs7uH_vuMZO9mS16Xngz22EjjeXzDSJ8ATmP3r1CuJFzxhnArOLpUaEhtg3SYbgQ1aZXvTTUa8-uJmGwc9RXXhPX0wL3iLqSTtmoEa5jDVCkbaRJreFMaYUsVEhMo5ryNYirFYKawdOHDLpmCyYs5TzEBUxKJmByH9E8mSoT9L6HMZx3SlHiuPsLugBjzH_1IP8GWbz_Dh_4Myb9f4PI3Ql8SGaYGeuT8zxK1tZzmrWm7GYLjaWS_zV13F3f2LXKUi0s4cmPn3UMKGHswvvp1-3NEhoMRiONSLAhqUaiAxQgrTDCOWm8VCw4dyFBli8Zj0PDeK4nZuZG1czawQJURTHjOjWH7sN12rT-EPGB551ldMoNYylJphKkCXmlVIHDiNgO6UpJ2A2t4PLziXqfuNZO6V6xGxeqkWK0yOFu_M-s5M96Uvoy6X0tGvut0A61AD1ag37OCDI5Xf04PTjjXLNLxIQDhRQbf14_RfWJPxLS-W_YyFEtGRjM46P_4eiRMFVVkWMzgfGUCTx9_fUJf_8eEjmCnjLZa1KSsj2F78bD03xD-LOxJsvRHFUP8rQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJu0BQWJG1iNYzuxT4gilooDB0Sl3iw_4UCT7Wb3wL9n7HhTIaCnRIkTOWPPzGfP5BuA1yn61yjXEq64J9wKjioVPeltlA7djaAmZ_l-6c7O-ecLcVE23KaSVrm3idlQ-9GlPfITlrjV0Jvw5t36iqSqUSm6Wkpo3IY7FO-llC65-rTssST2c8l5-VemYfJk4tkyoGMiCZljx_7wR5m2_19Y8684aXY_qwdwv-DG-v080A_hVhgewd25kuQvPMuZnG56DKdfEQqTxDhV6JLrqx1Kb3dZD2YY1wiWLxMbbu3GH-lPv22N7VJKR23sNG6yAXkC56uP3z6ckVIogTguxZagVIWKuDhhjYnGURusYtGhQhmqbOMDGpEQgpLorb3snbORRaqMYCJwbgx7CgfDOITnUEdc7gXWt8wgtrJUGmG6iEfaNQikuK2A7sWlXWERT8UsfuoczWZSzyLWKGKdRaxVBW-WZ9Yzh8aNrU_TKCwtE_91vjBuvuuiTlo6aTsvmGcOAZT00mQued8aYVsVeQXH-zHURSknfT2FKni13EZ1SjESM4RxN7ehuIRktIJn89gvPWGq6RLjYgVv95Ph-uX__6DDm_tyBPfaNB-bnrT9MRxsN7vwAoHO1r7Ms_k3B3z3Sg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrpC4oLa8Ai0KEjewiGM7sY9bRFXtgUNhpd4s27HhwCbtPg78e8bOo6q6IHGKlIytZDzj-ZwZfwZ4H7N_hXIl4Yo3hFvB0aVCQ2obpMNwI6hJVb5fq8slX1yL6wMox70wqWg_UVqmaXqsDvu04cmlMaKQCKmxx0cwi1TtaNuz-XzxbTH9WYmc55LzYYdMweSexveiUCLr34cwH2RHU9C5OIKnA1rM5_37HcOBb0_gcX9-5O9ncH6FsJdEdqmBGjm_3aGmdqu8NW13g8B4FZlvc9f9jLv6tjnKxfKN3NhNt06TxXNYXnz5_vmSDIciEMel2BLUoFABFyKsMME4ar1VLDh0HkOVLRqPE4b3XkmMzI2snbOBBaqMYMJzbgx7AYdt1_pXkAdc2nlWl8wgjrJUGmGqgFdaFQiauM2AjkrSbmAMjwdX_NIpc82k7hWrUbE6KVarDD5MbW56vox_Sp9H3U-Skes63ejWP_Qw9lo6aatGsIY5BEuykSbxxjelEbZUgWdwOo6cHhxwo1mk4kPwwYsM3k2P0XViPsS0vtv1MhSXi4xm8LIf8elNmCqqyK6YwcfRBO46__sHvf4_8TfwpIxWWdSkrE_hcLve-TMEOVv7drDqP1uJ85A
  priority: 102
  providerName: Springer Nature
Title Room-temperature quantum nanoplasmonic coherent perfect absorption
URI https://link.springer.com/article/10.1038/s41467-024-50574-9
https://www.ncbi.nlm.nih.gov/pubmed/39060227
https://www.proquest.com/docview/3085026640
https://www.proquest.com/docview/3085116431
https://doaj.org/article/8c8b6d53d3c8468d8a00298d2a5b29f4
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7yoNBLafp0mywu9Na6tS3Jlg4h7C7ZhoWGknZhb0KSpfSQ2Mk-oPn3Hcn2lpJNLpaRZVseaTTfWNI3AB_97F8qTJ5QQauEakZRpVyVlNpxg-aGZSqs8j0vzmZ0OmfzHejDHXUCXG517Xw8qdni6suf27sTVPjjdss4_7qkQd3R2iQebuPbdmEfLVPpIxp87-B-GJmJQIeGdntntt_6n30KNP7bsOe9edNgjibP4VmHI-Nh2_AHsGPrF_CkjSx5h2dhZadZvoTRBULjxDNQdfTJ8e0apbm-jmtVNzcInq89O25smt9-598qxnJ-iUes9LJZhAHlFcwmp7_GZ0kXOCExlLNVglJmwqGzQlLllMm01YI4gwqmMqHTyuKgYq0VHK13xUtjtCMuE4oRZilViryGvbqp7VuIHbp_lpQ5UYi1dMYVU4XDNCtSBFZUR5D14pKmYxX3wS2uZJjdJly2IpYoYhlELEUEnzb33LScGo-WHvlW2JT0fNgho1lcyk69JDdcFxUjFTEIqHjFVeCWr3LFdC4cjeCwb0PZ9zFJPF0fAhSaRvBhcxnVy8-ZqNo267ZMhi4lySJ407b9piZEpIVnYIzgc98Z_j384Q9693hd3sPT3PfHtEzy8hD2Vou1PULgs9ID2C3nJR755NsA9ofD6c8ppqPT8x8XmDsuxoPwS2EQev1fjSgBWg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgSDBCawmsZ3YB4QosGxp6QG1Um-u7dj00Cbbza5Q_xS_kbGTbIWA3nraaNeJvPP8nLG_AXgVqn-ZtAVhktWEGc7QpXxNKuOFxXTDcx13-e6V0wP29ZAfrsGv8SxM2FY5xsQYqOvWhnfkmzRwq2E2Ydn72RkJXaNCdXVsodGbxY47_4lLtu7d9ifU7-uimHze_zglQ1cBYpngC4JT4NIjkqeZ9trmxhlJvUXr07k0We3Q45xzUmBqq0VlrfHU51Jzyh1jWlN87jW4zihm8nAyffJl9U4nsK0LxoazORkVmx2LkQgTIQkrARTEH_kvtgn4F7b9qy4b093kDtwecGr6oTesu7Dmmntwo-9ceY5Xceeo7e7D1neE3iQwXA30zOnZErW1PE0b3bQzBOengX03te1xOFm4SHFc2EKSatO18xiwHsDBlYjwIaw3beMeQ-pxeeloVVCNWM7kQnNdevzMywyBGzMJ5KO4lB1Yy0PzjBMVq-dUqF7ECkWsooiVTODN6p5Zz9lx6eitoIXVyMC3Hb9o5z_U4L5KWGHKmtOaWgRsohY6ctfXheamkJ4lsDHqUA1BoFMXJpvAy9XP6L6hJqMb1y77MTkuWWmewKNe96uZUJmVgeExgbejMVw8_P9_6Mnlc3kBN6f733bV7vbezlO4VQTbzCpSVBuwvpgv3TMEWQvzPFp2CkdX7Uq_AQENNYk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anUBcJj5HYECQ4ARRk9hu7ANClK3aGKqmiUm7Gdux4cCSrmk17V_jr-PZ-ZgQsNtOjVonct_3y3v-PYDXvvqXCpMnVNAyoZpRVClXJoV23KC7YZkKXb7zyf4J_XzKTjfgV38WxrdV9jYxGOqyNv4d-Zh4bDX0JjQdu64t4mh39mFxnvgJUr7S2o_TaEXk0F5eYPrWvD_YRV6_yfPZ3tdP-0k3YSAxlLNVgtthwmFUT1LllMm01YI4g5KoMqHT0qL2WWsFRzdX8sIY7YjLhGKEWUqVIvjcW7BZ-KxoBJvTvfnR8fCGx2Ovc0q7kzop4eOGBruEbjHxeQGS5Q9vGIYG_CvS_atKG5zf7B5sdVFr_LEVs_uwYasHcLudY3mJV6GP1DQPYXqMgXji8a46sOb4fI28W5_FlarqBYbqZx6LNzb1D3_OcBXjOt9QEivd1Mtgvh7ByY0Q8TGMqrqyTyB2mGxaUuREYWSnM66Ymjj8zCYphnFUR5D15JKmwzD3ozR-ylBLJ1y2JJZIYhlILEUEb4d7Fi2Cx7Wrp54Lw0qPvh2-qJffZafMkhuuJyUjJTEYvvGSq4BkX-aK6Vw4GsFOz0PZmYRGXglwBK-Gn1GZfYVGVbZet2syTGBJFsF2y_thJ0SkE4_3GMG7XhiuHv7_P_T0-r28hDuoRvLLwfzwGdzNvWimRZIXOzBaLdf2OUZcK_2iE-0Yvt20Nv0GusM7Gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room-temperature+quantum+nanoplasmonic+coherent+perfect+absorption&rft.jtitle=Nature+communications&rft.au=Lai%2C+Yiming&rft.au=Clarke%2C+Daniel+D.+A&rft.au=Grimm%2C+Philipp&rft.au=Devi%2C+Asha&rft.date=2024-07-27&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=6324&rft_id=info:doi/10.1038%2Fs41467-024-50574-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon