Room-temperature quantum nanoplasmonic coherent perfect absorption
Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of co...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 6324 - 8 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions. Our study establishes a previously unexplored paradigm for quantum state preparation and coherence preservation in plasmonic cavity quantum electrodynamics, offering compelling prospects for elevating quantum nanophotonic technologies to ambient temperatures.
Quantum states are incredibly sensitive to their environment, making them perfect for ultrasensitive quantum detection—if they can be maintained long enough. Here, the authors showed that they can ‘immortalize’ the excited state of a coupled light-matter system using a technique called ‘coherent perfect absorption’. |
---|---|
AbstractList | Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions. Our study establishes a previously unexplored paradigm for quantum state preparation and coherence preservation in plasmonic cavity quantum electrodynamics, offering compelling prospects for elevating quantum nanophotonic technologies to ambient temperatures.Quantum states are incredibly sensitive to their environment, making them perfect for ultrasensitive quantum detection—if they can be maintained long enough. Here, the authors showed that they can ‘immortalize’ the excited state of a coupled light-matter system using a technique called ‘coherent perfect absorption’. Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions. Our study establishes a previously unexplored paradigm for quantum state preparation and coherence preservation in plasmonic cavity quantum electrodynamics, offering compelling prospects for elevating quantum nanophotonic technologies to ambient temperatures.Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions. Our study establishes a previously unexplored paradigm for quantum state preparation and coherence preservation in plasmonic cavity quantum electrodynamics, offering compelling prospects for elevating quantum nanophotonic technologies to ambient temperatures. Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions. Our study establishes a previously unexplored paradigm for quantum state preparation and coherence preservation in plasmonic cavity quantum electrodynamics, offering compelling prospects for elevating quantum nanophotonic technologies to ambient temperatures. Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions. Our study establishes a previously unexplored paradigm for quantum state preparation and coherence preservation in plasmonic cavity quantum electrodynamics, offering compelling prospects for elevating quantum nanophotonic technologies to ambient temperatures. Quantum states are incredibly sensitive to their environment, making them perfect for ultrasensitive quantum detection—if they can be maintained long enough. Here, the authors showed that they can ‘immortalize’ the excited state of a coupled light-matter system using a technique called ‘coherent perfect absorption’. Abstract Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions. Our study establishes a previously unexplored paradigm for quantum state preparation and coherence preservation in plasmonic cavity quantum electrodynamics, offering compelling prospects for elevating quantum nanophotonic technologies to ambient temperatures. |
ArticleNumber | 6324 |
Author | Devi, Asha Lai, Yiming Clarke, Daniel D. A. Thomale, Ronny Grimm, Philipp Hofmann, Tobias Huang, Jer-Shing Helbig, Tobias Hecht, Bert Wigger, Daniel Hess, Ortwin |
Author_xml | – sequence: 1 givenname: Yiming surname: Lai fullname: Lai, Yiming organization: School of Physics and CRANN Institute, Trinity College Dublin – sequence: 2 givenname: Daniel D. A. orcidid: 0000-0003-2641-6090 surname: Clarke fullname: Clarke, Daniel D. A. organization: School of Physics and CRANN Institute, Trinity College Dublin – sequence: 3 givenname: Philipp orcidid: 0000-0003-4744-7005 surname: Grimm fullname: Grimm, Philipp organization: Nano-Optics & Biophotonics Group, Department of Experimental Physics 5, and Röntgen Research Center for Complex Material Research, Physics Institute, University of Würzburg – sequence: 4 givenname: Asha surname: Devi fullname: Devi, Asha organization: School of Physics and CRANN Institute, Trinity College Dublin – sequence: 5 givenname: Daniel surname: Wigger fullname: Wigger, Daniel organization: School of Physics and CRANN Institute, Trinity College Dublin – sequence: 6 givenname: Tobias orcidid: 0000-0003-1894-0183 surname: Helbig fullname: Helbig, Tobias organization: Theoretische Physik I, Julius-Maximilians-Universität Würzburg – sequence: 7 givenname: Tobias orcidid: 0000-0002-1888-9464 surname: Hofmann fullname: Hofmann, Tobias organization: Theoretische Physik I, Julius-Maximilians-Universität Würzburg – sequence: 8 givenname: Ronny orcidid: 0000-0002-3979-8836 surname: Thomale fullname: Thomale, Ronny organization: Theoretische Physik I, Julius-Maximilians-Universität Würzburg – sequence: 9 givenname: Jer-Shing orcidid: 0000-0002-7027-3042 surname: Huang fullname: Huang, Jer-Shing organization: Leibniz Institute of Photonic Technology, Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Research Center for Applied Sciences, Academia Sinica, Department of Electrophysics, National Chiao Tung University – sequence: 10 givenname: Bert orcidid: 0000-0002-4883-8676 surname: Hecht fullname: Hecht, Bert email: hecht@physik.uni-wuerzburg.de organization: Nano-Optics & Biophotonics Group, Department of Experimental Physics 5, and Röntgen Research Center for Complex Material Research, Physics Institute, University of Würzburg – sequence: 11 givenname: Ortwin orcidid: 0000-0002-6024-0677 surname: Hess fullname: Hess, Ortwin email: ortwin.hess@tcd.ie organization: School of Physics and CRANN Institute, Trinity College Dublin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39060227$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1TAQhS1URB_0D7BAV2LDJuB37CVUUCpVQkKwtibOpOQqsVPbWfTf4960gLrobDyyvnM0M-eUHIUYkJA3jH5gVJiPWTKp24Zy2SiqWtnYF-SEU8ka1nJx9F9_TM5z3tNawjIj5StyLCzVlPP2hHz-EePcFJwXTFDWhLvbFUJZ512AEJcJ8hzD6Hc-_saEoewqN6AvO-hyTEsZY3hNXg4wZTx_eM_Ir69ffl58a66_X15dfLpuvDSqNMYzZQdqtKAwgGcddlYMnlINzHa0x1YLRLRGMtWb1vtuEAOzoIRCKQHEGbnafPsIe7ekcYZ05yKM7vAR042DVEY_oTPedLpXohfeSG16A5Rya3oOquN2kNXr_ea1pHi7Yi5uHrPHaYKAcc1OUKMY01Kwir57gu7jmkLd9EBRrrWklXr7QK3djP3f8R4vXQGzAT7FnBMOzo8F7u9XEoyTY9Td5-q2XF3N1R1ydbZK-RPpo_uzIrGJcoXDDaZ_Yz-j-gPZ_LPu |
CitedBy_id | crossref_primary_10_1515_nanoph_2024_0574 |
Cites_doi | 10.1038/nphys227 10.1021/nl202864n 10.1038/s41467-024-47191-x 10.1038/nphoton.2012.181 10.1364/OL.43.001806 10.1038/ncomms9233 10.1364/OE.25.001769 10.1088/1367-2630/ac9fe9 10.1038/ncomms11823 10.1021/acsphotonics.7b00514 10.1021/acs.jpclett.5b02512 10.1021/acs.nanolett.0c00196 10.1103/PhysRevLett.124.177401 10.1103/PhysRevA.98.063846 10.1021/acs.nanolett.1c00182 10.1021/acs.nanolett.1c04920 10.1088/0034-4885/78/1/013901 10.1515/nanoph-2020-0403 10.1038/ncomms7086 10.1038/s41467-021-26060-x 10.1038/nature05586 10.1126/science.aau7742 10.1021/acs.accounts.6b00295 10.1021/acsphotonics.9b01338 10.1021/acs.nanolett.9b01137 10.1515/nanoph-2021-0048 10.1126/science.abj1028 10.1088/2058-9565/aa91bb 10.1103/PhysRev.112.1555 10.1103/PhysRevB.101.245301 10.1103/PhysRevLett.114.196403 10.1103/PhysRevLett.117.023601 10.1021/acs.nanolett.9b01162 10.1021/acsphotonics.7b00668 10.1103/PhysRevLett.105.053901 10.1103/PhysRevLett.106.020501 10.1103/PhysRevA.106.012402 10.1038/nature02969 10.1364/OL.38.004970 10.1021/acs.nanolett.7b01284 10.1038/nature13177 10.1063/1.5118838 10.1021/cr100156x 10.1021/acs.jpclett.6b01869 10.1016/B978-0-444-63379-8.00001-5 10.1103/PhysRevLett.107.096801 10.1126/science.abd0336 10.1103/PhysRevApplied.1.014007 10.1038/s42254-018-0006-2 10.1038/nature17974 10.1103/PhysRevA.102.063511 10.1126/sciadv.aav5931 10.1038/ncomms8031 10.1038/s41566-020-00731-5 10.1038/natrevmats.2017.64 10.1515/nanoph-2018-0067 10.1038/s41563-019-0290-y 10.1515/nanoph-2022-0614 10.1021/acs.nanolett.5b03724 10.1038/s41467-018-06450-4 10.1021/acs.nanolett.0c01705 10.1038/nmat2717 10.1126/sciadv.aar4906 10.1103/PhysRevA.99.011801 10.1017/CBO9781139016926 10.5281/zenodo.12366459 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-024-50574-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_8c8b6d53d3c8468d8a00298d2a5b29f4 39060227 10_1038_s41467_024_50574_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Science Foundation Ireland (SFI) grantid: 18/RP/6236 funderid: 501100001602 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: 437527638 funderid: 501100001659 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: HE5618/12-1 funderid: 501100001659 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: 398816777 funderid: 501100001659 – fundername: Science Foundation Ireland (SFI) grantid: 22/QERA/3821 funderid: 501100001602 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: ST0462019 funderid: 501100001659 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: 398816777 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: ST0462019 – fundername: Science Foundation Ireland (SFI) grantid: 22/QERA/3821 – fundername: Science Foundation Ireland (SFI) grantid: 18/RP/6236 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: HE5618/12-1 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: 437527638 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-8c159f08630afac1beb93fc006a19b0de763eee98415d87ccbf3f19a535e44aa3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:26:59 EDT 2025 Fri Jul 11 11:26:21 EDT 2025 Wed Aug 13 03:25:37 EDT 2025 Wed Feb 19 02:02:55 EST 2025 Tue Jul 01 02:37:24 EDT 2025 Thu Apr 24 22:58:06 EDT 2025 Fri Feb 21 02:40:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-8c159f08630afac1beb93fc006a19b0de763eee98415d87ccbf3f19a535e44aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2641-6090 0000-0002-3979-8836 0000-0002-1888-9464 0000-0002-4883-8676 0000-0002-7027-3042 0000-0003-1894-0183 0000-0002-6024-0677 0000-0003-4744-7005 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-50574-9 |
PMID | 39060227 |
PQID | 3085026640 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8c8b6d53d3c8468d8a00298d2a5b29f4 proquest_miscellaneous_3085116431 proquest_journals_3085026640 pubmed_primary_39060227 crossref_citationtrail_10_1038_s41467_024_50574_9 crossref_primary_10_1038_s41467_024_50574_9 springer_journals_10_1038_s41467_024_50574_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-27 |
PublicationDateYYYYMMDD | 2024-07-27 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Baranov, Krasnok, Shegai, Alù, Chong (CR37) 2017; 2 Everett (CR49) 2018; 98 Baumberg, Aizpurua, Mikkelsen, Smith (CR27) 2019; 18 Vetlugin, Martinelli, Dong, Soci (CR48) 2023; 12 Lyons (CR45) 2019; 99 Gutman, Sukhorukov, Chong, de Sterke (CR36) 2013; 38 Garcia-Vidal, Ciuti, Ebbesen (CR3) 2021; 373 Gonzalez-Tudela (CR21) 2011; 106 Sweeney, Hsu, Stone (CR58) 2020; 102 Hoang, Akselrod, Mikkelsen (CR11) 2016; 16 Wang, Sweeney, Stone, Yang (CR39) 2021; 373 Kasprzak (CR22) 2010; 9 Akhlaghi, Schelew, Young (CR47) 2015; 6 Groß, Hamm, Tufarelli, Hess, Hecht (CR31) 2018; 4 Bello, Kongsuwan, Hess (CR34) 2022; 22 Santhosh, Bitton, Chuntonov, Haran (CR29) 2016; 7 Li, Argyropoulos (CR38) 2018; 43 Vetlugin (CR42) 2019; 115 Rewitz (CR61) 2012; 12 Volz (CR12) 2012; 6 Hopfield (CR4) 1958; 112 Reiserer, Kalb, Rempe, Ritter (CR20) 2014; 508 Chikkaraddy (CR28) 2016; 535 Chong, Ge, Cao, Stone (CR35) 2010; 105 Ochs (CR66) 2021; 21 Khitrova, Gibbs, Kira, Koch, Scherer (CR24) 2006; 2 Asano, Ochi, Takahashi, Kishimoto, Noda (CR26) 2017; 25 Ebbesen (CR1) 2016; 49 Krainova, Grede, Tsokkou, Banerji, Giebink (CR15) 2020; 124 Groll (CR23) 2020; 101 Vetlugin, Guo, Soci, Zheludev (CR46) 2022; 24 Park (CR32) 2019; 5 Bello, Kongsuwan, Donegan, Hess (CR33) 2020; 20 Cui, Zhang, Luo, Gao, Cui (CR40) 2024; 15 Leng, Szychowski, Daniel, Pelton (CR57) 2018; 9 Schachenmayer, Genes, Tignone, Pupillo (CR14) 2015; 114 Hennessy (CR10) 2007; 445 Krauss, Razinskas, Köck, Grossmann, Hecht (CR64) 2019; 19 CR52 Roger (CR43) 2016; 117 Zhang (CR60) 2011; 107 Vetlugin, Guo, Soci, Zheludev (CR50) 2022; 106 Yoo (CR7) 2021; 15 Flick, Rivera, Narang (CR2) 2018; 7 Schörner, Lippitz (CR65) 2020; 20 Altuzarra (CR44) 2017; 4 Törmä, Barnes (CR5) 2014; 78 Stone, Sweeney, Hsu, Wisal, Wang (CR59) 2021; 10 Wu (CR63) 2017; 17 Frisk Kockum, Miranowicz, De Liberato, Savasta, Nori (CR8) 2019; 1 Wuestner, Hess (CR53) 2014; 59 Barra-Burillo (CR6) 2021; 12 Kongsuwan (CR13) 2019; 19 Crai, Demetriadou, Hess (CR54) 2020; 7 Cassette, Pensack, Mahler, Scholes (CR55) 2015; 6 CR25 Thomas (CR16) 2019; 363 CR67 Agranovich, Gartstein, Litinskaya (CR17) 2011; 111 Lodahl (CR19) 2017; 3 Rewitz (CR62) 2014; 1 Melnikau (CR56) 2016; 7 Kongsuwan (CR30) 2018; 5 Vergauwe (CR18) 2016; 7 Grimm, Razinskas, Huang, Hecht (CR51) 2021; 10 Reithmaier (CR9) 2004; 432 Roger (CR41) 2015; 6 D Groll (50574_CR23) 2020; 101 50574_CR52 WR Sweeney (50574_CR58) 2020; 102 T Roger (50574_CR43) 2016; 117 AD Stone (50574_CR59) 2021; 10 P Törmä (50574_CR5) 2014; 78 A Crai (50574_CR54) 2020; 7 AN Vetlugin (50574_CR42) 2019; 115 A Frisk Kockum (50574_CR8) 2019; 1 JP Reithmaier (50574_CR9) 2004; 432 A Thomas (50574_CR16) 2019; 363 C Schörner (50574_CR65) 2020; 20 WY Cui (50574_CR40) 2024; 15 F Bello (50574_CR33) 2020; 20 TB Hoang (50574_CR11) 2016; 16 N Krainova (50574_CR15) 2020; 124 Y Li (50574_CR38) 2018; 43 K Hennessy (50574_CR10) 2007; 445 YD Chong (50574_CR35) 2010; 105 MK Akhlaghi (50574_CR47) 2015; 6 M Ochs (50574_CR66) 2021; 21 A Gonzalez-Tudela (50574_CR21) 2011; 106 H Groß (50574_CR31) 2018; 4 N Kongsuwan (50574_CR13) 2019; 19 P Grimm (50574_CR51) 2021; 10 D Melnikau (50574_CR56) 2016; 7 FD Bello (50574_CR34) 2022; 22 C Altuzarra (50574_CR44) 2017; 4 G Khitrova (50574_CR24) 2006; 2 JJ Baumberg (50574_CR27) 2019; 18 H Leng (50574_CR57) 2018; 9 K-D Park (50574_CR32) 2019; 5 R Chikkaraddy (50574_CR28) 2016; 535 E Krauss (50574_CR64) 2019; 19 C Wang (50574_CR39) 2021; 373 AN Vetlugin (50574_CR46) 2022; 24 J Hopfield (50574_CR4) 1958; 112 K Santhosh (50574_CR29) 2016; 7 X Wu (50574_CR63) 2017; 17 V Agranovich (50574_CR17) 2011; 111 C Rewitz (50574_CR61) 2012; 12 RM Vergauwe (50574_CR18) 2016; 7 JL Everett (50574_CR49) 2018; 98 DG Baranov (50574_CR37) 2017; 2 D Yoo (50574_CR7) 2021; 15 T Volz (50574_CR12) 2012; 6 T Roger (50574_CR41) 2015; 6 S Zhang (50574_CR60) 2011; 107 A Lyons (50574_CR45) 2019; 99 TW Ebbesen (50574_CR1) 2016; 49 J Flick (50574_CR2) 2018; 7 S Wuestner (50574_CR53) 2014; 59 T Asano (50574_CR26) 2017; 25 E Cassette (50574_CR55) 2015; 6 A Reiserer (50574_CR20) 2014; 508 J Kasprzak (50574_CR22) 2010; 9 J Schachenmayer (50574_CR14) 2015; 114 N Gutman (50574_CR36) 2013; 38 50574_CR67 50574_CR25 AN Vetlugin (50574_CR48) 2023; 12 AN Vetlugin (50574_CR50) 2022; 106 C Rewitz (50574_CR62) 2014; 1 P Lodahl (50574_CR19) 2017; 3 N Kongsuwan (50574_CR30) 2018; 5 FJ Garcia-Vidal (50574_CR3) 2021; 373 M Barra-Burillo (50574_CR6) 2021; 12 |
References_xml | – volume: 2 start-page: 81 year: 2006 end-page: 90 ident: CR24 article-title: Vacuum rabi splitting in semiconductors publication-title: Nat. Phys. doi: 10.1038/nphys227 – volume: 12 start-page: 45 year: 2012 end-page: 49 ident: CR61 article-title: Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry publication-title: Nano Lett. doi: 10.1021/nl202864n – volume: 15 year: 2024 ident: CR40 article-title: Dynamic switching from coherent perfect absorption to parametric amplification in a nonlinear spoof plasmonic waveguide publication-title: Nat. Commun. doi: 10.1038/s41467-024-47191-x – volume: 6 start-page: 605 year: 2012 end-page: 609 ident: CR12 article-title: Ultrafast all-optical switching by single photons publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.181 – volume: 43 start-page: 1806 year: 2018 end-page: 1809 ident: CR38 article-title: Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides publication-title: Opt. Lett. doi: 10.1364/OL.43.001806 – volume: 6 year: 2015 ident: CR47 article-title: Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation publication-title: Nat. Commun. doi: 10.1038/ncomms9233 – volume: 25 start-page: 1769 year: 2017 end-page: 1777 ident: CR26 article-title: Photonic crystal nanocavity with a q factor exceeding eleven million publication-title: Opt. Express doi: 10.1364/OE.25.001769 – volume: 24 start-page: 122001 year: 2022 ident: CR46 article-title: Anti-hong-ou-mandel interference by coherent perfect absorption of entangled photons publication-title: N. J. Phys. doi: 10.1088/1367-2630/ac9fe9 – volume: 7 start-page: 1 year: 2016 end-page: 5 ident: CR29 article-title: Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit publication-title: Nat. Commun. doi: 10.1038/ncomms11823 – volume: 4 start-page: 2124 year: 2017 end-page: 2128 ident: CR44 article-title: Coherent perfect absorption in metamaterials with entangled photons publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00514 – volume: 7 start-page: 354 year: 2016 end-page: 362 ident: CR56 article-title: Rabi splitting in photoluminescence spectra of hybrid systems of gold nanorods and j-aggregates publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02512 – volume: 20 start-page: 2152 year: 2020 end-page: 2156 ident: CR65 article-title: Single molecule nonlinearity in a plasmonic waveguide publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00196 – volume: 124 start-page: 177401 year: 2020 ident: CR15 article-title: Polaron photoconductivity in the weak and strong light-matter coupling regime publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.177401 – volume: 98 start-page: 063846 year: 2018 ident: CR49 article-title: Time-reversed and coherently enhanced memory: a single-mode quantum atom-optic memory without a cavity publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.063846 – volume: 21 start-page: 4225 year: 2021 end-page: 4230 ident: CR66 article-title: Nanoscale electrical excitation of distinct modes in plasmonic waveguides publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00182 – ident: CR25 – volume: 22 start-page: 2801 year: 2022 end-page: 2808 ident: CR34 article-title: Near-field generation and control of ultrafast, multipartite entanglement for quantum nanoplasmonic networks publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04920 – volume: 78 start-page: 013901 year: 2014 ident: CR5 article-title: Strong coupling between surface plasmon polaritons and emitters: a review publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/78/1/013901 – volume: 10 start-page: 343 year: 2021 end-page: 360 ident: CR59 article-title: Reflectionless excitation of arbitrary photonic structures: a general theory publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0403 – volume: 6 year: 2015 ident: CR55 article-title: Room-temperature exciton coherence and dephasing in two-dimensional nanostructures publication-title: Nat. Commun. doi: 10.1038/ncomms7086 – volume: 12 year: 2021 ident: CR6 article-title: Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime publication-title: Nat. Commun. doi: 10.1038/s41467-021-26060-x – volume: 445 start-page: 896 year: 2007 end-page: 899 ident: CR10 article-title: Quantum nature of a strongly coupled single quantum dot–cavity system publication-title: Nature doi: 10.1038/nature05586 – volume: 363 start-page: 615 year: 2019 end-page: 619 ident: CR16 article-title: Tilting a ground-state reactivity landscape by vibrational strong coupling publication-title: Science doi: 10.1126/science.aau7742 – ident: CR67 – volume: 49 start-page: 2403 year: 2016 end-page: 2412 ident: CR1 article-title: Hybrid light-matter states in a molecular and material science perspective publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00295 – volume: 7 start-page: 401 year: 2020 end-page: 410 ident: CR54 article-title: Electron beam interrogation and control of ultrafast plexcitonic dynamics publication-title: ACS Photonics doi: 10.1021/acsphotonics.9b01338 – volume: 19 start-page: 5853 year: 2019 end-page: 5861 ident: CR13 article-title: Quantum plasmonic immunoassay sensing publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01137 – volume: 10 start-page: 1879 year: 2021 end-page: 1887 ident: CR51 article-title: Driving plasmonic nanoantennas at perfect impedance matching using generalized coherent perfect absorption publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0048 – volume: 373 start-page: 1261 year: 2021 end-page: 1265 ident: CR39 article-title: Coherent perfect absorption at an exceptional point publication-title: Science doi: 10.1126/science.abj1028 – volume: 3 start-page: 013001 year: 2017 ident: CR19 article-title: Quantum-dot based photonic quantum networks publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aa91bb – volume: 112 start-page: 1555 year: 1958 ident: CR4 article-title: Theory of the contribution of excitons to the complex dielectric constant of crystals publication-title: Phys. Rev. doi: 10.1103/PhysRev.112.1555 – volume: 101 start-page: 245301 year: 2020 ident: CR23 article-title: Four-wave mixing dynamics of a strongly coupled quantum-dot–microcavity system driven by up to 20 photons publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.245301 – volume: 114 start-page: 196403 year: 2015 ident: CR14 article-title: Cavity-enhanced transport of excitons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.196403 – volume: 117 start-page: 023601 year: 2016 ident: CR43 article-title: Coherent absorption of n00n states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.023601 – volume: 19 start-page: 3364 year: 2019 end-page: 3369 ident: CR64 article-title: Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01162 – volume: 5 start-page: 186 year: 2018 end-page: 191 ident: CR30 article-title: Suppressed quenching and strong-coupling of purcell-enhanced single-molecule emission in plasmonic nanocavities publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00668 – volume: 105 start-page: 053901 year: 2010 ident: CR35 article-title: Coherent perfect absorbers: time-reversed lasers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.053901 – volume: 106 start-page: 020501 year: 2011 ident: CR21 article-title: Entanglement of two qubits mediated by one-dimensional plasmonic waveguides publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.020501 – volume: 106 start-page: 012402 year: 2022 ident: CR50 article-title: Deterministic generation of entanglement in a quantum network by coherent absorption of a single photon publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.106.012402 – volume: 432 start-page: 197 year: 2004 end-page: 200 ident: CR9 article-title: Strong coupling in a single quantum dot–semiconductor microcavity system publication-title: Nature doi: 10.1038/nature02969 – volume: 38 start-page: 4970 year: 2013 end-page: 4973 ident: CR36 article-title: Coherent perfect absorption and reflection in slow-light waveguides publication-title: Opt. Lett. doi: 10.1364/OL.38.004970 – volume: 17 start-page: 4291 year: 2017 end-page: 4296 ident: CR63 article-title: On-chip single-plasmon nanocircuit driven by a self-assembled quantum dot publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01284 – volume: 508 start-page: 237 year: 2014 end-page: 240 ident: CR20 article-title: A quantum gate between a flying optical photon and a single trapped atom publication-title: Nature doi: 10.1038/nature13177 – volume: 115 start-page: 191101 year: 2019 ident: CR42 article-title: Coherent perfect absorption of single photons in a fiber network publication-title: Appl. Phys. Lett. doi: 10.1063/1.5118838 – volume: 111 start-page: 5179 year: 2011 end-page: 5214 ident: CR17 article-title: Hybrid resonant organic–inorganic nanostructures for optoelectronic applications publication-title: Chem. Rev. doi: 10.1021/cr100156x – volume: 7 start-page: 4159 year: 2016 end-page: 4164 ident: CR18 article-title: Quantum strong coupling with protein vibrational modes publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01869 – volume: 59 start-page: 1 year: 2014 end-page: 88 ident: CR53 article-title: Active optical metamaterials publication-title: Prog. Opt. doi: 10.1016/B978-0-444-63379-8.00001-5 – volume: 107 start-page: 096801 year: 2011 ident: CR60 article-title: Chiral surface plasmon polaritons on metallic nanowires publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.096801 – volume: 373 start-page: eabd0336 year: 2021 ident: CR3 article-title: Manipulating matter by strong coupling to vacuum fields publication-title: Science doi: 10.1126/science.abd0336 – volume: 1 start-page: 014007 year: 2014 ident: CR62 article-title: Coherent control of plasmon propagation in a nanocircuit publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.1.014007 – volume: 1 start-page: 19 year: 2019 end-page: 40 ident: CR8 article-title: Ultrastrong coupling between light and matter publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-018-0006-2 – volume: 535 start-page: 127 year: 2016 end-page: 130 ident: CR28 article-title: Single-molecule strong coupling at room temperature in plasmonic nanocavities publication-title: Nature doi: 10.1038/nature17974 – volume: 102 start-page: 063511 year: 2020 ident: CR58 article-title: Theory of reflectionless scattering modes publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.063511 – volume: 5 start-page: eaav5931 year: 2019 ident: CR32 article-title: Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter publication-title: Sci. Adv. doi: 10.1126/sciadv.aav5931 – volume: 6 year: 2015 ident: CR41 article-title: Coherent perfect absorption in deeply subwavelength films in the single-photon regime publication-title: Nat. Commun. doi: 10.1038/ncomms8031 – ident: CR52 – volume: 15 start-page: 125 year: 2021 end-page: 130 ident: CR7 article-title: Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities publication-title: Nat. Photonics doi: 10.1038/s41566-020-00731-5 – volume: 2 start-page: 17064 year: 2017 ident: CR37 article-title: Coherent perfect absorbers: linear control of light with light publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.64 – volume: 7 start-page: 1479 year: 2018 end-page: 1501 ident: CR2 article-title: Strong light-matter coupling in quantum chemistry and quantum tonic’s publication-title: Nanophotonics doi: 10.1515/nanoph-2018-0067 – volume: 18 start-page: 668 year: 2019 end-page: 678 ident: CR27 article-title: Extreme nanophotonics from ultrathin metallic gaps publication-title: Nat. Mater. doi: 10.1038/s41563-019-0290-y – volume: 12 start-page: 505 year: 2023 end-page: 519 ident: CR48 article-title: Photon number resolution without optical mode multiplication publication-title: Nanophotonics doi: 10.1515/nanoph-2022-0614 – volume: 16 start-page: 270 year: 2016 end-page: 275 ident: CR11 article-title: Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03724 – volume: 9 year: 2018 ident: CR57 article-title: Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons publication-title: Nat. Commun. doi: 10.1038/s41467-018-06450-4 – volume: 20 start-page: 5830 year: 2020 end-page: 5836 ident: CR33 article-title: Controlled cavity-free, single-photon emission and bipartite entanglement of near-field-excited quantum emitters publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01705 – volume: 9 start-page: 304 year: 2010 end-page: 308 ident: CR22 article-title: Up on the jaynes–cummings ladder of a quantum-dot/microcavity system publication-title: Nat. Mater. doi: 10.1038/nmat2717 – volume: 4 start-page: eaar4906 year: 2018 ident: CR31 article-title: Near-field strong coupling of single quantum dots publication-title: Sci. Adv. doi: 10.1126/sciadv.aar4906 – volume: 99 start-page: 011801 year: 2019 ident: CR45 article-title: Coherent metamaterial absorption of two-photon states with 40% efficiency publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.011801 – volume: 20 start-page: 5830 year: 2020 ident: 50574_CR33 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01705 – volume: 1 start-page: 014007 year: 2014 ident: 50574_CR62 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.1.014007 – volume: 105 start-page: 053901 year: 2010 ident: 50574_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.053901 – volume: 7 start-page: 401 year: 2020 ident: 50574_CR54 publication-title: ACS Photonics doi: 10.1021/acsphotonics.9b01338 – volume: 25 start-page: 1769 year: 2017 ident: 50574_CR26 publication-title: Opt. Express doi: 10.1364/OE.25.001769 – volume: 114 start-page: 196403 year: 2015 ident: 50574_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.196403 – volume: 99 start-page: 011801 year: 2019 ident: 50574_CR45 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.011801 – volume: 19 start-page: 5853 year: 2019 ident: 50574_CR13 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01137 – volume: 363 start-page: 615 year: 2019 ident: 50574_CR16 publication-title: Science doi: 10.1126/science.aau7742 – volume: 5 start-page: eaav5931 year: 2019 ident: 50574_CR32 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav5931 – volume: 106 start-page: 012402 year: 2022 ident: 50574_CR50 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.106.012402 – volume: 9 start-page: 304 year: 2010 ident: 50574_CR22 publication-title: Nat. Mater. doi: 10.1038/nmat2717 – volume: 10 start-page: 1879 year: 2021 ident: 50574_CR51 publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0048 – volume: 9 year: 2018 ident: 50574_CR57 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06450-4 – volume: 1 start-page: 19 year: 2019 ident: 50574_CR8 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-018-0006-2 – volume: 24 start-page: 122001 year: 2022 ident: 50574_CR46 publication-title: N. J. Phys. doi: 10.1088/1367-2630/ac9fe9 – volume: 2 start-page: 81 year: 2006 ident: 50574_CR24 publication-title: Nat. Phys. doi: 10.1038/nphys227 – volume: 112 start-page: 1555 year: 1958 ident: 50574_CR4 publication-title: Phys. Rev. doi: 10.1103/PhysRev.112.1555 – volume: 115 start-page: 191101 year: 2019 ident: 50574_CR42 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5118838 – volume: 16 start-page: 270 year: 2016 ident: 50574_CR11 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03724 – volume: 373 start-page: eabd0336 year: 2021 ident: 50574_CR3 publication-title: Science doi: 10.1126/science.abd0336 – volume: 535 start-page: 127 year: 2016 ident: 50574_CR28 publication-title: Nature doi: 10.1038/nature17974 – ident: 50574_CR52 – volume: 38 start-page: 4970 year: 2013 ident: 50574_CR36 publication-title: Opt. Lett. doi: 10.1364/OL.38.004970 – volume: 59 start-page: 1 year: 2014 ident: 50574_CR53 publication-title: Prog. Opt. doi: 10.1016/B978-0-444-63379-8.00001-5 – volume: 7 start-page: 1479 year: 2018 ident: 50574_CR2 publication-title: Nanophotonics doi: 10.1515/nanoph-2018-0067 – volume: 49 start-page: 2403 year: 2016 ident: 50574_CR1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00295 – volume: 3 start-page: 013001 year: 2017 ident: 50574_CR19 publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aa91bb – volume: 6 year: 2015 ident: 50574_CR55 publication-title: Nat. Commun. doi: 10.1038/ncomms7086 – volume: 98 start-page: 063846 year: 2018 ident: 50574_CR49 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.063846 – volume: 18 start-page: 668 year: 2019 ident: 50574_CR27 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0290-y – volume: 373 start-page: 1261 year: 2021 ident: 50574_CR39 publication-title: Science doi: 10.1126/science.abj1028 – volume: 432 start-page: 197 year: 2004 ident: 50574_CR9 publication-title: Nature doi: 10.1038/nature02969 – volume: 6 year: 2015 ident: 50574_CR41 publication-title: Nat. Commun. doi: 10.1038/ncomms8031 – volume: 22 start-page: 2801 year: 2022 ident: 50574_CR34 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04920 – volume: 4 start-page: 2124 year: 2017 ident: 50574_CR44 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00514 – volume: 102 start-page: 063511 year: 2020 ident: 50574_CR58 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.063511 – volume: 15 start-page: 125 year: 2021 ident: 50574_CR7 publication-title: Nat. Photonics doi: 10.1038/s41566-020-00731-5 – volume: 21 start-page: 4225 year: 2021 ident: 50574_CR66 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00182 – volume: 10 start-page: 343 year: 2021 ident: 50574_CR59 publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0403 – volume: 20 start-page: 2152 year: 2020 ident: 50574_CR65 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00196 – volume: 19 start-page: 3364 year: 2019 ident: 50574_CR64 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01162 – volume: 107 start-page: 096801 year: 2011 ident: 50574_CR60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.096801 – volume: 43 start-page: 1806 year: 2018 ident: 50574_CR38 publication-title: Opt. Lett. doi: 10.1364/OL.43.001806 – volume: 12 year: 2021 ident: 50574_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26060-x – volume: 445 start-page: 896 year: 2007 ident: 50574_CR10 publication-title: Nature doi: 10.1038/nature05586 – volume: 17 start-page: 4291 year: 2017 ident: 50574_CR63 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01284 – volume: 508 start-page: 237 year: 2014 ident: 50574_CR20 publication-title: Nature doi: 10.1038/nature13177 – volume: 4 start-page: eaar4906 year: 2018 ident: 50574_CR31 publication-title: Sci. Adv. doi: 10.1126/sciadv.aar4906 – volume: 124 start-page: 177401 year: 2020 ident: 50574_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.177401 – volume: 101 start-page: 245301 year: 2020 ident: 50574_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.245301 – volume: 15 year: 2024 ident: 50574_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-024-47191-x – volume: 5 start-page: 186 year: 2018 ident: 50574_CR30 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00668 – volume: 6 year: 2015 ident: 50574_CR47 publication-title: Nat. Commun. doi: 10.1038/ncomms9233 – volume: 7 start-page: 1 year: 2016 ident: 50574_CR29 publication-title: Nat. Commun. doi: 10.1038/ncomms11823 – volume: 111 start-page: 5179 year: 2011 ident: 50574_CR17 publication-title: Chem. Rev. doi: 10.1021/cr100156x – volume: 78 start-page: 013901 year: 2014 ident: 50574_CR5 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/78/1/013901 – volume: 7 start-page: 4159 year: 2016 ident: 50574_CR18 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01869 – ident: 50574_CR25 doi: 10.1017/CBO9781139016926 – ident: 50574_CR67 doi: 10.5281/zenodo.12366459 – volume: 12 start-page: 45 year: 2012 ident: 50574_CR61 publication-title: Nano Lett. doi: 10.1021/nl202864n – volume: 12 start-page: 505 year: 2023 ident: 50574_CR48 publication-title: Nanophotonics doi: 10.1515/nanoph-2022-0614 – volume: 6 start-page: 605 year: 2012 ident: 50574_CR12 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.181 – volume: 106 start-page: 020501 year: 2011 ident: 50574_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.020501 – volume: 2 start-page: 17064 year: 2017 ident: 50574_CR37 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.64 – volume: 7 start-page: 354 year: 2016 ident: 50574_CR56 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02512 – volume: 117 start-page: 023601 year: 2016 ident: 50574_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.023601 |
SSID | ssj0000391844 |
Score | 2.4697611 |
Snippet | Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material... Abstract Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6324 |
SubjectTerms | 639/624/400/1021 639/624/400/2797 639/766/400/1021 639/766/400/3925 Absorption Ambient temperature Coherent light Data processing Dissipation Electrons Emitters Energy transfer Humanities and Social Sciences Information processing Information storage Light multidisciplinary Nanowires Near fields Optics Physics Plasmonics Polaritons Quantum dots Quantum electrodynamics Quantum phenomena Room temperature Science Science (multidisciplinary) Temperature Waveguides |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CoJBL6CMPN2lwIbdExLIkWzo2pWHJIYeShb0JSZbIIWtvs7uH_vuMZO9mS16Xngz22EjjeXzDSJ8ATmP3r1CuJFzxhnArOLpUaEhtg3SYbgQ1aZXvTTUa8-uJmGwc9RXXhPX0wL3iLqSTtmoEa5jDVCkbaRJreFMaYUsVEhMo5ryNYirFYKawdOHDLpmCyYs5TzEBUxKJmByH9E8mSoT9L6HMZx3SlHiuPsLugBjzH_1IP8GWbz_Dh_4Myb9f4PI3Ql8SGaYGeuT8zxK1tZzmrWm7GYLjaWS_zV13F3f2LXKUi0s4cmPn3UMKGHswvvp1-3NEhoMRiONSLAhqUaiAxQgrTDCOWm8VCw4dyFBli8Zj0PDeK4nZuZG1czawQJURTHjOjWH7sN12rT-EPGB551ldMoNYylJphKkCXmlVIHDiNgO6UpJ2A2t4PLziXqfuNZO6V6xGxeqkWK0yOFu_M-s5M96Uvoy6X0tGvut0A61AD1ag37OCDI5Xf04PTjjXLNLxIQDhRQbf14_RfWJPxLS-W_YyFEtGRjM46P_4eiRMFVVkWMzgfGUCTx9_fUJf_8eEjmCnjLZa1KSsj2F78bD03xD-LOxJsvRHFUP8rQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJu0BQWJG1iNYzuxT4gilooDB0Sl3iw_4UCT7Wb3wL9n7HhTIaCnRIkTOWPPzGfP5BuA1yn61yjXEq64J9wKjioVPeltlA7djaAmZ_l-6c7O-ecLcVE23KaSVrm3idlQ-9GlPfITlrjV0Jvw5t36iqSqUSm6Wkpo3IY7FO-llC65-rTssST2c8l5-VemYfJk4tkyoGMiCZljx_7wR5m2_19Y8684aXY_qwdwv-DG-v080A_hVhgewd25kuQvPMuZnG56DKdfEQqTxDhV6JLrqx1Kb3dZD2YY1wiWLxMbbu3GH-lPv22N7VJKR23sNG6yAXkC56uP3z6ckVIogTguxZagVIWKuDhhjYnGURusYtGhQhmqbOMDGpEQgpLorb3snbORRaqMYCJwbgx7CgfDOITnUEdc7gXWt8wgtrJUGmG6iEfaNQikuK2A7sWlXWERT8UsfuoczWZSzyLWKGKdRaxVBW-WZ9Yzh8aNrU_TKCwtE_91vjBuvuuiTlo6aTsvmGcOAZT00mQued8aYVsVeQXH-zHURSknfT2FKni13EZ1SjESM4RxN7ehuIRktIJn89gvPWGq6RLjYgVv95Ph-uX__6DDm_tyBPfaNB-bnrT9MRxsN7vwAoHO1r7Ms_k3B3z3Sg priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrpC4oLa8Ai0KEjewiGM7sY9bRFXtgUNhpd4s27HhwCbtPg78e8bOo6q6IHGKlIytZDzj-ZwZfwZ4H7N_hXIl4Yo3hFvB0aVCQ2obpMNwI6hJVb5fq8slX1yL6wMox70wqWg_UVqmaXqsDvu04cmlMaKQCKmxx0cwi1TtaNuz-XzxbTH9WYmc55LzYYdMweSexveiUCLr34cwH2RHU9C5OIKnA1rM5_37HcOBb0_gcX9-5O9ncH6FsJdEdqmBGjm_3aGmdqu8NW13g8B4FZlvc9f9jLv6tjnKxfKN3NhNt06TxXNYXnz5_vmSDIciEMel2BLUoFABFyKsMME4ar1VLDh0HkOVLRqPE4b3XkmMzI2snbOBBaqMYMJzbgx7AYdt1_pXkAdc2nlWl8wgjrJUGmGqgFdaFQiauM2AjkrSbmAMjwdX_NIpc82k7hWrUbE6KVarDD5MbW56vox_Sp9H3U-Skes63ejWP_Qw9lo6aatGsIY5BEuykSbxxjelEbZUgWdwOo6cHhxwo1mk4kPwwYsM3k2P0XViPsS0vtv1MhSXi4xm8LIf8elNmCqqyK6YwcfRBO46__sHvf4_8TfwpIxWWdSkrE_hcLve-TMEOVv7drDqP1uJ85A priority: 102 providerName: Springer Nature |
Title | Room-temperature quantum nanoplasmonic coherent perfect absorption |
URI | https://link.springer.com/article/10.1038/s41467-024-50574-9 https://www.ncbi.nlm.nih.gov/pubmed/39060227 https://www.proquest.com/docview/3085026640 https://www.proquest.com/docview/3085116431 https://doaj.org/article/8c8b6d53d3c8468d8a00298d2a5b29f4 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7yoNBLafp0mywu9Na6tS3Jlg4h7C7ZhoWGknZhb0KSpfSQ2Mk-oPn3Hcn2lpJNLpaRZVseaTTfWNI3AB_97F8qTJ5QQauEakZRpVyVlNpxg-aGZSqs8j0vzmZ0OmfzHejDHXUCXG517Xw8qdni6suf27sTVPjjdss4_7qkQd3R2iQebuPbdmEfLVPpIxp87-B-GJmJQIeGdntntt_6n30KNP7bsOe9edNgjibP4VmHI-Nh2_AHsGPrF_CkjSx5h2dhZadZvoTRBULjxDNQdfTJ8e0apbm-jmtVNzcInq89O25smt9-598qxnJ-iUes9LJZhAHlFcwmp7_GZ0kXOCExlLNVglJmwqGzQlLllMm01YI4gwqmMqHTyuKgYq0VHK13xUtjtCMuE4oRZilViryGvbqp7VuIHbp_lpQ5UYi1dMYVU4XDNCtSBFZUR5D14pKmYxX3wS2uZJjdJly2IpYoYhlELEUEnzb33LScGo-WHvlW2JT0fNgho1lcyk69JDdcFxUjFTEIqHjFVeCWr3LFdC4cjeCwb0PZ9zFJPF0fAhSaRvBhcxnVy8-ZqNo267ZMhi4lySJ407b9piZEpIVnYIzgc98Z_j384Q9693hd3sPT3PfHtEzy8hD2Vou1PULgs9ID2C3nJR755NsA9ofD6c8ppqPT8x8XmDsuxoPwS2EQev1fjSgBWg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgSDBCawmsZ3YB4QosGxp6QG1Um-u7dj00Cbbza5Q_xS_kbGTbIWA3nraaNeJvPP8nLG_AXgVqn-ZtAVhktWEGc7QpXxNKuOFxXTDcx13-e6V0wP29ZAfrsGv8SxM2FY5xsQYqOvWhnfkmzRwq2E2Ydn72RkJXaNCdXVsodGbxY47_4lLtu7d9ifU7-uimHze_zglQ1cBYpngC4JT4NIjkqeZ9trmxhlJvUXr07k0We3Q45xzUmBqq0VlrfHU51Jzyh1jWlN87jW4zihm8nAyffJl9U4nsK0LxoazORkVmx2LkQgTIQkrARTEH_kvtgn4F7b9qy4b093kDtwecGr6oTesu7Dmmntwo-9ceY5Xceeo7e7D1neE3iQwXA30zOnZErW1PE0b3bQzBOengX03te1xOFm4SHFc2EKSatO18xiwHsDBlYjwIaw3beMeQ-pxeeloVVCNWM7kQnNdevzMywyBGzMJ5KO4lB1Yy0PzjBMVq-dUqF7ECkWsooiVTODN6p5Zz9lx6eitoIXVyMC3Hb9o5z_U4L5KWGHKmtOaWgRsohY6ctfXheamkJ4lsDHqUA1BoFMXJpvAy9XP6L6hJqMb1y77MTkuWWmewKNe96uZUJmVgeExgbejMVw8_P9_6Mnlc3kBN6f733bV7vbezlO4VQTbzCpSVBuwvpgv3TMEWQvzPFp2CkdX7Uq_AQENNYk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anUBcJj5HYECQ4ARRk9hu7ANClK3aGKqmiUm7Gdux4cCSrmk17V_jr-PZ-ZgQsNtOjVonct_3y3v-PYDXvvqXCpMnVNAyoZpRVClXJoV23KC7YZkKXb7zyf4J_XzKTjfgV38WxrdV9jYxGOqyNv4d-Zh4bDX0JjQdu64t4mh39mFxnvgJUr7S2o_TaEXk0F5eYPrWvD_YRV6_yfPZ3tdP-0k3YSAxlLNVgtthwmFUT1LllMm01YI4g5KoMqHT0qL2WWsFRzdX8sIY7YjLhGKEWUqVIvjcW7BZ-KxoBJvTvfnR8fCGx2Ovc0q7kzop4eOGBruEbjHxeQGS5Q9vGIYG_CvS_atKG5zf7B5sdVFr_LEVs_uwYasHcLudY3mJV6GP1DQPYXqMgXji8a46sOb4fI28W5_FlarqBYbqZx6LNzb1D3_OcBXjOt9QEivd1Mtgvh7ByY0Q8TGMqrqyTyB2mGxaUuREYWSnM66Ymjj8zCYphnFUR5D15JKmwzD3ozR-ylBLJ1y2JJZIYhlILEUEb4d7Fi2Cx7Wrp54Lw0qPvh2-qJffZafMkhuuJyUjJTEYvvGSq4BkX-aK6Vw4GsFOz0PZmYRGXglwBK-Gn1GZfYVGVbZet2syTGBJFsF2y_thJ0SkE4_3GMG7XhiuHv7_P_T0-r28hDuoRvLLwfzwGdzNvWimRZIXOzBaLdf2OUZcK_2iE-0Yvt20Nv0GusM7Gw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room-temperature+quantum+nanoplasmonic+coherent+perfect+absorption&rft.jtitle=Nature+communications&rft.au=Lai%2C+Yiming&rft.au=Clarke%2C+Daniel+D.+A&rft.au=Grimm%2C+Philipp&rft.au=Devi%2C+Asha&rft.date=2024-07-27&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=6324&rft_id=info:doi/10.1038%2Fs41467-024-50574-9&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |