Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans
Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10–15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protecti...
Saved in:
Published in | Nature microbiology Vol. 5; no. 12; pp. 1598 - 1607 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10–15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection. Using sequential serum samples collected up to 94 d post onset of symptoms (POS) from 65 individuals with real-time quantitative PCR-confirmed SARS-CoV-2 infection, we show seroconversion (immunoglobulin (Ig)M, IgA, IgG) in >95% of cases and neutralizing antibody responses when sampled beyond 8 d POS. We show that the kinetics of the neutralizing antibody response is typical of an acute viral infection, with declining neutralizing antibody titres observed after an initial peak, and that the magnitude of this peak is dependent on disease severity. Although some individuals with high peak infective dose (ID
50
> 10,000) maintained neutralizing antibody titres >1,000 at >60 d POS, some with lower peak ID
50
had neutralizing antibody titres approaching baseline within the follow-up period. A similar decline in neutralizing antibody titres was observed in a cohort of 31 seropositive healthcare workers. The present study has important implications when considering widespread serological testing and antibody protection against reinfection with SARS-CoV-2, and may suggest that vaccine boosters are required to provide long-lasting protection.
Neutralizing antibody responses of patients infected with SARS-CoV-2 peak at 3–4 weeks post onset of symptoms, then decline to low levels over the course of 3 months in some individuals. |
---|---|
AbstractList | Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10–15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection. Using sequential serum samples collected up to 94 d post onset of symptoms (POS) from 65 individuals with real-time quantitative PCR-confirmed SARS-CoV-2 infection, we show seroconversion (immunoglobulin (Ig)M, IgA, IgG) in >95% of cases and neutralizing antibody responses when sampled beyond 8 d POS. We show that the kinetics of the neutralizing antibody response is typical of an acute viral infection, with declining neutralizing antibody titres observed after an initial peak, and that the magnitude of this peak is dependent on disease severity. Although some individuals with high peak infective dose (ID50 > 10,000) maintained neutralizing antibody titres >1,000 at >60 d POS, some with lower peak ID50 had neutralizing antibody titres approaching baseline within the follow-up period. A similar decline in neutralizing antibody titres was observed in a cohort of 31 seropositive healthcare workers. The present study has important implications when considering widespread serological testing and antibody protection against reinfection with SARS-CoV-2, and may suggest that vaccine boosters are required to provide long-lasting protection.Neutralizing antibody responses of patients infected with SARS-CoV-2 peak at 3–4 weeks post onset of symptoms, then decline to low levels over the course of 3 months in some individuals. Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10-15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection. Using sequential serum samples collected up to 94 d post onset of symptoms (POS) from 65 individuals with real-time quantitative PCR-confirmed SARS-CoV-2 infection, we show seroconversion (immunoglobulin (Ig)M, IgA, IgG) in >95% of cases and neutralizing antibody responses when sampled beyond 8 d POS. We show that the kinetics of the neutralizing antibody response is typical of an acute viral infection, with declining neutralizing antibody titres observed after an initial peak, and that the magnitude of this peak is dependent on disease severity. Although some individuals with high peak infective dose (ID > 10,000) maintained neutralizing antibody titres >1,000 at >60 d POS, some with lower peak ID had neutralizing antibody titres approaching baseline within the follow-up period. A similar decline in neutralizing antibody titres was observed in a cohort of 31 seropositive healthcare workers. The present study has important implications when considering widespread serological testing and antibody protection against reinfection with SARS-CoV-2, and may suggest that vaccine boosters are required to provide long-lasting protection. Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10-15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection. Using sequential serum samples collected up to 94 d post onset of symptoms (POS) from 65 individuals with real-time quantitative PCR-confirmed SARS-CoV-2 infection, we show seroconversion (immunoglobulin (Ig)M, IgA, IgG) in >95% of cases and neutralizing antibody responses when sampled beyond 8 d POS. We show that the kinetics of the neutralizing antibody response is typical of an acute viral infection, with declining neutralizing antibody titres observed after an initial peak, and that the magnitude of this peak is dependent on disease severity. Although some individuals with high peak infective dose (ID50 > 10,000) maintained neutralizing antibody titres >1,000 at >60 d POS, some with lower peak ID50 had neutralizing antibody titres approaching baseline within the follow-up period. A similar decline in neutralizing antibody titres was observed in a cohort of 31 seropositive healthcare workers. The present study has important implications when considering widespread serological testing and antibody protection against reinfection with SARS-CoV-2, and may suggest that vaccine boosters are required to provide long-lasting protection.Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10-15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection. Using sequential serum samples collected up to 94 d post onset of symptoms (POS) from 65 individuals with real-time quantitative PCR-confirmed SARS-CoV-2 infection, we show seroconversion (immunoglobulin (Ig)M, IgA, IgG) in >95% of cases and neutralizing antibody responses when sampled beyond 8 d POS. We show that the kinetics of the neutralizing antibody response is typical of an acute viral infection, with declining neutralizing antibody titres observed after an initial peak, and that the magnitude of this peak is dependent on disease severity. Although some individuals with high peak infective dose (ID50 > 10,000) maintained neutralizing antibody titres >1,000 at >60 d POS, some with lower peak ID50 had neutralizing antibody titres approaching baseline within the follow-up period. A similar decline in neutralizing antibody titres was observed in a cohort of 31 seropositive healthcare workers. The present study has important implications when considering widespread serological testing and antibody protection against reinfection with SARS-CoV-2, and may suggest that vaccine boosters are required to provide long-lasting protection. Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10–15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection. Using sequential serum samples collected up to 94 d post onset of symptoms (POS) from 65 individuals with real-time quantitative PCR-confirmed SARS-CoV-2 infection, we show seroconversion (immunoglobulin (Ig)M, IgA, IgG) in >95% of cases and neutralizing antibody responses when sampled beyond 8 d POS. We show that the kinetics of the neutralizing antibody response is typical of an acute viral infection, with declining neutralizing antibody titres observed after an initial peak, and that the magnitude of this peak is dependent on disease severity. Although some individuals with high peak infective dose (ID 50 > 10,000) maintained neutralizing antibody titres >1,000 at >60 d POS, some with lower peak ID 50 had neutralizing antibody titres approaching baseline within the follow-up period. A similar decline in neutralizing antibody titres was observed in a cohort of 31 seropositive healthcare workers. The present study has important implications when considering widespread serological testing and antibody protection against reinfection with SARS-CoV-2, and may suggest that vaccine boosters are required to provide long-lasting protection. Neutralizing antibody responses of patients infected with SARS-CoV-2 peak at 3–4 weeks post onset of symptoms, then decline to low levels over the course of 3 months in some individuals. |
Author | Martinez-Nunez, Rocio Edgeworth, Jonathan D. Graham, Carl MacMahon, Eithne Martinez, Lauren Douthwaite, Sam Patel, Amita Nebbia, Gaia Signell, Adrian W. Stokes, Brielle Izquierdo-Barras, Alba Snell, Luke B. Green, Adrian O’Connell, Lorcan Wilson, Harry D. Galao, Rui Pedro Doores, Katie J. Kerridge, Claire Batra, Rahul Betancor, Gilberto Merrick, Blair Acors, Sam Lista, Maria Jose O’Byrne, Aoife Seow, Jeffrey Jimenez-Guardeño, Jose M. Honey, Johanna Winstone, Helena Tan, Mark Kia Ik Hemmings, Oliver Arbane, Gill Neil, Stuart J. D. Kouphou, Neophytos Pickering, Suzanne Temperton, Nigel Malim, Michael H. Huettner, Isabella Bisnauthsing, Karen Shankar-Hari, Manu Moore, Amelia O’Hara, Geraldine Steel, Kathryn J. A. |
Author_xml | – sequence: 1 givenname: Jeffrey orcidid: 0000-0003-0722-8561 surname: Seow fullname: Seow, Jeffrey organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 2 givenname: Carl surname: Graham fullname: Graham, Carl organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 3 givenname: Blair orcidid: 0000-0002-6061-6064 surname: Merrick fullname: Merrick, Blair organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 4 givenname: Sam orcidid: 0000-0001-6428-7707 surname: Acors fullname: Acors, Sam organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 5 givenname: Suzanne orcidid: 0000-0002-2747-9029 surname: Pickering fullname: Pickering, Suzanne organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 6 givenname: Kathryn J. A. surname: Steel fullname: Steel, Kathryn J. A. organization: Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London – sequence: 7 givenname: Oliver surname: Hemmings fullname: Hemmings, Oliver organization: Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London – sequence: 8 givenname: Aoife surname: O’Byrne fullname: O’Byrne, Aoife organization: Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London – sequence: 9 givenname: Neophytos surname: Kouphou fullname: Kouphou, Neophytos organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 10 givenname: Rui Pedro orcidid: 0000-0003-3368-5053 surname: Galao fullname: Galao, Rui Pedro organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 11 givenname: Gilberto surname: Betancor fullname: Betancor, Gilberto organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 12 givenname: Harry D. orcidid: 0000-0002-3185-1073 surname: Wilson fullname: Wilson, Harry D. organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 13 givenname: Adrian W. orcidid: 0000-0003-4620-6891 surname: Signell fullname: Signell, Adrian W. organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 14 givenname: Helena surname: Winstone fullname: Winstone, Helena organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 15 givenname: Claire surname: Kerridge fullname: Kerridge, Claire organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 16 givenname: Isabella surname: Huettner fullname: Huettner, Isabella organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 17 givenname: Jose M. orcidid: 0000-0002-1726-8033 surname: Jimenez-Guardeño fullname: Jimenez-Guardeño, Jose M. organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 18 givenname: Maria Jose surname: Lista fullname: Lista, Maria Jose organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 19 givenname: Nigel orcidid: 0000-0002-7978-3815 surname: Temperton fullname: Temperton, Nigel organization: Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent – sequence: 20 givenname: Luke B. orcidid: 0000-0002-6263-9497 surname: Snell fullname: Snell, Luke B. organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 21 givenname: Karen surname: Bisnauthsing fullname: Bisnauthsing, Karen organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 22 givenname: Amelia surname: Moore fullname: Moore, Amelia organization: Guy’s and St Thomas’ R&D Department, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 23 givenname: Adrian surname: Green fullname: Green, Adrian organization: Guy’s and St Thomas’ R&D Department, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 24 givenname: Lauren orcidid: 0000-0002-5830-2496 surname: Martinez fullname: Martinez, Lauren organization: Guy’s and St Thomas’ R&D Department, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 25 givenname: Brielle orcidid: 0000-0001-5371-2448 surname: Stokes fullname: Stokes, Brielle organization: Guy’s and St Thomas’ R&D Department, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 26 givenname: Johanna surname: Honey fullname: Honey, Johanna organization: Guy’s and St Thomas’ R&D Department, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 27 givenname: Alba orcidid: 0000-0003-0665-311X surname: Izquierdo-Barras fullname: Izquierdo-Barras, Alba organization: Guy’s and St Thomas’ R&D Department, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 28 givenname: Gill surname: Arbane fullname: Arbane, Gill organization: Department of Intensive Care Medicine, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 29 givenname: Amita orcidid: 0000-0001-5945-7791 surname: Patel fullname: Patel, Amita organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 30 givenname: Mark Kia Ik orcidid: 0000-0002-7774-3836 surname: Tan fullname: Tan, Mark Kia Ik organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 31 givenname: Lorcan surname: O’Connell fullname: O’Connell, Lorcan organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 32 givenname: Geraldine orcidid: 0000-0002-1922-9492 surname: O’Hara fullname: O’Hara, Geraldine organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 33 givenname: Eithne surname: MacMahon fullname: MacMahon, Eithne organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 34 givenname: Sam surname: Douthwaite fullname: Douthwaite, Sam organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 35 givenname: Gaia surname: Nebbia fullname: Nebbia, Gaia organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 36 givenname: Rahul surname: Batra fullname: Batra, Rahul organization: Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 37 givenname: Rocio surname: Martinez-Nunez fullname: Martinez-Nunez, Rocio organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 38 givenname: Manu orcidid: 0000-0002-5338-2538 surname: Shankar-Hari fullname: Shankar-Hari, Manu organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, Department of Intensive Care Medicine, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 39 givenname: Jonathan D. surname: Edgeworth fullname: Edgeworth, Jonathan D. organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust – sequence: 40 givenname: Stuart J. D. surname: Neil fullname: Neil, Stuart J. D. organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 41 givenname: Michael H. orcidid: 0000-0002-7699-2064 surname: Malim fullname: Malim, Michael H. organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London – sequence: 42 givenname: Katie J. orcidid: 0000-0002-5507-1725 surname: Doores fullname: Doores, Katie J. email: katie.doores@kcl.ac.uk organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33106674$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9vFCEUx4mpsbX2H_BgSLx4GQUGGObYbPyVbGJi1SthmDe7NAyswNTUs3-47G4bTQ898CB5n-_j5ft9jk5CDIDQS0reUtKqd5lTIXlDGGkIUbRt1BN0xohQjWCdPPnvfYoucr4mhFDJpFTyGTptW0qk7PgZ-rOOYePKMrpgPI5DhnRjiosBmzDiEax3AXCccIClJOPdbxc2tVfcEMdbnCDvYsiQsQu4bKGeBIDnGMo24yl6H3_tBVeXX6-aVfzRsApOYA8_VMl2mU3IL9DTyfgMF3f3Ofr-4f231adm_eXj59XlurFcidJ0tXbQj4oZYYVh08AoMWKkEyWMt7ZnlCluZDf2PbdtpcHafuiZVP0wdKo9R2-Oc3cp_lwgFz27bMF7EyAuWTMuuBS8U6yirx-g13FJ1aM91YnqLe1lpV7dUcsww6h3yc0m3ep7fyugjoBNMecEk7auHPytZjqvKdH7NPUxTV3T1Ic09X5Z9kB6P_1RUXsU5QqHDaR_az-i-gvHobFq |
CitedBy_id | crossref_primary_10_1016_j_cell_2021_06_005 crossref_primary_10_3390_antib12020035 crossref_primary_10_3349_ymj_2021_62_7_584 crossref_primary_10_3389_fmolb_2021_620806 crossref_primary_10_1007_s11596_021_2470_7 crossref_primary_10_1093_infdis_jiab300 crossref_primary_10_1098_rstb_2020_0279 crossref_primary_10_1136_bmj_m4288 crossref_primary_10_1111_bjh_17836 crossref_primary_10_1136_bmjopen_2020_047216 crossref_primary_10_1093_infdis_jiac406 crossref_primary_10_3390_v16030446 crossref_primary_10_3390_vaccines10050690 crossref_primary_10_1001_jamanetworkopen_2021_35975 crossref_primary_10_1007_s00285_021_01657_4 crossref_primary_10_4103_AMJM_AMJM_5_22 crossref_primary_10_1016_j_ijid_2021_01_061 crossref_primary_10_1016_j_jiph_2024_02_016 crossref_primary_10_1038_s41598_022_20747_x crossref_primary_10_3390_vaccines9080910 crossref_primary_10_1016_j_isci_2022_105862 crossref_primary_10_1080_22221751_2022_2065936 crossref_primary_10_1016_j_jinf_2023_08_010 crossref_primary_10_1016_j_tmrv_2022_06_001 crossref_primary_10_1177_15353702231157941 crossref_primary_10_1093_infdis_jiab524 crossref_primary_10_3390_vaccines11020201 crossref_primary_10_1007_s00284_022_02800_0 crossref_primary_10_1186_s40779_021_00342_3 crossref_primary_10_3389_fimmu_2023_1309997 crossref_primary_10_3390_vaccines10081193 crossref_primary_10_1016_j_ijid_2021_01_037 crossref_primary_10_1038_s41590_022_01248_5 crossref_primary_10_1128_mbio_03580_21 crossref_primary_10_1093_infdis_jiab535 crossref_primary_10_1097_INF_0000000000003199 crossref_primary_10_3389_fpubh_2023_1164326 crossref_primary_10_7717_peerj_15443 crossref_primary_10_1111_imr_12953 crossref_primary_10_1183_23120541_00080_2021 crossref_primary_10_3389_fmed_2021_631769 crossref_primary_10_1016_j_jcv_2021_104765 crossref_primary_10_2139_ssrn_4016384 crossref_primary_10_1136_bmjopen_2021_060739 crossref_primary_10_4040_jkan_21156 crossref_primary_10_1136_annrheumdis_2021_221952 crossref_primary_10_1016_j_ebiom_2022_103967 crossref_primary_10_1016_j_cmi_2021_08_023 crossref_primary_10_1111_ajt_16909 crossref_primary_10_1038_s41598_022_06038_5 crossref_primary_10_3390_ijms241210181 crossref_primary_10_1038_s41598_022_05325_5 crossref_primary_10_1111_sji_13345 crossref_primary_10_3390_ijerph19010407 crossref_primary_10_1093_jalm_jfac060 crossref_primary_10_5858_arpa_2020_0811_SA crossref_primary_10_1128_JCM_02596_20 crossref_primary_10_1080_22221751_2021_1913974 crossref_primary_10_3389_fimmu_2021_723585 crossref_primary_10_1016_j_heliyon_2023_e16547 crossref_primary_10_1371_journal_pone_0256482 crossref_primary_10_1016_j_virol_2024_110067 crossref_primary_10_1371_journal_pone_0262911 crossref_primary_10_2478_jccm_2021_0018 crossref_primary_10_3390_vaccines10111924 crossref_primary_10_18273_revmed_v34n2_2021006 crossref_primary_10_1371_journal_ppat_1010882 crossref_primary_10_2169_internalmedicine_8019_21 crossref_primary_10_1089_vim_2021_0131 crossref_primary_10_1038_s41587_021_00878_8 crossref_primary_10_1016_j_jim_2024_113712 crossref_primary_10_3389_fimmu_2022_902140 crossref_primary_10_1016_j_isci_2023_105928 crossref_primary_10_62073_bypc_v87i1_238 crossref_primary_10_2139_ssrn_3739821 crossref_primary_10_1016_j_jcv_2021_104797 crossref_primary_10_3389_fimmu_2023_1242536 crossref_primary_10_1016_j_ijid_2021_03_084 crossref_primary_10_1016_S2666_5247_21_00219_6 crossref_primary_10_1080_1744666X_2022_2044797 crossref_primary_10_1016_j_celrep_2022_110345 crossref_primary_10_1093_jalm_jfac034 crossref_primary_10_1016_j_clnesp_2024_05_015 crossref_primary_10_1038_s41392_022_01002_1 crossref_primary_10_1136_bmj_m4262 crossref_primary_10_1016_j_ebiom_2021_103414 crossref_primary_10_1002_acn3_51570 crossref_primary_10_1093_infdis_jiab579 crossref_primary_10_1080_23744235_2021_1957143 crossref_primary_10_2222_jsv_70_167 crossref_primary_10_3389_fimmu_2022_817876 crossref_primary_10_1016_j_jcvp_2021_100044 crossref_primary_10_3389_fimmu_2022_930252 crossref_primary_10_1021_acssensors_0c02621 crossref_primary_10_1590_s1678_9946202264003 crossref_primary_10_1186_s12879_023_08412_8 crossref_primary_10_1017_S2040174421000398 crossref_primary_10_1016_j_jaip_2023_07_045 crossref_primary_10_1016_j_jmateco_2024_102962 crossref_primary_10_3389_fimmu_2021_633184 crossref_primary_10_1016_j_cmi_2021_07_024 crossref_primary_10_1016_j_xagr_2021_100020 crossref_primary_10_1016_j_jinf_2021_03_010 crossref_primary_10_3389_fimmu_2022_920227 crossref_primary_10_3390_vaccines12121413 crossref_primary_10_1016_j_biopha_2025_117936 crossref_primary_10_3389_fpubh_2021_709369 crossref_primary_10_1089_aid_2021_0005 crossref_primary_10_1016_j_vaccine_2021_07_098 crossref_primary_10_1186_s12985_023_02167_z crossref_primary_10_1093_ofid_ofac613 crossref_primary_10_3389_fams_2023_1292443 crossref_primary_10_1039_D2SC06665C crossref_primary_10_1590_1806_9282_20221074 crossref_primary_10_1016_j_puhip_2022_100297 crossref_primary_10_1093_occmed_kqab061 crossref_primary_10_3390_catal11020191 crossref_primary_10_1016_j_nmni_2021_100926 crossref_primary_10_1080_21645515_2023_2173904 crossref_primary_10_3389_fimmu_2022_867707 crossref_primary_10_3390_pathogens10101262 crossref_primary_10_1136_bmjopen_2020_044101 crossref_primary_10_3389_fpubh_2023_1198973 crossref_primary_10_1038_s41541_020_00264_6 crossref_primary_10_1186_s12985_024_02573_x crossref_primary_10_1172_jci_insight_184074 crossref_primary_10_1016_j_transci_2023_103785 crossref_primary_10_4049_immunohorizons_2100022 crossref_primary_10_1016_j_gendis_2020_12_007 crossref_primary_10_3389_fimmu_2021_635942 crossref_primary_10_1038_s43018_021_00275_9 crossref_primary_10_3390_vaccines9070714 crossref_primary_10_3389_fimmu_2021_657711 crossref_primary_10_3389_fimmu_2023_1241038 crossref_primary_10_1002_JLB_5MR0821_464R crossref_primary_10_3390_microorganisms9122578 crossref_primary_10_1080_22221751_2021_2002670 crossref_primary_10_1186_s43055_022_00739_7 crossref_primary_10_1007_s10875_021_01083_7 crossref_primary_10_7326_M20_7547 crossref_primary_10_4103_mjdrdypu_mjdrdypu_80_22 crossref_primary_10_3390_biomedicines9101342 crossref_primary_10_1002_jmv_28122 crossref_primary_10_1093_infdis_jiab120 crossref_primary_10_3390_microorganisms9071389 crossref_primary_10_1038_s41586_021_03207_w crossref_primary_10_1002_jmv_27270 crossref_primary_10_1073_pnas_2021615118 crossref_primary_10_1038_s41598_021_91011_x crossref_primary_10_1093_clinchem_hvab069 crossref_primary_10_3389_fimmu_2021_748291 crossref_primary_10_1017_erm_2021_30 crossref_primary_10_1093_ije_dyab217 crossref_primary_10_9778_cmajo_20210044 crossref_primary_10_1360_nso_20220009 crossref_primary_10_1093_cid_ciab172 crossref_primary_10_1038_s41598_021_84055_6 crossref_primary_10_1007_s11845_021_02883_x crossref_primary_10_2807_1560_7917_ES_2020_25_47_2001752 crossref_primary_10_2174_2666796703666220302143102 crossref_primary_10_1093_infdis_jiab375 crossref_primary_10_47583_ijpsrr_2022_v76i02_012 crossref_primary_10_1136_bmjgh_2022_008793 crossref_primary_10_1038_s41467_022_32389_8 crossref_primary_10_1371_journal_ppat_1010821 crossref_primary_10_1007_s00705_021_05132_9 crossref_primary_10_1016_j_cmi_2021_07_040 crossref_primary_10_5802_crbiol_35 crossref_primary_10_1371_journal_pntd_0009551 crossref_primary_10_1111_joim_13304 crossref_primary_10_7326_M20_7569 crossref_primary_10_1080_17843286_2022_2108978 crossref_primary_10_1515_cclm_2020_1736 crossref_primary_10_3389_fimmu_2022_816159 crossref_primary_10_1016_S2468_2667_22_00007_X crossref_primary_10_1088_1478_3975_ac7e9e crossref_primary_10_1016_j_chom_2021_06_016 crossref_primary_10_1128_spectrum_01333_24 crossref_primary_10_3390_vaccines10081173 crossref_primary_10_1002_jmv_27059 crossref_primary_10_1016_j_jim_2025_113817 crossref_primary_10_1016_j_ijid_2022_07_049 crossref_primary_10_1038_s41467_023_42430_z crossref_primary_10_2139_ssrn_3940264 crossref_primary_10_2478_amb_2021_0038 crossref_primary_10_1038_s41467_021_25949_x crossref_primary_10_3389_fimmu_2022_811952 crossref_primary_10_1038_s43856_024_00686_6 crossref_primary_10_3390_vaccines11050991 crossref_primary_10_1136_bmjgh_2020_004614 crossref_primary_10_1038_s41586_021_03291_y crossref_primary_10_3390_v13020284 crossref_primary_10_3389_fimmu_2024_1395684 crossref_primary_10_1016_j_celrep_2022_111276 crossref_primary_10_1186_s12985_022_01844_9 crossref_primary_10_1080_22221751_2022_2026741 crossref_primary_10_1038_s43856_021_00045_9 crossref_primary_10_3389_fimmu_2023_1129753 crossref_primary_10_1016_j_cmi_2021_06_040 crossref_primary_10_3390_jcm12247575 crossref_primary_10_1016_S2666_5247_21_00143_9 crossref_primary_10_1038_s41375_020_01103_2 crossref_primary_10_1186_s12879_021_06517_6 crossref_primary_10_1016_j_envres_2021_110972 crossref_primary_10_1136_bmjopen_2021_056853 crossref_primary_10_1093_infdis_jiab161 crossref_primary_10_1038_s41598_022_17605_1 crossref_primary_10_1016_j_cyto_2022_155874 crossref_primary_10_3390_microorganisms9030556 crossref_primary_10_3389_fimmu_2023_1244556 crossref_primary_10_25259_NMJI_109_21 crossref_primary_10_1016_j_ijid_2024_107075 crossref_primary_10_1016_j_ebiom_2021_103259 crossref_primary_10_1093_cid_ciab371 crossref_primary_10_1097_INF_0000000000003790 crossref_primary_10_7554_eLife_80428 crossref_primary_10_1371_journal_pone_0257512 crossref_primary_10_3389_fimmu_2021_742941 crossref_primary_10_3390_pathogens11090958 crossref_primary_10_3390_jcm10040779 crossref_primary_10_1371_journal_pntd_0010102 crossref_primary_10_3390_vaccines10020258 crossref_primary_10_1038_s41467_021_22958_8 crossref_primary_10_1016_j_antiviral_2023_105759 crossref_primary_10_1128_JCM_00193_21 crossref_primary_10_1080_22221751_2021_2021807 crossref_primary_10_3389_fimmu_2021_793953 crossref_primary_10_1038_s41423_023_01122_w crossref_primary_10_1007_s12088_023_01079_4 crossref_primary_10_1098_rsos_210699 crossref_primary_10_1002_cbin_11903 crossref_primary_10_1038_s41467_021_21665_8 crossref_primary_10_3389_fimmu_2020_565730 crossref_primary_10_1016_j_jaut_2021_102703 crossref_primary_10_1136_bmjopen_2021_051415 crossref_primary_10_1016_j_it_2020_12_002 crossref_primary_10_3390_v14122823 crossref_primary_10_3390_v14040746 crossref_primary_10_3390_vaccines9020147 crossref_primary_10_1073_pnas_2310421121 crossref_primary_10_12688_wellcomeopenres_19414_1 crossref_primary_10_1002_jmv_27784 crossref_primary_10_1016_j_microc_2024_111126 crossref_primary_10_1111_trf_16261 crossref_primary_10_12688_wellcomeopenres_19414_2 crossref_primary_10_3390_v14061222 crossref_primary_10_1002_jmv_27544 crossref_primary_10_2139_ssrn_3902468 crossref_primary_10_2188_jea_JE20240284 crossref_primary_10_1128_Spectrum_00693_21 crossref_primary_10_3389_fimmu_2021_809244 crossref_primary_10_1186_s12985_021_01633_w crossref_primary_10_1371_journal_pone_0251159 crossref_primary_10_3389_fmed_2022_901817 crossref_primary_10_1016_j_jinf_2021_09_019 crossref_primary_10_1002_jmv_27794 crossref_primary_10_1111_joim_13372 crossref_primary_10_1038_s41577_021_00522_1 crossref_primary_10_1186_s12879_022_07314_5 crossref_primary_10_1210_clinem_dgab055 crossref_primary_10_7326_M21_3272 crossref_primary_10_1371_journal_pone_0287107 crossref_primary_10_1016_j_ijid_2024_107309 crossref_primary_10_3389_fimmu_2021_790469 crossref_primary_10_1038_s41598_022_14283_x crossref_primary_10_3390_vaccines9070768 crossref_primary_10_1055_s_0042_1748170 crossref_primary_10_1093_cid_ciab1021 crossref_primary_10_3389_fimmu_2022_832533 crossref_primary_10_1038_s43856_021_00039_7 crossref_primary_10_1038_s41467_021_23494_1 crossref_primary_10_1126_science_abg9175 crossref_primary_10_3389_fimmu_2020_610300 crossref_primary_10_1093_infdis_jiac060 crossref_primary_10_3390_jcm11123535 crossref_primary_10_1016_j_ccell_2021_10_002 crossref_primary_10_1128_JVI_01837_20 crossref_primary_10_3390_jcm10040605 crossref_primary_10_1016_j_coviro_2021_04_008 crossref_primary_10_1016_j_jinf_2021_08_030 crossref_primary_10_1016_j_diagmicrobio_2023_116157 crossref_primary_10_1016_S0140_6736_21_00238_5 crossref_primary_10_3390_ijerph18105085 crossref_primary_10_3390_vaccines10081210 crossref_primary_10_1038_s41564_021_00974_0 crossref_primary_10_1016_j_ebiom_2022_104025 crossref_primary_10_1111_1462_2920_15302 crossref_primary_10_1093_brain_awac272 crossref_primary_10_1093_jpids_piac012 crossref_primary_10_1128_msphere_00883_21 crossref_primary_10_1186_s40779_020_00296_y crossref_primary_10_1097_IPC_0000000000001055 crossref_primary_10_1042_BSR20211491 crossref_primary_10_1080_21645515_2022_2047582 crossref_primary_10_3390_vaccines9111367 crossref_primary_10_7554_eLife_64496 crossref_primary_10_3390_ijms23052408 crossref_primary_10_1093_ecco_jcc_jjaa237 crossref_primary_10_5495_wjcid_v12_i2_50 crossref_primary_10_12688_f1000research_28482_2 crossref_primary_10_12688_f1000research_28482_1 crossref_primary_10_3389_fimmu_2021_813300 crossref_primary_10_3390_vaccines9060550 crossref_primary_10_12688_f1000research_28482_3 crossref_primary_10_23876_j_krcp_21_184 crossref_primary_10_1038_s41375_021_01300_7 crossref_primary_10_1073_pnas_2212577120 crossref_primary_10_1093_ofid_ofac002 crossref_primary_10_3389_fimmu_2021_709759 crossref_primary_10_1128_spectrum_01402_21 crossref_primary_10_1002_jmv_27113 crossref_primary_10_1016_j_celrep_2021_109518 crossref_primary_10_1093_infdis_jiac099 crossref_primary_10_1371_journal_pcbi_1009778 crossref_primary_10_1371_journal_pmed_1003868 crossref_primary_10_1016_j_addr_2020_12_011 crossref_primary_10_1038_s41586_021_03647_4 crossref_primary_10_1186_s12916_022_02587_8 crossref_primary_10_1016_j_intimp_2021_108050 crossref_primary_10_1038_s41586_021_03491_6 crossref_primary_10_1016_j_celrep_2021_108890 crossref_primary_10_1038_s41467_024_54458_w crossref_primary_10_3389_fcimb_2023_1239700 crossref_primary_10_1128_spectrum_01837_22 crossref_primary_10_1016_S1473_3099_22_00129_3 crossref_primary_10_1080_22221751_2023_2169198 crossref_primary_10_1016_j_jim_2021_113046 crossref_primary_10_3390_vaccines10122116 crossref_primary_10_1016_j_chom_2021_04_015 crossref_primary_10_1371_journal_pone_0253551 crossref_primary_10_1016_j_ajog_2022_04_010 crossref_primary_10_1371_journal_pone_0273323 crossref_primary_10_3390_pathogens11121531 crossref_primary_10_1111_bjh_17568 crossref_primary_10_1038_s41591_021_01325_6 crossref_primary_10_1002_eji_202149535 crossref_primary_10_1212_NXI_0000000000001067 crossref_primary_10_2169_internalmedicine_0076_22 crossref_primary_10_3390_pathogens10060752 crossref_primary_10_1016_j_tmrv_2021_09_001 crossref_primary_10_1016_j_jcv_2021_104931 crossref_primary_10_1038_s43856_022_00091_x crossref_primary_10_4049_jimmunol_2001067 crossref_primary_10_1016_j_xcrm_2022_100528 crossref_primary_10_1172_jci_insight_151849 crossref_primary_10_1056_NEJMoa2034545 crossref_primary_10_3390_vaccines9121376 crossref_primary_10_1016_j_cegh_2021_100766 crossref_primary_10_1126_sciadv_abh3409 crossref_primary_10_1038_s41598_021_94653_z crossref_primary_10_1002_acn3_51350 crossref_primary_10_1016_j_ijid_2020_12_017 crossref_primary_10_1016_j_jiph_2021_09_006 crossref_primary_10_1016_j_ijid_2021_12_316 crossref_primary_10_1002_eji_202149302 crossref_primary_10_1093_oxfimm_iqac012 crossref_primary_10_3390_vaccines10030455 crossref_primary_10_1007_s12015_022_10477_y crossref_primary_10_1016_j_heliyon_2024_e24580 crossref_primary_10_3390_life14070791 crossref_primary_10_1093_cid_ciaa1846 crossref_primary_10_3390_v14122665 crossref_primary_10_1136_jcp_2022_208305 crossref_primary_10_1371_journal_pone_0271382 crossref_primary_10_3389_fmed_2021_609440 crossref_primary_10_1128_spectrum_01154_22 crossref_primary_10_1126_sciimmunol_abl9464 crossref_primary_10_1042_BST20220415 crossref_primary_10_1016_j_measurement_2022_111258 crossref_primary_10_1002_jmv_26854 crossref_primary_10_1128_jcm_00482_21 crossref_primary_10_1038_s42003_021_01813_y crossref_primary_10_1016_j_xcrm_2021_100228 crossref_primary_10_1093_oxfimm_iqac005 crossref_primary_10_3390_v13061064 crossref_primary_10_1038_s41408_021_00546_9 crossref_primary_10_1017_S095026882100087X crossref_primary_10_1002_oby_23208 crossref_primary_10_1371_journal_pone_0272008 crossref_primary_10_1016_j_dld_2021_08_027 crossref_primary_10_3390_vaccines9060587 crossref_primary_10_1016_j_micinf_2022_104979 crossref_primary_10_3389_fimmu_2023_1183727 crossref_primary_10_3390_vaccines11020278 crossref_primary_10_1186_s40001_021_00560_4 crossref_primary_10_1038_s41467_022_29404_3 crossref_primary_10_1093_cid_ciaa1866 crossref_primary_10_1371_journal_pone_0294262 crossref_primary_10_1093_cid_ciab607 crossref_primary_10_1016_j_ekir_2021_03_902 crossref_primary_10_1038_s41598_020_78758_5 crossref_primary_10_1016_j_xcrm_2021_100290 crossref_primary_10_3389_fimmu_2023_1100594 crossref_primary_10_1016_S1473_3099_24_00654_6 crossref_primary_10_3390_vaccines10060905 crossref_primary_10_1016_j_ebiom_2021_103729 crossref_primary_10_1128_mSphere_00275_21 crossref_primary_10_2139_ssrn_3985606 crossref_primary_10_1080_17843286_2021_2004349 crossref_primary_10_1016_j_radcr_2022_06_034 crossref_primary_10_1128_CMR_00228_20 crossref_primary_10_1371_journal_pone_0262868 crossref_primary_10_1016_j_amjmed_2023_05_002 crossref_primary_10_1007_s11845_022_02997_w crossref_primary_10_1016_j_celrep_2021_109320 crossref_primary_10_1038_s41467_021_25382_0 crossref_primary_10_1016_S2665_9913_21_00333_7 crossref_primary_10_7554_eLife_65508 crossref_primary_10_1111_trf_17952 crossref_primary_10_1016_j_ajog_2021_09_037 crossref_primary_10_1111_trf_16625 crossref_primary_10_2139_ssrn_4188566 crossref_primary_10_1080_01621459_2021_2001340 crossref_primary_10_1080_19490976_2021_2018899 crossref_primary_10_37349_ei_2024_00126 crossref_primary_10_1080_22221751_2021_1971569 crossref_primary_10_1016_j_jcv_2021_104988 crossref_primary_10_1016_j_rmed_2021_106355 crossref_primary_10_1021_acsinfecdis_1c00600 crossref_primary_10_1128_mSphere_00170_21 crossref_primary_10_1016_j_xcrm_2021_100296 crossref_primary_10_1126_sciimmunol_abf3698 crossref_primary_10_52547_aassjournal_1032 crossref_primary_10_2147_JIR_S326740 crossref_primary_10_1002_jmv_27751 crossref_primary_10_1097_TXD_0000000000001537 crossref_primary_10_1007_s10441_022_09447_1 crossref_primary_10_1126_sciadv_abe8065 crossref_primary_10_3389_fimmu_2021_659041 crossref_primary_10_3390_diagnostics12061426 crossref_primary_10_1007_s13205_021_02647_5 crossref_primary_10_1155_2021_8874339 crossref_primary_10_3390_v13061025 crossref_primary_10_1016_j_heliyon_2024_e38545 crossref_primary_10_1016_j_immuni_2022_05_004 crossref_primary_10_1016_j_immuni_2022_05_005 crossref_primary_10_3389_fpubh_2021_633144 crossref_primary_10_1038_s41467_021_26137_7 crossref_primary_10_1093_ofid_ofad168 crossref_primary_10_3390_vaccines11020475 crossref_primary_10_1016_j_celrep_2021_109109 crossref_primary_10_21101_cejph_a7230 crossref_primary_10_3389_fcimb_2021_791660 crossref_primary_10_1016_j_lana_2021_100123 crossref_primary_10_3389_fimmu_2021_660019 crossref_primary_10_3389_fpubh_2021_625778 crossref_primary_10_1007_s00430_022_00753_6 crossref_primary_10_3390_v14112408 crossref_primary_10_1038_s41587_022_01280_8 crossref_primary_10_1080_14760584_2022_2089121 crossref_primary_10_3390_vaccines12060691 crossref_primary_10_1016_j_bios_2022_115037 crossref_primary_10_1016_j_immuni_2021_03_023 crossref_primary_10_1371_journal_pone_0300191 crossref_primary_10_1016_j_meegid_2021_104869 crossref_primary_10_1039_D2SD00073C crossref_primary_10_1128_JVI_00404_21 crossref_primary_10_1128_Spectrum_00458_21 crossref_primary_10_3389_fimmu_2022_988536 crossref_primary_10_1371_journal_pbio_3001531 crossref_primary_10_1371_journal_pone_0261979 crossref_primary_10_3389_fmicb_2022_842232 crossref_primary_10_3389_fimmu_2023_1220600 crossref_primary_10_1126_sciimmunol_abg5669 crossref_primary_10_3390_cells11172743 crossref_primary_10_1364_BOE_454919 crossref_primary_10_3390_vaccines9121402 crossref_primary_10_1002_hon_2872 crossref_primary_10_1038_s41467_021_21856_3 crossref_primary_10_1016_j_ebiom_2021_103519 crossref_primary_10_1371_journal_pone_0273712 crossref_primary_10_1111_all_15502 crossref_primary_10_3390_medicina58121733 crossref_primary_10_1038_s41577_021_00550_x crossref_primary_10_1039_D1TB00674F crossref_primary_10_1371_journal_pmed_1004107 crossref_primary_10_1371_journal_ppat_1010569 crossref_primary_10_1016_j_dialog_2022_100057 crossref_primary_10_1007_s11845_021_02799_6 crossref_primary_10_3389_fimmu_2022_1101526 crossref_primary_10_3389_fimmu_2021_772239 crossref_primary_10_3389_fimmu_2021_636768 crossref_primary_10_3390_idr13040082 crossref_primary_10_1016_j_addr_2021_01_002 crossref_primary_10_1038_s41598_022_06629_2 crossref_primary_10_1016_j_ijid_2021_07_022 crossref_primary_10_1007_s00705_023_05735_4 crossref_primary_10_1038_s41598_021_97423_z crossref_primary_10_3390_v13040655 crossref_primary_10_12998_wjcc_v11_i29_6974 crossref_primary_10_1007_s40656_020_00356_5 crossref_primary_10_1021_acs_jproteome_2c00001 crossref_primary_10_1038_s41423_021_00774_w crossref_primary_10_1016_j_ijid_2022_03_059 crossref_primary_10_1371_journal_ppat_1012724 crossref_primary_10_1038_s41416_022_01952_x crossref_primary_10_1097_INF_0000000000003048 crossref_primary_10_1038_s41467_021_24007_w crossref_primary_10_3390_diagnostics13040643 crossref_primary_10_3389_fimmu_2022_973070 crossref_primary_10_1038_s41467_023_36295_5 crossref_primary_10_1038_s41541_021_00389_2 crossref_primary_10_1155_2021_1570463 crossref_primary_10_1186_s41512_021_00113_7 crossref_primary_10_1016_j_intimp_2021_107893 crossref_primary_10_3390_diagnostics12020393 crossref_primary_10_1007_s10049_021_00948_z crossref_primary_10_1158_2767_9764_CRC_22_0298 crossref_primary_10_1016_j_isci_2024_109210 crossref_primary_10_1038_s41598_023_45412_9 crossref_primary_10_3390_v16071077 crossref_primary_10_7554_eLife_74489 crossref_primary_10_18632_aging_203739 crossref_primary_10_5867_medwave_2022_03_002553 crossref_primary_10_1126_sciadv_abg7607 crossref_primary_10_1038_s41467_021_21037_2 crossref_primary_10_1080_21645515_2020_1845524 crossref_primary_10_1093_oxfimm_iqab003 crossref_primary_10_1136_jclinpath_2020_207356 crossref_primary_10_3389_fimmu_2022_915338 crossref_primary_10_3389_fimmu_2022_770982 crossref_primary_10_1093_oxfimm_iqab005 crossref_primary_10_1093_oxfimm_iqab006 crossref_primary_10_1038_s41467_021_24979_9 crossref_primary_10_3390_ijms25168740 crossref_primary_10_1016_j_ymthe_2022_08_002 crossref_primary_10_1136_bmjopen_2022_064240 crossref_primary_10_1111_aji_13490 crossref_primary_10_1016_j_jviromet_2022_114475 crossref_primary_10_1099_jgv_0_002055 crossref_primary_10_1016_j_immuni_2021_01_008 crossref_primary_10_1038_s43856_022_00106_7 crossref_primary_10_1016_j_ejim_2021_05_028 crossref_primary_10_1016_j_ebiom_2021_103534 crossref_primary_10_3389_fimmu_2022_830710 crossref_primary_10_1016_j_mbs_2023_108981 crossref_primary_10_3390_ijerph192215257 crossref_primary_10_3389_fimmu_2022_830715 crossref_primary_10_1016_j_intimp_2021_107409 crossref_primary_10_1016_S1470_2045_21_00213_8 crossref_primary_10_3390_vaccines12101099 crossref_primary_10_3349_ymj_2023_0567 crossref_primary_10_4103_ijmr_ijmr_2521_22 crossref_primary_10_3389_fmed_2021_642723 crossref_primary_10_1093_ofid_ofab405 crossref_primary_10_1371_journal_pgph_0000698 crossref_primary_10_3390_covid1010006 crossref_primary_10_3389_fpubh_2020_590096 crossref_primary_10_1016_j_jviromet_2021_114178 crossref_primary_10_1186_s12879_021_06723_2 crossref_primary_10_7554_eLife_86015 crossref_primary_10_3389_fimmu_2021_742631 crossref_primary_10_3390_vaccines11081340 crossref_primary_10_1016_j_jviromet_2021_114173 crossref_primary_10_1002_jmv_28461 crossref_primary_10_4103_ajprhc_ajprhc_4_23 crossref_primary_10_46234_ccdcw2023_075 crossref_primary_10_1016_S2213_2600_21_00407_0 crossref_primary_10_33073_pjm_2024_019 crossref_primary_10_1016_j_eclinm_2021_100734 crossref_primary_10_1021_acsnano_1c03972 crossref_primary_10_1038_s41467_021_25946_0 crossref_primary_10_1186_s12865_024_00596_1 crossref_primary_10_3390_vaccines10010064 crossref_primary_10_1016_S1473_3099_20_30943_9 crossref_primary_10_3390_covid1020041 crossref_primary_10_1038_s41598_024_62044_9 crossref_primary_10_1093_cei_uxac001 crossref_primary_10_3389_fimmu_2022_876306 crossref_primary_10_1088_2632_2153_abf0f7 crossref_primary_10_1093_cid_ciab069 crossref_primary_10_3389_fimmu_2022_947602 crossref_primary_10_1016_j_msard_2022_103863 crossref_primary_10_1371_journal_pone_0269885 crossref_primary_10_1371_journal_pone_0272818 crossref_primary_10_1093_ofid_ofab626 crossref_primary_10_1016_j_isci_2021_103659 crossref_primary_10_1016_j_isci_2022_103934 crossref_primary_10_1038_s41467_020_20247_4 crossref_primary_10_1097_QCO_0000000000000724 crossref_primary_10_1002_jmv_27154 crossref_primary_10_1038_s42003_024_07048_x crossref_primary_10_1109_JBHI_2024_3360529 crossref_primary_10_3389_fcimb_2021_598875 crossref_primary_10_1016_j_ijmmb_2021_11_006 crossref_primary_10_3390_vaccines10081238 crossref_primary_10_1038_s41366_022_01136_w crossref_primary_10_7759_cureus_17956 crossref_primary_10_1016_S0140_6736_21_02753_7 crossref_primary_10_1371_journal_ppat_1009726 crossref_primary_10_1080_1744666X_2021_1905525 crossref_primary_10_1007_s10441_022_09453_3 crossref_primary_10_1093_infdis_jiab255 crossref_primary_10_3390_v14050957 crossref_primary_10_1002_jmv_29585 crossref_primary_10_1093_infdis_jiab490 crossref_primary_10_1016_j_jviromet_2021_114381 crossref_primary_10_1038_s41598_023_35471_3 crossref_primary_10_3390_vaccines10081224 crossref_primary_10_3390_vaccines9020081 crossref_primary_10_1002_jmv_27162 crossref_primary_10_1371_journal_pone_0244126 crossref_primary_10_3389_fimmu_2023_1232472 crossref_primary_10_1016_j_diagmicrobio_2023_115900 crossref_primary_10_1128_spectrum_02252_21 crossref_primary_10_1016_j_vaccine_2023_01_032 crossref_primary_10_1093_cid_ciab1038 crossref_primary_10_17269_s41997_022_00622_y crossref_primary_10_2139_ssrn_3800076 crossref_primary_10_22207_JPAM_17_1_56 crossref_primary_10_3390_ijerph182010999 crossref_primary_10_1071_MA21010 crossref_primary_10_1002_jmv_29115 crossref_primary_10_3389_fimmu_2021_629185 crossref_primary_10_1111_birt_12667 crossref_primary_10_1111_imr_13115 crossref_primary_10_1136_bmjopen_2021_054336 crossref_primary_10_1089_bfm_2023_0117 crossref_primary_10_1111_imr_13112 crossref_primary_10_3390_pathogens9121027 crossref_primary_10_1007_s40520_021_01987_9 crossref_primary_10_3390_vaccines9101168 crossref_primary_10_46234_ccdcw2021_044 crossref_primary_10_1093_infdis_jiac167 crossref_primary_10_1080_19420889_2021_1965356 crossref_primary_10_1016_j_ccell_2021_01_001 crossref_primary_10_1016_j_imj_2021_08_001 crossref_primary_10_3934_mbe_2022586 crossref_primary_10_1007_s15010_022_01942_4 crossref_primary_10_7326_M21_0256 crossref_primary_10_1016_S2666_7568_21_00093_3 crossref_primary_10_3343_alm_2021_41_6_577 crossref_primary_10_1016_j_cll_2021_10_004 crossref_primary_10_1016_j_cll_2021_10_003 crossref_primary_10_1016_j_cll_2021_10_006 crossref_primary_10_1016_j_cll_2021_10_008 crossref_primary_10_1089_vim_2021_0097 crossref_primary_10_1186_s41043_024_00536_0 crossref_primary_10_1080_22221751_2022_2058419 crossref_primary_10_1016_j_tim_2024_01_005 crossref_primary_10_1371_journal_pone_0280874 crossref_primary_10_4269_ajtmh_22_0448 crossref_primary_10_1136_bmjopen_2021_051045 crossref_primary_10_3389_fimmu_2021_750448 crossref_primary_10_3389_fmed_2022_906469 crossref_primary_10_3390_v14010005 crossref_primary_10_2478_abm_2021_0008 crossref_primary_10_1371_journal_pone_0245424 crossref_primary_10_1016_j_aca_2023_341326 crossref_primary_10_1159_000531222 crossref_primary_10_1038_s41467_021_24622_7 crossref_primary_10_1016_j_jaci_2021_09_008 crossref_primary_10_1371_journal_pone_0248918 crossref_primary_10_1515_cclm_2023_1487 crossref_primary_10_1038_s41467_020_20654_7 crossref_primary_10_1002_cti2_1319 crossref_primary_10_1128_mSphere_00201_21 crossref_primary_10_1111_risa_13705 crossref_primary_10_3390_ijms251910512 crossref_primary_10_18231_j_ijirm_2023_005 crossref_primary_10_1016_j_heliyon_2021_e06894 crossref_primary_10_1038_s41598_023_45700_4 crossref_primary_10_1371_journal_pcbi_1010465 crossref_primary_10_3390_diagnostics12081924 crossref_primary_10_1007_s10330_021_0488_8 crossref_primary_10_1016_j_cll_2021_10_002 crossref_primary_10_1016_j_heliyon_2023_e22612 crossref_primary_10_1371_journal_pone_0281907 crossref_primary_10_3389_fimmu_2021_731100 crossref_primary_10_1042_BST20200744 crossref_primary_10_3389_fimmu_2022_864278 crossref_primary_10_1093_gerona_glab206 crossref_primary_10_3389_fimmu_2022_985938 crossref_primary_10_1155_2022_7992927 crossref_primary_10_5455_njcm_20210518084014 crossref_primary_10_1242_jcs_262172 crossref_primary_10_1017_ice_2021_487 crossref_primary_10_1016_j_eclinm_2023_102086 crossref_primary_10_1007_s44197_022_00041_9 crossref_primary_10_1016_j_htct_2022_07_008 crossref_primary_10_1111_anae_15365 crossref_primary_10_7759_cureus_23698 crossref_primary_10_1073_pnas_2204336119 crossref_primary_10_4103_ijabmr_ijabmr_516_21 crossref_primary_10_1016_j_jaci_2023_12_011 crossref_primary_10_1080_21645515_2021_1969855 crossref_primary_10_1017_ice_2021_484 crossref_primary_10_1136_bmj_2022_071113 crossref_primary_10_3390_v15051179 crossref_primary_10_1002_hsr2_1949 crossref_primary_10_1016_j_celrep_2021_108790 crossref_primary_10_1002_cti2_1379 crossref_primary_10_1007_s00011_023_01722_2 crossref_primary_10_1093_ofid_ofab239 crossref_primary_10_1038_s41467_021_27649_y crossref_primary_10_1016_S2666_7568_21_00282_8 crossref_primary_10_3389_fmicb_2024_1386891 crossref_primary_10_1080_10408363_2023_2254390 crossref_primary_10_1016_j_imbio_2021_152054 crossref_primary_10_1038_s41591_021_01488_2 crossref_primary_10_1093_aje_kwab293 crossref_primary_10_3389_fimmu_2021_733539 crossref_primary_10_1016_j_xcrm_2021_100191 crossref_primary_10_1016_j_crmeth_2023_100421 crossref_primary_10_1016_j_xcrm_2021_100193 crossref_primary_10_15789_1563_0625_FOH_2452 crossref_primary_10_1126_sciadv_abo1827 crossref_primary_10_1002_jmv_27427 crossref_primary_10_1016_j_cmi_2023_01_023 crossref_primary_10_1128_Spectrum_01298_21 crossref_primary_10_1016_S2665_9913_21_00114_4 crossref_primary_10_1186_s13613_021_00868_8 crossref_primary_10_3390_covid3090089 crossref_primary_10_3390_life11111152 crossref_primary_10_1371_journal_pone_0288557 crossref_primary_10_3389_fimmu_2022_842468 crossref_primary_10_2807_1560_7917_ES_2022_27_40_2100703 crossref_primary_10_1016_j_jcv_2021_105045 crossref_primary_10_1111_sji_13088 crossref_primary_10_1371_journal_pone_0264124 crossref_primary_10_1038_s41598_023_48581_9 crossref_primary_10_1002_rmv_2272 crossref_primary_10_1590_0037_8682_0661_2022 crossref_primary_10_4103_ijmr_ijmr_1627_21 crossref_primary_10_1016_j_ijid_2021_04_067 crossref_primary_10_1016_j_jcvp_2023_100164 crossref_primary_10_1128_JCM_00388_21 crossref_primary_10_1016_j_immuni_2021_07_008 crossref_primary_10_3390_microorganisms11081985 crossref_primary_10_3390_cells11223662 crossref_primary_10_1002_ccr3_8953 crossref_primary_10_1128_mbio_01206_23 crossref_primary_10_3390_cells10081843 crossref_primary_10_3390_v14050882 crossref_primary_10_1016_j_scib_2024_02_041 crossref_primary_10_1039_D1AY00947H crossref_primary_10_1099_jgv_0_001653 crossref_primary_10_1016_j_pedneo_2023_05_014 crossref_primary_10_1038_s41467_022_32547_y crossref_primary_10_1172_JCI152042 crossref_primary_10_2174_0122113525284502240217161226 crossref_primary_10_1038_s43856_022_00100_z crossref_primary_10_1126_sciimmunol_abf7550 crossref_primary_10_3389_fimmu_2023_1282612 crossref_primary_10_3390_v15091842 crossref_primary_10_3390_jcm12093172 crossref_primary_10_1016_j_jcv_2023_105420 crossref_primary_10_3389_fimmu_2021_752233 crossref_primary_10_4049_jimmunol_2100195 crossref_primary_10_1089_vim_2022_0013 crossref_primary_10_1098_rsfs_2021_0008 crossref_primary_10_1016_j_cell_2021_04_025 crossref_primary_10_1016_j_jhin_2021_04_021 crossref_primary_10_3389_fimmu_2020_610688 crossref_primary_10_1038_s41378_022_00460_5 crossref_primary_10_1007_s00216_024_05205_z crossref_primary_10_1016_j_jri_2021_103285 crossref_primary_10_1002_jmv_28557 crossref_primary_10_1093_cid_ciab308 crossref_primary_10_1021_acs_jproteome_1c00475 crossref_primary_10_1038_s43856_024_00488_w crossref_primary_10_1093_jpids_piaa167 crossref_primary_10_1016_j_trsl_2021_11_006 crossref_primary_10_1128_JCM_01231_21 crossref_primary_10_1016_j_clim_2021_108871 crossref_primary_10_1093_ofid_ofab273 crossref_primary_10_1371_journal_pone_0251242 crossref_primary_10_1038_s41598_025_92389_8 crossref_primary_10_1186_s12916_021_02032_2 crossref_primary_10_3390_vetsci10060382 crossref_primary_10_1016_j_diagmicrobio_2020_115294 crossref_primary_10_1099_jmm_0_001599 crossref_primary_10_1093_infdis_jiaa803 crossref_primary_10_1016_j_jcv_2023_105448 crossref_primary_10_1016_j_ebiom_2022_104129 crossref_primary_10_1016_j_isci_2023_107554 crossref_primary_10_1016_j_diagmicrobio_2022_115659 crossref_primary_10_1186_s12879_023_08923_4 crossref_primary_10_1016_j_jinf_2022_09_004 crossref_primary_10_1016_j_vaccine_2022_07_040 crossref_primary_10_7554_eLife_66537 crossref_primary_10_1039_D3SD00081H crossref_primary_10_3390_s23083946 crossref_primary_10_3390_vaccines11030548 crossref_primary_10_1017_S0950268821001886 crossref_primary_10_13105_wjma_v9_i3_220 crossref_primary_10_1080_22221751_2021_1937328 crossref_primary_10_1111_bjh_17441 crossref_primary_10_3390_microorganisms9040733 crossref_primary_10_1007_s15010_021_01664_z crossref_primary_10_2139_ssrn_4099400 crossref_primary_10_1080_23744235_2021_1893378 crossref_primary_10_1186_s12889_024_19087_4 crossref_primary_10_1038_s41598_021_91247_7 crossref_primary_10_3390_pathogens10060637 crossref_primary_10_3390_vaccines11010148 crossref_primary_10_1016_j_mjafi_2024_05_014 crossref_primary_10_1016_j_vaccine_2025_126744 crossref_primary_10_14348_molcells_2021_0075 crossref_primary_10_1186_s12889_021_12409_w crossref_primary_10_1038_s41590_024_01787_z crossref_primary_10_1038_s41467_021_27595_9 crossref_primary_10_1038_s41467_021_22034_1 crossref_primary_10_6061_clinics_2021_e3548 crossref_primary_10_3389_fimmu_2022_1095129 crossref_primary_10_1098_rsos_211606 crossref_primary_10_23736_S2724_5683_22_06109_9 crossref_primary_10_1136_bmjopen_2021_056370 crossref_primary_10_1186_s12887_024_04904_x crossref_primary_10_1007_s00431_021_04124_w crossref_primary_10_1172_JCI144807 crossref_primary_10_3390_jcm9123847 crossref_primary_10_1016_j_cell_2021_01_017 crossref_primary_10_3389_fimmu_2022_1020844 crossref_primary_10_3390_ijms24054742 crossref_primary_10_3390_diseases12010029 crossref_primary_10_1111_all_15007 crossref_primary_10_1007_s00604_021_04896_w crossref_primary_10_1016_j_pathol_2021_05_093 crossref_primary_10_3390_v13071364 crossref_primary_10_37349_ei_2022_00040 crossref_primary_10_1038_s41598_021_00844_z crossref_primary_10_3201_eid2704_204554 crossref_primary_10_3389_fimmu_2021_708184 crossref_primary_10_1038_s41392_021_00759_1 crossref_primary_10_1016_S2666_5247_22_00090_8 crossref_primary_10_1016_j_imbio_2022_152304 crossref_primary_10_1039_D1SC05852E crossref_primary_10_1080_22221751_2023_2290841 crossref_primary_10_1038_s41467_021_26672_3 crossref_primary_10_1016_j_isci_2023_107967 crossref_primary_10_1038_s41467_021_21444_5 crossref_primary_10_1128_mbio_03798_21 crossref_primary_10_1038_s41564_021_01051_2 crossref_primary_10_3390_vaccines10091532 crossref_primary_10_1016_j_cels_2021_09_013 crossref_primary_10_1371_journal_pone_0261656 crossref_primary_10_1016_j_eclinm_2022_101526 crossref_primary_10_3390_ani11030667 crossref_primary_10_1016_S2213_2600_21_00158_2 crossref_primary_10_1016_j_pathol_2021_04_001 crossref_primary_10_3390_v13112313 crossref_primary_10_1111_bjh_18962 crossref_primary_10_1016_j_isci_2021_102937 crossref_primary_10_1038_s41590_024_01776_2 crossref_primary_10_1111_pcn_13513 crossref_primary_10_3390_cells11010067 crossref_primary_10_1001_jamainternmed_2021_7382 crossref_primary_10_1371_journal_pone_0249791 crossref_primary_10_1016_S0140_6736_21_00502_X crossref_primary_10_1371_journal_pone_0250780 crossref_primary_10_2807_1560_7917_ES_2022_27_9_2100419 crossref_primary_10_1126_scitranslmed_abf1555 crossref_primary_10_1016_j_waojou_2021_100514 crossref_primary_10_1038_s41590_021_01049_2 crossref_primary_10_1186_s12916_022_02342_z crossref_primary_10_1590_0102_311xen109522 crossref_primary_10_1111_imcb_12494 crossref_primary_10_17816_clinpract64677 crossref_primary_10_1136_gutjnl_2021_326609 crossref_primary_10_5493_wjem_v12_i4_53 crossref_primary_10_15324_kjcls_2022_54_3_173 crossref_primary_10_22141_2312_413X_9_1_2021_228823 crossref_primary_10_37349_ei_2021_00014 crossref_primary_10_1186_s43168_024_00277_y crossref_primary_10_3389_fmicb_2021_661187 crossref_primary_10_1002_jmv_27637 crossref_primary_10_17269_s41997_021_00531_6 crossref_primary_10_1002_oby_23353 crossref_primary_10_1093_imammb_dqac008 crossref_primary_10_1016_j_celrep_2022_110757 crossref_primary_10_1172_jci_insight_156372 crossref_primary_10_3390_v13040697 crossref_primary_10_1016_j_vaccine_2023_12_015 crossref_primary_10_3390_vaccines8040684 |
Cites_doi | 10.1016/j.cell.2020.05.025 10.1038/s41586-020-2608-y 10.1126/science.abc1932 10.1099/jgv.0.001439 10.1056/NEJMoa2024671 10.1038/s41591-020-1083-1 10.1016/j.jcv.2005.07.005 10.1016/j.immuni.2020.06.001 10.1371/journal.ppat.1008817 10.1016/j.mex.2015.09.003 10.1093/cid/ciaa1143 10.3201/eid2307.170310 10.1017/S0950268800048019 10.1101/2020.06.10.20126532 10.1371/journal.pone.0016809 10.1038/s41577-020-0321-6 10.1101/2020.07.21.20159178 10.1101/2020.07.14.20151126 10.1111/j.1440-1843.2006.00783.x 10.1101/2020.07.10.20150557 10.1101/2020.08.11.20171843 10.1038/s41591-020-1038-6 10.1126/science.abc5343 10.1038/s41586-020-2380-z 10.1126/science.abc6284 10.1016/j.xcrm.2020.100126 10.1056/NEJMoa2026920 10.1038/s41586-020-2456-9 10.1093/infdis/jiaa618 10.1038/s41586-020-2381-y 10.1016/S1473-3099(20)30484-9 10.1126/sciimmunol.abe0367 10.1056/NEJMoa2022483 10.1038/s41467-020-16505-0 10.1001/jamainternmed.2020.4616 10.1128/mBio.02590-20 10.1002/jmv.25715 10.1056/NEJMoa066092 10.1038/s41591-020-0913-5 10.1128/JVI.01083-20 10.1126/science.abc5902 10.1101/2020.04.13.20060467 10.1038/s41591-020-0965-6 10.1084/jem.20201181 10.3201/eid2607.200841 10.1038/s41591-020-0897-1 10.1126/science.abc7520 10.1126/science.abc4776 10.1128/JCM.02005-20 10.1126/sciimmunol.abe5511 10.1056/NEJMc070348 10.1101/2020.08.05.20169128 10.1038/s41591-020-1054-6 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FH AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1038/s41564-020-00813-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2058-5276 |
EndPage | 1607 |
ExternalDocumentID | 33106674 10_1038_s41564_020_00813_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article Observational Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Huo Family Foundation – fundername: DH | National Institute for Health Research (NIHR) grantid: CS-2016-16-011 funderid: https://doi.org/10.13039/501100000272 – fundername: Fondation Dormeur, Vaduz King’s Together Rapid COVID-19 Call award Huo Family Foundation – fundername: Huo Family Foundation King’s Together Rapid COVID-19 Call award – fundername: RCUK | Medical Research Council (MRC) grantid: MC/PC/15068; MR/N013700/1; MR/R015643/1; MR/N013700/1; MC/PC/15068, MR/R015643/1, MR/S023747/1; MC/PC/15068 funderid: https://doi.org/10.13039/501100000265 – fundername: King’s Together Rapid COVID-19 Call award Huo Family Foundation – fundername: Wellcome Trust (Wellcome) grantid: WT098049AIA; MR/S023747/1; 106223/Z/14/Z; 106223/Z/14/Z; 106223/Z/14/Z funderid: https://doi.org/10.13039/100004440 – fundername: NIAID NIH HHS grantid: HHSN272201400008C – fundername: Medical Research Council grantid: MR/S023747/1 – fundername: Medical Research Council grantid: MC_PC_14105 – fundername: Wellcome Trust grantid: 098049 – fundername: Wellcome Trust grantid: 207442/Z/17/Z – fundername: Medical Research Council grantid: MC_PC_15068 – fundername: Department of Health grantid: CS-2016-16-011 – fundername: Wellcome Trust grantid: 106223 – fundername: Wellcome Trust grantid: 207442 |
GroupedDBID | 0R~ 53G 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABJNI ABLJU ACBWK ACGFS ADBBV AFBBN AFKRA AFSHS AFWHJ AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD BBNVY BENPR BHPHI BKKNO CCPQU EBS EJD FSGXE FZEXT HCIFZ HZ~ LK8 M7P NNMJJ O9- ODYON R9- RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM PQGLB AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c485t-74857e9d82a5c5a2fb210a5d1f10243c921284a67d994c3485ecc9b92689bb783 |
IEDL.DBID | BENPR |
ISSN | 2058-5276 |
IngestDate | Fri Jul 11 02:42:19 EDT 2025 Tue Aug 12 07:25:29 EDT 2025 Mon Jul 21 06:04:59 EDT 2025 Tue Jul 01 00:55:55 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Fri Feb 21 02:38:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-74857e9d82a5c5a2fb210a5d1f10243c921284a67d994c3485ecc9b92689bb783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-1922-9492 0000-0002-7774-3836 0000-0002-7699-2064 0000-0002-6061-6064 0000-0002-3185-1073 0000-0001-5371-2448 0000-0001-5945-7791 0000-0003-3368-5053 0000-0002-1726-8033 0000-0003-0722-8561 0000-0001-6428-7707 0000-0002-7978-3815 0000-0002-2747-9029 0000-0003-4620-6891 0000-0002-6263-9497 0000-0002-5830-2496 0000-0002-5338-2538 0000-0002-5507-1725 0000-0003-0665-311X |
OpenAccessLink | https://kclpure.kcl.ac.uk/portal/en/publications/04053a71-ef4f-4366-8e7c-8b407e90fddb |
PMID | 33106674 |
PQID | 2475058196 |
PQPubID | 2069616 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2454654782 proquest_journals_2475058196 pubmed_primary_33106674 crossref_citationtrail_10_1038_s41564_020_00813_8 crossref_primary_10_1038_s41564_020_00813_8 springer_journals_10_1038_s41564_020_00813_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature microbiology |
PublicationTitleAbbrev | Nat Microbiol |
PublicationTitleAlternate | Nat Microbiol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Wu, J. et al. SARS-CoV-2 infection induces sustained humoral immune responses in convalescent patients following symptomatic COVID-19. Preprint at medRxivhttps://doi.org/10.1101/2020.07.21.20159178 (2020). MoHLongitudinal profile of antibodies against SARS-coronavirus in SARS patients and their clinical significanceRespirology200611495310.1111/j.1440-1843.2006.00783.x Beaudoin-BussièresGDecline of humoral responses against SARS-CoV-2 Spike in convalescent individualsmBio202011e025902010.1128/mBio.02590-20 Jackson, L. A. et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa2022483 (2020). Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Preprint at medRxivhttps://doi.org/10.1101/2020.06.10.20126532 (2020). SmithTRFImmunogenicity of a DNA vaccine candidate for COVID-19Nat. Commun.2020111:CAS:528:DC%2BB3cXpvF2rtbY%3D10.1038/s41467-020-16505-0 Yu, J. et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Sciencehttps://doi.org/10.1126/science.abc6284 (2020). Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Naturehttps://doi.org/10.1038/s41586-020-2456-9 (2020). Amanat, F. et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat. Med. https://doi.org/10.1038/s41591-020-0913-5(2020). LongQXAntibody responses to SARS-CoV-2 in patients with COVID-19Nat. Med.2020268458481:CAS:528:DC%2BB3cXot1aktLk%3D10.1038/s41591-020-0897-1 CaoWCLiuWZhangPHZhangFRichardusJHDisappearance of antibodies to SARS-associated coronavirus after recoveryN. Engl. J. Med2007357116211631:CAS:528:DC%2BD2sXhtVGqu7nN10.1056/NEJMc070348 Muecksch, F. et al. Longitudinal analysis of clinical serology assay performance and neutralising antibody levels in COVID19 convalescents. Preprint at medRxivhttps://doi.org/10.1101/2020.08.05.20169128 (2020). Deng, W. et al. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Sciencehttps://doi.org/10.1126/science.abc5343 (2020). Moore, J. P. & Klasse, P. J. SARS-CoV-2 vaccines: ‘Warp Speed’ needs mind melds not warped minds. J. Virol. https://doi.org/10.1128/JVI.01083-20 (2020). PickeringSComparative assessment of multiple COVID-19 serological technologies supports continued evaluation of point-of-care lateral flow assays in hospital and community healthcare settingsPLoS Pathog202016e10088171:CAS:528:DC%2BB3cXhvFaktrvJ10.1371/journal.ppat.1008817 Luchsinger, L. L. et al. Serological assays estimate highly variable SARS-CoV-2 neutralizing antibody activity in recovered COVID19 patients. J. Clin. Microbiol. https://doi.org/10.1128/JCM.02005-20 (2020). PeterseneKMComparing SARS-CoV-2 with SARS-CoV and influenza pandemicsLancet Infect.202020e238e2441:CAS:528:DC%2BB3cXhtlegu7rE10.1016/S1473-3099(20)30484-9 Carter, M. J. et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat. Med.https://doi.org/10.1038/s41591-020-1054-6 (2020). Chandrashekar, A. et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Sciencehttps://doi.org/10.1126/science.abc4776 (2020). GrehanKFerraraFTempertonNAn optimised method for the production of MERS-CoV spike expressing viral pseudotypesMethodsX201523793841:STN:280:DC%2BC28rgsVektQ%3D%3D10.1016/j.mex.2015.09.003 SekineTRobust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19Cell Press20201831581681:CAS:528:DC%2BB3cXhvFKjs7jE Wang, K. et al. Longitudinal dynamics of the neutralizing antibody response to SARS-CoV-2 infection. Clin. Infect. Dis.https://doi.org/10.1093/cid/ciaa1143 (2020). Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Naturehttps://doi.org/10.1038/s41586-020-2380-z (2020). Kellam, P. & Barclay, W. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection. J. Gen. Virol. https://doi.org/10.1099/jgv.0.001439 (2020). Keech, C. et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2026920 (2020). AmannaIJCarlsonNESlifkaMKDuration of humoral immunity to common viral and vaccine antigensN. Engl. J. Med.2007357190319151:CAS:528:DC%2BD2sXht1ymtbjI10.1056/NEJMoa066092 ChoePGMERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015Emerg. Infect. Dis.201723107910841:CAS:528:DC%2BC1cXhvFGjt7nI10.3201/eid2307.170310 CallowKAParryHFSergeantMTyrrellDAThe time course of the immune response to experimental coronavirus infection of manEpidemiol. Infect.19901054354461:STN:280:DyaK3M%2Fgs1CjsA%3D%3D10.1017/S0950268800048019 Schmidt, F. et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med. 217, https://doi.org/10.1084/jem.20201181 (2020). Seydoux, E. et al. Analysis of a SARS-CoV-2-infected individual reveals development of potent neutralizing antibodies with limited somatic mutation. Immunityhttps://doi.org/10.1016/j.immuni.2020.06.001 (2020). Brouwer, P. J. M. et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Sciencehttps://doi.org/10.1126/science.abc5902 (2020). Laing, A. G. et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med. https://doi.org/10.1038/s41591-020-1038-6 (2020). Thompson, C. et al. Neutralising antibodies to SARS coronavirus 2 in Scottish blood donors—a pilot study of the value of serology to determine population exposure. Preprint at medRxivhttps://doi.org/10.1101/2020.04.13.20060467 (2020). PrevostJCross-sectional evaluation of humoral responses against SARS-CoV-2 SpikeCell Rep. Med.2020110012610.1016/j.xcrm.2020.100126 WangMAntibody dynamics of 2009 influenza A (H1N1) virus in infected patients and vaccinated people in ChinaPLoS ONE20116e168091:CAS:528:DC%2BC3MXitlyjt74%3D10.1371/journal.pone.0016809 van Doremalen, N. et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Naturehttps://doi.org/10.1038/s41586-020-2608-y (2020). IyerASPersistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients.Sci. Immunol.20205eabe036710.1126/sciimmunol.abe0367 Rodda, L. B. et al. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Preprint at medRxivhttps://doi.org/10.1101/2020.08.11.20171843 (2020). Lee, W. T. et al. Neutralizing antibody responses in COVID-19 convalescent sera. Preprint at medRxivhttps://doi.org/10.1101/2020.07.10.20150557 (2020). Gao, Q. et al. Rapid development of an inactivated vaccine candidate for SARS-CoV-2. Sciencehttps://doi.org/10.1126/science.abc1932 (2020). OkbaNMASevere acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patientsEmerg. Infect. Dis.2020261478148810.3201/eid2607.200841 Cao, Y. et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cellhttps://doi.org/10.1016/j.cell.2020.05.025 (2020). IshoBPersistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patientsSci. Immunol.20205eabe551133033173 Corbett, K. S. et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa2024671 (2020). GorseGJDonovanMMPatelGBAntibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus-associated illnessesJ. Med. Virol2020925125171:CAS:528:DC%2BB3cXltFems7k%3D10.1002/jmv.25715 LongQXClinical and immunological assessment of asymptomatic SARS-CoV-2 infectionsNat. Med202026120012041:CAS:528:DC%2BB3cXhtF2qtbrM10.1038/s41591-020-0965-6 IwasakiAYangYThe potential danger of suboptimal antibody responses in COVID-19Nat. Rev. Immunol2020203393411:CAS:528:DC%2BB3cXns1CisL0%3D10.1038/s41577-020-0321-6 Edridge, A. W. D. et al. Seasonal coronavirus protective immunity is short-lasting. Nat. Med.https://doi.org/10.1038/s41591-020-1083-1 (2020). Rogers, T. F. et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Sciencehttps://doi.org/10.1126/science.abc7520 (2020). Wu, F. et al. Evaluating the association of clinical characteristics with neutralizing antibody levels in patients who have recovered from mild COVID-19 in Shanghai, China. JAMA Intern. Med. https://doi.org/10.1001/jamainternmed.2020.4616 (2020). Crawford, K. H. D. et al. Dynamics of neutralizing antibody titers in the months after SARS-CoV-2 infection. J. Infect. Dis.https://doi.org/10.1093/infdis/jiaa618 (2020). Shi, R. et al. A human neutralizing antibody targets the receptor binding site of SARS-CoV-2. Naturehttps://doi.org/10.1038/s41586-020-2381-y (2020). LeeNAnti-SARS-CoV IgG response in relation to disease severity of severe acute respiratory syndromeJ. Clin. Virol2006351791841:CAS:528:DC%2BD28XjvVKhtA%3D%3D10.1016/j.jcv.2005.07.005 Wajnberg, A. et al. SARS-CoV-2 infection induces robust, neutralizing antibody responses that are stable for at least three months. Preprint at medRxivhttps://doi.org/10.1101/2020.07.14.20151126 (2020). 813_CR20 813_CR21 813_CR26 813_CR27 813_CR28 PG Choe (813_CR24) 2017; 23 813_CR29 eKM Petersen (813_CR43) 2020; 20 813_CR11 NMA Okba (813_CR5) 2020; 26 813_CR12 813_CR51 813_CR52 813_CR10 813_CR54 M Wang (813_CR22) 2011; 6 QX Long (813_CR3) 2020; 26 J Prevost (813_CR7) 2020; 1 813_CR15 813_CR17 813_CR18 813_CR9 GJ Gorse (813_CR2) 2020; 92 813_CR8 AS Iyer (813_CR35) 2020; 5 813_CR4 813_CR50 813_CR44 813_CR45 813_CR46 813_CR47 813_CR40 813_CR41 813_CR42 813_CR1 IJ Amanna (813_CR23) 2007; 357 813_CR48 G Beaudoin-Bussières (813_CR36) 2020; 11 QX Long (813_CR13) 2020; 26 B Isho (813_CR37) 2020; 5 H Mo (813_CR16) 2006; 11 S Pickering (813_CR6) 2020; 16 813_CR34 T Sekine (813_CR53) 2020; 183 813_CR30 813_CR31 K Grehan (813_CR25) 2015; 2 813_CR38 813_CR39 A Iwasaki (813_CR33) 2020; 20 N Lee (813_CR32) 2006; 35 KA Callow (813_CR14) 1990; 105 WC Cao (813_CR19) 2007; 357 TRF Smith (813_CR49) 2020; 11 |
References_xml | – reference: SekineTRobust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19Cell Press20201831581681:CAS:528:DC%2BB3cXhvFKjs7jE – reference: Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Naturehttps://doi.org/10.1038/s41586-020-2380-z (2020). – reference: IwasakiAYangYThe potential danger of suboptimal antibody responses in COVID-19Nat. Rev. Immunol2020203393411:CAS:528:DC%2BB3cXns1CisL0%3D10.1038/s41577-020-0321-6 – reference: Amanat, F. et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat. Med. https://doi.org/10.1038/s41591-020-0913-5(2020). – reference: LeeNAnti-SARS-CoV IgG response in relation to disease severity of severe acute respiratory syndromeJ. Clin. Virol2006351791841:CAS:528:DC%2BD28XjvVKhtA%3D%3D10.1016/j.jcv.2005.07.005 – reference: Beaudoin-BussièresGDecline of humoral responses against SARS-CoV-2 Spike in convalescent individualsmBio202011e025902010.1128/mBio.02590-20 – reference: MoHLongitudinal profile of antibodies against SARS-coronavirus in SARS patients and their clinical significanceRespirology200611495310.1111/j.1440-1843.2006.00783.x – reference: PrevostJCross-sectional evaluation of humoral responses against SARS-CoV-2 SpikeCell Rep. Med.2020110012610.1016/j.xcrm.2020.100126 – reference: Kellam, P. & Barclay, W. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection. J. Gen. Virol. https://doi.org/10.1099/jgv.0.001439 (2020). – reference: GorseGJDonovanMMPatelGBAntibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus-associated illnessesJ. Med. Virol2020925125171:CAS:528:DC%2BB3cXltFems7k%3D10.1002/jmv.25715 – reference: Deng, W. et al. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Sciencehttps://doi.org/10.1126/science.abc5343 (2020). – reference: IshoBPersistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patientsSci. Immunol.20205eabe551133033173 – reference: Thompson, C. et al. Neutralising antibodies to SARS coronavirus 2 in Scottish blood donors—a pilot study of the value of serology to determine population exposure. Preprint at medRxivhttps://doi.org/10.1101/2020.04.13.20060467 (2020). – reference: AmannaIJCarlsonNESlifkaMKDuration of humoral immunity to common viral and vaccine antigensN. Engl. J. Med.2007357190319151:CAS:528:DC%2BD2sXht1ymtbjI10.1056/NEJMoa066092 – reference: Moore, J. P. & Klasse, P. J. SARS-CoV-2 vaccines: ‘Warp Speed’ needs mind melds not warped minds. J. Virol. https://doi.org/10.1128/JVI.01083-20 (2020). – reference: CaoWCLiuWZhangPHZhangFRichardusJHDisappearance of antibodies to SARS-associated coronavirus after recoveryN. Engl. J. Med2007357116211631:CAS:528:DC%2BD2sXhtVGqu7nN10.1056/NEJMc070348 – reference: PeterseneKMComparing SARS-CoV-2 with SARS-CoV and influenza pandemicsLancet Infect.202020e238e2441:CAS:528:DC%2BB3cXhtlegu7rE10.1016/S1473-3099(20)30484-9 – reference: Rogers, T. F. et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Sciencehttps://doi.org/10.1126/science.abc7520 (2020). – reference: Carter, M. J. et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat. Med.https://doi.org/10.1038/s41591-020-1054-6 (2020). – reference: Shi, R. et al. A human neutralizing antibody targets the receptor binding site of SARS-CoV-2. Naturehttps://doi.org/10.1038/s41586-020-2381-y (2020). – reference: Seydoux, E. et al. Analysis of a SARS-CoV-2-infected individual reveals development of potent neutralizing antibodies with limited somatic mutation. Immunityhttps://doi.org/10.1016/j.immuni.2020.06.001 (2020). – reference: Wang, K. et al. Longitudinal dynamics of the neutralizing antibody response to SARS-CoV-2 infection. Clin. Infect. Dis.https://doi.org/10.1093/cid/ciaa1143 (2020). – reference: Wajnberg, A. et al. SARS-CoV-2 infection induces robust, neutralizing antibody responses that are stable for at least three months. Preprint at medRxivhttps://doi.org/10.1101/2020.07.14.20151126 (2020). – reference: Wu, F. et al. Evaluating the association of clinical characteristics with neutralizing antibody levels in patients who have recovered from mild COVID-19 in Shanghai, China. JAMA Intern. Med. https://doi.org/10.1001/jamainternmed.2020.4616 (2020). – reference: GrehanKFerraraFTempertonNAn optimised method for the production of MERS-CoV spike expressing viral pseudotypesMethodsX201523793841:STN:280:DC%2BC28rgsVektQ%3D%3D10.1016/j.mex.2015.09.003 – reference: Luchsinger, L. L. et al. Serological assays estimate highly variable SARS-CoV-2 neutralizing antibody activity in recovered COVID19 patients. J. Clin. Microbiol. https://doi.org/10.1128/JCM.02005-20 (2020). – reference: OkbaNMASevere acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patientsEmerg. Infect. Dis.2020261478148810.3201/eid2607.200841 – reference: IyerASPersistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients.Sci. Immunol.20205eabe036710.1126/sciimmunol.abe0367 – reference: ChoePGMERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015Emerg. Infect. Dis.201723107910841:CAS:528:DC%2BC1cXhvFGjt7nI10.3201/eid2307.170310 – reference: WangMAntibody dynamics of 2009 influenza A (H1N1) virus in infected patients and vaccinated people in ChinaPLoS ONE20116e168091:CAS:528:DC%2BC3MXitlyjt74%3D10.1371/journal.pone.0016809 – reference: Keech, C. et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2026920 (2020). – reference: Crawford, K. H. D. et al. Dynamics of neutralizing antibody titers in the months after SARS-CoV-2 infection. J. Infect. Dis.https://doi.org/10.1093/infdis/jiaa618 (2020). – reference: Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Preprint at medRxivhttps://doi.org/10.1101/2020.06.10.20126532 (2020). – reference: Lee, W. T. et al. Neutralizing antibody responses in COVID-19 convalescent sera. Preprint at medRxivhttps://doi.org/10.1101/2020.07.10.20150557 (2020). – reference: LongQXClinical and immunological assessment of asymptomatic SARS-CoV-2 infectionsNat. Med202026120012041:CAS:528:DC%2BB3cXhtF2qtbrM10.1038/s41591-020-0965-6 – reference: Edridge, A. W. D. et al. Seasonal coronavirus protective immunity is short-lasting. Nat. Med.https://doi.org/10.1038/s41591-020-1083-1 (2020). – reference: Schmidt, F. et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med. 217, https://doi.org/10.1084/jem.20201181 (2020). – reference: Jackson, L. A. et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa2022483 (2020). – reference: Rodda, L. B. et al. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Preprint at medRxivhttps://doi.org/10.1101/2020.08.11.20171843 (2020). – reference: van Doremalen, N. et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Naturehttps://doi.org/10.1038/s41586-020-2608-y (2020). – reference: LongQXAntibody responses to SARS-CoV-2 in patients with COVID-19Nat. Med.2020268458481:CAS:528:DC%2BB3cXot1aktLk%3D10.1038/s41591-020-0897-1 – reference: Cao, Y. et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cellhttps://doi.org/10.1016/j.cell.2020.05.025 (2020). – reference: Laing, A. G. et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med. https://doi.org/10.1038/s41591-020-1038-6 (2020). – reference: Corbett, K. S. et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa2024671 (2020). – reference: Muecksch, F. et al. Longitudinal analysis of clinical serology assay performance and neutralising antibody levels in COVID19 convalescents. Preprint at medRxivhttps://doi.org/10.1101/2020.08.05.20169128 (2020). – reference: Wu, J. et al. SARS-CoV-2 infection induces sustained humoral immune responses in convalescent patients following symptomatic COVID-19. Preprint at medRxivhttps://doi.org/10.1101/2020.07.21.20159178 (2020). – reference: Chandrashekar, A. et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Sciencehttps://doi.org/10.1126/science.abc4776 (2020). – reference: Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Naturehttps://doi.org/10.1038/s41586-020-2456-9 (2020). – reference: Gao, Q. et al. Rapid development of an inactivated vaccine candidate for SARS-CoV-2. Sciencehttps://doi.org/10.1126/science.abc1932 (2020). – reference: Brouwer, P. J. M. et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Sciencehttps://doi.org/10.1126/science.abc5902 (2020). – reference: Yu, J. et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Sciencehttps://doi.org/10.1126/science.abc6284 (2020). – reference: CallowKAParryHFSergeantMTyrrellDAThe time course of the immune response to experimental coronavirus infection of manEpidemiol. Infect.19901054354461:STN:280:DyaK3M%2Fgs1CjsA%3D%3D10.1017/S0950268800048019 – reference: SmithTRFImmunogenicity of a DNA vaccine candidate for COVID-19Nat. Commun.2020111:CAS:528:DC%2BB3cXpvF2rtbY%3D10.1038/s41467-020-16505-0 – reference: PickeringSComparative assessment of multiple COVID-19 serological technologies supports continued evaluation of point-of-care lateral flow assays in hospital and community healthcare settingsPLoS Pathog202016e10088171:CAS:528:DC%2BB3cXhvFaktrvJ10.1371/journal.ppat.1008817 – ident: 813_CR9 doi: 10.1016/j.cell.2020.05.025 – ident: 813_CR50 doi: 10.1038/s41586-020-2608-y – ident: 813_CR48 doi: 10.1126/science.abc1932 – ident: 813_CR15 doi: 10.1099/jgv.0.001439 – ident: 813_CR52 doi: 10.1056/NEJMoa2024671 – ident: 813_CR18 doi: 10.1038/s41591-020-1083-1 – volume: 35 start-page: 179 year: 2006 ident: 813_CR32 publication-title: J. Clin. Virol doi: 10.1016/j.jcv.2005.07.005 – ident: 813_CR40 doi: 10.1016/j.immuni.2020.06.001 – volume: 16 start-page: e1008817 year: 2020 ident: 813_CR6 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1008817 – volume: 2 start-page: 379 year: 2015 ident: 813_CR25 publication-title: MethodsX doi: 10.1016/j.mex.2015.09.003 – ident: 813_CR39 doi: 10.1093/cid/ciaa1143 – volume: 23 start-page: 1079 year: 2017 ident: 813_CR24 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2307.170310 – volume: 105 start-page: 435 year: 1990 ident: 813_CR14 publication-title: Epidemiol. Infect. doi: 10.1017/S0950268800048019 – ident: 813_CR27 doi: 10.1101/2020.06.10.20126532 – volume: 6 start-page: e16809 year: 2011 ident: 813_CR22 publication-title: PLoS ONE doi: 10.1371/journal.pone.0016809 – volume: 20 start-page: 339 year: 2020 ident: 813_CR33 publication-title: Nat. Rev. Immunol doi: 10.1038/s41577-020-0321-6 – ident: 813_CR38 doi: 10.1101/2020.07.21.20159178 – ident: 813_CR34 doi: 10.1101/2020.07.14.20151126 – volume: 11 start-page: 49 year: 2006 ident: 813_CR16 publication-title: Respirology doi: 10.1111/j.1440-1843.2006.00783.x – ident: 813_CR20 doi: 10.1101/2020.07.10.20150557 – ident: 813_CR41 doi: 10.1101/2020.08.11.20171843 – volume: 183 start-page: 158 year: 2020 ident: 813_CR53 publication-title: Cell Press – ident: 813_CR30 doi: 10.1038/s41591-020-1038-6 – ident: 813_CR45 doi: 10.1126/science.abc5343 – ident: 813_CR29 doi: 10.1038/s41586-020-2380-z – ident: 813_CR51 doi: 10.1126/science.abc6284 – volume: 1 start-page: 100126 year: 2020 ident: 813_CR7 publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2020.100126 – ident: 813_CR47 doi: 10.1056/NEJMoa2026920 – ident: 813_CR42 doi: 10.1038/s41586-020-2456-9 – ident: 813_CR12 doi: 10.1093/infdis/jiaa618 – ident: 813_CR11 doi: 10.1038/s41586-020-2381-y – volume: 20 start-page: e238 year: 2020 ident: 813_CR43 publication-title: Lancet Infect. doi: 10.1016/S1473-3099(20)30484-9 – volume: 5 start-page: eabe0367 year: 2020 ident: 813_CR35 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abe0367 – ident: 813_CR46 doi: 10.1056/NEJMoa2022483 – volume: 11 year: 2020 ident: 813_CR49 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16505-0 – ident: 813_CR21 doi: 10.1001/jamainternmed.2020.4616 – volume: 11 start-page: e02590 year: 2020 ident: 813_CR36 publication-title: mBio doi: 10.1128/mBio.02590-20 – volume: 92 start-page: 512 year: 2020 ident: 813_CR2 publication-title: J. Med. Virol doi: 10.1002/jmv.25715 – volume: 357 start-page: 1903 year: 2007 ident: 813_CR23 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa066092 – ident: 813_CR1 doi: 10.1038/s41591-020-0913-5 – ident: 813_CR17 doi: 10.1128/JVI.01083-20 – ident: 813_CR8 doi: 10.1126/science.abc5902 – ident: 813_CR26 doi: 10.1101/2020.04.13.20060467 – volume: 26 start-page: 1200 year: 2020 ident: 813_CR13 publication-title: Nat. Med doi: 10.1038/s41591-020-0965-6 – ident: 813_CR28 doi: 10.1084/jem.20201181 – volume: 26 start-page: 1478 year: 2020 ident: 813_CR5 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2607.200841 – volume: 26 start-page: 845 year: 2020 ident: 813_CR3 publication-title: Nat. Med. doi: 10.1038/s41591-020-0897-1 – ident: 813_CR10 doi: 10.1126/science.abc7520 – ident: 813_CR44 doi: 10.1126/science.abc4776 – ident: 813_CR4 doi: 10.1128/JCM.02005-20 – volume: 5 start-page: eabe5511 year: 2020 ident: 813_CR37 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abe5511 – volume: 357 start-page: 1162 year: 2007 ident: 813_CR19 publication-title: N. Engl. J. Med doi: 10.1056/NEJMc070348 – ident: 813_CR31 doi: 10.1101/2020.08.05.20169128 – ident: 813_CR54 doi: 10.1038/s41591-020-1054-6 |
SSID | ssj0001626686 |
Score | 2.6481104 |
Snippet | Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10–15 d after the onset of COVID-19 symptoms. However, due to the recent... Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10-15 d after the onset of COVID-19 symptoms. However, due to the recent... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1598 |
SubjectTerms | 38/109 631/250/2152 631/250/254 631/250/255 631/326/596 82 82/1 82/80 82/83 Adult Aged Aged, 80 and over Antibodies Antibodies, Neutralizing - blood Antibodies, Neutralizing - immunology Antibodies, Viral - blood Antibodies, Viral - immunology Antibody response Biomedical and Life Sciences COVID-19 COVID-19 - blood COVID-19 - immunology COVID-19 - pathology Female Humans Immunoglobulin A Immunoglobulin G Infections Infectious Diseases Kinetics Life Sciences Longitudinal Studies Male Medical Microbiology Medical personnel Microbiology Middle Aged Parasitology SARS-CoV-2 - immunology Seroconversion Severe acute respiratory syndrome coronavirus 2 Severity of Illness Index Virology Young Adult |
Title | Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans |
URI | https://link.springer.com/article/10.1038/s41564-020-00813-8 https://www.ncbi.nlm.nih.gov/pubmed/33106674 https://www.proquest.com/docview/2475058196 https://www.proquest.com/docview/2454654782 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagKyQuiDcLpTISN7C6iR3HPqHdqqsKwQq1FPUW-RVRCcVlkxUqZ344M4mzK1TRQ04eJ47H9nwztucj5G3Ggy3LmjPH84IJZQTTYuaYMJkB-G9M2d9b-7ySJ-fi40VxkQJubTpWOa6J_ULto8MY-WEuwLYVYL_kh6ufDFmjcHc1UWjcJRNYghU4X5PF8erL6S7KAnhdKpluy8y4OmzRYxEMvSY0h5ypfy3SDZh5Y4u0tzzLh-RBgox0Puj4EbkTmsfk3kAief2E_PkUkXNo45Hfika7DbNS03jqA959DDTWtAmbPqzxG74CZd2ljf6arodDsqGllw0FNAjPOgQKv9t9b2kNwyT-wgpn89MzdhS_sZyOB7garNKT_LVPyfny-OvRCUvcCswJVXSYQrQog_YqN4UrTF5b8P1M4bM6wxyFTmN_CiNLr7VwHKRB19rqXCptban4M7LXxCa8INRo6QC1OatAbia98uB0oWMJrpe1QkxJNvZv5VLiceS_-FH1G-BcVYNOKtBJ1eukUlPyblvnaki7cav0_qi2Kk3BttoNmCl5sy2GyYM7IqYJcYMyyAUvACVNyfNB3dvPcQC-UpbQ_Pej_ncv_39bXt7ellfkfo5jrz8Qs0_2uvUmvAZY09kDMpkvF4vVQRrDfwGjbfTF |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDcLBYwEJ7C6sR3HOSBUSqst3a5QH6i34FdEJZSUTVbVcub38BuZyWNXqKK3HnLyM56xZ77x4yPkdSSCTZJcMCd4zKQ2kqVy5Jg0kQH335ikubd2MFXjE_n5ND5dI3_6uzB4rLJfE5uF2pcOY-SbXIJti8F-qQ_nPxmyRuHuak-h0arFflhcAGSr3u99Avm-4Xx353h7zDpWAeakjmt8PDNOQuo1N7GLDc8toB4T-yiP8HU-l3Jcso1KfJpKJyA3_GVqU650am2iBdR7g6xLAVBmQNY_7ky_HK6iOoAPlFbd7ZyR0JsVIiTJEKWh-RVM_2sBL7m1l7ZkG0u3e5fc6VxUutXq1D2yFor75GZLWrl4QH5PSuQ4mnvk06KlXYZ1qSk89QHvWgZa5rQI8yaM8gtagbT6zJZ-QWftodxQ0bOCgvcJ3ywECsNbf69oDmpZXmCBo63DI7ZdfmWc9gfGCizSkApWD8nJtYz6IzIoyiI8IdSkyoGX6KyGfCPltQeQh0AWoJ61Ug5J1I9v5rqHzpFv40fWbLgLnbUyyUAmWSOTTA_J22WZ8_aZjytzb_Riy7opX2UrBR2SV8tkmKy4A2OKUM4xD3LPS_DKhuRxK-5lcwIcbaUS6P67Xv6ryv_fl6dX9-UluTU-Pphkk73p_jNym6MeNodxNsigns3Dc3Cpavui02NKvl331PkLNj0urQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+observation+and+decline+of+neutralizing+antibody+responses+in+the+three+months+following+SARS-CoV-2+infection+in+humans&rft.jtitle=Nature+microbiology&rft.au=Seow%2C+Jeffrey&rft.au=Graham%2C+Carl&rft.au=Merrick%2C+Blair&rft.au=Acors+Sam&rft.date=2020-12-01&rft.pub=Nature+Publishing+Group&rft.eissn=2058-5276&rft.volume=5&rft.issue=12&rft.spage=1598&rft.epage=1607&rft_id=info:doi/10.1038%2Fs41564-020-00813-8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-5276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-5276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-5276&client=summon |