A logistic-tent chaotic mapping Levenberg Marquardt algorithm for improving positioning accuracy of grinding robot

The precision of workpiece machining is critically influenced by the geometric errors in the kinematics of grind robots, which directly affect their absolute positioning accuracy. To tackle this challenge, this paper introduces a logistic-tent chaotic mapping Levenberg Marquardt algorithm designed t...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 9649 - 15
Main Authors Liu, Jian, Deng, Yonghong, Liu, Yulin, Chen, Linlin, Hu, Zhenzhen, Wei, Peiyang, Li, Zhibin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 26.04.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The precision of workpiece machining is critically influenced by the geometric errors in the kinematics of grind robots, which directly affect their absolute positioning accuracy. To tackle this challenge, this paper introduces a logistic-tent chaotic mapping Levenberg Marquardt algorithm designed to accurately identify and compensate for this geometric error. the approach begins with the construction of a forward kinematic model and an error model specific to the robot. Then the algorithm is adopted to identify and compensate for the geometric error. The method establishes a mapping interval around the initial candidate solutions derived from iterative applications of the Levenberg Marquardt algorithm. Within this interval, the logistic-tent chaotic mapping method generates a diverse set of candidate solutions. These candidates are evaluated based on their fitness values, with the optimal solution selected for subsequent iterations. Empirical compensation experiments have validated the proposed method's precision and effectiveness, demonstrating a 6% increase in compensation accuracy and a 47.68% improvement in efficiency compared to existing state-of-the-art approaches. This process not only minimizes the truncation error inherent in the Levenberg Marquardt algorithm but also significantly enhances solution efficiency. Moreover, simulation experiments on grind processes further validate the method's ability to significantly improve the quality of workpiece machining.
AbstractList The precision of workpiece machining is critically influenced by the geometric errors in the kinematics of grind robots, which directly affect their absolute positioning accuracy. To tackle this challenge, this paper introduces a logistic-tent chaotic mapping Levenberg Marquardt algorithm designed to accurately identify and compensate for this geometric error. the approach begins with the construction of a forward kinematic model and an error model specific to the robot. Then the algorithm is adopted to identify and compensate for the geometric error. The method establishes a mapping interval around the initial candidate solutions derived from iterative applications of the Levenberg Marquardt algorithm. Within this interval, the logistic-tent chaotic mapping method generates a diverse set of candidate solutions. These candidates are evaluated based on their fitness values, with the optimal solution selected for subsequent iterations. Empirical compensation experiments have validated the proposed method's precision and effectiveness, demonstrating a 6% increase in compensation accuracy and a 47.68% improvement in efficiency compared to existing state-of-the-art approaches. This process not only minimizes the truncation error inherent in the Levenberg Marquardt algorithm but also significantly enhances solution efficiency. Moreover, simulation experiments on grind processes further validate the method's ability to significantly improve the quality of workpiece machining.The precision of workpiece machining is critically influenced by the geometric errors in the kinematics of grind robots, which directly affect their absolute positioning accuracy. To tackle this challenge, this paper introduces a logistic-tent chaotic mapping Levenberg Marquardt algorithm designed to accurately identify and compensate for this geometric error. the approach begins with the construction of a forward kinematic model and an error model specific to the robot. Then the algorithm is adopted to identify and compensate for the geometric error. The method establishes a mapping interval around the initial candidate solutions derived from iterative applications of the Levenberg Marquardt algorithm. Within this interval, the logistic-tent chaotic mapping method generates a diverse set of candidate solutions. These candidates are evaluated based on their fitness values, with the optimal solution selected for subsequent iterations. Empirical compensation experiments have validated the proposed method's precision and effectiveness, demonstrating a 6% increase in compensation accuracy and a 47.68% improvement in efficiency compared to existing state-of-the-art approaches. This process not only minimizes the truncation error inherent in the Levenberg Marquardt algorithm but also significantly enhances solution efficiency. Moreover, simulation experiments on grind processes further validate the method's ability to significantly improve the quality of workpiece machining.
The precision of workpiece machining is critically influenced by the geometric errors in the kinematics of grind robots, which directly affect their absolute positioning accuracy. To tackle this challenge, this paper introduces a logistic-tent chaotic mapping Levenberg Marquardt algorithm designed to accurately identify and compensate for this geometric error. the approach begins with the construction of a forward kinematic model and an error model specific to the robot. Then the algorithm is adopted to identify and compensate for the geometric error. The method establishes a mapping interval around the initial candidate solutions derived from iterative applications of the Levenberg Marquardt algorithm. Within this interval, the logistic-tent chaotic mapping method generates a diverse set of candidate solutions. These candidates are evaluated based on their fitness values, with the optimal solution selected for subsequent iterations. Empirical compensation experiments have validated the proposed method's precision and effectiveness, demonstrating a 6% increase in compensation accuracy and a 47.68% improvement in efficiency compared to existing state-of-the-art approaches. This process not only minimizes the truncation error inherent in the Levenberg Marquardt algorithm but also significantly enhances solution efficiency. Moreover, simulation experiments on grind processes further validate the method's ability to significantly improve the quality of workpiece machining.
Abstract The precision of workpiece machining is critically influenced by the geometric errors in the kinematics of grind robots, which directly affect their absolute positioning accuracy. To tackle this challenge, this paper introduces a logistic-tent chaotic mapping Levenberg Marquardt algorithm designed to accurately identify and compensate for this geometric error. the approach begins with the construction of a forward kinematic model and an error model specific to the robot. Then the algorithm is adopted to identify and compensate for the geometric error. The method establishes a mapping interval around the initial candidate solutions derived from iterative applications of the Levenberg Marquardt algorithm. Within this interval, the logistic-tent chaotic mapping method generates a diverse set of candidate solutions. These candidates are evaluated based on their fitness values, with the optimal solution selected for subsequent iterations. Empirical compensation experiments have validated the proposed method's precision and effectiveness, demonstrating a 6% increase in compensation accuracy and a 47.68% improvement in efficiency compared to existing state-of-the-art approaches. This process not only minimizes the truncation error inherent in the Levenberg Marquardt algorithm but also significantly enhances solution efficiency. Moreover, simulation experiments on grind processes further validate the method's ability to significantly improve the quality of workpiece machining.
ArticleNumber 9649
Author Deng, Yonghong
Hu, Zhenzhen
Li, Zhibin
Liu, Jian
Liu, Yulin
Wei, Peiyang
Chen, Linlin
Author_xml – sequence: 1
  givenname: Jian
  surname: Liu
  fullname: Liu, Jian
  organization: School of Economics and Management, Chengdu Technological University, Sichuan Institute of Industrial Big-Data Applications
– sequence: 2
  givenname: Yonghong
  surname: Deng
  fullname: Deng, Yonghong
  email: dengyhcd@163.com
  organization: School of Economics and Management, Chengdu Technological University, Sichuan Institute of Industrial Big-Data Applications
– sequence: 3
  givenname: Yulin
  surname: Liu
  fullname: Liu, Yulin
  organization: Sichuan Institute of Industrial Big-Data Applications
– sequence: 4
  givenname: Linlin
  surname: Chen
  fullname: Chen, Linlin
  organization: School of Software Engineering, Chengdu University of Information Technology
– sequence: 5
  givenname: Zhenzhen
  surname: Hu
  fullname: Hu, Zhenzhen
  email: huzzcd@126.com
  organization: College of Communication Engineering, Chengdu University of Information Technology
– sequence: 6
  givenname: Peiyang
  surname: Wei
  fullname: Wei, Peiyang
  organization: School of Software Engineering, Chengdu University of Information Technology, School of Computer Science and Technology, Chongqing University of Posts and Telecommunications
– sequence: 7
  givenname: Zhibin
  surname: Li
  fullname: Li, Zhibin
  organization: School of Software Engineering, Chengdu University of Information Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38671074$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1P3TAQtCqqQl_5Az1UlnrpJa2_EjtHhNqC9KpeuFsbxwl-SuJgO0j8e5wXoBUHfPF6NTOa9c5HdDL5ySL0mZLvlHD1Iwpa1qogTBQVEYQV9B06Y0SUBeOMnfxXn6LzGA8kn5LVgtYf0ClXlaREijMULvDgexeTM0WyU8LmFnx-4BHm2U093tt7OzU29PgPhLsFQpswDL0PLt2OuPMBu3EO_n7Fzj665Py01mDMEsA8YN_hPripXZvBNz59Qu87GKI9f7p36ObXz5vLq2L_9_f15cW-MEKVqZBVSYhsQLalgYozZRgDQwWjZcWhbmRpQXLZGCtaThThXJRVJVnbkc5SznfoepNtPRz0HNwI4UF7cPrY8KHXEPKkg9VCdlxRw01WEG1rFLcsexBSKtYwYbPWt00rT3q32Jj06KKxwwCT9UvUnAhZ87rKznbo6yvowS9hyoMeUesaqMyoL0-opRlt-2LveTEZoDaACT7GYDttXIL1c1MAN2hK9BoDvcVA5xjoYww0zVT2ivqs_iaJb6SYwVNvwz_bb7AeAUi-wzc
CitedBy_id crossref_primary_10_1038_s41598_024_77251_7
crossref_primary_10_3390_photonics12030219
crossref_primary_10_3934_era_2025023
crossref_primary_10_1007_s00170_025_15034_8
crossref_primary_10_3390_act14030144
crossref_primary_10_1016_j_jcmds_2024_100097
crossref_primary_10_3390_s25061872
Cites_doi 10.1109/TIE.2017.2748058
10.1016/j.camwa.2018.09.039
10.1109/LRA.2022.3151610
10.1109/JAS.2020.1003381
10.1109/ACCESS.2022.3172505
10.1038/s41598-023-45156-6
10.1038/s41598-022-24847-6
10.1080/10426914.2023.2238368
10.1093/jcde/qwac090
10.1007/s11370-022-00426-6
10.3390/app6070181
10.1007/s00500-016-2322-8
10.1364/OE.497093
10.1109/LRA.2017.2723470
10.1007/s10489-021-03037-3
10.1007/s00170-023-11408-y
10.1109/ACCESS.2022.3172710
10.1016/j.chemolab.2022.104635
10.1016/j.knosys.2015.12.022
10.1016/j.rcim.2023.102660
10.1007/s12652-020-01781-x
10.1109/ACCESS.2022.3193094
10.1109/LRA.2022.3211776
10.1016/j.rcim.2012.06.004
10.1007/s10846-023-02038-3
10.1109/TASE.2014.2328652
10.1016/j.mechatronics.2021.102595
10.1016/j.rcim.2017.09.006
10.1109/ACCESS.2018.2890123
10.1007/s11370-023-00467-5
10.1109/TNNLS.2022.3153039
10.3390/app10207320
10.1109/ROBOT.1988.12180
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOA
DOI 10.1038/s41598-024-60402-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_47f381c3c4564ddc83e248547782b24e
38671074
10_1038_s41598_024_60402_1
Genre Journal Article
GrantInformation_xml – fundername: Collaborative Education Program of Ministry of Education of China
  grantid: 202102145008
– fundername: the talents start-up project of scientific research in Chengdu University of Information Technology
  grantid: KYTZ202102,376157
– fundername: National Natural Science Foundation of China
  grantid: 62101076
– fundername: Innovation Fund for Industry-university Research of Chinese Universities
  grantid: 2020ITA03041
– fundername: Sichuan Provincial Youth Science Foundation
  grantid: 2022NSFSC0920
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c485t-765007ba7d5ca6328c22ac1421563a9b75ea737bce4d308033456672df0fe133
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:30:38 EDT 2025
Tue Aug 05 11:35:17 EDT 2025
Wed Aug 13 04:20:20 EDT 2025
Mon Jul 21 05:45:18 EDT 2025
Tue Jul 01 01:01:30 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
Fri Feb 21 02:39:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Positioning accuracy
Logistic-tent chaotic mapping
Levenberg–Marquardt
Grinding robot
Geometric error identification and compensation
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-765007ba7d5ca6328c22ac1421563a9b75ea737bce4d308033456672df0fe133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-60402-1
PMID 38671074
PQID 3047000017
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_47f381c3c4564ddc83e248547782b24e
proquest_miscellaneous_3047939656
proquest_journals_3047000017
pubmed_primary_38671074
crossref_citationtrail_10_1038_s41598_024_60402_1
crossref_primary_10_1038_s41598_024_60402_1
springer_journals_10_1038_s41598_024_60402_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-26
PublicationDateYYYYMMDD 2024-04-26
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wu, Crawford, Roberts (CR24) 2017; 2
Jiang, Zhou, Li, Mo, Ni, Huang (CR15) 2018; 65
Li, Li, Luo (CR19) 2023; 72
Ma, Wu, Shi, Yan, Lu (CR30) 2022; 10
Huang, Ma (CR25) 2019; 77
Li, Li, Luo (CR35) 2022; 7
Bastl, Chakraborti, Valášek (CR17) 2023; 38
Deng, Hou, Li, Wang, Zhang (CR16) 2023; 110
CR13
Zhang, Feng (CR28) 2018; 22
Petrič, Žlajpah (CR4) 2023; 13
Xu, Xu, Qi (CR2) 2023; 16
Wu, Yang, Chen, Ren (CR6) 2015; 12
Xu, Bai, Zhao, Yang, Pang, Ran, Tan, Luo (CR20) 2023; 72
Qian, Song, Liu, Zeng, Yin, Xie (CR5) 2022; 12
Nubiola, Bonev (CR8) 2013; 29
Yan (CR14) 2020; 11
Ma, Bazzoli, Sammons, Landers, Bristow (CR9) 2018; 50
Li, Zhang, Fang, Zhai (CR11) 2022; 10
Nielsen (CR26) 1999
CR7
Mirjalili (CR34) 2015; 96
Ma, Wu, Shi, Yue, Yang, Chen (CR32) 2022; 10
CR22
Hu, Wang, Pan, Liao, Sun (CR3) 2022; 15
Zhang, Shang, Li, Cong (CR33) 2021; 77
Li, Wang, Hao, Zhang, Wang (CR27) 2022; 52
Chen, Zhan (CR18) 2022; 7
Deng, Hou, Li, Wang, Zhang (CR36) 2023; 126
Deng, Hou, Li, Wang, Zhang (CR10) 2024; 86
Zhao, Yu, Jia, Li, Sun (CR23) 2016; 6
Deng, Hou, Li, Wang, Zhang (CR21) 2023; 31
Wang, Zhang, Wang, Hu (CR29) 2022; 9
Zhu, Xie, Li, Xia, Liu (CR12) 2019; 7
Li, Li, Luo (CR1) 2021; 8
Yusof, Muda, Pratama, Carbo-Dorca, Abraham (CR31) 2022; 229
P Bastl (60402_CR17) 2023; 38
W Qian (60402_CR5) 2022; 12
S Mirjalili (60402_CR34) 2015; 96
L Ma (60402_CR9) 2018; 50
X Li (60402_CR11) 2022; 10
L Wu (60402_CR24) 2017; 2
H Nielsen (60402_CR26) 1999
X Zhang (60402_CR28) 2018; 22
K Xu (60402_CR2) 2023; 16
M Hu (60402_CR3) 2022; 15
Y Yan (60402_CR14) 2020; 11
60402_CR13
X Li (60402_CR27) 2022; 52
H Zhao (60402_CR23) 2016; 6
Z Li (60402_CR19) 2023; 72
N Yusof (60402_CR31) 2022; 229
Z Li (60402_CR35) 2022; 7
Y Deng (60402_CR10) 2024; 86
Z Jiang (60402_CR15) 2018; 65
M Ma (60402_CR32) 2022; 10
60402_CR7
X Xu (60402_CR20) 2023; 72
M Ma (60402_CR30) 2022; 10
Y Deng (60402_CR16) 2023; 110
Z Li (60402_CR1) 2021; 8
L Wu (60402_CR6) 2015; 12
Y Deng (60402_CR21) 2023; 31
Y Wang (60402_CR29) 2022; 9
X Chen (60402_CR18) 2022; 7
A Nubiola (60402_CR8) 2013; 29
Q Zhu (60402_CR12) 2019; 7
B Huang (60402_CR25) 2019; 77
F Zhang (60402_CR33) 2021; 77
60402_CR22
T Petrič (60402_CR4) 2023; 13
Y Deng (60402_CR36) 2023; 126
References_xml – ident: CR22
– volume: 65
  start-page: 3337
  issue: 4
  year: 2018
  end-page: 3345
  ident: CR15
  article-title: A new kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2017.2748058
– volume: 77
  start-page: 357
  issue: 2
  year: 2019
  end-page: 373
  ident: CR25
  article-title: A Shamanskii-like self-adaptive Levenberg–Marquardtt method for nonlinear equations
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2018.09.039
– volume: 7
  start-page: 4694
  issue: 2
  year: 2022
  end-page: 4701
  ident: CR18
  article-title: The Kinematic Calibration of an Industrial Robot with an Improved Beetle Swarm Optimization Algorithm
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2022.3151610
– volume: 8
  start-page: 23
  issue: 1
  year: 2021
  end-page: 36
  ident: CR1
  article-title: An overview of calibration technology of industrial robots
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2020.1003381
– volume: 10
  start-page: 48569
  year: 2022
  end-page: 48576
  ident: CR11
  article-title: Calibration Method for Industrial Robots Based on the Principle of Perigon Error Close
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3172505
– volume: 13
  start-page: 17804
  year: 2023
  ident: CR4
  article-title: Kinematic model calibration of a collaborative redundant robot using a closed kinematic chain
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-45156-6
– volume: 12
  start-page: 20484
  year: 2022
  ident: CR5
  article-title: Motion error analysis of a shield machine tool-changing robot based on a screw-vector method
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-24847-6
– volume: 38
  start-page: 2051
  issue: 16
  year: 2023
  end-page: 2070
  ident: CR17
  article-title: Evolutionary algorithms in robot calibration
  publication-title: Mater. Manuf. Processes
  doi: 10.1080/10426914.2023.2238368
– volume: 9
  start-page: 1974
  issue: 5
  year: 2022
  end-page: 1994
  ident: CR29
  article-title: An enhancing many-objective evolutionary algorithm using chaotic mapping and solution ranking mechanism for large-scale optimization
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwac090
– volume: 15
  start-page: 351
  issue: 3
  year: 2022
  end-page: 362
  ident: CR3
  article-title: Elastic deformation modeling of series robots with consideration of gravity
  publication-title: Intel. Serv. Robot.
  doi: 10.1007/s11370-022-00426-6
– volume: 6
  start-page: 181
  issue: 7
  year: 2016
  ident: CR23
  article-title: A New Kinematic Model of Portable Articulated Coordinate Measuring Machine
  publication-title: Applied Sciences
  doi: 10.3390/app6070181
– volume: 22
  start-page: 67
  issue: 1
  year: 2018
  end-page: 77
  ident: CR28
  article-title: Chaotic bean optimization algorithm
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2322-8
– volume: 31
  start-page: 30359
  issue: 19
  year: 2023
  end-page: 30378
  ident: CR21
  article-title: A novel method for improving optical component smoothing quality in robotic smoothing systems by compensating path errors
  publication-title: Optical. Express
  doi: 10.1364/OE.497093
– volume: 2
  start-page: 2174
  issue: 4
  year: 2017
  end-page: 2179
  ident: CR24
  article-title: An Analytic Approach to Converting POE Parameters Into D-H Parameters for Serial-Link Robots
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2017.2723470
– volume: 52
  start-page: 16718
  issue: 14
  year: 2022
  end-page: 16757
  ident: CR27
  article-title: Chaotic arithmetic optimization algorithm
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-021-03037-3
– volume: 126
  start-page: 4827
  year: 2023
  end-page: 4847
  ident: CR36
  article-title: Review on mid-spatial frequency error suppression in components manufacturing
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-023-11408-y
– volume: 10
  start-page: 49385
  year: 2022
  end-page: 49397
  ident: CR32
  article-title: Chaotic Random Opposition-Based Learning and Cauchy Mutation Improved Moth-Flame Optimization Algorithm for Intelligent Route Planning of Multiple UAVs
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2022.3172710
– volume: 229
  year: 2022
  ident: CR31
  article-title: Improving Amphetamine-type Stimulants drug classification using chaotic-based time-varying binary whale optimization algorithm
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2022.104635
– volume: 96
  start-page: 120
  year: 2015
  end-page: 133
  ident: CR34
  article-title: SCA: A Sine Cosine Algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.12.022
– volume: 86
  year: 2024
  ident: CR10
  article-title: A highly powerful calibration method for robotic grinding system calibration via using adaptive residual extended Kalman filter
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2023.102660
– volume: 11
  start-page: 6167
  issue: 12
  year: 2020
  end-page: 6176
  ident: CR14
  article-title: Error recognition of robot kinematics parameters based on genetic algorithms
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-01781-x
– volume: 10
  start-page: 80539
  year: 2022
  end-page: 80554
  ident: CR30
  article-title: Research on Multiaircrafts Cooperative Arraying to Jam Based on Multiobjective Moth-Flame Optimization Algorithm
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2022.3193094
– volume: 7
  start-page: 12046
  issue: 4
  year: 2022
  end-page: 12053
  ident: CR35
  article-title: Using Quadratic Interpolated Beetle Antennae Search to Enhance Robot Arm Calibration Accuracy
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2022.3211776
– volume: 29
  start-page: 236
  issue: 1
  year: 2013
  end-page: 245
  ident: CR8
  article-title: Absolute calibration of an ABB IRB 1600 robot using a laser tracker
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2012.06.004
– ident: CR13
– volume: 110
  start-page: 8
  issue: 1
  year: 2023
  ident: CR16
  article-title: A Novel Positioning Accuracy Improvement Method for Polishing Robot Based on Levenberg–Marquardt and Opposition-based Learning Squirrel Search Algorithm
  publication-title: J. Intell. Rob. Syst.
  doi: 10.1007/s10846-023-02038-3
– volume: 12
  start-page: 758
  issue: 2
  year: 2015
  end-page: 763
  ident: CR6
  article-title: A minimal POE-based model for robotic kinematic calibration with only position measurements
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2014.2328652
– volume: 77
  year: 2021
  ident: CR33
  article-title: Calibration of geometric parameters and error compensation of non for cable-driven robots
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2021.102595
– volume: 72
  start-page: 1
  year: 2023
  end-page: 12
  ident: CR19
  article-title: Efficient Industrial Robot Calibration via a Novel Unscented Kalman Filter-Incorporated Variable Step-Size Levenberg–Marquardt Algorithm
  publication-title: IEEE Trans. Instrum. Meas.
– ident: CR7
– volume: 50
  start-page: 153
  year: 2018
  end-page: 167
  ident: CR9
  article-title: Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2017.09.006
– volume: 7
  start-page: 7768
  year: 2019
  end-page: 7782
  ident: CR12
  article-title: Kinematic Self-Calibration Method for Dual-Manipulators Based on Optical Axis Constraint
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890123
– volume: 72
  start-page: 1
  year: 2023
  end-page: 11
  ident: CR20
  article-title: A Novel Calibration Method for Robot Kinematic Parameters Based on Improved Manta Ray Foraging Optimization Algorithm
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 16
  start-page: 361
  year: 2023
  end-page: 371
  ident: CR2
  article-title: Research on high-precision positioning method of robot based on laser tracker
  publication-title: Intel. Serv. Robot.
  doi: 10.1007/s11370-023-00467-5
– start-page: 1
  year: 1999
  end-page: 31
  ident: CR26
  publication-title: Damping Parameter in Marquardtt's Method
– volume: 52
  start-page: 16718
  issue: 14
  year: 2022
  ident: 60402_CR27
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-021-03037-3
– volume: 77
  start-page: 357
  issue: 2
  year: 2019
  ident: 60402_CR25
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2018.09.039
– volume: 7
  start-page: 12046
  issue: 4
  year: 2022
  ident: 60402_CR35
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2022.3211776
– volume: 16
  start-page: 361
  year: 2023
  ident: 60402_CR2
  publication-title: Intel. Serv. Robot.
  doi: 10.1007/s11370-023-00467-5
– volume: 12
  start-page: 20484
  year: 2022
  ident: 60402_CR5
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-24847-6
– volume: 8
  start-page: 23
  issue: 1
  year: 2021
  ident: 60402_CR1
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2020.1003381
– volume: 10
  start-page: 49385
  year: 2022
  ident: 60402_CR32
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2022.3172710
– volume: 7
  start-page: 7768
  year: 2019
  ident: 60402_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890123
– volume: 72
  start-page: 1
  year: 2023
  ident: 60402_CR20
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 10
  start-page: 80539
  year: 2022
  ident: 60402_CR30
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2022.3193094
– ident: 60402_CR22
  doi: 10.1109/TNNLS.2022.3153039
– volume: 229
  year: 2022
  ident: 60402_CR31
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2022.104635
– volume: 86
  year: 2024
  ident: 60402_CR10
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2023.102660
– volume: 29
  start-page: 236
  issue: 1
  year: 2013
  ident: 60402_CR8
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2012.06.004
– volume: 22
  start-page: 67
  issue: 1
  year: 2018
  ident: 60402_CR28
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2322-8
– volume: 15
  start-page: 351
  issue: 3
  year: 2022
  ident: 60402_CR3
  publication-title: Intel. Serv. Robot.
  doi: 10.1007/s11370-022-00426-6
– volume: 13
  start-page: 17804
  year: 2023
  ident: 60402_CR4
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-45156-6
– volume: 110
  start-page: 8
  issue: 1
  year: 2023
  ident: 60402_CR16
  publication-title: J. Intell. Rob. Syst.
  doi: 10.1007/s10846-023-02038-3
– volume: 65
  start-page: 3337
  issue: 4
  year: 2018
  ident: 60402_CR15
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2017.2748058
– ident: 60402_CR13
  doi: 10.3390/app10207320
– volume: 96
  start-page: 120
  year: 2015
  ident: 60402_CR34
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.12.022
– volume: 38
  start-page: 2051
  issue: 16
  year: 2023
  ident: 60402_CR17
  publication-title: Mater. Manuf. Processes
  doi: 10.1080/10426914.2023.2238368
– volume: 7
  start-page: 4694
  issue: 2
  year: 2022
  ident: 60402_CR18
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2022.3151610
– volume: 31
  start-page: 30359
  issue: 19
  year: 2023
  ident: 60402_CR21
  publication-title: Optical. Express
  doi: 10.1364/OE.497093
– volume: 6
  start-page: 181
  issue: 7
  year: 2016
  ident: 60402_CR23
  publication-title: Applied Sciences
  doi: 10.3390/app6070181
– volume: 11
  start-page: 6167
  issue: 12
  year: 2020
  ident: 60402_CR14
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-01781-x
– ident: 60402_CR7
  doi: 10.1109/ROBOT.1988.12180
– volume: 77
  year: 2021
  ident: 60402_CR33
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2021.102595
– volume: 12
  start-page: 758
  issue: 2
  year: 2015
  ident: 60402_CR6
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2014.2328652
– volume: 10
  start-page: 48569
  year: 2022
  ident: 60402_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3172505
– volume: 2
  start-page: 2174
  issue: 4
  year: 2017
  ident: 60402_CR24
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2017.2723470
– volume: 126
  start-page: 4827
  year: 2023
  ident: 60402_CR36
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-023-11408-y
– volume: 50
  start-page: 153
  year: 2018
  ident: 60402_CR9
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2017.09.006
– volume: 72
  start-page: 1
  year: 2023
  ident: 60402_CR19
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 1
  volume-title: Damping Parameter in Marquardtt's Method
  year: 1999
  ident: 60402_CR26
– volume: 9
  start-page: 1974
  issue: 5
  year: 2022
  ident: 60402_CR29
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwac090
SSID ssj0000529419
Score 2.4730468
Snippet The precision of workpiece machining is critically influenced by the geometric errors in the kinematics of grind robots, which directly affect their absolute...
Abstract The precision of workpiece machining is critically influenced by the geometric errors in the kinematics of grind robots, which directly affect their...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9649
SubjectTerms 639/166/988
639/705/1041
Accuracy
Algorithms
Compensation
Geometric error identification and compensation
Grinding robot
Humanities and Social Sciences
Kinematics
Levenberg–Marquardt
Logistic-tent chaotic mapping
Mapping
multidisciplinary
Positioning accuracy
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEDaw6thPHx4KoKkQ5Fak3y3bs7UrtBtLsof-eGTtZinhduOXhRPbMOPM54_mGkNfGg49JMNP6nmumYIHBfJczllNoUvLCc8x3PvncHn9RH8-asxulvnBPWKEHLoI7UDqBUwkyIO9J34dORmThUhpcmxcq4tcXfN6NxVRh9RZG1WbOkuGyO7gCT4XZZEKxFgxXsPonT5QJ-3-HMn-JkGbHc3SP3J0RIz0sPb1PbsXNA3K71JC8fkjGQ1qyeNaBAf6daDh3A5zQS4fUCyv6CTmacBcXPXHjN7SIibqL1TCup_NLCpiVrpcfC3TZwoXHLoTt6MI1HRJdjeuc_ULHwQ_TI3J69OH0_TGbCymwAKKamAYYxrV3um-Ca6XoghAu1ArcfSud8bqJTkvtQ1S9BAgpJQi71aJPPEVYxD4me5thE58SymuvIsi748qp2rUmciMSfBe8akxqeUXqRaY2zCTjWOviwuZgt-xs0YMFPdisB1tX5M3uma-FYuOvrd-hqnYtkR47XwCjsbPR2H8ZTUX2F0Xbec5eWQxA5mCHrsir3W2YbRhCcZs4bEsbIw2A4Io8KQay64lEqkBAZBV5u1jMj5f_eUDP_seAnpM7Ak2bKybafbI3jdv4AtDS5F_mifEdfmYLlQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLgvJooFRG4gZWHduJkxMqqFVVUU5F2ptlO_Z2pXbTZrOH_ntmnEeFgN7ycCInM_Z8nvF8Q8in2oGNiTDSmoZrpmCBwVyVMpajL2J0wnHMdz7_WZ7-UmeLYjE63DbjtsppTkwTddN69JEfYngouaL115tbhlWjMLo6ltB4TJ4gdRlu6dILPftYMIql8nrMleGyOtyAvcKcMqFYCeorWP6HPUq0_f_Cmn_FSZP5OXlBno-4kR4Ngn5JHoX1Lnk6VJK8e0W6Izrk8qw8AxTcU39pWzih1xYJGJb0BzI14V4uem67W9SLntqrJXxhf3lNAbnS1eReoNNGLjy23m876-9oG-myW6UcGNq1ru1fk4uT44vvp2wsp8C8qoqeaQBjXDurm8LbUorKC2F9rsDol9LWThfBaqmdD6qRACSlBHBVatFEHgMsZd-QnXW7DnuE8typIHhdcWVVbss68FpEmB2cKupY8ozk0z81fqQax4oXVyaFvGVlBjkYkINJcjB5Rj7Pz9wMRBsPtv6GoppbIkl2utB2SzOOOaN0BDzipUfKnKbxlQxI4KY0oCInVMjI_iRoM47cjbnXs4x8nG_DmMNAil2Hdju0qWUNUDgjbwcFmXsikTAQcFlGvkwac__y_3_Qu4f78p48E6i0XDFR7pOdvtuGD4CGeneQVP43rFsD3A
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIiQuiDehBRmJG1g4thPHx7KiqhDlVKTeLNuxtyu1G0izh_77zjgPhChI3PIYR05mJvPZ4_lMyDvjIcYk8LS25ZopGGAw3-SK5RSqlLzwHOudT7_VJ9_Vl_PqfI-IuRYmL9rPlJb5Nz2vDvt4DYEGi8GEYjXYnWAw4rmH1O1o1at6tcyrYOZKlWaqj-GyuaPpbzEoU_XfhS__yI3mkHP8iDycsCI9Gnv3mOzF7RNyf9w98uYp6Y_oWL-zCQyQ70DDhevghF45JF1Y06_IzoTrt-ip63-iLQzUXa67fjNcXFFAq3QzTynQefEWHrsQdr0LN7RLdN1vct0L7TvfDc_I2fHns9UJm7ZQYEE11cA0ADCuvdNtFVwtRROEcKFUEOhr6YzXVXRaah-iaiWARykBUNVatImnCMPX52R_223jS0J56VUU3DRcOVW62kRuRII_gleVSTUvSDl_UxsmenHc5eLS5jS3bOyoBwt6sFkPtizI-6XNj5Fc45_Sn1BViyQSY-cLXb-2k6FYpRNgkCAD0uS0bWhkRNI2pQEJeaFiQQ5nRdvJW68tph5zmkMX5O1yG_wMkyduG7vdKGOkAfhbkBejgSw9kUgSCFisIB9mi_n18L-_0Kv_Ez8gDwQaMVdM1Idkf-h38TUgosG_yS5wCydUAcA
  priority: 102
  providerName: Springer Nature
Title A logistic-tent chaotic mapping Levenberg Marquardt algorithm for improving positioning accuracy of grinding robot
URI https://link.springer.com/article/10.1038/s41598-024-60402-1
https://www.ncbi.nlm.nih.gov/pubmed/38671074
https://www.proquest.com/docview/3047000017
https://www.proquest.com/docview/3047939656
https://doaj.org/article/47f381c3c4564ddc83e248547782b24e
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbGJiReEL8JjMpIvEHAsZ04fkCoqzZNFZ0QbNLeLNuxu0pdw7JUov89ZycpQhQknpI4TpTk7nKffb7vEHojDfgYD5ZWVUSkHAYYqSljxrK3ufeGGhLynWdnxekFn17ml3toKHfUf8DbnUO7UE_qolm-_3Gz-QQG_7FLGS8_3IITColilKcF6CRNYTR0AJ5JBEOd9XC_4_qmkmeyz53Zfelv_inS-O_Cnn_ETaM7OnmA7vc4Eo87wT9Ee271CN3tKktuHqNmjLvcnoVNARW32F7pGg7wtQ6EDHP8OTA3hbVdeKabm6AnLdbLed0s2qtrDEgWL4bpBjws7Ar72tp1o-0G1x7Pm0XMicFNber2CTo_OT6fnKZ9eYXU8jJvUwHgjAijRZVbXTBaWkq1zTiAgIJpaUTutGDCWMcrBsCSMQBbhaCVJ97B0PYp2l_VK_ccYZIZ7iiRJeGaZ7qQjkjq4W9heC59QRKUDd9U2Z56PFTAWKoYAmel6uSgQA4qykFlCXq7veZ7R7zxz95HQVTbnoE0OzbUzVz1Nqi48IBPLLOBQqeqbMlcIHTjAlCSodwl6HAQtBoUUYWwZAyBiAS93p4GGwyBFb1y9brrI5kEaJygZ52CbJ-EBQJBwGkJejdozK-b__2FXvxf95foHg1KTHhKi0O03zZr9wrQUmtG6I64FCN0MB5Pv01he3R89uUrtE6KySjOQIyikfwEp_ERPQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrRBcEO8GChgJThDVsZ04OSDUQqst3V0htEi9WbbjbFdqN202K7Q_iv_ITB5bIaC33vJwosTz-jzjmSHkbWbBxhQgaXnOVChhgRHatMlYLlxcFJZbhvnO40ky_CG_nsanW-RXnwuD2yp7ndgo6rx06CPfw_BQ44pWny6vQuwahdHVvoVGyxYnfv0TlmzLj8dfgL7vOD86nH4ehl1XgdDJNK5DBZiEKWtUHjuTCJ46zo2LJNi-RJjMqtgbJZR1XuYC8JQQgDESxfOCFT5C_ydo_G0pYCUzINsHh5Nv3zdOHQybySjrknOYSPeWYCAxiY3LMAF54WH0hwFs-gT8C9z-FZht7N3RA3K_A6p0v-Wsh2TLLx6RO23ryvVjUu3TNnlo7kKA3TV1Z6aEE3phsOLDjI6wNBRuHqNjU10hI9bUnM9gSuuzCwpQmc57fwbtd47hsXFuVRm3pmVBZ9W8SbqhVWnL-gmZ3sZMPyWDRbnwO4SyyErPWZYyaWRkksyzjBegjqyMsyJhAYn6OdWuq22OLTbOdRNjF6lu6aCBDrqhg44C8n7zzGVb2ePG0QdIqs1IrMrdXCirme6EXEtVAABywmGNnjx3qfBYMU4qgGGWSx-Q3Z7QulMVS33N2AF5s7kNQo6RG7Pw5aodk4kMsHdAnrUMsvkSgRUKAQgG5EPPMdcv__8PPb_5W16Tu8PpeKRHx5OTF-QeRwZmMuTJLhnU1cq_BChW21edAFCib1nkfgNMWT_Z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqViAuqLwDBYwEJ4jWsZ04OSBUKKuWPsShSHuzbMfertRu2mxWaH8a_46ZPLZCQG-95eFEief1ecYzQ8jbwoKNCSBpZclULGGBEdu8zVgOLg3Bcssw3_n4JNv_Ib9N0skG-TXkwuC2ykEntoq6rBz6yEcYHmpd0WoU-m0R3_fGny6vYuwghZHWoZ1GxyKHfvUTlm-Ljwd7QOt3nI-_nn7Zj_sOA7GTedrECvAJU9aoMnUmEzx3nBuXSLCDmTCFVak3SijrvCwFYCshAG9kipeBBZ-gLxS0_5YSaYIipiZq7d7BAJpMij5Nh4l8tABTielsXMYZSA6Pkz9MYdsx4F8w968QbWv5xtvkfg9Z6W7HYw_Ihp8_JHe6JparR6TepV0a0czFAMAb6s5MBSf0wmDthyk9wiJRuI2MHpv6ClmyoeZ8ChPanF1QAM10Nng26LCHDI-Nc8vauBWtAp3Wszb9htaVrZrH5PQ25vkJ2ZxXc_-MUJZY6TkrciaNTExWeFbwAIrJyrQIGYtIMsypdn2Vc2y2ca7baLvIdUcHDXTQLR10EpH362cuuxofN47-jKRaj8T63O2Fqp7qXty1VAGgkBMOq_WUpcuFx9pxUgEgs1z6iOwMhNa90ljoaxaPyJv1bRB3jOGYua-W3ZhCFIDCI_K0Y5D1lwisVQiQMCIfBo65fvn_f-j5zd_ymtwFQdNHByeHL8g9jvzLZMyzHbLZ1Ev_EjBZY1-13E-JvmVp-w3v_kKp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+logistic-tent+chaotic+mapping+Levenberg+Marquardt+algorithm+for+improving+positioning+accuracy+of+grinding+robot&rft.jtitle=Scientific+reports&rft.au=Liu%2C+Jian&rft.au=Deng%2C+Yonghong&rft.au=Liu%2C+Yulin&rft.au=Chen%2C+Linlin&rft.date=2024-04-26&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-60402-1&rft.externalDocID=10_1038_s41598_024_60402_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon