Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans

Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10–15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protecti...

Full description

Saved in:
Bibliographic Details
Published inNature microbiology Vol. 5; no. 12; pp. 1598 - 1607
Main Authors Seow, Jeffrey, Graham, Carl, Merrick, Blair, Acors, Sam, Pickering, Suzanne, Steel, Kathryn J. A., Hemmings, Oliver, O’Byrne, Aoife, Kouphou, Neophytos, Galao, Rui Pedro, Betancor, Gilberto, Wilson, Harry D., Signell, Adrian W., Winstone, Helena, Kerridge, Claire, Huettner, Isabella, Jimenez-Guardeño, Jose M., Lista, Maria Jose, Temperton, Nigel, Snell, Luke B., Bisnauthsing, Karen, Moore, Amelia, Green, Adrian, Martinez, Lauren, Stokes, Brielle, Honey, Johanna, Izquierdo-Barras, Alba, Arbane, Gill, Patel, Amita, Tan, Mark Kia Ik, O’Connell, Lorcan, O’Hara, Geraldine, MacMahon, Eithne, Douthwaite, Sam, Nebbia, Gaia, Batra, Rahul, Martinez-Nunez, Rocio, Shankar-Hari, Manu, Edgeworth, Jonathan D., Neil, Stuart J. D., Malim, Michael H., Doores, Katie J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10–15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection. Using sequential serum samples collected up to 94 d post onset of symptoms (POS) from 65 individuals with real-time quantitative PCR-confirmed SARS-CoV-2 infection, we show seroconversion (immunoglobulin (Ig)M, IgA, IgG) in >95% of cases and neutralizing antibody responses when sampled beyond 8 d POS. We show that the kinetics of the neutralizing antibody response is typical of an acute viral infection, with declining neutralizing antibody titres observed after an initial peak, and that the magnitude of this peak is dependent on disease severity. Although some individuals with high peak infective dose (ID 50  > 10,000) maintained neutralizing antibody titres >1,000 at >60 d POS, some with lower peak ID 50 had neutralizing antibody titres approaching baseline within the follow-up period. A similar decline in neutralizing antibody titres was observed in a cohort of 31 seropositive healthcare workers. The present study has important implications when considering widespread serological testing and antibody protection against reinfection with SARS-CoV-2, and may suggest that vaccine boosters are required to provide long-lasting protection. Neutralizing antibody responses of patients infected with SARS-CoV-2 peak at 3–4 weeks post onset of symptoms, then decline to low levels over the course of 3 months in some individuals.
AbstractList Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10–15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection. Using sequential serum samples collected up to 94 d post onset of symptoms (POS) from 65 individuals with real-time quantitative PCR-confirmed SARS-CoV-2 infection, we show seroconversion (immunoglobulin (Ig)M, IgA, IgG) in >95% of cases and neutralizing antibody responses when sampled beyond 8 d POS. We show that the kinetics of the neutralizing antibody response is typical of an acute viral infection, with declining neutralizing antibody titres observed after an initial peak, and that the magnitude of this peak is dependent on disease severity. Although some individuals with high peak infective dose (ID50 > 10,000) maintained neutralizing antibody titres >1,000 at >60 d POS, some with lower peak ID50 had neutralizing antibody titres approaching baseline within the follow-up period. A similar decline in neutralizing antibody titres was observed in a cohort of 31 seropositive healthcare workers. The present study has important implications when considering widespread serological testing and antibody protection against reinfection with SARS-CoV-2, and may suggest that vaccine boosters are required to provide long-lasting protection.Neutralizing antibody responses of patients infected with SARS-CoV-2 peak at 3–4 weeks post onset of symptoms, then decline to low levels over the course of 3 months in some individuals.
Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10-15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection. Using sequential serum samples collected up to 94 d post onset of symptoms (POS) from 65 individuals with real-time quantitative PCR-confirmed SARS-CoV-2 infection, we show seroconversion (immunoglobulin (Ig)M, IgA, IgG) in >95% of cases and neutralizing antibody responses when sampled beyond 8 d POS. We show that the kinetics of the neutralizing antibody response is typical of an acute viral infection, with declining neutralizing antibody titres observed after an initial peak, and that the magnitude of this peak is dependent on disease severity. Although some individuals with high peak infective dose (ID  > 10,000) maintained neutralizing antibody titres >1,000 at >60 d POS, some with lower peak ID had neutralizing antibody titres approaching baseline within the follow-up period. A similar decline in neutralizing antibody titres was observed in a cohort of 31 seropositive healthcare workers. The present study has important implications when considering widespread serological testing and antibody protection against reinfection with SARS-CoV-2, and may suggest that vaccine boosters are required to provide long-lasting protection.
Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10-15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection. Using sequential serum samples collected up to 94 d post onset of symptoms (POS) from 65 individuals with real-time quantitative PCR-confirmed SARS-CoV-2 infection, we show seroconversion (immunoglobulin (Ig)M, IgA, IgG) in >95% of cases and neutralizing antibody responses when sampled beyond 8 d POS. We show that the kinetics of the neutralizing antibody response is typical of an acute viral infection, with declining neutralizing antibody titres observed after an initial peak, and that the magnitude of this peak is dependent on disease severity. Although some individuals with high peak infective dose (ID50 > 10,000) maintained neutralizing antibody titres >1,000 at >60 d POS, some with lower peak ID50 had neutralizing antibody titres approaching baseline within the follow-up period. A similar decline in neutralizing antibody titres was observed in a cohort of 31 seropositive healthcare workers. The present study has important implications when considering widespread serological testing and antibody protection against reinfection with SARS-CoV-2, and may suggest that vaccine boosters are required to provide long-lasting protection.Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10-15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection. Using sequential serum samples collected up to 94 d post onset of symptoms (POS) from 65 individuals with real-time quantitative PCR-confirmed SARS-CoV-2 infection, we show seroconversion (immunoglobulin (Ig)M, IgA, IgG) in >95% of cases and neutralizing antibody responses when sampled beyond 8 d POS. We show that the kinetics of the neutralizing antibody response is typical of an acute viral infection, with declining neutralizing antibody titres observed after an initial peak, and that the magnitude of this peak is dependent on disease severity. Although some individuals with high peak infective dose (ID50 > 10,000) maintained neutralizing antibody titres >1,000 at >60 d POS, some with lower peak ID50 had neutralizing antibody titres approaching baseline within the follow-up period. A similar decline in neutralizing antibody titres was observed in a cohort of 31 seropositive healthcare workers. The present study has important implications when considering widespread serological testing and antibody protection against reinfection with SARS-CoV-2, and may suggest that vaccine boosters are required to provide long-lasting protection.
Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10–15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection. Using sequential serum samples collected up to 94 d post onset of symptoms (POS) from 65 individuals with real-time quantitative PCR-confirmed SARS-CoV-2 infection, we show seroconversion (immunoglobulin (Ig)M, IgA, IgG) in >95% of cases and neutralizing antibody responses when sampled beyond 8 d POS. We show that the kinetics of the neutralizing antibody response is typical of an acute viral infection, with declining neutralizing antibody titres observed after an initial peak, and that the magnitude of this peak is dependent on disease severity. Although some individuals with high peak infective dose (ID 50  > 10,000) maintained neutralizing antibody titres >1,000 at >60 d POS, some with lower peak ID 50 had neutralizing antibody titres approaching baseline within the follow-up period. A similar decline in neutralizing antibody titres was observed in a cohort of 31 seropositive healthcare workers. The present study has important implications when considering widespread serological testing and antibody protection against reinfection with SARS-CoV-2, and may suggest that vaccine boosters are required to provide long-lasting protection. Neutralizing antibody responses of patients infected with SARS-CoV-2 peak at 3–4 weeks post onset of symptoms, then decline to low levels over the course of 3 months in some individuals.
Author Martinez-Nunez, Rocio
Edgeworth, Jonathan D.
Graham, Carl
MacMahon, Eithne
Martinez, Lauren
Douthwaite, Sam
Patel, Amita
Nebbia, Gaia
Signell, Adrian W.
Stokes, Brielle
Izquierdo-Barras, Alba
Snell, Luke B.
Green, Adrian
O’Connell, Lorcan
Wilson, Harry D.
Galao, Rui Pedro
Doores, Katie J.
Kerridge, Claire
Batra, Rahul
Betancor, Gilberto
Merrick, Blair
Acors, Sam
Lista, Maria Jose
O’Byrne, Aoife
Seow, Jeffrey
Jimenez-Guardeño, Jose M.
Honey, Johanna
Winstone, Helena
Tan, Mark Kia Ik
Hemmings, Oliver
Arbane, Gill
Neil, Stuart J. D.
Kouphou, Neophytos
Pickering, Suzanne
Temperton, Nigel
Malim, Michael H.
Huettner, Isabella
Bisnauthsing, Karen
Shankar-Hari, Manu
Moore, Amelia
O’Hara, Geraldine
Steel, Kathryn J. A.
Author_xml – sequence: 1
  givenname: Jeffrey
  orcidid: 0000-0003-0722-8561
  surname: Seow
  fullname: Seow, Jeffrey
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 2
  givenname: Carl
  surname: Graham
  fullname: Graham, Carl
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 3
  givenname: Blair
  orcidid: 0000-0002-6061-6064
  surname: Merrick
  fullname: Merrick, Blair
  organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 4
  givenname: Sam
  orcidid: 0000-0001-6428-7707
  surname: Acors
  fullname: Acors, Sam
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 5
  givenname: Suzanne
  orcidid: 0000-0002-2747-9029
  surname: Pickering
  fullname: Pickering, Suzanne
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 6
  givenname: Kathryn J. A.
  surname: Steel
  fullname: Steel, Kathryn J. A.
  organization: Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London
– sequence: 7
  givenname: Oliver
  surname: Hemmings
  fullname: Hemmings, Oliver
  organization: Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London
– sequence: 8
  givenname: Aoife
  surname: O’Byrne
  fullname: O’Byrne, Aoife
  organization: Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London
– sequence: 9
  givenname: Neophytos
  surname: Kouphou
  fullname: Kouphou, Neophytos
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 10
  givenname: Rui Pedro
  orcidid: 0000-0003-3368-5053
  surname: Galao
  fullname: Galao, Rui Pedro
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 11
  givenname: Gilberto
  surname: Betancor
  fullname: Betancor, Gilberto
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 12
  givenname: Harry D.
  orcidid: 0000-0002-3185-1073
  surname: Wilson
  fullname: Wilson, Harry D.
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 13
  givenname: Adrian W.
  orcidid: 0000-0003-4620-6891
  surname: Signell
  fullname: Signell, Adrian W.
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 14
  givenname: Helena
  surname: Winstone
  fullname: Winstone, Helena
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 15
  givenname: Claire
  surname: Kerridge
  fullname: Kerridge, Claire
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 16
  givenname: Isabella
  surname: Huettner
  fullname: Huettner, Isabella
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 17
  givenname: Jose M.
  orcidid: 0000-0002-1726-8033
  surname: Jimenez-Guardeño
  fullname: Jimenez-Guardeño, Jose M.
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 18
  givenname: Maria Jose
  surname: Lista
  fullname: Lista, Maria Jose
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 19
  givenname: Nigel
  orcidid: 0000-0002-7978-3815
  surname: Temperton
  fullname: Temperton, Nigel
  organization: Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent
– sequence: 20
  givenname: Luke B.
  orcidid: 0000-0002-6263-9497
  surname: Snell
  fullname: Snell, Luke B.
  organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 21
  givenname: Karen
  surname: Bisnauthsing
  fullname: Bisnauthsing, Karen
  organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 22
  givenname: Amelia
  surname: Moore
  fullname: Moore, Amelia
  organization: Guy’s and St Thomas’ R&D Department, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 23
  givenname: Adrian
  surname: Green
  fullname: Green, Adrian
  organization: Guy’s and St Thomas’ R&D Department, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 24
  givenname: Lauren
  orcidid: 0000-0002-5830-2496
  surname: Martinez
  fullname: Martinez, Lauren
  organization: Guy’s and St Thomas’ R&D Department, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 25
  givenname: Brielle
  orcidid: 0000-0001-5371-2448
  surname: Stokes
  fullname: Stokes, Brielle
  organization: Guy’s and St Thomas’ R&D Department, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 26
  givenname: Johanna
  surname: Honey
  fullname: Honey, Johanna
  organization: Guy’s and St Thomas’ R&D Department, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 27
  givenname: Alba
  orcidid: 0000-0003-0665-311X
  surname: Izquierdo-Barras
  fullname: Izquierdo-Barras, Alba
  organization: Guy’s and St Thomas’ R&D Department, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 28
  givenname: Gill
  surname: Arbane
  fullname: Arbane, Gill
  organization: Department of Intensive Care Medicine, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 29
  givenname: Amita
  orcidid: 0000-0001-5945-7791
  surname: Patel
  fullname: Patel, Amita
  organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 30
  givenname: Mark Kia Ik
  orcidid: 0000-0002-7774-3836
  surname: Tan
  fullname: Tan, Mark Kia Ik
  organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 31
  givenname: Lorcan
  surname: O’Connell
  fullname: O’Connell, Lorcan
  organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 32
  givenname: Geraldine
  orcidid: 0000-0002-1922-9492
  surname: O’Hara
  fullname: O’Hara, Geraldine
  organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 33
  givenname: Eithne
  surname: MacMahon
  fullname: MacMahon, Eithne
  organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 34
  givenname: Sam
  surname: Douthwaite
  fullname: Douthwaite, Sam
  organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 35
  givenname: Gaia
  surname: Nebbia
  fullname: Nebbia, Gaia
  organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 36
  givenname: Rahul
  surname: Batra
  fullname: Batra, Rahul
  organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 37
  givenname: Rocio
  surname: Martinez-Nunez
  fullname: Martinez-Nunez, Rocio
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 38
  givenname: Manu
  orcidid: 0000-0002-5338-2538
  surname: Shankar-Hari
  fullname: Shankar-Hari, Manu
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, Department of Intensive Care Medicine, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 39
  givenname: Jonathan D.
  surname: Edgeworth
  fullname: Edgeworth, Jonathan D.
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust
– sequence: 40
  givenname: Stuart J. D.
  surname: Neil
  fullname: Neil, Stuart J. D.
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 41
  givenname: Michael H.
  orcidid: 0000-0002-7699-2064
  surname: Malim
  fullname: Malim, Michael H.
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
– sequence: 42
  givenname: Katie J.
  orcidid: 0000-0002-5507-1725
  surname: Doores
  fullname: Doores, Katie J.
  email: katie.doores@kcl.ac.uk
  organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33106674$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9vFCEUx4mpsbX2H_BgSLx4GQUGGObYbPyVbGJi1SthmDe7NAyswNTUs3-47G4bTQ898CB5n-_j5ft9jk5CDIDQS0reUtKqd5lTIXlDGGkIUbRt1BN0xohQjWCdPPnvfYoucr4mhFDJpFTyGTptW0qk7PgZ-rOOYePKMrpgPI5DhnRjiosBmzDiEax3AXCccIClJOPdbxc2tVfcEMdbnCDvYsiQsQu4bKGeBIDnGMo24yl6H3_tBVeXX6-aVfzRsApOYA8_VMl2mU3IL9DTyfgMF3f3Ofr-4f231adm_eXj59XlurFcidJ0tXbQj4oZYYVh08AoMWKkEyWMt7ZnlCluZDf2PbdtpcHafuiZVP0wdKo9R2-Oc3cp_lwgFz27bMF7EyAuWTMuuBS8U6yirx-g13FJ1aM91YnqLe1lpV7dUcsww6h3yc0m3ep7fyugjoBNMecEk7auHPytZjqvKdH7NPUxTV3T1Ic09X5Z9kB6P_1RUXsU5QqHDaR_az-i-gvHobFq
CitedBy_id crossref_primary_10_1016_j_cell_2021_06_005
crossref_primary_10_3390_antib12020035
crossref_primary_10_3349_ymj_2021_62_7_584
crossref_primary_10_3389_fmolb_2021_620806
crossref_primary_10_1007_s11596_021_2470_7
crossref_primary_10_1093_infdis_jiab300
crossref_primary_10_1098_rstb_2020_0279
crossref_primary_10_1136_bmj_m4288
crossref_primary_10_1111_bjh_17836
crossref_primary_10_1136_bmjopen_2020_047216
crossref_primary_10_1093_infdis_jiac406
crossref_primary_10_3390_v16030446
crossref_primary_10_3390_vaccines10050690
crossref_primary_10_1001_jamanetworkopen_2021_35975
crossref_primary_10_1007_s00285_021_01657_4
crossref_primary_10_4103_AMJM_AMJM_5_22
crossref_primary_10_1016_j_ijid_2021_01_061
crossref_primary_10_1016_j_jiph_2024_02_016
crossref_primary_10_1038_s41598_022_20747_x
crossref_primary_10_3390_vaccines9080910
crossref_primary_10_1016_j_isci_2022_105862
crossref_primary_10_1080_22221751_2022_2065936
crossref_primary_10_1016_j_jinf_2023_08_010
crossref_primary_10_1016_j_tmrv_2022_06_001
crossref_primary_10_1177_15353702231157941
crossref_primary_10_1093_infdis_jiab524
crossref_primary_10_3390_vaccines11020201
crossref_primary_10_1007_s00284_022_02800_0
crossref_primary_10_1186_s40779_021_00342_3
crossref_primary_10_3389_fimmu_2023_1309997
crossref_primary_10_3390_vaccines10081193
crossref_primary_10_1016_j_ijid_2021_01_037
crossref_primary_10_1038_s41590_022_01248_5
crossref_primary_10_1128_mbio_03580_21
crossref_primary_10_1093_infdis_jiab535
crossref_primary_10_1097_INF_0000000000003199
crossref_primary_10_3389_fpubh_2023_1164326
crossref_primary_10_7717_peerj_15443
crossref_primary_10_1111_imr_12953
crossref_primary_10_1183_23120541_00080_2021
crossref_primary_10_3389_fmed_2021_631769
crossref_primary_10_1016_j_jcv_2021_104765
crossref_primary_10_2139_ssrn_4016384
crossref_primary_10_1136_bmjopen_2021_060739
crossref_primary_10_4040_jkan_21156
crossref_primary_10_1136_annrheumdis_2021_221952
crossref_primary_10_1016_j_ebiom_2022_103967
crossref_primary_10_1016_j_cmi_2021_08_023
crossref_primary_10_1111_ajt_16909
crossref_primary_10_1038_s41598_022_06038_5
crossref_primary_10_3390_ijms241210181
crossref_primary_10_1038_s41598_022_05325_5
crossref_primary_10_1111_sji_13345
crossref_primary_10_3390_ijerph19010407
crossref_primary_10_1093_jalm_jfac060
crossref_primary_10_5858_arpa_2020_0811_SA
crossref_primary_10_1128_JCM_02596_20
crossref_primary_10_1080_22221751_2021_1913974
crossref_primary_10_3389_fimmu_2021_723585
crossref_primary_10_1016_j_heliyon_2023_e16547
crossref_primary_10_1371_journal_pone_0256482
crossref_primary_10_1016_j_virol_2024_110067
crossref_primary_10_1371_journal_pone_0262911
crossref_primary_10_2478_jccm_2021_0018
crossref_primary_10_3390_vaccines10111924
crossref_primary_10_18273_revmed_v34n2_2021006
crossref_primary_10_1371_journal_ppat_1010882
crossref_primary_10_2169_internalmedicine_8019_21
crossref_primary_10_1089_vim_2021_0131
crossref_primary_10_1038_s41587_021_00878_8
crossref_primary_10_1016_j_jim_2024_113712
crossref_primary_10_3389_fimmu_2022_902140
crossref_primary_10_1016_j_isci_2023_105928
crossref_primary_10_62073_bypc_v87i1_238
crossref_primary_10_2139_ssrn_3739821
crossref_primary_10_1016_j_jcv_2021_104797
crossref_primary_10_3389_fimmu_2023_1242536
crossref_primary_10_1016_j_ijid_2021_03_084
crossref_primary_10_1016_S2666_5247_21_00219_6
crossref_primary_10_1080_1744666X_2022_2044797
crossref_primary_10_1016_j_celrep_2022_110345
crossref_primary_10_1093_jalm_jfac034
crossref_primary_10_1016_j_clnesp_2024_05_015
crossref_primary_10_1038_s41392_022_01002_1
crossref_primary_10_1136_bmj_m4262
crossref_primary_10_1016_j_ebiom_2021_103414
crossref_primary_10_1002_acn3_51570
crossref_primary_10_1093_infdis_jiab579
crossref_primary_10_1080_23744235_2021_1957143
crossref_primary_10_2222_jsv_70_167
crossref_primary_10_3389_fimmu_2022_817876
crossref_primary_10_1016_j_jcvp_2021_100044
crossref_primary_10_3389_fimmu_2022_930252
crossref_primary_10_1021_acssensors_0c02621
crossref_primary_10_1590_s1678_9946202264003
crossref_primary_10_1186_s12879_023_08412_8
crossref_primary_10_1017_S2040174421000398
crossref_primary_10_1016_j_jaip_2023_07_045
crossref_primary_10_1016_j_jmateco_2024_102962
crossref_primary_10_3389_fimmu_2021_633184
crossref_primary_10_1016_j_cmi_2021_07_024
crossref_primary_10_1016_j_xagr_2021_100020
crossref_primary_10_1016_j_jinf_2021_03_010
crossref_primary_10_3389_fimmu_2022_920227
crossref_primary_10_3390_vaccines12121413
crossref_primary_10_1016_j_biopha_2025_117936
crossref_primary_10_3389_fpubh_2021_709369
crossref_primary_10_1089_aid_2021_0005
crossref_primary_10_1016_j_vaccine_2021_07_098
crossref_primary_10_1186_s12985_023_02167_z
crossref_primary_10_1093_ofid_ofac613
crossref_primary_10_3389_fams_2023_1292443
crossref_primary_10_1039_D2SC06665C
crossref_primary_10_1590_1806_9282_20221074
crossref_primary_10_1016_j_puhip_2022_100297
crossref_primary_10_1093_occmed_kqab061
crossref_primary_10_3390_catal11020191
crossref_primary_10_1016_j_nmni_2021_100926
crossref_primary_10_1080_21645515_2023_2173904
crossref_primary_10_3389_fimmu_2022_867707
crossref_primary_10_3390_pathogens10101262
crossref_primary_10_1136_bmjopen_2020_044101
crossref_primary_10_3389_fpubh_2023_1198973
crossref_primary_10_1038_s41541_020_00264_6
crossref_primary_10_1186_s12985_024_02573_x
crossref_primary_10_1172_jci_insight_184074
crossref_primary_10_1016_j_transci_2023_103785
crossref_primary_10_4049_immunohorizons_2100022
crossref_primary_10_1016_j_gendis_2020_12_007
crossref_primary_10_3389_fimmu_2021_635942
crossref_primary_10_1038_s43018_021_00275_9
crossref_primary_10_3390_vaccines9070714
crossref_primary_10_3389_fimmu_2021_657711
crossref_primary_10_3389_fimmu_2023_1241038
crossref_primary_10_1002_JLB_5MR0821_464R
crossref_primary_10_3390_microorganisms9122578
crossref_primary_10_1080_22221751_2021_2002670
crossref_primary_10_1186_s43055_022_00739_7
crossref_primary_10_1007_s10875_021_01083_7
crossref_primary_10_7326_M20_7547
crossref_primary_10_4103_mjdrdypu_mjdrdypu_80_22
crossref_primary_10_3390_biomedicines9101342
crossref_primary_10_1002_jmv_28122
crossref_primary_10_1093_infdis_jiab120
crossref_primary_10_3390_microorganisms9071389
crossref_primary_10_1038_s41586_021_03207_w
crossref_primary_10_1002_jmv_27270
crossref_primary_10_1073_pnas_2021615118
crossref_primary_10_1038_s41598_021_91011_x
crossref_primary_10_1093_clinchem_hvab069
crossref_primary_10_3389_fimmu_2021_748291
crossref_primary_10_1017_erm_2021_30
crossref_primary_10_1093_ije_dyab217
crossref_primary_10_9778_cmajo_20210044
crossref_primary_10_1360_nso_20220009
crossref_primary_10_1093_cid_ciab172
crossref_primary_10_1038_s41598_021_84055_6
crossref_primary_10_1007_s11845_021_02883_x
crossref_primary_10_2807_1560_7917_ES_2020_25_47_2001752
crossref_primary_10_2174_2666796703666220302143102
crossref_primary_10_1093_infdis_jiab375
crossref_primary_10_47583_ijpsrr_2022_v76i02_012
crossref_primary_10_1136_bmjgh_2022_008793
crossref_primary_10_1038_s41467_022_32389_8
crossref_primary_10_1371_journal_ppat_1010821
crossref_primary_10_1007_s00705_021_05132_9
crossref_primary_10_1016_j_cmi_2021_07_040
crossref_primary_10_5802_crbiol_35
crossref_primary_10_1371_journal_pntd_0009551
crossref_primary_10_1111_joim_13304
crossref_primary_10_7326_M20_7569
crossref_primary_10_1080_17843286_2022_2108978
crossref_primary_10_1515_cclm_2020_1736
crossref_primary_10_3389_fimmu_2022_816159
crossref_primary_10_1016_S2468_2667_22_00007_X
crossref_primary_10_1088_1478_3975_ac7e9e
crossref_primary_10_1016_j_chom_2021_06_016
crossref_primary_10_1128_spectrum_01333_24
crossref_primary_10_3390_vaccines10081173
crossref_primary_10_1002_jmv_27059
crossref_primary_10_1016_j_jim_2025_113817
crossref_primary_10_1016_j_ijid_2022_07_049
crossref_primary_10_1038_s41467_023_42430_z
crossref_primary_10_2139_ssrn_3940264
crossref_primary_10_2478_amb_2021_0038
crossref_primary_10_1038_s41467_021_25949_x
crossref_primary_10_3389_fimmu_2022_811952
crossref_primary_10_1038_s43856_024_00686_6
crossref_primary_10_3390_vaccines11050991
crossref_primary_10_1136_bmjgh_2020_004614
crossref_primary_10_1038_s41586_021_03291_y
crossref_primary_10_3390_v13020284
crossref_primary_10_3389_fimmu_2024_1395684
crossref_primary_10_1016_j_celrep_2022_111276
crossref_primary_10_1186_s12985_022_01844_9
crossref_primary_10_1080_22221751_2022_2026741
crossref_primary_10_1038_s43856_021_00045_9
crossref_primary_10_3389_fimmu_2023_1129753
crossref_primary_10_1016_j_cmi_2021_06_040
crossref_primary_10_3390_jcm12247575
crossref_primary_10_1016_S2666_5247_21_00143_9
crossref_primary_10_1038_s41375_020_01103_2
crossref_primary_10_1186_s12879_021_06517_6
crossref_primary_10_1016_j_envres_2021_110972
crossref_primary_10_1136_bmjopen_2021_056853
crossref_primary_10_1093_infdis_jiab161
crossref_primary_10_1038_s41598_022_17605_1
crossref_primary_10_1016_j_cyto_2022_155874
crossref_primary_10_3390_microorganisms9030556
crossref_primary_10_3389_fimmu_2023_1244556
crossref_primary_10_25259_NMJI_109_21
crossref_primary_10_1016_j_ijid_2024_107075
crossref_primary_10_1016_j_ebiom_2021_103259
crossref_primary_10_1093_cid_ciab371
crossref_primary_10_1097_INF_0000000000003790
crossref_primary_10_7554_eLife_80428
crossref_primary_10_1371_journal_pone_0257512
crossref_primary_10_3389_fimmu_2021_742941
crossref_primary_10_3390_pathogens11090958
crossref_primary_10_3390_jcm10040779
crossref_primary_10_1371_journal_pntd_0010102
crossref_primary_10_3390_vaccines10020258
crossref_primary_10_1038_s41467_021_22958_8
crossref_primary_10_1016_j_antiviral_2023_105759
crossref_primary_10_1128_JCM_00193_21
crossref_primary_10_1080_22221751_2021_2021807
crossref_primary_10_3389_fimmu_2021_793953
crossref_primary_10_1038_s41423_023_01122_w
crossref_primary_10_1007_s12088_023_01079_4
crossref_primary_10_1098_rsos_210699
crossref_primary_10_1002_cbin_11903
crossref_primary_10_1038_s41467_021_21665_8
crossref_primary_10_3389_fimmu_2020_565730
crossref_primary_10_1016_j_jaut_2021_102703
crossref_primary_10_1136_bmjopen_2021_051415
crossref_primary_10_1016_j_it_2020_12_002
crossref_primary_10_3390_v14122823
crossref_primary_10_3390_v14040746
crossref_primary_10_3390_vaccines9020147
crossref_primary_10_1073_pnas_2310421121
crossref_primary_10_12688_wellcomeopenres_19414_1
crossref_primary_10_1002_jmv_27784
crossref_primary_10_1016_j_microc_2024_111126
crossref_primary_10_1111_trf_16261
crossref_primary_10_12688_wellcomeopenres_19414_2
crossref_primary_10_3390_v14061222
crossref_primary_10_1002_jmv_27544
crossref_primary_10_2139_ssrn_3902468
crossref_primary_10_2188_jea_JE20240284
crossref_primary_10_1128_Spectrum_00693_21
crossref_primary_10_3389_fimmu_2021_809244
crossref_primary_10_1186_s12985_021_01633_w
crossref_primary_10_1371_journal_pone_0251159
crossref_primary_10_3389_fmed_2022_901817
crossref_primary_10_1016_j_jinf_2021_09_019
crossref_primary_10_1002_jmv_27794
crossref_primary_10_1111_joim_13372
crossref_primary_10_1038_s41577_021_00522_1
crossref_primary_10_1186_s12879_022_07314_5
crossref_primary_10_1210_clinem_dgab055
crossref_primary_10_7326_M21_3272
crossref_primary_10_1371_journal_pone_0287107
crossref_primary_10_1016_j_ijid_2024_107309
crossref_primary_10_3389_fimmu_2021_790469
crossref_primary_10_1038_s41598_022_14283_x
crossref_primary_10_3390_vaccines9070768
crossref_primary_10_1055_s_0042_1748170
crossref_primary_10_1093_cid_ciab1021
crossref_primary_10_3389_fimmu_2022_832533
crossref_primary_10_1038_s43856_021_00039_7
crossref_primary_10_1038_s41467_021_23494_1
crossref_primary_10_1126_science_abg9175
crossref_primary_10_3389_fimmu_2020_610300
crossref_primary_10_1093_infdis_jiac060
crossref_primary_10_3390_jcm11123535
crossref_primary_10_1016_j_ccell_2021_10_002
crossref_primary_10_1128_JVI_01837_20
crossref_primary_10_3390_jcm10040605
crossref_primary_10_1016_j_coviro_2021_04_008
crossref_primary_10_1016_j_jinf_2021_08_030
crossref_primary_10_1016_j_diagmicrobio_2023_116157
crossref_primary_10_1016_S0140_6736_21_00238_5
crossref_primary_10_3390_ijerph18105085
crossref_primary_10_3390_vaccines10081210
crossref_primary_10_1038_s41564_021_00974_0
crossref_primary_10_1016_j_ebiom_2022_104025
crossref_primary_10_1111_1462_2920_15302
crossref_primary_10_1093_brain_awac272
crossref_primary_10_1093_jpids_piac012
crossref_primary_10_1128_msphere_00883_21
crossref_primary_10_1186_s40779_020_00296_y
crossref_primary_10_1097_IPC_0000000000001055
crossref_primary_10_1042_BSR20211491
crossref_primary_10_1080_21645515_2022_2047582
crossref_primary_10_3390_vaccines9111367
crossref_primary_10_7554_eLife_64496
crossref_primary_10_3390_ijms23052408
crossref_primary_10_1093_ecco_jcc_jjaa237
crossref_primary_10_5495_wjcid_v12_i2_50
crossref_primary_10_12688_f1000research_28482_2
crossref_primary_10_12688_f1000research_28482_1
crossref_primary_10_3389_fimmu_2021_813300
crossref_primary_10_3390_vaccines9060550
crossref_primary_10_12688_f1000research_28482_3
crossref_primary_10_23876_j_krcp_21_184
crossref_primary_10_1038_s41375_021_01300_7
crossref_primary_10_1073_pnas_2212577120
crossref_primary_10_1093_ofid_ofac002
crossref_primary_10_3389_fimmu_2021_709759
crossref_primary_10_1128_spectrum_01402_21
crossref_primary_10_1002_jmv_27113
crossref_primary_10_1016_j_celrep_2021_109518
crossref_primary_10_1093_infdis_jiac099
crossref_primary_10_1371_journal_pcbi_1009778
crossref_primary_10_1371_journal_pmed_1003868
crossref_primary_10_1016_j_addr_2020_12_011
crossref_primary_10_1038_s41586_021_03647_4
crossref_primary_10_1186_s12916_022_02587_8
crossref_primary_10_1016_j_intimp_2021_108050
crossref_primary_10_1038_s41586_021_03491_6
crossref_primary_10_1016_j_celrep_2021_108890
crossref_primary_10_1038_s41467_024_54458_w
crossref_primary_10_3389_fcimb_2023_1239700
crossref_primary_10_1128_spectrum_01837_22
crossref_primary_10_1016_S1473_3099_22_00129_3
crossref_primary_10_1080_22221751_2023_2169198
crossref_primary_10_1016_j_jim_2021_113046
crossref_primary_10_3390_vaccines10122116
crossref_primary_10_1016_j_chom_2021_04_015
crossref_primary_10_1371_journal_pone_0253551
crossref_primary_10_1016_j_ajog_2022_04_010
crossref_primary_10_1371_journal_pone_0273323
crossref_primary_10_3390_pathogens11121531
crossref_primary_10_1111_bjh_17568
crossref_primary_10_1038_s41591_021_01325_6
crossref_primary_10_1002_eji_202149535
crossref_primary_10_1212_NXI_0000000000001067
crossref_primary_10_2169_internalmedicine_0076_22
crossref_primary_10_3390_pathogens10060752
crossref_primary_10_1016_j_tmrv_2021_09_001
crossref_primary_10_1016_j_jcv_2021_104931
crossref_primary_10_1038_s43856_022_00091_x
crossref_primary_10_4049_jimmunol_2001067
crossref_primary_10_1016_j_xcrm_2022_100528
crossref_primary_10_1172_jci_insight_151849
crossref_primary_10_1056_NEJMoa2034545
crossref_primary_10_3390_vaccines9121376
crossref_primary_10_1016_j_cegh_2021_100766
crossref_primary_10_1126_sciadv_abh3409
crossref_primary_10_1038_s41598_021_94653_z
crossref_primary_10_1002_acn3_51350
crossref_primary_10_1016_j_ijid_2020_12_017
crossref_primary_10_1016_j_jiph_2021_09_006
crossref_primary_10_1016_j_ijid_2021_12_316
crossref_primary_10_1002_eji_202149302
crossref_primary_10_1093_oxfimm_iqac012
crossref_primary_10_3390_vaccines10030455
crossref_primary_10_1007_s12015_022_10477_y
crossref_primary_10_1016_j_heliyon_2024_e24580
crossref_primary_10_3390_life14070791
crossref_primary_10_1093_cid_ciaa1846
crossref_primary_10_3390_v14122665
crossref_primary_10_1136_jcp_2022_208305
crossref_primary_10_1371_journal_pone_0271382
crossref_primary_10_3389_fmed_2021_609440
crossref_primary_10_1128_spectrum_01154_22
crossref_primary_10_1126_sciimmunol_abl9464
crossref_primary_10_1042_BST20220415
crossref_primary_10_1016_j_measurement_2022_111258
crossref_primary_10_1002_jmv_26854
crossref_primary_10_1128_jcm_00482_21
crossref_primary_10_1038_s42003_021_01813_y
crossref_primary_10_1016_j_xcrm_2021_100228
crossref_primary_10_1093_oxfimm_iqac005
crossref_primary_10_3390_v13061064
crossref_primary_10_1038_s41408_021_00546_9
crossref_primary_10_1017_S095026882100087X
crossref_primary_10_1002_oby_23208
crossref_primary_10_1371_journal_pone_0272008
crossref_primary_10_1016_j_dld_2021_08_027
crossref_primary_10_3390_vaccines9060587
crossref_primary_10_1016_j_micinf_2022_104979
crossref_primary_10_3389_fimmu_2023_1183727
crossref_primary_10_3390_vaccines11020278
crossref_primary_10_1186_s40001_021_00560_4
crossref_primary_10_1038_s41467_022_29404_3
crossref_primary_10_1093_cid_ciaa1866
crossref_primary_10_1371_journal_pone_0294262
crossref_primary_10_1093_cid_ciab607
crossref_primary_10_1016_j_ekir_2021_03_902
crossref_primary_10_1038_s41598_020_78758_5
crossref_primary_10_1016_j_xcrm_2021_100290
crossref_primary_10_3389_fimmu_2023_1100594
crossref_primary_10_1016_S1473_3099_24_00654_6
crossref_primary_10_3390_vaccines10060905
crossref_primary_10_1016_j_ebiom_2021_103729
crossref_primary_10_1128_mSphere_00275_21
crossref_primary_10_2139_ssrn_3985606
crossref_primary_10_1080_17843286_2021_2004349
crossref_primary_10_1016_j_radcr_2022_06_034
crossref_primary_10_1128_CMR_00228_20
crossref_primary_10_1371_journal_pone_0262868
crossref_primary_10_1016_j_amjmed_2023_05_002
crossref_primary_10_1007_s11845_022_02997_w
crossref_primary_10_1016_j_celrep_2021_109320
crossref_primary_10_1038_s41467_021_25382_0
crossref_primary_10_1016_S2665_9913_21_00333_7
crossref_primary_10_7554_eLife_65508
crossref_primary_10_1111_trf_17952
crossref_primary_10_1016_j_ajog_2021_09_037
crossref_primary_10_1111_trf_16625
crossref_primary_10_2139_ssrn_4188566
crossref_primary_10_1080_01621459_2021_2001340
crossref_primary_10_1080_19490976_2021_2018899
crossref_primary_10_37349_ei_2024_00126
crossref_primary_10_1080_22221751_2021_1971569
crossref_primary_10_1016_j_jcv_2021_104988
crossref_primary_10_1016_j_rmed_2021_106355
crossref_primary_10_1021_acsinfecdis_1c00600
crossref_primary_10_1128_mSphere_00170_21
crossref_primary_10_1016_j_xcrm_2021_100296
crossref_primary_10_1126_sciimmunol_abf3698
crossref_primary_10_52547_aassjournal_1032
crossref_primary_10_2147_JIR_S326740
crossref_primary_10_1002_jmv_27751
crossref_primary_10_1097_TXD_0000000000001537
crossref_primary_10_1007_s10441_022_09447_1
crossref_primary_10_1126_sciadv_abe8065
crossref_primary_10_3389_fimmu_2021_659041
crossref_primary_10_3390_diagnostics12061426
crossref_primary_10_1007_s13205_021_02647_5
crossref_primary_10_1155_2021_8874339
crossref_primary_10_3390_v13061025
crossref_primary_10_1016_j_heliyon_2024_e38545
crossref_primary_10_1016_j_immuni_2022_05_004
crossref_primary_10_1016_j_immuni_2022_05_005
crossref_primary_10_3389_fpubh_2021_633144
crossref_primary_10_1038_s41467_021_26137_7
crossref_primary_10_1093_ofid_ofad168
crossref_primary_10_3390_vaccines11020475
crossref_primary_10_1016_j_celrep_2021_109109
crossref_primary_10_21101_cejph_a7230
crossref_primary_10_3389_fcimb_2021_791660
crossref_primary_10_1016_j_lana_2021_100123
crossref_primary_10_3389_fimmu_2021_660019
crossref_primary_10_3389_fpubh_2021_625778
crossref_primary_10_1007_s00430_022_00753_6
crossref_primary_10_3390_v14112408
crossref_primary_10_1038_s41587_022_01280_8
crossref_primary_10_1080_14760584_2022_2089121
crossref_primary_10_3390_vaccines12060691
crossref_primary_10_1016_j_bios_2022_115037
crossref_primary_10_1016_j_immuni_2021_03_023
crossref_primary_10_1371_journal_pone_0300191
crossref_primary_10_1016_j_meegid_2021_104869
crossref_primary_10_1039_D2SD00073C
crossref_primary_10_1128_JVI_00404_21
crossref_primary_10_1128_Spectrum_00458_21
crossref_primary_10_3389_fimmu_2022_988536
crossref_primary_10_1371_journal_pbio_3001531
crossref_primary_10_1371_journal_pone_0261979
crossref_primary_10_3389_fmicb_2022_842232
crossref_primary_10_3389_fimmu_2023_1220600
crossref_primary_10_1126_sciimmunol_abg5669
crossref_primary_10_3390_cells11172743
crossref_primary_10_1364_BOE_454919
crossref_primary_10_3390_vaccines9121402
crossref_primary_10_1002_hon_2872
crossref_primary_10_1038_s41467_021_21856_3
crossref_primary_10_1016_j_ebiom_2021_103519
crossref_primary_10_1371_journal_pone_0273712
crossref_primary_10_1111_all_15502
crossref_primary_10_3390_medicina58121733
crossref_primary_10_1038_s41577_021_00550_x
crossref_primary_10_1039_D1TB00674F
crossref_primary_10_1371_journal_pmed_1004107
crossref_primary_10_1371_journal_ppat_1010569
crossref_primary_10_1016_j_dialog_2022_100057
crossref_primary_10_1007_s11845_021_02799_6
crossref_primary_10_3389_fimmu_2022_1101526
crossref_primary_10_3389_fimmu_2021_772239
crossref_primary_10_3389_fimmu_2021_636768
crossref_primary_10_3390_idr13040082
crossref_primary_10_1016_j_addr_2021_01_002
crossref_primary_10_1038_s41598_022_06629_2
crossref_primary_10_1016_j_ijid_2021_07_022
crossref_primary_10_1007_s00705_023_05735_4
crossref_primary_10_1038_s41598_021_97423_z
crossref_primary_10_3390_v13040655
crossref_primary_10_12998_wjcc_v11_i29_6974
crossref_primary_10_1007_s40656_020_00356_5
crossref_primary_10_1021_acs_jproteome_2c00001
crossref_primary_10_1038_s41423_021_00774_w
crossref_primary_10_1016_j_ijid_2022_03_059
crossref_primary_10_1371_journal_ppat_1012724
crossref_primary_10_1038_s41416_022_01952_x
crossref_primary_10_1097_INF_0000000000003048
crossref_primary_10_1038_s41467_021_24007_w
crossref_primary_10_3390_diagnostics13040643
crossref_primary_10_3389_fimmu_2022_973070
crossref_primary_10_1038_s41467_023_36295_5
crossref_primary_10_1038_s41541_021_00389_2
crossref_primary_10_1155_2021_1570463
crossref_primary_10_1186_s41512_021_00113_7
crossref_primary_10_1016_j_intimp_2021_107893
crossref_primary_10_3390_diagnostics12020393
crossref_primary_10_1007_s10049_021_00948_z
crossref_primary_10_1158_2767_9764_CRC_22_0298
crossref_primary_10_1016_j_isci_2024_109210
crossref_primary_10_1038_s41598_023_45412_9
crossref_primary_10_3390_v16071077
crossref_primary_10_7554_eLife_74489
crossref_primary_10_18632_aging_203739
crossref_primary_10_5867_medwave_2022_03_002553
crossref_primary_10_1126_sciadv_abg7607
crossref_primary_10_1038_s41467_021_21037_2
crossref_primary_10_1080_21645515_2020_1845524
crossref_primary_10_1093_oxfimm_iqab003
crossref_primary_10_1136_jclinpath_2020_207356
crossref_primary_10_3389_fimmu_2022_915338
crossref_primary_10_3389_fimmu_2022_770982
crossref_primary_10_1093_oxfimm_iqab005
crossref_primary_10_1093_oxfimm_iqab006
crossref_primary_10_1038_s41467_021_24979_9
crossref_primary_10_3390_ijms25168740
crossref_primary_10_1016_j_ymthe_2022_08_002
crossref_primary_10_1136_bmjopen_2022_064240
crossref_primary_10_1111_aji_13490
crossref_primary_10_1016_j_jviromet_2022_114475
crossref_primary_10_1099_jgv_0_002055
crossref_primary_10_1016_j_immuni_2021_01_008
crossref_primary_10_1038_s43856_022_00106_7
crossref_primary_10_1016_j_ejim_2021_05_028
crossref_primary_10_1016_j_ebiom_2021_103534
crossref_primary_10_3389_fimmu_2022_830710
crossref_primary_10_1016_j_mbs_2023_108981
crossref_primary_10_3390_ijerph192215257
crossref_primary_10_3389_fimmu_2022_830715
crossref_primary_10_1016_j_intimp_2021_107409
crossref_primary_10_1016_S1470_2045_21_00213_8
crossref_primary_10_3390_vaccines12101099
crossref_primary_10_3349_ymj_2023_0567
crossref_primary_10_4103_ijmr_ijmr_2521_22
crossref_primary_10_3389_fmed_2021_642723
crossref_primary_10_1093_ofid_ofab405
crossref_primary_10_1371_journal_pgph_0000698
crossref_primary_10_3390_covid1010006
crossref_primary_10_3389_fpubh_2020_590096
crossref_primary_10_1016_j_jviromet_2021_114178
crossref_primary_10_1186_s12879_021_06723_2
crossref_primary_10_7554_eLife_86015
crossref_primary_10_3389_fimmu_2021_742631
crossref_primary_10_3390_vaccines11081340
crossref_primary_10_1016_j_jviromet_2021_114173
crossref_primary_10_1002_jmv_28461
crossref_primary_10_4103_ajprhc_ajprhc_4_23
crossref_primary_10_46234_ccdcw2023_075
crossref_primary_10_1016_S2213_2600_21_00407_0
crossref_primary_10_33073_pjm_2024_019
crossref_primary_10_1016_j_eclinm_2021_100734
crossref_primary_10_1021_acsnano_1c03972
crossref_primary_10_1038_s41467_021_25946_0
crossref_primary_10_1186_s12865_024_00596_1
crossref_primary_10_3390_vaccines10010064
crossref_primary_10_1016_S1473_3099_20_30943_9
crossref_primary_10_3390_covid1020041
crossref_primary_10_1038_s41598_024_62044_9
crossref_primary_10_1093_cei_uxac001
crossref_primary_10_3389_fimmu_2022_876306
crossref_primary_10_1088_2632_2153_abf0f7
crossref_primary_10_1093_cid_ciab069
crossref_primary_10_3389_fimmu_2022_947602
crossref_primary_10_1016_j_msard_2022_103863
crossref_primary_10_1371_journal_pone_0269885
crossref_primary_10_1371_journal_pone_0272818
crossref_primary_10_1093_ofid_ofab626
crossref_primary_10_1016_j_isci_2021_103659
crossref_primary_10_1016_j_isci_2022_103934
crossref_primary_10_1038_s41467_020_20247_4
crossref_primary_10_1097_QCO_0000000000000724
crossref_primary_10_1002_jmv_27154
crossref_primary_10_1038_s42003_024_07048_x
crossref_primary_10_1109_JBHI_2024_3360529
crossref_primary_10_3389_fcimb_2021_598875
crossref_primary_10_1016_j_ijmmb_2021_11_006
crossref_primary_10_3390_vaccines10081238
crossref_primary_10_1038_s41366_022_01136_w
crossref_primary_10_7759_cureus_17956
crossref_primary_10_1016_S0140_6736_21_02753_7
crossref_primary_10_1371_journal_ppat_1009726
crossref_primary_10_1080_1744666X_2021_1905525
crossref_primary_10_1007_s10441_022_09453_3
crossref_primary_10_1093_infdis_jiab255
crossref_primary_10_3390_v14050957
crossref_primary_10_1002_jmv_29585
crossref_primary_10_1093_infdis_jiab490
crossref_primary_10_1016_j_jviromet_2021_114381
crossref_primary_10_1038_s41598_023_35471_3
crossref_primary_10_3390_vaccines10081224
crossref_primary_10_3390_vaccines9020081
crossref_primary_10_1002_jmv_27162
crossref_primary_10_1371_journal_pone_0244126
crossref_primary_10_3389_fimmu_2023_1232472
crossref_primary_10_1016_j_diagmicrobio_2023_115900
crossref_primary_10_1128_spectrum_02252_21
crossref_primary_10_1016_j_vaccine_2023_01_032
crossref_primary_10_1093_cid_ciab1038
crossref_primary_10_17269_s41997_022_00622_y
crossref_primary_10_2139_ssrn_3800076
crossref_primary_10_22207_JPAM_17_1_56
crossref_primary_10_3390_ijerph182010999
crossref_primary_10_1071_MA21010
crossref_primary_10_1002_jmv_29115
crossref_primary_10_3389_fimmu_2021_629185
crossref_primary_10_1111_birt_12667
crossref_primary_10_1111_imr_13115
crossref_primary_10_1136_bmjopen_2021_054336
crossref_primary_10_1089_bfm_2023_0117
crossref_primary_10_1111_imr_13112
crossref_primary_10_3390_pathogens9121027
crossref_primary_10_1007_s40520_021_01987_9
crossref_primary_10_3390_vaccines9101168
crossref_primary_10_46234_ccdcw2021_044
crossref_primary_10_1093_infdis_jiac167
crossref_primary_10_1080_19420889_2021_1965356
crossref_primary_10_1016_j_ccell_2021_01_001
crossref_primary_10_1016_j_imj_2021_08_001
crossref_primary_10_3934_mbe_2022586
crossref_primary_10_1007_s15010_022_01942_4
crossref_primary_10_7326_M21_0256
crossref_primary_10_1016_S2666_7568_21_00093_3
crossref_primary_10_3343_alm_2021_41_6_577
crossref_primary_10_1016_j_cll_2021_10_004
crossref_primary_10_1016_j_cll_2021_10_003
crossref_primary_10_1016_j_cll_2021_10_006
crossref_primary_10_1016_j_cll_2021_10_008
crossref_primary_10_1089_vim_2021_0097
crossref_primary_10_1186_s41043_024_00536_0
crossref_primary_10_1080_22221751_2022_2058419
crossref_primary_10_1016_j_tim_2024_01_005
crossref_primary_10_1371_journal_pone_0280874
crossref_primary_10_4269_ajtmh_22_0448
crossref_primary_10_1136_bmjopen_2021_051045
crossref_primary_10_3389_fimmu_2021_750448
crossref_primary_10_3389_fmed_2022_906469
crossref_primary_10_3390_v14010005
crossref_primary_10_2478_abm_2021_0008
crossref_primary_10_1371_journal_pone_0245424
crossref_primary_10_1016_j_aca_2023_341326
crossref_primary_10_1159_000531222
crossref_primary_10_1038_s41467_021_24622_7
crossref_primary_10_1016_j_jaci_2021_09_008
crossref_primary_10_1371_journal_pone_0248918
crossref_primary_10_1515_cclm_2023_1487
crossref_primary_10_1038_s41467_020_20654_7
crossref_primary_10_1002_cti2_1319
crossref_primary_10_1128_mSphere_00201_21
crossref_primary_10_1111_risa_13705
crossref_primary_10_3390_ijms251910512
crossref_primary_10_18231_j_ijirm_2023_005
crossref_primary_10_1016_j_heliyon_2021_e06894
crossref_primary_10_1038_s41598_023_45700_4
crossref_primary_10_1371_journal_pcbi_1010465
crossref_primary_10_3390_diagnostics12081924
crossref_primary_10_1007_s10330_021_0488_8
crossref_primary_10_1016_j_cll_2021_10_002
crossref_primary_10_1016_j_heliyon_2023_e22612
crossref_primary_10_1371_journal_pone_0281907
crossref_primary_10_3389_fimmu_2021_731100
crossref_primary_10_1042_BST20200744
crossref_primary_10_3389_fimmu_2022_864278
crossref_primary_10_1093_gerona_glab206
crossref_primary_10_3389_fimmu_2022_985938
crossref_primary_10_1155_2022_7992927
crossref_primary_10_5455_njcm_20210518084014
crossref_primary_10_1242_jcs_262172
crossref_primary_10_1017_ice_2021_487
crossref_primary_10_1016_j_eclinm_2023_102086
crossref_primary_10_1007_s44197_022_00041_9
crossref_primary_10_1016_j_htct_2022_07_008
crossref_primary_10_1111_anae_15365
crossref_primary_10_7759_cureus_23698
crossref_primary_10_1073_pnas_2204336119
crossref_primary_10_4103_ijabmr_ijabmr_516_21
crossref_primary_10_1016_j_jaci_2023_12_011
crossref_primary_10_1080_21645515_2021_1969855
crossref_primary_10_1017_ice_2021_484
crossref_primary_10_1136_bmj_2022_071113
crossref_primary_10_3390_v15051179
crossref_primary_10_1002_hsr2_1949
crossref_primary_10_1016_j_celrep_2021_108790
crossref_primary_10_1002_cti2_1379
crossref_primary_10_1007_s00011_023_01722_2
crossref_primary_10_1093_ofid_ofab239
crossref_primary_10_1038_s41467_021_27649_y
crossref_primary_10_1016_S2666_7568_21_00282_8
crossref_primary_10_3389_fmicb_2024_1386891
crossref_primary_10_1080_10408363_2023_2254390
crossref_primary_10_1016_j_imbio_2021_152054
crossref_primary_10_1038_s41591_021_01488_2
crossref_primary_10_1093_aje_kwab293
crossref_primary_10_3389_fimmu_2021_733539
crossref_primary_10_1016_j_xcrm_2021_100191
crossref_primary_10_1016_j_crmeth_2023_100421
crossref_primary_10_1016_j_xcrm_2021_100193
crossref_primary_10_15789_1563_0625_FOH_2452
crossref_primary_10_1126_sciadv_abo1827
crossref_primary_10_1002_jmv_27427
crossref_primary_10_1016_j_cmi_2023_01_023
crossref_primary_10_1128_Spectrum_01298_21
crossref_primary_10_1016_S2665_9913_21_00114_4
crossref_primary_10_1186_s13613_021_00868_8
crossref_primary_10_3390_covid3090089
crossref_primary_10_3390_life11111152
crossref_primary_10_1371_journal_pone_0288557
crossref_primary_10_3389_fimmu_2022_842468
crossref_primary_10_2807_1560_7917_ES_2022_27_40_2100703
crossref_primary_10_1016_j_jcv_2021_105045
crossref_primary_10_1111_sji_13088
crossref_primary_10_1371_journal_pone_0264124
crossref_primary_10_1038_s41598_023_48581_9
crossref_primary_10_1002_rmv_2272
crossref_primary_10_1590_0037_8682_0661_2022
crossref_primary_10_4103_ijmr_ijmr_1627_21
crossref_primary_10_1016_j_ijid_2021_04_067
crossref_primary_10_1016_j_jcvp_2023_100164
crossref_primary_10_1128_JCM_00388_21
crossref_primary_10_1016_j_immuni_2021_07_008
crossref_primary_10_3390_microorganisms11081985
crossref_primary_10_3390_cells11223662
crossref_primary_10_1002_ccr3_8953
crossref_primary_10_1128_mbio_01206_23
crossref_primary_10_3390_cells10081843
crossref_primary_10_3390_v14050882
crossref_primary_10_1016_j_scib_2024_02_041
crossref_primary_10_1039_D1AY00947H
crossref_primary_10_1099_jgv_0_001653
crossref_primary_10_1016_j_pedneo_2023_05_014
crossref_primary_10_1038_s41467_022_32547_y
crossref_primary_10_1172_JCI152042
crossref_primary_10_2174_0122113525284502240217161226
crossref_primary_10_1038_s43856_022_00100_z
crossref_primary_10_1126_sciimmunol_abf7550
crossref_primary_10_3389_fimmu_2023_1282612
crossref_primary_10_3390_v15091842
crossref_primary_10_3390_jcm12093172
crossref_primary_10_1016_j_jcv_2023_105420
crossref_primary_10_3389_fimmu_2021_752233
crossref_primary_10_4049_jimmunol_2100195
crossref_primary_10_1089_vim_2022_0013
crossref_primary_10_1098_rsfs_2021_0008
crossref_primary_10_1016_j_cell_2021_04_025
crossref_primary_10_1016_j_jhin_2021_04_021
crossref_primary_10_3389_fimmu_2020_610688
crossref_primary_10_1038_s41378_022_00460_5
crossref_primary_10_1007_s00216_024_05205_z
crossref_primary_10_1016_j_jri_2021_103285
crossref_primary_10_1002_jmv_28557
crossref_primary_10_1093_cid_ciab308
crossref_primary_10_1021_acs_jproteome_1c00475
crossref_primary_10_1038_s43856_024_00488_w
crossref_primary_10_1093_jpids_piaa167
crossref_primary_10_1016_j_trsl_2021_11_006
crossref_primary_10_1128_JCM_01231_21
crossref_primary_10_1016_j_clim_2021_108871
crossref_primary_10_1093_ofid_ofab273
crossref_primary_10_1371_journal_pone_0251242
crossref_primary_10_1038_s41598_025_92389_8
crossref_primary_10_1186_s12916_021_02032_2
crossref_primary_10_3390_vetsci10060382
crossref_primary_10_1016_j_diagmicrobio_2020_115294
crossref_primary_10_1099_jmm_0_001599
crossref_primary_10_1093_infdis_jiaa803
crossref_primary_10_1016_j_jcv_2023_105448
crossref_primary_10_1016_j_ebiom_2022_104129
crossref_primary_10_1016_j_isci_2023_107554
crossref_primary_10_1016_j_diagmicrobio_2022_115659
crossref_primary_10_1186_s12879_023_08923_4
crossref_primary_10_1016_j_jinf_2022_09_004
crossref_primary_10_1016_j_vaccine_2022_07_040
crossref_primary_10_7554_eLife_66537
crossref_primary_10_1039_D3SD00081H
crossref_primary_10_3390_s23083946
crossref_primary_10_3390_vaccines11030548
crossref_primary_10_1017_S0950268821001886
crossref_primary_10_13105_wjma_v9_i3_220
crossref_primary_10_1080_22221751_2021_1937328
crossref_primary_10_1111_bjh_17441
crossref_primary_10_3390_microorganisms9040733
crossref_primary_10_1007_s15010_021_01664_z
crossref_primary_10_2139_ssrn_4099400
crossref_primary_10_1080_23744235_2021_1893378
crossref_primary_10_1186_s12889_024_19087_4
crossref_primary_10_1038_s41598_021_91247_7
crossref_primary_10_3390_pathogens10060637
crossref_primary_10_3390_vaccines11010148
crossref_primary_10_1016_j_mjafi_2024_05_014
crossref_primary_10_1016_j_vaccine_2025_126744
crossref_primary_10_14348_molcells_2021_0075
crossref_primary_10_1186_s12889_021_12409_w
crossref_primary_10_1038_s41590_024_01787_z
crossref_primary_10_1038_s41467_021_27595_9
crossref_primary_10_1038_s41467_021_22034_1
crossref_primary_10_6061_clinics_2021_e3548
crossref_primary_10_3389_fimmu_2022_1095129
crossref_primary_10_1098_rsos_211606
crossref_primary_10_23736_S2724_5683_22_06109_9
crossref_primary_10_1136_bmjopen_2021_056370
crossref_primary_10_1186_s12887_024_04904_x
crossref_primary_10_1007_s00431_021_04124_w
crossref_primary_10_1172_JCI144807
crossref_primary_10_3390_jcm9123847
crossref_primary_10_1016_j_cell_2021_01_017
crossref_primary_10_3389_fimmu_2022_1020844
crossref_primary_10_3390_ijms24054742
crossref_primary_10_3390_diseases12010029
crossref_primary_10_1111_all_15007
crossref_primary_10_1007_s00604_021_04896_w
crossref_primary_10_1016_j_pathol_2021_05_093
crossref_primary_10_3390_v13071364
crossref_primary_10_37349_ei_2022_00040
crossref_primary_10_1038_s41598_021_00844_z
crossref_primary_10_3201_eid2704_204554
crossref_primary_10_3389_fimmu_2021_708184
crossref_primary_10_1038_s41392_021_00759_1
crossref_primary_10_1016_S2666_5247_22_00090_8
crossref_primary_10_1016_j_imbio_2022_152304
crossref_primary_10_1039_D1SC05852E
crossref_primary_10_1080_22221751_2023_2290841
crossref_primary_10_1038_s41467_021_26672_3
crossref_primary_10_1016_j_isci_2023_107967
crossref_primary_10_1038_s41467_021_21444_5
crossref_primary_10_1128_mbio_03798_21
crossref_primary_10_1038_s41564_021_01051_2
crossref_primary_10_3390_vaccines10091532
crossref_primary_10_1016_j_cels_2021_09_013
crossref_primary_10_1371_journal_pone_0261656
crossref_primary_10_1016_j_eclinm_2022_101526
crossref_primary_10_3390_ani11030667
crossref_primary_10_1016_S2213_2600_21_00158_2
crossref_primary_10_1016_j_pathol_2021_04_001
crossref_primary_10_3390_v13112313
crossref_primary_10_1111_bjh_18962
crossref_primary_10_1016_j_isci_2021_102937
crossref_primary_10_1038_s41590_024_01776_2
crossref_primary_10_1111_pcn_13513
crossref_primary_10_3390_cells11010067
crossref_primary_10_1001_jamainternmed_2021_7382
crossref_primary_10_1371_journal_pone_0249791
crossref_primary_10_1016_S0140_6736_21_00502_X
crossref_primary_10_1371_journal_pone_0250780
crossref_primary_10_2807_1560_7917_ES_2022_27_9_2100419
crossref_primary_10_1126_scitranslmed_abf1555
crossref_primary_10_1016_j_waojou_2021_100514
crossref_primary_10_1038_s41590_021_01049_2
crossref_primary_10_1186_s12916_022_02342_z
crossref_primary_10_1590_0102_311xen109522
crossref_primary_10_1111_imcb_12494
crossref_primary_10_17816_clinpract64677
crossref_primary_10_1136_gutjnl_2021_326609
crossref_primary_10_5493_wjem_v12_i4_53
crossref_primary_10_15324_kjcls_2022_54_3_173
crossref_primary_10_22141_2312_413X_9_1_2021_228823
crossref_primary_10_37349_ei_2021_00014
crossref_primary_10_1186_s43168_024_00277_y
crossref_primary_10_3389_fmicb_2021_661187
crossref_primary_10_1002_jmv_27637
crossref_primary_10_17269_s41997_021_00531_6
crossref_primary_10_1002_oby_23353
crossref_primary_10_1093_imammb_dqac008
crossref_primary_10_1016_j_celrep_2022_110757
crossref_primary_10_1172_jci_insight_156372
crossref_primary_10_3390_v13040697
crossref_primary_10_1016_j_vaccine_2023_12_015
crossref_primary_10_3390_vaccines8040684
Cites_doi 10.1016/j.cell.2020.05.025
10.1038/s41586-020-2608-y
10.1126/science.abc1932
10.1099/jgv.0.001439
10.1056/NEJMoa2024671
10.1038/s41591-020-1083-1
10.1016/j.jcv.2005.07.005
10.1016/j.immuni.2020.06.001
10.1371/journal.ppat.1008817
10.1016/j.mex.2015.09.003
10.1093/cid/ciaa1143
10.3201/eid2307.170310
10.1017/S0950268800048019
10.1101/2020.06.10.20126532
10.1371/journal.pone.0016809
10.1038/s41577-020-0321-6
10.1101/2020.07.21.20159178
10.1101/2020.07.14.20151126
10.1111/j.1440-1843.2006.00783.x
10.1101/2020.07.10.20150557
10.1101/2020.08.11.20171843
10.1038/s41591-020-1038-6
10.1126/science.abc5343
10.1038/s41586-020-2380-z
10.1126/science.abc6284
10.1016/j.xcrm.2020.100126
10.1056/NEJMoa2026920
10.1038/s41586-020-2456-9
10.1093/infdis/jiaa618
10.1038/s41586-020-2381-y
10.1016/S1473-3099(20)30484-9
10.1126/sciimmunol.abe0367
10.1056/NEJMoa2022483
10.1038/s41467-020-16505-0
10.1001/jamainternmed.2020.4616
10.1128/mBio.02590-20
10.1002/jmv.25715
10.1056/NEJMoa066092
10.1038/s41591-020-0913-5
10.1128/JVI.01083-20
10.1126/science.abc5902
10.1101/2020.04.13.20060467
10.1038/s41591-020-0965-6
10.1084/jem.20201181
10.3201/eid2607.200841
10.1038/s41591-020-0897-1
10.1126/science.abc7520
10.1126/science.abc4776
10.1128/JCM.02005-20
10.1126/sciimmunol.abe5511
10.1056/NEJMc070348
10.1101/2020.08.05.20169128
10.1038/s41591-020-1054-6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FH
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1038/s41564-020-00813-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2058-5276
EndPage 1607
ExternalDocumentID 33106674
10_1038_s41564_020_00813_8
Genre Research Support, Non-U.S. Gov't
Journal Article
Observational Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Huo Family Foundation
– fundername: DH | National Institute for Health Research (NIHR)
  grantid: CS-2016-16-011
  funderid: https://doi.org/10.13039/501100000272
– fundername: Fondation Dormeur, Vaduz King’s Together Rapid COVID-19 Call award Huo Family Foundation
– fundername: Huo Family Foundation King’s Together Rapid COVID-19 Call award
– fundername: RCUK | Medical Research Council (MRC)
  grantid: MC/PC/15068; MR/N013700/1; MR/R015643/1; MR/N013700/1; MC/PC/15068, MR/R015643/1, MR/S023747/1; MC/PC/15068
  funderid: https://doi.org/10.13039/501100000265
– fundername: King’s Together Rapid COVID-19 Call award Huo Family Foundation
– fundername: Wellcome Trust (Wellcome)
  grantid: WT098049AIA; MR/S023747/1; 106223/Z/14/Z; 106223/Z/14/Z; 106223/Z/14/Z
  funderid: https://doi.org/10.13039/100004440
– fundername: NIAID NIH HHS
  grantid: HHSN272201400008C
– fundername: Medical Research Council
  grantid: MR/S023747/1
– fundername: Medical Research Council
  grantid: MC_PC_14105
– fundername: Wellcome Trust
  grantid: 098049
– fundername: Wellcome Trust
  grantid: 207442/Z/17/Z
– fundername: Medical Research Council
  grantid: MC_PC_15068
– fundername: Department of Health
  grantid: CS-2016-16-011
– fundername: Wellcome Trust
  grantid: 106223
– fundername: Wellcome Trust
  grantid: 207442
GroupedDBID 0R~
53G
8FE
8FH
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABJNI
ABLJU
ACBWK
ACGFS
ADBBV
AFBBN
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
AXYYD
BBNVY
BENPR
BHPHI
BKKNO
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
HZ~
LK8
M7P
NNMJJ
O9-
ODYON
R9-
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PQGLB
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c485t-74857e9d82a5c5a2fb210a5d1f10243c921284a67d994c3485ecc9b92689bb783
IEDL.DBID BENPR
ISSN 2058-5276
IngestDate Fri Jul 11 02:42:19 EDT 2025
Tue Aug 12 07:25:29 EDT 2025
Mon Jul 21 06:04:59 EDT 2025
Tue Jul 01 00:55:55 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Fri Feb 21 02:38:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-74857e9d82a5c5a2fb210a5d1f10243c921284a67d994c3485ecc9b92689bb783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-1922-9492
0000-0002-7774-3836
0000-0002-7699-2064
0000-0002-6061-6064
0000-0002-3185-1073
0000-0001-5371-2448
0000-0001-5945-7791
0000-0003-3368-5053
0000-0002-1726-8033
0000-0003-0722-8561
0000-0001-6428-7707
0000-0002-7978-3815
0000-0002-2747-9029
0000-0003-4620-6891
0000-0002-6263-9497
0000-0002-5830-2496
0000-0002-5338-2538
0000-0002-5507-1725
0000-0003-0665-311X
OpenAccessLink https://kclpure.kcl.ac.uk/portal/en/publications/04053a71-ef4f-4366-8e7c-8b407e90fddb
PMID 33106674
PQID 2475058196
PQPubID 2069616
PageCount 10
ParticipantIDs proquest_miscellaneous_2454654782
proquest_journals_2475058196
pubmed_primary_33106674
crossref_citationtrail_10_1038_s41564_020_00813_8
crossref_primary_10_1038_s41564_020_00813_8
springer_journals_10_1038_s41564_020_00813_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature microbiology
PublicationTitleAbbrev Nat Microbiol
PublicationTitleAlternate Nat Microbiol
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Wu, J. et al. SARS-CoV-2 infection induces sustained humoral immune responses in convalescent patients following symptomatic COVID-19. Preprint at medRxivhttps://doi.org/10.1101/2020.07.21.20159178 (2020).
MoHLongitudinal profile of antibodies against SARS-coronavirus in SARS patients and their clinical significanceRespirology200611495310.1111/j.1440-1843.2006.00783.x
Beaudoin-BussièresGDecline of humoral responses against SARS-CoV-2 Spike in convalescent individualsmBio202011e025902010.1128/mBio.02590-20
Jackson, L. A. et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa2022483 (2020).
Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Preprint at medRxivhttps://doi.org/10.1101/2020.06.10.20126532 (2020).
SmithTRFImmunogenicity of a DNA vaccine candidate for COVID-19Nat. Commun.2020111:CAS:528:DC%2BB3cXpvF2rtbY%3D10.1038/s41467-020-16505-0
Yu, J. et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Sciencehttps://doi.org/10.1126/science.abc6284 (2020).
Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Naturehttps://doi.org/10.1038/s41586-020-2456-9 (2020).
Amanat, F. et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat. Med. https://doi.org/10.1038/s41591-020-0913-5(2020).
LongQXAntibody responses to SARS-CoV-2 in patients with COVID-19Nat. Med.2020268458481:CAS:528:DC%2BB3cXot1aktLk%3D10.1038/s41591-020-0897-1
CaoWCLiuWZhangPHZhangFRichardusJHDisappearance of antibodies to SARS-associated coronavirus after recoveryN. Engl. J. Med2007357116211631:CAS:528:DC%2BD2sXhtVGqu7nN10.1056/NEJMc070348
Muecksch, F. et al. Longitudinal analysis of clinical serology assay performance and neutralising antibody levels in COVID19 convalescents. Preprint at medRxivhttps://doi.org/10.1101/2020.08.05.20169128 (2020).
Deng, W. et al. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Sciencehttps://doi.org/10.1126/science.abc5343 (2020).
Moore, J. P. & Klasse, P. J. SARS-CoV-2 vaccines: ‘Warp Speed’ needs mind melds not warped minds. J. Virol. https://doi.org/10.1128/JVI.01083-20 (2020).
PickeringSComparative assessment of multiple COVID-19 serological technologies supports continued evaluation of point-of-care lateral flow assays in hospital and community healthcare settingsPLoS Pathog202016e10088171:CAS:528:DC%2BB3cXhvFaktrvJ10.1371/journal.ppat.1008817
Luchsinger, L. L. et al. Serological assays estimate highly variable SARS-CoV-2 neutralizing antibody activity in recovered COVID19 patients. J. Clin. Microbiol. https://doi.org/10.1128/JCM.02005-20 (2020).
PeterseneKMComparing SARS-CoV-2 with SARS-CoV and influenza pandemicsLancet Infect.202020e238e2441:CAS:528:DC%2BB3cXhtlegu7rE10.1016/S1473-3099(20)30484-9
Carter, M. J. et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat. Med.https://doi.org/10.1038/s41591-020-1054-6 (2020).
Chandrashekar, A. et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Sciencehttps://doi.org/10.1126/science.abc4776 (2020).
GrehanKFerraraFTempertonNAn optimised method for the production of MERS-CoV spike expressing viral pseudotypesMethodsX201523793841:STN:280:DC%2BC28rgsVektQ%3D%3D10.1016/j.mex.2015.09.003
SekineTRobust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19Cell Press20201831581681:CAS:528:DC%2BB3cXhvFKjs7jE
Wang, K. et al. Longitudinal dynamics of the neutralizing antibody response to SARS-CoV-2 infection. Clin. Infect. Dis.https://doi.org/10.1093/cid/ciaa1143 (2020).
Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Naturehttps://doi.org/10.1038/s41586-020-2380-z (2020).
Kellam, P. & Barclay, W. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection. J. Gen. Virol. https://doi.org/10.1099/jgv.0.001439 (2020).
Keech, C. et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2026920 (2020).
AmannaIJCarlsonNESlifkaMKDuration of humoral immunity to common viral and vaccine antigensN. Engl. J. Med.2007357190319151:CAS:528:DC%2BD2sXht1ymtbjI10.1056/NEJMoa066092
ChoePGMERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015Emerg. Infect. Dis.201723107910841:CAS:528:DC%2BC1cXhvFGjt7nI10.3201/eid2307.170310
CallowKAParryHFSergeantMTyrrellDAThe time course of the immune response to experimental coronavirus infection of manEpidemiol. Infect.19901054354461:STN:280:DyaK3M%2Fgs1CjsA%3D%3D10.1017/S0950268800048019
Schmidt, F. et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med. 217, https://doi.org/10.1084/jem.20201181 (2020).
Seydoux, E. et al. Analysis of a SARS-CoV-2-infected individual reveals development of potent neutralizing antibodies with limited somatic mutation. Immunityhttps://doi.org/10.1016/j.immuni.2020.06.001 (2020).
Brouwer, P. J. M. et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Sciencehttps://doi.org/10.1126/science.abc5902 (2020).
Laing, A. G. et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med. https://doi.org/10.1038/s41591-020-1038-6 (2020).
Thompson, C. et al. Neutralising antibodies to SARS coronavirus 2 in Scottish blood donors—a pilot study of the value of serology to determine population exposure. Preprint at medRxivhttps://doi.org/10.1101/2020.04.13.20060467 (2020).
PrevostJCross-sectional evaluation of humoral responses against SARS-CoV-2 SpikeCell Rep. Med.2020110012610.1016/j.xcrm.2020.100126
WangMAntibody dynamics of 2009 influenza A (H1N1) virus in infected patients and vaccinated people in ChinaPLoS ONE20116e168091:CAS:528:DC%2BC3MXitlyjt74%3D10.1371/journal.pone.0016809
van Doremalen, N. et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Naturehttps://doi.org/10.1038/s41586-020-2608-y (2020).
IyerASPersistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients.Sci. Immunol.20205eabe036710.1126/sciimmunol.abe0367
Rodda, L. B. et al. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Preprint at medRxivhttps://doi.org/10.1101/2020.08.11.20171843 (2020).
Lee, W. T. et al. Neutralizing antibody responses in COVID-19 convalescent sera. Preprint at medRxivhttps://doi.org/10.1101/2020.07.10.20150557 (2020).
Gao, Q. et al. Rapid development of an inactivated vaccine candidate for SARS-CoV-2. Sciencehttps://doi.org/10.1126/science.abc1932 (2020).
OkbaNMASevere acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patientsEmerg. Infect. Dis.2020261478148810.3201/eid2607.200841
Cao, Y. et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cellhttps://doi.org/10.1016/j.cell.2020.05.025 (2020).
IshoBPersistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patientsSci. Immunol.20205eabe551133033173
Corbett, K. S. et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa2024671 (2020).
GorseGJDonovanMMPatelGBAntibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus-associated illnessesJ. Med. Virol2020925125171:CAS:528:DC%2BB3cXltFems7k%3D10.1002/jmv.25715
LongQXClinical and immunological assessment of asymptomatic SARS-CoV-2 infectionsNat. Med202026120012041:CAS:528:DC%2BB3cXhtF2qtbrM10.1038/s41591-020-0965-6
IwasakiAYangYThe potential danger of suboptimal antibody responses in COVID-19Nat. Rev. Immunol2020203393411:CAS:528:DC%2BB3cXns1CisL0%3D10.1038/s41577-020-0321-6
Edridge, A. W. D. et al. Seasonal coronavirus protective immunity is short-lasting. Nat. Med.https://doi.org/10.1038/s41591-020-1083-1 (2020).
Rogers, T. F. et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Sciencehttps://doi.org/10.1126/science.abc7520 (2020).
Wu, F. et al. Evaluating the association of clinical characteristics with neutralizing antibody levels in patients who have recovered from mild COVID-19 in Shanghai, China. JAMA Intern. Med. https://doi.org/10.1001/jamainternmed.2020.4616 (2020).
Crawford, K. H. D. et al. Dynamics of neutralizing antibody titers in the months after SARS-CoV-2 infection. J. Infect. Dis.https://doi.org/10.1093/infdis/jiaa618 (2020).
Shi, R. et al. A human neutralizing antibody targets the receptor binding site of SARS-CoV-2. Naturehttps://doi.org/10.1038/s41586-020-2381-y (2020).
LeeNAnti-SARS-CoV IgG response in relation to disease severity of severe acute respiratory syndromeJ. Clin. Virol2006351791841:CAS:528:DC%2BD28XjvVKhtA%3D%3D10.1016/j.jcv.2005.07.005
Wajnberg, A. et al. SARS-CoV-2 infection induces robust, neutralizing antibody responses that are stable for at least three months. Preprint at medRxivhttps://doi.org/10.1101/2020.07.14.20151126 (2020).
813_CR20
813_CR21
813_CR26
813_CR27
813_CR28
PG Choe (813_CR24) 2017; 23
813_CR29
eKM Petersen (813_CR43) 2020; 20
813_CR11
NMA Okba (813_CR5) 2020; 26
813_CR12
813_CR51
813_CR52
813_CR10
813_CR54
M Wang (813_CR22) 2011; 6
QX Long (813_CR3) 2020; 26
J Prevost (813_CR7) 2020; 1
813_CR15
813_CR17
813_CR18
813_CR9
GJ Gorse (813_CR2) 2020; 92
813_CR8
AS Iyer (813_CR35) 2020; 5
813_CR4
813_CR50
813_CR44
813_CR45
813_CR46
813_CR47
813_CR40
813_CR41
813_CR42
813_CR1
IJ Amanna (813_CR23) 2007; 357
813_CR48
G Beaudoin-Bussières (813_CR36) 2020; 11
QX Long (813_CR13) 2020; 26
B Isho (813_CR37) 2020; 5
H Mo (813_CR16) 2006; 11
S Pickering (813_CR6) 2020; 16
813_CR34
T Sekine (813_CR53) 2020; 183
813_CR30
813_CR31
K Grehan (813_CR25) 2015; 2
813_CR38
813_CR39
A Iwasaki (813_CR33) 2020; 20
N Lee (813_CR32) 2006; 35
KA Callow (813_CR14) 1990; 105
WC Cao (813_CR19) 2007; 357
TRF Smith (813_CR49) 2020; 11
References_xml – reference: SekineTRobust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19Cell Press20201831581681:CAS:528:DC%2BB3cXhvFKjs7jE
– reference: Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Naturehttps://doi.org/10.1038/s41586-020-2380-z (2020).
– reference: IwasakiAYangYThe potential danger of suboptimal antibody responses in COVID-19Nat. Rev. Immunol2020203393411:CAS:528:DC%2BB3cXns1CisL0%3D10.1038/s41577-020-0321-6
– reference: Amanat, F. et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat. Med. https://doi.org/10.1038/s41591-020-0913-5(2020).
– reference: LeeNAnti-SARS-CoV IgG response in relation to disease severity of severe acute respiratory syndromeJ. Clin. Virol2006351791841:CAS:528:DC%2BD28XjvVKhtA%3D%3D10.1016/j.jcv.2005.07.005
– reference: Beaudoin-BussièresGDecline of humoral responses against SARS-CoV-2 Spike in convalescent individualsmBio202011e025902010.1128/mBio.02590-20
– reference: MoHLongitudinal profile of antibodies against SARS-coronavirus in SARS patients and their clinical significanceRespirology200611495310.1111/j.1440-1843.2006.00783.x
– reference: PrevostJCross-sectional evaluation of humoral responses against SARS-CoV-2 SpikeCell Rep. Med.2020110012610.1016/j.xcrm.2020.100126
– reference: Kellam, P. & Barclay, W. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection. J. Gen. Virol. https://doi.org/10.1099/jgv.0.001439 (2020).
– reference: GorseGJDonovanMMPatelGBAntibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus-associated illnessesJ. Med. Virol2020925125171:CAS:528:DC%2BB3cXltFems7k%3D10.1002/jmv.25715
– reference: Deng, W. et al. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Sciencehttps://doi.org/10.1126/science.abc5343 (2020).
– reference: IshoBPersistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patientsSci. Immunol.20205eabe551133033173
– reference: Thompson, C. et al. Neutralising antibodies to SARS coronavirus 2 in Scottish blood donors—a pilot study of the value of serology to determine population exposure. Preprint at medRxivhttps://doi.org/10.1101/2020.04.13.20060467 (2020).
– reference: AmannaIJCarlsonNESlifkaMKDuration of humoral immunity to common viral and vaccine antigensN. Engl. J. Med.2007357190319151:CAS:528:DC%2BD2sXht1ymtbjI10.1056/NEJMoa066092
– reference: Moore, J. P. & Klasse, P. J. SARS-CoV-2 vaccines: ‘Warp Speed’ needs mind melds not warped minds. J. Virol. https://doi.org/10.1128/JVI.01083-20 (2020).
– reference: CaoWCLiuWZhangPHZhangFRichardusJHDisappearance of antibodies to SARS-associated coronavirus after recoveryN. Engl. J. Med2007357116211631:CAS:528:DC%2BD2sXhtVGqu7nN10.1056/NEJMc070348
– reference: PeterseneKMComparing SARS-CoV-2 with SARS-CoV and influenza pandemicsLancet Infect.202020e238e2441:CAS:528:DC%2BB3cXhtlegu7rE10.1016/S1473-3099(20)30484-9
– reference: Rogers, T. F. et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Sciencehttps://doi.org/10.1126/science.abc7520 (2020).
– reference: Carter, M. J. et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat. Med.https://doi.org/10.1038/s41591-020-1054-6 (2020).
– reference: Shi, R. et al. A human neutralizing antibody targets the receptor binding site of SARS-CoV-2. Naturehttps://doi.org/10.1038/s41586-020-2381-y (2020).
– reference: Seydoux, E. et al. Analysis of a SARS-CoV-2-infected individual reveals development of potent neutralizing antibodies with limited somatic mutation. Immunityhttps://doi.org/10.1016/j.immuni.2020.06.001 (2020).
– reference: Wang, K. et al. Longitudinal dynamics of the neutralizing antibody response to SARS-CoV-2 infection. Clin. Infect. Dis.https://doi.org/10.1093/cid/ciaa1143 (2020).
– reference: Wajnberg, A. et al. SARS-CoV-2 infection induces robust, neutralizing antibody responses that are stable for at least three months. Preprint at medRxivhttps://doi.org/10.1101/2020.07.14.20151126 (2020).
– reference: Wu, F. et al. Evaluating the association of clinical characteristics with neutralizing antibody levels in patients who have recovered from mild COVID-19 in Shanghai, China. JAMA Intern. Med. https://doi.org/10.1001/jamainternmed.2020.4616 (2020).
– reference: GrehanKFerraraFTempertonNAn optimised method for the production of MERS-CoV spike expressing viral pseudotypesMethodsX201523793841:STN:280:DC%2BC28rgsVektQ%3D%3D10.1016/j.mex.2015.09.003
– reference: Luchsinger, L. L. et al. Serological assays estimate highly variable SARS-CoV-2 neutralizing antibody activity in recovered COVID19 patients. J. Clin. Microbiol. https://doi.org/10.1128/JCM.02005-20 (2020).
– reference: OkbaNMASevere acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patientsEmerg. Infect. Dis.2020261478148810.3201/eid2607.200841
– reference: IyerASPersistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients.Sci. Immunol.20205eabe036710.1126/sciimmunol.abe0367
– reference: ChoePGMERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015Emerg. Infect. Dis.201723107910841:CAS:528:DC%2BC1cXhvFGjt7nI10.3201/eid2307.170310
– reference: WangMAntibody dynamics of 2009 influenza A (H1N1) virus in infected patients and vaccinated people in ChinaPLoS ONE20116e168091:CAS:528:DC%2BC3MXitlyjt74%3D10.1371/journal.pone.0016809
– reference: Keech, C. et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2026920 (2020).
– reference: Crawford, K. H. D. et al. Dynamics of neutralizing antibody titers in the months after SARS-CoV-2 infection. J. Infect. Dis.https://doi.org/10.1093/infdis/jiaa618 (2020).
– reference: Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Preprint at medRxivhttps://doi.org/10.1101/2020.06.10.20126532 (2020).
– reference: Lee, W. T. et al. Neutralizing antibody responses in COVID-19 convalescent sera. Preprint at medRxivhttps://doi.org/10.1101/2020.07.10.20150557 (2020).
– reference: LongQXClinical and immunological assessment of asymptomatic SARS-CoV-2 infectionsNat. Med202026120012041:CAS:528:DC%2BB3cXhtF2qtbrM10.1038/s41591-020-0965-6
– reference: Edridge, A. W. D. et al. Seasonal coronavirus protective immunity is short-lasting. Nat. Med.https://doi.org/10.1038/s41591-020-1083-1 (2020).
– reference: Schmidt, F. et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med. 217, https://doi.org/10.1084/jem.20201181 (2020).
– reference: Jackson, L. A. et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa2022483 (2020).
– reference: Rodda, L. B. et al. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Preprint at medRxivhttps://doi.org/10.1101/2020.08.11.20171843 (2020).
– reference: van Doremalen, N. et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Naturehttps://doi.org/10.1038/s41586-020-2608-y (2020).
– reference: LongQXAntibody responses to SARS-CoV-2 in patients with COVID-19Nat. Med.2020268458481:CAS:528:DC%2BB3cXot1aktLk%3D10.1038/s41591-020-0897-1
– reference: Cao, Y. et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cellhttps://doi.org/10.1016/j.cell.2020.05.025 (2020).
– reference: Laing, A. G. et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med. https://doi.org/10.1038/s41591-020-1038-6 (2020).
– reference: Corbett, K. S. et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa2024671 (2020).
– reference: Muecksch, F. et al. Longitudinal analysis of clinical serology assay performance and neutralising antibody levels in COVID19 convalescents. Preprint at medRxivhttps://doi.org/10.1101/2020.08.05.20169128 (2020).
– reference: Wu, J. et al. SARS-CoV-2 infection induces sustained humoral immune responses in convalescent patients following symptomatic COVID-19. Preprint at medRxivhttps://doi.org/10.1101/2020.07.21.20159178 (2020).
– reference: Chandrashekar, A. et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Sciencehttps://doi.org/10.1126/science.abc4776 (2020).
– reference: Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Naturehttps://doi.org/10.1038/s41586-020-2456-9 (2020).
– reference: Gao, Q. et al. Rapid development of an inactivated vaccine candidate for SARS-CoV-2. Sciencehttps://doi.org/10.1126/science.abc1932 (2020).
– reference: Brouwer, P. J. M. et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Sciencehttps://doi.org/10.1126/science.abc5902 (2020).
– reference: Yu, J. et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Sciencehttps://doi.org/10.1126/science.abc6284 (2020).
– reference: CallowKAParryHFSergeantMTyrrellDAThe time course of the immune response to experimental coronavirus infection of manEpidemiol. Infect.19901054354461:STN:280:DyaK3M%2Fgs1CjsA%3D%3D10.1017/S0950268800048019
– reference: SmithTRFImmunogenicity of a DNA vaccine candidate for COVID-19Nat. Commun.2020111:CAS:528:DC%2BB3cXpvF2rtbY%3D10.1038/s41467-020-16505-0
– reference: PickeringSComparative assessment of multiple COVID-19 serological technologies supports continued evaluation of point-of-care lateral flow assays in hospital and community healthcare settingsPLoS Pathog202016e10088171:CAS:528:DC%2BB3cXhvFaktrvJ10.1371/journal.ppat.1008817
– ident: 813_CR9
  doi: 10.1016/j.cell.2020.05.025
– ident: 813_CR50
  doi: 10.1038/s41586-020-2608-y
– ident: 813_CR48
  doi: 10.1126/science.abc1932
– ident: 813_CR15
  doi: 10.1099/jgv.0.001439
– ident: 813_CR52
  doi: 10.1056/NEJMoa2024671
– ident: 813_CR18
  doi: 10.1038/s41591-020-1083-1
– volume: 35
  start-page: 179
  year: 2006
  ident: 813_CR32
  publication-title: J. Clin. Virol
  doi: 10.1016/j.jcv.2005.07.005
– ident: 813_CR40
  doi: 10.1016/j.immuni.2020.06.001
– volume: 16
  start-page: e1008817
  year: 2020
  ident: 813_CR6
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1008817
– volume: 2
  start-page: 379
  year: 2015
  ident: 813_CR25
  publication-title: MethodsX
  doi: 10.1016/j.mex.2015.09.003
– ident: 813_CR39
  doi: 10.1093/cid/ciaa1143
– volume: 23
  start-page: 1079
  year: 2017
  ident: 813_CR24
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2307.170310
– volume: 105
  start-page: 435
  year: 1990
  ident: 813_CR14
  publication-title: Epidemiol. Infect.
  doi: 10.1017/S0950268800048019
– ident: 813_CR27
  doi: 10.1101/2020.06.10.20126532
– volume: 6
  start-page: e16809
  year: 2011
  ident: 813_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0016809
– volume: 20
  start-page: 339
  year: 2020
  ident: 813_CR33
  publication-title: Nat. Rev. Immunol
  doi: 10.1038/s41577-020-0321-6
– ident: 813_CR38
  doi: 10.1101/2020.07.21.20159178
– ident: 813_CR34
  doi: 10.1101/2020.07.14.20151126
– volume: 11
  start-page: 49
  year: 2006
  ident: 813_CR16
  publication-title: Respirology
  doi: 10.1111/j.1440-1843.2006.00783.x
– ident: 813_CR20
  doi: 10.1101/2020.07.10.20150557
– ident: 813_CR41
  doi: 10.1101/2020.08.11.20171843
– volume: 183
  start-page: 158
  year: 2020
  ident: 813_CR53
  publication-title: Cell Press
– ident: 813_CR30
  doi: 10.1038/s41591-020-1038-6
– ident: 813_CR45
  doi: 10.1126/science.abc5343
– ident: 813_CR29
  doi: 10.1038/s41586-020-2380-z
– ident: 813_CR51
  doi: 10.1126/science.abc6284
– volume: 1
  start-page: 100126
  year: 2020
  ident: 813_CR7
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2020.100126
– ident: 813_CR47
  doi: 10.1056/NEJMoa2026920
– ident: 813_CR42
  doi: 10.1038/s41586-020-2456-9
– ident: 813_CR12
  doi: 10.1093/infdis/jiaa618
– ident: 813_CR11
  doi: 10.1038/s41586-020-2381-y
– volume: 20
  start-page: e238
  year: 2020
  ident: 813_CR43
  publication-title: Lancet Infect.
  doi: 10.1016/S1473-3099(20)30484-9
– volume: 5
  start-page: eabe0367
  year: 2020
  ident: 813_CR35
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.abe0367
– ident: 813_CR46
  doi: 10.1056/NEJMoa2022483
– volume: 11
  year: 2020
  ident: 813_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16505-0
– ident: 813_CR21
  doi: 10.1001/jamainternmed.2020.4616
– volume: 11
  start-page: e02590
  year: 2020
  ident: 813_CR36
  publication-title: mBio
  doi: 10.1128/mBio.02590-20
– volume: 92
  start-page: 512
  year: 2020
  ident: 813_CR2
  publication-title: J. Med. Virol
  doi: 10.1002/jmv.25715
– volume: 357
  start-page: 1903
  year: 2007
  ident: 813_CR23
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa066092
– ident: 813_CR1
  doi: 10.1038/s41591-020-0913-5
– ident: 813_CR17
  doi: 10.1128/JVI.01083-20
– ident: 813_CR8
  doi: 10.1126/science.abc5902
– ident: 813_CR26
  doi: 10.1101/2020.04.13.20060467
– volume: 26
  start-page: 1200
  year: 2020
  ident: 813_CR13
  publication-title: Nat. Med
  doi: 10.1038/s41591-020-0965-6
– ident: 813_CR28
  doi: 10.1084/jem.20201181
– volume: 26
  start-page: 1478
  year: 2020
  ident: 813_CR5
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2607.200841
– volume: 26
  start-page: 845
  year: 2020
  ident: 813_CR3
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0897-1
– ident: 813_CR10
  doi: 10.1126/science.abc7520
– ident: 813_CR44
  doi: 10.1126/science.abc4776
– ident: 813_CR4
  doi: 10.1128/JCM.02005-20
– volume: 5
  start-page: eabe5511
  year: 2020
  ident: 813_CR37
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.abe5511
– volume: 357
  start-page: 1162
  year: 2007
  ident: 813_CR19
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJMc070348
– ident: 813_CR31
  doi: 10.1101/2020.08.05.20169128
– ident: 813_CR54
  doi: 10.1038/s41591-020-1054-6
SSID ssj0001626686
Score 2.6481104
Snippet Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10–15 d after the onset of COVID-19 symptoms. However, due to the recent...
Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10-15 d after the onset of COVID-19 symptoms. However, due to the recent...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1598
SubjectTerms 38/109
631/250/2152
631/250/254
631/250/255
631/326/596
82
82/1
82/80
82/83
Adult
Aged
Aged, 80 and over
Antibodies
Antibodies, Neutralizing - blood
Antibodies, Neutralizing - immunology
Antibodies, Viral - blood
Antibodies, Viral - immunology
Antibody response
Biomedical and Life Sciences
COVID-19
COVID-19 - blood
COVID-19 - immunology
COVID-19 - pathology
Female
Humans
Immunoglobulin A
Immunoglobulin G
Infections
Infectious Diseases
Kinetics
Life Sciences
Longitudinal Studies
Male
Medical Microbiology
Medical personnel
Microbiology
Middle Aged
Parasitology
SARS-CoV-2 - immunology
Seroconversion
Severe acute respiratory syndrome coronavirus 2
Severity of Illness Index
Virology
Young Adult
Title Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans
URI https://link.springer.com/article/10.1038/s41564-020-00813-8
https://www.ncbi.nlm.nih.gov/pubmed/33106674
https://www.proquest.com/docview/2475058196
https://www.proquest.com/docview/2454654782
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagKyQuiDcLpTISN7C6iR3HPqHdqqsKwQq1FPUW-RVRCcVlkxUqZ344M4mzK1TRQ04eJ47H9nwztucj5G3Ggy3LmjPH84IJZQTTYuaYMJkB-G9M2d9b-7ySJ-fi40VxkQJubTpWOa6J_ULto8MY-WEuwLYVYL_kh6ufDFmjcHc1UWjcJRNYghU4X5PF8erL6S7KAnhdKpluy8y4OmzRYxEMvSY0h5ypfy3SDZh5Y4u0tzzLh-RBgox0Puj4EbkTmsfk3kAief2E_PkUkXNo45Hfika7DbNS03jqA959DDTWtAmbPqzxG74CZd2ljf6arodDsqGllw0FNAjPOgQKv9t9b2kNwyT-wgpn89MzdhS_sZyOB7garNKT_LVPyfny-OvRCUvcCswJVXSYQrQog_YqN4UrTF5b8P1M4bM6wxyFTmN_CiNLr7VwHKRB19rqXCptban4M7LXxCa8INRo6QC1OatAbia98uB0oWMJrpe1QkxJNvZv5VLiceS_-FH1G-BcVYNOKtBJ1eukUlPyblvnaki7cav0_qi2Kk3BttoNmCl5sy2GyYM7IqYJcYMyyAUvACVNyfNB3dvPcQC-UpbQ_Pej_ncv_39bXt7ellfkfo5jrz8Qs0_2uvUmvAZY09kDMpkvF4vVQRrDfwGjbfTF
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDcLBYwEJ7C6sR3HOSBUSqst3a5QH6i34FdEJZSUTVbVcub38BuZyWNXqKK3HnLyM56xZ77x4yPkdSSCTZJcMCd4zKQ2kqVy5Jg0kQH335ikubd2MFXjE_n5ND5dI3_6uzB4rLJfE5uF2pcOY-SbXIJti8F-qQ_nPxmyRuHuak-h0arFflhcAGSr3u99Avm-4Xx353h7zDpWAeakjmt8PDNOQuo1N7GLDc8toB4T-yiP8HU-l3Jcso1KfJpKJyA3_GVqU650am2iBdR7g6xLAVBmQNY_7ky_HK6iOoAPlFbd7ZyR0JsVIiTJEKWh-RVM_2sBL7m1l7ZkG0u3e5fc6VxUutXq1D2yFor75GZLWrl4QH5PSuQ4mnvk06KlXYZ1qSk89QHvWgZa5rQI8yaM8gtagbT6zJZ-QWftodxQ0bOCgvcJ3ywECsNbf69oDmpZXmCBo63DI7ZdfmWc9gfGCizSkApWD8nJtYz6IzIoyiI8IdSkyoGX6KyGfCPltQeQh0AWoJ61Ug5J1I9v5rqHzpFv40fWbLgLnbUyyUAmWSOTTA_J22WZ8_aZjytzb_Riy7opX2UrBR2SV8tkmKy4A2OKUM4xD3LPS_DKhuRxK-5lcwIcbaUS6P67Xv6ryv_fl6dX9-UluTU-Pphkk73p_jNym6MeNodxNsigns3Dc3Cpavui02NKvl331PkLNj0urQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+observation+and+decline+of+neutralizing+antibody+responses+in+the+three+months+following+SARS-CoV-2+infection+in+humans&rft.jtitle=Nature+microbiology&rft.au=Seow%2C+Jeffrey&rft.au=Graham%2C+Carl&rft.au=Merrick%2C+Blair&rft.au=Acors+Sam&rft.date=2020-12-01&rft.pub=Nature+Publishing+Group&rft.eissn=2058-5276&rft.volume=5&rft.issue=12&rft.spage=1598&rft.epage=1607&rft_id=info:doi/10.1038%2Fs41564-020-00813-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-5276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-5276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-5276&client=summon