Visualization of cristae and mtDNA interactions via STED nanoscopy using a low saturation power probe
Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitat...
Saved in:
Published in | Light, science & applications Vol. 13; no. 1; pp. 116 - 16 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.05.2024
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vivo probes specifically targeting the IM. Here, we have developed a novel fluorescence probe called HBmito Crimson, characterized by exceptional photostability, fluorogenicity within lipid membranes, and low saturation power. We successfully achieved over 500 frames of low-power stimulated emission depletion microscopy (STED) imaging to visualize the IM dynamics, with a spatial resolution of 40 nm. By utilizing dual-color imaging of the IM and mtDNA, it has been uncovered that mtDNA tends to habitat at mitochondrial tips or branch points, exhibiting an overall spatially uniform distribution. Notably, the dynamics of mitochondria are intricately associated with the positioning of mtDNA, and fusion consistently occurs in close proximity to mtDNA to minimize pressure during cristae remodeling. In healthy cells, >66% of the mitochondria are Class III (i.e., mitochondria >5 μm or with >12 cristae), while it dropped to <18% in ferroptosis. Mitochondrial dynamics, orchestrated by cristae remodeling, foster the even distribution of mtDNA. Conversely, in conditions of apoptosis and ferroptosis where the cristae structure is compromised, mtDNA distribution becomes irregular. These findings, achieved with unprecedented spatiotemporal resolution, reveal the intricate interplay between cristae and mtDNA and provide insights into the driving forces behind mtDNA distribution.
HBmito Crimson has the ability to localize specifically on the inner mitochondrial membrane and emit light, while its superior photostability enables STED imaging. |
---|---|
AbstractList | Abstract Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vivo probes specifically targeting the IM. Here, we have developed a novel fluorescence probe called HBmito Crimson, characterized by exceptional photostability, fluorogenicity within lipid membranes, and low saturation power. We successfully achieved over 500 frames of low-power stimulated emission depletion microscopy (STED) imaging to visualize the IM dynamics, with a spatial resolution of 40 nm. By utilizing dual-color imaging of the IM and mtDNA, it has been uncovered that mtDNA tends to habitat at mitochondrial tips or branch points, exhibiting an overall spatially uniform distribution. Notably, the dynamics of mitochondria are intricately associated with the positioning of mtDNA, and fusion consistently occurs in close proximity to mtDNA to minimize pressure during cristae remodeling. In healthy cells, >66% of the mitochondria are Class III (i.e., mitochondria >5 μm or with >12 cristae), while it dropped to <18% in ferroptosis. Mitochondrial dynamics, orchestrated by cristae remodeling, foster the even distribution of mtDNA. Conversely, in conditions of apoptosis and ferroptosis where the cristae structure is compromised, mtDNA distribution becomes irregular. These findings, achieved with unprecedented spatiotemporal resolution, reveal the intricate interplay between cristae and mtDNA and provide insights into the driving forces behind mtDNA distribution. Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vivo probes specifically targeting the IM. Here, we have developed a novel fluorescence probe called HBmito Crimson, characterized by exceptional photostability, fluorogenicity within lipid membranes, and low saturation power. We successfully achieved over 500 frames of low-power stimulated emission depletion microscopy (STED) imaging to visualize the IM dynamics, with a spatial resolution of 40 nm. By utilizing dual-color imaging of the IM and mtDNA, it has been uncovered that mtDNA tends to habitat at mitochondrial tips or branch points, exhibiting an overall spatially uniform distribution. Notably, the dynamics of mitochondria are intricately associated with the positioning of mtDNA, and fusion consistently occurs in close proximity to mtDNA to minimize pressure during cristae remodeling. In healthy cells, >66% of the mitochondria are Class III (i.e., mitochondria >5 μm or with >12 cristae), while it dropped to <18% in ferroptosis. Mitochondrial dynamics, orchestrated by cristae remodeling, foster the even distribution of mtDNA. Conversely, in conditions of apoptosis and ferroptosis where the cristae structure is compromised, mtDNA distribution becomes irregular. These findings, achieved with unprecedented spatiotemporal resolution, reveal the intricate interplay between cristae and mtDNA and provide insights into the driving forces behind mtDNA distribution. Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vivo probes specifically targeting the IM. Here, we have developed a novel fluorescence probe called HBmito Crimson, characterized by exceptional photostability, fluorogenicity within lipid membranes, and low saturation power. We successfully achieved over 500 frames of low-power stimulated emission depletion microscopy (STED) imaging to visualize the IM dynamics, with a spatial resolution of 40 nm. By utilizing dual-color imaging of the IM and mtDNA, it has been uncovered that mtDNA tends to habitat at mitochondrial tips or branch points, exhibiting an overall spatially uniform distribution. Notably, the dynamics of mitochondria are intricately associated with the positioning of mtDNA, and fusion consistently occurs in close proximity to mtDNA to minimize pressure during cristae remodeling. In healthy cells, >66% of the mitochondria are Class III (i.e., mitochondria >5 μm or with >12 cristae), while it dropped to <18% in ferroptosis. Mitochondrial dynamics, orchestrated by cristae remodeling, foster the even distribution of mtDNA. Conversely, in conditions of apoptosis and ferroptosis where the cristae structure is compromised, mtDNA distribution becomes irregular. These findings, achieved with unprecedented spatiotemporal resolution, reveal the intricate interplay between cristae and mtDNA and provide insights into the driving forces behind mtDNA distribution.Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vivo probes specifically targeting the IM. Here, we have developed a novel fluorescence probe called HBmito Crimson, characterized by exceptional photostability, fluorogenicity within lipid membranes, and low saturation power. We successfully achieved over 500 frames of low-power stimulated emission depletion microscopy (STED) imaging to visualize the IM dynamics, with a spatial resolution of 40 nm. By utilizing dual-color imaging of the IM and mtDNA, it has been uncovered that mtDNA tends to habitat at mitochondrial tips or branch points, exhibiting an overall spatially uniform distribution. Notably, the dynamics of mitochondria are intricately associated with the positioning of mtDNA, and fusion consistently occurs in close proximity to mtDNA to minimize pressure during cristae remodeling. In healthy cells, >66% of the mitochondria are Class III (i.e., mitochondria >5 μm or with >12 cristae), while it dropped to <18% in ferroptosis. Mitochondrial dynamics, orchestrated by cristae remodeling, foster the even distribution of mtDNA. Conversely, in conditions of apoptosis and ferroptosis where the cristae structure is compromised, mtDNA distribution becomes irregular. These findings, achieved with unprecedented spatiotemporal resolution, reveal the intricate interplay between cristae and mtDNA and provide insights into the driving forces behind mtDNA distribution. Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vivo probes specifically targeting the IM. Here, we have developed a novel fluorescence probe called HBmito Crimson, characterized by exceptional photostability, fluorogenicity within lipid membranes, and low saturation power. We successfully achieved over 500 frames of low-power stimulated emission depletion microscopy (STED) imaging to visualize the IM dynamics, with a spatial resolution of 40 nm. By utilizing dual-color imaging of the IM and mtDNA, it has been uncovered that mtDNA tends to habitat at mitochondrial tips or branch points, exhibiting an overall spatially uniform distribution. Notably, the dynamics of mitochondria are intricately associated with the positioning of mtDNA, and fusion consistently occurs in close proximity to mtDNA to minimize pressure during cristae remodeling. In healthy cells, >66% of the mitochondria are Class III (i.e., mitochondria >5 μm or with >12 cristae), while it dropped to <18% in ferroptosis. Mitochondrial dynamics, orchestrated by cristae remodeling, foster the even distribution of mtDNA. Conversely, in conditions of apoptosis and ferroptosis where the cristae structure is compromised, mtDNA distribution becomes irregular. These findings, achieved with unprecedented spatiotemporal resolution, reveal the intricate interplay between cristae and mtDNA and provide insights into the driving forces behind mtDNA distribution.HBmito Crimson has the ability to localize specifically on the inner mitochondrial membrane and emit light, while its superior photostability enables STED imaging. Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vivo probes specifically targeting the IM. Here, we have developed a novel fluorescence probe called HBmito Crimson, characterized by exceptional photostability, fluorogenicity within lipid membranes, and low saturation power. We successfully achieved over 500 frames of low-power stimulated emission depletion microscopy (STED) imaging to visualize the IM dynamics, with a spatial resolution of 40 nm. By utilizing dual-color imaging of the IM and mtDNA, it has been uncovered that mtDNA tends to habitat at mitochondrial tips or branch points, exhibiting an overall spatially uniform distribution. Notably, the dynamics of mitochondria are intricately associated with the positioning of mtDNA, and fusion consistently occurs in close proximity to mtDNA to minimize pressure during cristae remodeling. In healthy cells, >66% of the mitochondria are Class III (i.e., mitochondria >5 μm or with >12 cristae), while it dropped to <18% in ferroptosis. Mitochondrial dynamics, orchestrated by cristae remodeling, foster the even distribution of mtDNA. Conversely, in conditions of apoptosis and ferroptosis where the cristae structure is compromised, mtDNA distribution becomes irregular. These findings, achieved with unprecedented spatiotemporal resolution, reveal the intricate interplay between cristae and mtDNA and provide insights into the driving forces behind mtDNA distribution. HBmito Crimson has the ability to localize specifically on the inner mitochondrial membrane and emit light, while its superior photostability enables STED imaging. |
ArticleNumber | 116 |
Author | Xi, Peng Shan, Chunyan Gao, Shu Ren, Wei Sun, Jing Li, Meiqi Ge, Xichuan Li, Shiyi Gao, Baoxiang |
Author_xml | – sequence: 1 givenname: Wei surname: Ren fullname: Ren, Wei organization: Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University – sequence: 2 givenname: Xichuan surname: Ge fullname: Ge, Xichuan organization: Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University – sequence: 3 givenname: Meiqi orcidid: 0000-0003-3586-176X surname: Li fullname: Li, Meiqi organization: School of Life Sciences, Peking University – sequence: 4 givenname: Jing surname: Sun fullname: Sun, Jing organization: Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University – sequence: 5 givenname: Shiyi surname: Li fullname: Li, Shiyi organization: Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University – sequence: 6 givenname: Shu surname: Gao fullname: Gao, Shu organization: Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University – sequence: 7 givenname: Chunyan orcidid: 0000-0002-5532-2811 surname: Shan fullname: Shan, Chunyan email: chunyanshan@pku.edu.cn organization: School of Life Sciences, Peking University, National Center for Protein Sciences, Peking University – sequence: 8 givenname: Baoxiang orcidid: 0000-0002-1981-144X surname: Gao fullname: Gao, Baoxiang email: bxgao@hbu.edu.cn organization: Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University – sequence: 9 givenname: Peng orcidid: 0000-0001-6626-4840 surname: Xi fullname: Xi, Peng email: xipeng@pku.edu.cn organization: Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38782912$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9vFCEcxYmpsbX2H_BgSLx4mcrPAY5NW7VJowerV8IAs2EzCyswNvWvl91premhHICQz3t5X95rcBBT9AC8xegUIyo_FoapEB0irEOY9bRTL8ARQUx0glN58N_9EJyUskZtKYaRFK_AIZVCEoXJEfA_Q5nNFP6YGlKEaYQ2h1KNhyY6uKkXX89giNVnY3dAgb-Dgd9vLi9gNDEVm7Z3cC4hrqCBU7qFxdQ5L17bdOsz3OY0-Dfg5Wim4k_uz2Pw49PlzfmX7vrb56vzs-vOMslr13srveJsQCMSlFnSZhiEGh1zSFqklMDOeuwG49yAmXJotAOlTCpjFTeKHoOrxdcls9bbHDYm3-lkgt4_pLzSJtdgJ6-lNYwgYV3PBRPUDj2nou2MK2EJ2nl9WLzaBL9mX6rehGL9NJno01w0RT2ighNOGvr-CbpOc45t0kZxhXHPiGzUu3tqHjbe_Yv3UEYD5ALYnErJftQ21P1f1mzCpDHSu-r1Ur1u1et99XoXljyRPrg_K6KLqDQ4rnx-jP2M6i_PHr8t |
CitedBy_id | crossref_primary_10_1039_D5CC00097A crossref_primary_10_1038_s41377_024_01582_3 crossref_primary_10_1038_s41377_024_01584_1 crossref_primary_10_1364_OE_532358 crossref_primary_10_1186_s43593_024_00073_7 crossref_primary_10_1021_acs_analchem_4c05544 crossref_primary_10_1016_j_bpc_2024_107345 crossref_primary_10_1016_j_tcb_2024_12_007 crossref_primary_10_1016_j_xinn_2024_100757 crossref_primary_10_1021_acs_nanolett_4c04986 crossref_primary_10_1093_nsr_nwae303 crossref_primary_10_1002_lpor_202401659 |
Cites_doi | 10.1002/adma.202001457 10.1016/j.molcel.2018.10.042 10.1016/j.cell.2016.09.003 10.1073/pnas.2215799119 10.1038/nature12985 10.1038/s41589-023-01450-y 10.1083/jcb.200712101 10.15252/embr.201949776 10.1038/s41377-023-01271-7 10.1126/science.aaf5549 10.1016/j.cell.2012.02.035 10.1073/pnas.1905924116 10.1038/s41556-018-0124-1 10.1186/s43593-022-00035-x 10.1038/s41592-018-0145-5 10.1038/s41377-023-01204-4 10.1016/j.bcp.2017.12.022 10.1038/s41467-020-17546-1 10.1016/j.bbamcr.2012.05.009 10.1364/OE.20.005225 10.1038/nature02517 10.1073/pnas.1820364116 10.1038/s41467-020-18202-4 10.26508/lsa.201900620 10.1073/pnas.1816556116 10.1038/s41598-019-48838-2 10.1126/science.aaa8714 10.1038/s41467-019-11024-z 10.1186/s43593-021-00011-x 10.1146/annurev-genet-110410-132529 10.1126/science.aao6047 10.1073/pnas.1121558109 10.1038/s41377-022-00863-z 10.1038/s41592-023-01958-0 10.1073/pnas.1301951110 10.1039/C5SC03643G 10.1038/s41592-020-01048-5 10.1146/annurev-biophys-121219-081550 10.3390/life10090164 10.1038/lsa.2016.134 10.7554/eLife.00422 10.1016/j.cell.2012.03.042 10.1038/nrm1150 10.1039/D0SC02837A 10.1073/pnas.77.2.990 10.1038/cr.2015.89 10.1038/nrm3412 10.1016/j.cplett.2007.06.017 10.1021/acs.analchem.9b04926 10.1038/nbt.4115 10.1073/pnas.1501737112 10.1073/pnas.1201882109 10.1126/science.1112125 10.1016/0006-2952(93)90649-H 10.1016/j.tibs.2016.01.001 10.1186/s43593-023-00051-5 10.1039/C7CC02989F 10.1083/jcb.202002179 10.1038/s41580-019-0173-8 10.1016/j.mito.2019.06.003 10.1177/1120672120936592 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. corrected publication 2024 2024. The Author(s). The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024. corrected publication 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.1038/s41377-024-01463-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2047-7538 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_8ca4207cd657473cb6537cb64597c209 38782912 10_1038_s41377_024_01463_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People’s Republic of China (Chinese Ministry of Science and Technology) grantid: National Key R&D Program of China: 2022YFC3401100 funderid: https://doi.org/10.13039/501100002855 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 62025501; 31971376; 92150301; 22177024 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 92150301 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22177024 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 62025501 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 31971376 – fundername: Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology) grantid: National Key R&D Program of China: 2022YFC3401100 |
GroupedDBID | 0R~ 3V. 5VS 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C6C CCPQU DWQXO EBLON EBS FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M0L M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-6ec8e954b0f0734c2204b79fd4d08c09971dce1dbaddb149d0fcb33489ac95a93 |
IEDL.DBID | DOA |
ISSN | 2047-7538 |
IngestDate | Wed Aug 27 01:22:34 EDT 2025 Mon Jul 21 11:59:19 EDT 2025 Wed Aug 13 08:18:46 EDT 2025 Thu Apr 03 06:56:55 EDT 2025 Thu Apr 24 23:10:56 EDT 2025 Tue Jul 01 03:45:20 EDT 2025 Fri Feb 21 02:38:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-6ec8e954b0f0734c2204b79fd4d08c09971dce1dbaddb149d0fcb33489ac95a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5532-2811 0000-0002-1981-144X 0000-0001-6626-4840 0000-0003-3586-176X |
OpenAccessLink | https://doaj.org/article/8ca4207cd657473cb6537cb64597c209 |
PMID | 38782912 |
PQID | 3059116428 |
PQPubID | 2041947 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8ca4207cd657473cb6537cb64597c209 proquest_miscellaneous_3060375252 proquest_journals_3059116428 pubmed_primary_38782912 crossref_citationtrail_10_1038_s41377_024_01463_9 crossref_primary_10_1038_s41377_024_01463_9 springer_journals_10_1038_s41377_024_01463_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-24 |
PublicationDateYYYYMMDD | 2024-05-24 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Light, science & applications |
PublicationTitleAbbrev | Light Sci Appl |
PublicationTitleAlternate | Light Sci Appl |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Baker, Patel, Khacho (CR7) 2019; 49 Shim (CR17) 2012; 109 Vicidomini (CR35) 2012; 20 Nunnari, Suomalainen (CR55) 2012; 148 Stephan (CR14) 2019; 9 Xu, Xi (CR27) 2022; 11 Trifunovic (CR56) 2004; 429 Qian (CR23) 2023; 3 Kopek (CR10) 2012; 109 Zheng (CR37) 2024; 20 Lewis, Uchiyama, Nunnari (CR41) 2016; 353 Jajoo (CR42) 2016; 351 Kilian (CR39) 2018; 15 Gao (CR52) 2019; 73 Song (CR25) 2020; 92 Jakobs (CR16) 2020; 49 Qin (CR45) 2020; 11 Zhang (CR30) 2020; 32 Bock, Tait (CR49) 2020; 21 Huang (CR18) 2018; 36 Rajakumar, Rao (CR32) 1993; 46 Spinelli, Haigis (CR1) 2018; 20 Yang (CR33) 2020; 11 Rizzuto (CR3) 2012; 13 Gilkerson (CR11) 2008; 181 Dixon (CR51) 2012; 149 Richter-Dennerlein (CR9) 2016; 167 Cogliati, Enriquez, Scorrano (CR6) 2016; 41 Chan (CR44) 2012; 46 Zuccarelli (CR58) 2020; 30 Liu (CR13) 2022; 119 Wang (CR43) 2015; 25 Blum (CR48) 2019; 116 Wang (CR15) 2019; 116 Orrenius, Zhivotovsky, Nicotera (CR38) 2003; 4 Shi, Li, Li (CR60) 2023; 12 Kujoth (CR57) 2005; 309 Yang (CR26) 2016; 5 Siewert (CR29) 2017; 53 Cao (CR22) 2023; 20 Lill (CR4) 2012; 1823 Murley (CR47) 2013; 2 McArthur (CR50) 2018; 359 Dong (CR59) 2023; 3 Osman (CR40) 2015; 112 Johnson, Walsh, Chen (CR28) 1980; 77 Morgan, McCallum, Fahrni (CR31) 2016; 7 Qiao (CR20) 2021; 18 Kondadi (CR46) 2020; 21 Chapman, Ng, Nicholls (CR8) 2020; 10 Yang (CR19) 2020; 11 Ban-Ishihara (CR12) 2013; 110 Chen (CR21) 2023; 12 Koho (CR36) 2019; 10 Zhao (CR24) 2022; 2 DeHart (CR53) 2018; 148 Segawa (CR61) 2020; 3 Rittweger (CR34) 2007; 442 Stoldt (CR54) 2019; 116 Tan, Finkel (CR2) 2020; 219 Friedman, Nunnari (CR5) 2014; 505 G Vicidomini (1463_CR35) 2012; 20 DV Rajakumar (1463_CR32) 1993; 46 R Ban-Ishihara (1463_CR12) 2013; 110 XS Huang (1463_CR18) 2018; 36 R Richter-Dennerlein (1463_CR9) 2016; 167 N Kilian (1463_CR39) 2018; 15 JR Friedman (1463_CR5) 2014; 505 XZ Xu (1463_CR27) 2022; 11 M Segawa (1463_CR61) 2020; 3 B Siewert (1463_CR29) 2017; 53 C Osman (1463_CR40) 2015; 112 C Qiao (1463_CR20) 2021; 18 XS Yang (1463_CR19) 2020; 11 TY Liu (1463_CR13) 2022; 119 SC Lewis (1463_CR41) 2016; 353 N Baker (1463_CR7) 2019; 49 S Cogliati (1463_CR6) 2016; 41 S Koho (1463_CR36) 2019; 10 S Zheng (1463_CR37) 2024; 20 M Zuccarelli (1463_CR58) 2020; 30 GC Kujoth (1463_CR57) 2005; 309 YF Song (1463_CR25) 2020; 92 AK Kondadi (1463_CR46) 2020; 21 CG Wang (1463_CR15) 2019; 116 XS Yang (1463_CR26) 2016; 5 DC Chan (1463_CR44) 2012; 46 HK Zhang (1463_CR30) 2020; 32 J Nunnari (1463_CR55) 2012; 148 C Wang (1463_CR43) 2015; 25 R Jajoo (1463_CR42) 2016; 351 SJ Dixon (1463_CR51) 2012; 149 LY Shi (1463_CR60) 2023; 12 R Lill (1463_CR4) 2012; 1823 FJ Bock (1463_CR49) 2020; 21 JS Qin (1463_CR45) 2020; 11 JB Spinelli (1463_CR1) 2018; 20 J Chapman (1463_CR8) 2020; 10 S Orrenius (1463_CR38) 2003; 4 RW Gilkerson (1463_CR11) 2008; 181 MT Morgan (1463_CR31) 2016; 7 JX Tan (1463_CR2) 2020; 219 BG Kopek (1463_CR10) 2012; 109 X Chen (1463_CR21) 2023; 12 S Stoldt (1463_CR54) 2019; 116 RJ Cao (1463_CR22) 2023; 20 ZT Yang (1463_CR33) 2020; 11 E Rittweger (1463_CR34) 2007; 442 LV Johnson (1463_CR28) 1980; 77 JM Qian (1463_CR23) 2023; 3 DN DeHart (1463_CR53) 2018; 148 K McArthur (1463_CR50) 2018; 359 K Zhao (1463_CR24) 2022; 2 S Jakobs (1463_CR16) 2020; 49 MH Gao (1463_CR52) 2019; 73 A Trifunovic (1463_CR56) 2004; 429 A Murley (1463_CR47) 2013; 2 T Stephan (1463_CR14) 2019; 9 SL Dong (1463_CR59) 2023; 3 R Rizzuto (1463_CR3) 2012; 13 TB Blum (1463_CR48) 2019; 116 SH Shim (1463_CR17) 2012; 109 |
References_xml | – volume: 32 year: 2020 ident: CR30 article-title: Aggregate science: from structures to properties publication-title: Adv. Mater. doi: 10.1002/adma.202001457 – volume: 73 start-page: 354 year: 2019 end-page: 363.e3 ident: CR52 article-title: Role of mitochondria in ferroptosis publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.10.042 – volume: 167 start-page: 471 year: 2016 end-page: 483.e10 ident: CR9 article-title: Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein publication-title: Cell doi: 10.1016/j.cell.2016.09.003 – volume: 119 year: 2022 ident: CR13 article-title: Multi-color live-cell STED nanoscopy of mitochondria with a gentle inner membrane stain publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2215799119 – volume: 505 start-page: 335 year: 2014 end-page: 343 ident: CR5 article-title: Mitochondrial form and function publication-title: Nature doi: 10.1038/nature12985 – volume: 20 start-page: 83 year: 2024 end-page: 92 ident: CR37 article-title: Long-term super-resolution inner mitochondrial membrane imaging with a lipid probe publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-023-01450-y – volume: 181 start-page: 1117 year: 2008 end-page: 1128 ident: CR11 article-title: Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation publication-title: J. Cell Biol. doi: 10.1083/jcb.200712101 – volume: 21 year: 2020 ident: CR46 article-title: Cristae undergo continuous cycles of membrane remodelling in a MICOS-dependent manner publication-title: EMBO Rep. doi: 10.15252/embr.201949776 – volume: 12 start-page: 234 year: 2023 ident: CR60 article-title: Early cancer detection by SERS spectroscopy and machine learning publication-title: Light Sci. Appl. doi: 10.1038/s41377-023-01271-7 – volume: 353 start-page: eaaf5549 year: 2016 ident: CR41 article-title: ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells publication-title: Science doi: 10.1126/science.aaf5549 – volume: 148 start-page: 1145 year: 2012 end-page: 1159 ident: CR55 article-title: Mitochondria: in sickness and in health publication-title: Cell doi: 10.1016/j.cell.2012.02.035 – volume: 116 start-page: 15817 year: 2019 end-page: 15822 ident: CR15 article-title: A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial cristae publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1905924116 – volume: 20 start-page: 745 year: 2018 end-page: 754 ident: CR1 article-title: The multifaceted contributions of mitochondria to cellular metabolism publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0124-1 – volume: 3 start-page: 4 year: 2023 ident: CR23 article-title: Structured illumination microscopy based on principal component analysis publication-title: eLight doi: 10.1186/s43593-022-00035-x – volume: 15 start-page: 755 year: 2018 end-page: 756 ident: CR39 article-title: Assessing photodamage in live-cell STED microscopy publication-title: Nat. Methods doi: 10.1038/s41592-018-0145-5 – volume: 12 start-page: 172 year: 2023 ident: CR21 article-title: Superresolution structured illumination microscopy reconstruction algorithms: a review publication-title: Light Sci. Appl. doi: 10.1038/s41377-023-01204-4 – volume: 148 start-page: 155 year: 2018 end-page: 162 ident: CR53 article-title: Opening of voltage dependent anion channels promotes reactive oxygen species generation, mitochondrial dysfunction and cell death in cancer cells publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2017.12.022 – volume: 11 year: 2020 ident: CR19 article-title: Mitochondrial dynamics quantitatively revealed by STED nanoscopy with an enhanced squaraine variant probe publication-title: Nat. Commun. doi: 10.1038/s41467-020-17546-1 – volume: 1823 start-page: 1491 year: 2012 end-page: 1508 ident: CR4 article-title: The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism publication-title: Biochim. Biophys. Acta (BBA) Mol. Cell Res. doi: 10.1016/j.bbamcr.2012.05.009 – volume: 20 start-page: 5225 year: 2012 end-page: 5236 ident: CR35 article-title: STED with wavelengths closer to the emission maximum publication-title: Opt. Express doi: 10.1364/OE.20.005225 – volume: 429 start-page: 417 year: 2004 end-page: 423 ident: CR56 article-title: Premature ageing in mice expressing defective mitochondrial DNA polymerase publication-title: Nature doi: 10.1038/nature02517 – volume: 116 start-page: 9853 year: 2019 end-page: 9858 ident: CR54 article-title: Mic60 exhibits a coordinated clustered distribution along and across yeast and mammalian mitochondria publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1820364116 – volume: 11 year: 2020 ident: CR45 article-title: ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation publication-title: Nat. Commun. doi: 10.1038/s41467-020-18202-4 – volume: 3 start-page: e201900620 year: 2020 ident: CR61 article-title: Quantification of cristae architecture reveals time-dependent characteristics of individual mitochondria publication-title: Life Sci. Alliance doi: 10.26508/lsa.201900620 – volume: 116 start-page: 4250 year: 2019 end-page: 4255 ident: CR48 article-title: Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1816556116 – volume: 9 year: 2019 ident: CR14 article-title: Live-cell STED nanoscopy of mitochondrial cristae publication-title: Sci. Rep. doi: 10.1038/s41598-019-48838-2 – volume: 351 start-page: 169 year: 2016 end-page: 172 ident: CR42 article-title: Accurate concentration control of mitochondria and nucleoids publication-title: Science doi: 10.1126/science.aaa8714 – volume: 10 year: 2019 ident: CR36 article-title: Fourier ring correlation simplifies image restoration in fluorescence microscopy publication-title: Nat. Commun. doi: 10.1038/s41467-019-11024-z – volume: 2 start-page: 5 year: 2022 ident: CR24 article-title: Two-photon MINFLUX with doubled localization precision publication-title: eLight doi: 10.1186/s43593-021-00011-x – volume: 46 start-page: 265 year: 2012 end-page: 287 ident: CR44 article-title: Fusion and fission: interlinked processes critical for mitochondrial health publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-110410-132529 – volume: 359 year: 2018 ident: CR50 article-title: BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis publication-title: Science doi: 10.1126/science.aao6047 – volume: 109 start-page: 6136 year: 2012 end-page: 6141 ident: CR10 article-title: Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1121558109 – volume: 11 start-page: 171 year: 2022 ident: CR27 article-title: Rare nanoparticles shine colors with low-power STED publication-title: Light Sci. Appl. doi: 10.1038/s41377-022-00863-z – volume: 20 start-page: 1183 year: 2023 end-page: 1186 ident: CR22 article-title: Open-3DSIM: an open-source three-dimensional structured illumination microscopy reconstruction platform publication-title: Nat. Methods doi: 10.1038/s41592-023-01958-0 – volume: 110 start-page: 11863 year: 2013 end-page: 11868 ident: CR12 article-title: Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1301951110 – volume: 7 start-page: 1468 year: 2016 end-page: 1473 ident: CR31 article-title: Rational design of a water-soluble, lipid-compatible fluorescent probe for Cu(I) with sub-part-per-trillion sensitivity publication-title: Chem. Sci. doi: 10.1039/C5SC03643G – volume: 18 start-page: 194 year: 2021 end-page: 202 ident: CR20 article-title: Evaluation and development of deep neural networks for image super-resolution in optical microscopy publication-title: Nat. Methods doi: 10.1038/s41592-020-01048-5 – volume: 49 start-page: 289 year: 2020 end-page: 308 ident: CR16 article-title: Light microscopy of mitochondria at the nanoscale publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-121219-081550 – volume: 10 start-page: 164 year: 2020 ident: CR8 article-title: The maintenance of mitochondrial DNA integrity and dynamics by mitochondrial membranes publication-title: Life doi: 10.3390/life10090164 – volume: 5 start-page: e16134 year: 2016 ident: CR26 article-title: Mirror-enhanced super-resolution microscopy publication-title: Light Sci. Appl. doi: 10.1038/lsa.2016.134 – volume: 2 year: 2013 ident: CR47 article-title: ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast publication-title: eLife doi: 10.7554/eLife.00422 – volume: 149 start-page: 1060 year: 2012 end-page: 1072 ident: CR51 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 4 start-page: 552 year: 2003 end-page: 565 ident: CR38 article-title: Regulation of cell death: the calcium-apoptosis link publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1150 – volume: 11 start-page: 8506 year: 2020 end-page: 8516 ident: CR33 article-title: Cyclooctatetraene-conjugated cyanine mitochondrial probes minimize phototoxicity in fluorescence and nanoscopic imaging publication-title: Chem. Sci. doi: 10.1039/D0SC02837A – volume: 77 start-page: 990 year: 1980 end-page: 994 ident: CR28 article-title: Localization of mitochondria in living cells with rhodamine 123 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.77.2.990 – volume: 25 start-page: 1108 year: 2015 end-page: 1120 ident: CR43 article-title: Dynamic tubulation of mitochondria drives mitochondrial network formation publication-title: Cell Res. doi: 10.1038/cr.2015.89 – volume: 13 start-page: 566 year: 2012 end-page: 578 ident: CR3 article-title: Mitochondria as sensors and regulators of calcium signalling publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3412 – volume: 442 start-page: 483 year: 2007 end-page: 487 ident: CR34 article-title: Fluorescence depletion mechanisms in super-resolving STED microscopy publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.06.017 – volume: 92 start-page: 12137 year: 2020 end-page: 12144 ident: CR25 article-title: Improving brightness and stability of Si-rhodamine for super-resolution imaging of mitochondria in living cells publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b04926 – volume: 36 start-page: 451 year: 2018 end-page: 459 ident: CR18 article-title: Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4115 – volume: 112 start-page: E947 year: 2015 end-page: E9956 ident: CR40 article-title: Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1501737112 – volume: 109 start-page: 13978 year: 2012 end-page: 13983 ident: CR17 article-title: Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1201882109 – volume: 309 start-page: 481 year: 2005 end-page: 484 ident: CR57 article-title: Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging publication-title: Science doi: 10.1126/science.1112125 – volume: 46 start-page: 2067 year: 1993 end-page: 2072 ident: CR32 article-title: Dehydrozingerone and isoeugenol as inhibitors of lipid peroxidation and as free radical scavengers publication-title: Biochem. Pharmacol. doi: 10.1016/0006-2952(93)90649-H – volume: 41 start-page: 261 year: 2016 end-page: 273 ident: CR6 article-title: Mitochondrial cristae: where beauty meets functionality publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2016.01.001 – volume: 3 start-page: 17 year: 2023 ident: CR59 article-title: Early cancer detection by serum biomolecular fingerprinting spectroscopy with machine learning publication-title: eLight doi: 10.1186/s43593-023-00051-5 – volume: 53 start-page: 11126 year: 2017 end-page: 11129 ident: CR29 article-title: Turning on the red phosphorescence of a [Ru (tpy)(bpy)(Cl)] Cl complex by amide substitution: self-aggregation, toxicity, and cellular localization of an emissive ruthenium-based amphiphile publication-title: Chem. Commun. doi: 10.1039/C7CC02989F – volume: 219 start-page: e202002179 year: 2020 ident: CR2 article-title: Mitochondria as intracellular signaling platforms in health and disease publication-title: J. Cell Biol. doi: 10.1083/jcb.202002179 – volume: 21 start-page: 85 year: 2020 end-page: 100 ident: CR49 article-title: Mitochondria as multifaceted regulators of cell death publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0173-8 – volume: 49 start-page: 259 year: 2019 end-page: 268 ident: CR7 article-title: Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: how mitochondrial structure can regulate bioenergetics publication-title: Mitochondrion doi: 10.1016/j.mito.2019.06.003 – volume: 30 start-page: 1220 year: 2020 end-page: 1227 ident: CR58 article-title: Treatment of Leber’s hereditary optic neuropathy: an overview of recent developments publication-title: Eur. J. Ophthalmol. doi: 10.1177/1120672120936592 – volume: 2 start-page: 5 year: 2022 ident: 1463_CR24 publication-title: eLight doi: 10.1186/s43593-021-00011-x – volume: 32 year: 2020 ident: 1463_CR30 publication-title: Adv. Mater. doi: 10.1002/adma.202001457 – volume: 11 year: 2020 ident: 1463_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17546-1 – volume: 18 start-page: 194 year: 2021 ident: 1463_CR20 publication-title: Nat. Methods doi: 10.1038/s41592-020-01048-5 – volume: 148 start-page: 155 year: 2018 ident: 1463_CR53 publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2017.12.022 – volume: 505 start-page: 335 year: 2014 ident: 1463_CR5 publication-title: Nature doi: 10.1038/nature12985 – volume: 20 start-page: 745 year: 2018 ident: 1463_CR1 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0124-1 – volume: 116 start-page: 4250 year: 2019 ident: 1463_CR48 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1816556116 – volume: 12 start-page: 234 year: 2023 ident: 1463_CR60 publication-title: Light Sci. Appl. doi: 10.1038/s41377-023-01271-7 – volume: 92 start-page: 12137 year: 2020 ident: 1463_CR25 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b04926 – volume: 20 start-page: 83 year: 2024 ident: 1463_CR37 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-023-01450-y – volume: 25 start-page: 1108 year: 2015 ident: 1463_CR43 publication-title: Cell Res. doi: 10.1038/cr.2015.89 – volume: 49 start-page: 259 year: 2019 ident: 1463_CR7 publication-title: Mitochondrion doi: 10.1016/j.mito.2019.06.003 – volume: 53 start-page: 11126 year: 2017 ident: 1463_CR29 publication-title: Chem. Commun. doi: 10.1039/C7CC02989F – volume: 21 start-page: 85 year: 2020 ident: 1463_CR49 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0173-8 – volume: 20 start-page: 1183 year: 2023 ident: 1463_CR22 publication-title: Nat. Methods doi: 10.1038/s41592-023-01958-0 – volume: 10 year: 2019 ident: 1463_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11024-z – volume: 181 start-page: 1117 year: 2008 ident: 1463_CR11 publication-title: J. Cell Biol. doi: 10.1083/jcb.200712101 – volume: 359 year: 2018 ident: 1463_CR50 publication-title: Science doi: 10.1126/science.aao6047 – volume: 1823 start-page: 1491 year: 2012 ident: 1463_CR4 publication-title: Biochim. Biophys. Acta (BBA) Mol. Cell Res. doi: 10.1016/j.bbamcr.2012.05.009 – volume: 36 start-page: 451 year: 2018 ident: 1463_CR18 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4115 – volume: 167 start-page: 471 year: 2016 ident: 1463_CR9 publication-title: Cell doi: 10.1016/j.cell.2016.09.003 – volume: 109 start-page: 6136 year: 2012 ident: 1463_CR10 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1121558109 – volume: 148 start-page: 1145 year: 2012 ident: 1463_CR55 publication-title: Cell doi: 10.1016/j.cell.2012.02.035 – volume: 46 start-page: 2067 year: 1993 ident: 1463_CR32 publication-title: Biochem. Pharmacol. doi: 10.1016/0006-2952(93)90649-H – volume: 4 start-page: 552 year: 2003 ident: 1463_CR38 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1150 – volume: 77 start-page: 990 year: 1980 ident: 1463_CR28 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.77.2.990 – volume: 13 start-page: 566 year: 2012 ident: 1463_CR3 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3412 – volume: 49 start-page: 289 year: 2020 ident: 1463_CR16 publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-121219-081550 – volume: 119 year: 2022 ident: 1463_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2215799119 – volume: 309 start-page: 481 year: 2005 ident: 1463_CR57 publication-title: Science doi: 10.1126/science.1112125 – volume: 5 start-page: e16134 year: 2016 ident: 1463_CR26 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2016.134 – volume: 442 start-page: 483 year: 2007 ident: 1463_CR34 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.06.017 – volume: 2 year: 2013 ident: 1463_CR47 publication-title: eLife doi: 10.7554/eLife.00422 – volume: 110 start-page: 11863 year: 2013 ident: 1463_CR12 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1301951110 – volume: 21 year: 2020 ident: 1463_CR46 publication-title: EMBO Rep. doi: 10.15252/embr.201949776 – volume: 3 start-page: 17 year: 2023 ident: 1463_CR59 publication-title: eLight doi: 10.1186/s43593-023-00051-5 – volume: 109 start-page: 13978 year: 2012 ident: 1463_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1201882109 – volume: 15 start-page: 755 year: 2018 ident: 1463_CR39 publication-title: Nat. Methods doi: 10.1038/s41592-018-0145-5 – volume: 11 start-page: 8506 year: 2020 ident: 1463_CR33 publication-title: Chem. Sci. doi: 10.1039/D0SC02837A – volume: 116 start-page: 9853 year: 2019 ident: 1463_CR54 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1820364116 – volume: 12 start-page: 172 year: 2023 ident: 1463_CR21 publication-title: Light Sci. Appl. doi: 10.1038/s41377-023-01204-4 – volume: 429 start-page: 417 year: 2004 ident: 1463_CR56 publication-title: Nature doi: 10.1038/nature02517 – volume: 30 start-page: 1220 year: 2020 ident: 1463_CR58 publication-title: Eur. J. Ophthalmol. doi: 10.1177/1120672120936592 – volume: 351 start-page: 169 year: 2016 ident: 1463_CR42 publication-title: Science doi: 10.1126/science.aaa8714 – volume: 149 start-page: 1060 year: 2012 ident: 1463_CR51 publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 7 start-page: 1468 year: 2016 ident: 1463_CR31 publication-title: Chem. Sci. doi: 10.1039/C5SC03643G – volume: 11 year: 2020 ident: 1463_CR45 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18202-4 – volume: 353 start-page: eaaf5549 year: 2016 ident: 1463_CR41 publication-title: Science doi: 10.1126/science.aaf5549 – volume: 112 start-page: E947 year: 2015 ident: 1463_CR40 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1501737112 – volume: 20 start-page: 5225 year: 2012 ident: 1463_CR35 publication-title: Opt. Express doi: 10.1364/OE.20.005225 – volume: 11 start-page: 171 year: 2022 ident: 1463_CR27 publication-title: Light Sci. Appl. doi: 10.1038/s41377-022-00863-z – volume: 73 start-page: 354 year: 2019 ident: 1463_CR52 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.10.042 – volume: 116 start-page: 15817 year: 2019 ident: 1463_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1905924116 – volume: 3 start-page: 4 year: 2023 ident: 1463_CR23 publication-title: eLight doi: 10.1186/s43593-022-00035-x – volume: 10 start-page: 164 year: 2020 ident: 1463_CR8 publication-title: Life doi: 10.3390/life10090164 – volume: 9 year: 2019 ident: 1463_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-019-48838-2 – volume: 46 start-page: 265 year: 2012 ident: 1463_CR44 publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-110410-132529 – volume: 3 start-page: e201900620 year: 2020 ident: 1463_CR61 publication-title: Life Sci. Alliance doi: 10.26508/lsa.201900620 – volume: 219 start-page: e202002179 year: 2020 ident: 1463_CR2 publication-title: J. Cell Biol. doi: 10.1083/jcb.202002179 – volume: 41 start-page: 261 year: 2016 ident: 1463_CR6 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2016.01.001 |
SSID | ssj0000941087 |
Score | 2.4673822 |
Snippet | Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and... Abstract Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116 |
SubjectTerms | 639/624/1107/328/2238 639/624/1111/55 Apoptosis Cristae DNA probes Ferroptosis Lasers Lipid membranes Microscopy Microwaves Mitochondria Mitochondrial DNA Optical and Electronic Materials Optical Devices Optics Organelles Photonics Physics Physics and Astronomy RF and Optical Engineering Spatial discrimination |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDI9gCIkL4ps3BgoSN4iWNmmbntD4mCYkdoGhd4sSJ50mjfbx-jbEf4-d5nVCwC49NGmUxnZsx_HPjL0yXqPaLJUApUHooJRwpqgEBNVpH4sgE87s5-P66ER_WlbLfOA25muV2z0xbdRhADoj30e-RLkka_nt6oegqlEUXc0lNG6yWwRdRlzdLJv5jAVdl0KaJufKSGX2R00IewIVkyDUFCXaP_RRgu3_l635V5w0qZ_De-xuthv5wUTo--xG7B-w2-n-JowPWfx2NlJ65JRUyYeOA0mvi9z1gX_ffDg-4IQMsZ7yGEZ-eeb4F9y1eO_6gVJTfnG6An_KHT8ffvKR8D6nsVZUR41T4Zn4iJ0cfvz6_kjkCgoCtKk2oo5gYltpLzsUZQ1lKbVv2i7oIA1Q0mwRAAnicZfz6CsF2YGn3NzWQVu5Vj1mO_3Qx6eMyxrpGOsiAmWjds41KM21Rt8aVaDWesGK7TpayPDiVOXi3KYwtzJ2WnuLa2_T2tt2wV7P36wmcI1re78j8sw9CRg7vRjWpzbLmTXgdCkbCHWFjpICX1eqwadGxwlKiYPsbYlrs7SO9oq3Fuzl3IxyRsET18fhgvrUVC4Y-XrBnkxMMc9EGbSz2gJb3my55Grw___Q7vVzecbulIlRK1HqPbazWV_E52gBbfyLxOa_AS5U_2k priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiPJcaJGRuIGFE08S57i0VNVK9FKKerP8SlWpTarNFsS_Z8Z5IERB4pJDYlvJeB6e2N83jL3VDjBs5kp4BV5AUEpYnRXCB9WAi1mQiWf280l5fAar8-J8i-UTFiYd2k-UlslNT6fDPvRA1HgCI4oguhMl6ntsh6jaUbd3lsvV6Wr-s4IJSyZ1NSJkpNJ3dP4tCiWy_rtWmH_sjqagc_SIPRxXi3w5vN8u24rtY3Y_ndr0_RMWv172BIocoJS8a7gnm7WR2zbw683hyZITH8R6QC_0_Nul5afoq3hr244AKT84HXy_4JZfdd95TyIZxrqh6mmcys3Ep-zs6NOXg2Mx1k0QHnSxEWX0OtYFONmgAYPPcwmuqpsAQWpPUNkseJwGh77NYYYUZOMdIXJr6-vC1uoZ2267Nr5gXJY4e7HMoicMamNthTZcAmbUGPgAYMGySY7Gj6TiVNviyqTNbaXNIHuDsjdJ9qZesHdzn5uBUuOfrT_S9MwtiQ473ejWF2ZUD6O9hVxWPpQFpkfKu7JQFV4B0yWfSxxkb5pcM9pob9DToaen_GvB3syP0bpoy8S2sbulNiUVCUZtXrDng1LMb6I0rq7qDJ-8n7Tk1-B__6CX_9f8FXuQJ8UtRA57bHuzvo37uA7auNej4v8EwTn-kA priority: 102 providerName: Springer Nature |
Title | Visualization of cristae and mtDNA interactions via STED nanoscopy using a low saturation power probe |
URI | https://link.springer.com/article/10.1038/s41377-024-01463-9 https://www.ncbi.nlm.nih.gov/pubmed/38782912 https://www.proquest.com/docview/3059116428 https://www.proquest.com/docview/3060375252 https://doaj.org/article/8ca4207cd657473cb6537cb64597c209 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIkLKu_QsjISN7CaxI7jHLdLq2olVohStDfLr6CiklTNFtR_3xk7uxTxunBJJNuJ7PGMZyz7-4aQV8oKcJslZ44Lx4TnnBlVVMx53gobCp9Hntl3C3l0IubLankj1RfeCUv0wElwe8oZUea187KCyJc7Kytew1NAJOzKBN0Dn3djM_Ul3ZcrclWPKJmcq71BILceA5fEkC-Fs-YnTxQJ-38XZf5yQhodz-E2uT9GjHSaevqA3ArdQ3I33tx0wyMSPp0OCIxMcErat9Sh3ZpATefp19XbxZQiJ8RFQjAM9NupocewXtHOdD2CUq4oXn7_TA0967_TAZk-07_OMYMaxZQz4TE5OTz4ODtiY-4E5oSqVkwGp0JTCZu3YMTClWUubN20XvhcOYTLFt7BVFhY3yzsknzeOouo3Ma4pjINf0K2ur4LzwjNJcxgkEVwiENtjanBjqWAXTU4PyFERoq1HLUbicUxv8WZjgfcXOkkew2y11H2usnI680354lW46-t93F6Ni2REjsWgKLoUVH0vxQlI7vrydWjnQ4aVjtY7XEPlpGXm2qwMDw2MV3oL7GNxETBoNEZeZqUYtMTriDCagqoebPWkh8___OAnv-PAe2Qe2VU54qVYpdsrS4uwwuIkFZ2Qm7Xy3pC7kyn8-M5vPcPFu8_QOlMzibRUK4BWQYL8A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFG8IxujFiF8sgtZET9rQmXZmOgdiUCSLwF4Es7faaTuEBGeWnUXCP8Xf6HudD2JUblz2sNNtuq-_9zXt7z1C3qpCgtuMBbNCWiadEMyoKGHWiVIWPnI81Jk9nKTjY_l1mkyXyHXPhcFrlb1NDIba1RbfkW8CLkEvMVr-ODtn2DUKT1f7FhotLPb91SWkbM3W3g7s77s43v1y9HnMuq4CzEqVLFjqrfJ5IgteAryljWMuiywvnXRcWSSSRs7CIgvQ_ALyB8dLWyBfNTc2TwwWXwKTfw8cL8dkL5tmwzsdSJUirrKOm8OF2mwkVvRj4AgZVmkRLP_D_4U2Af-Kbf86lw3ubvcxedTFqXS7BdYKWfLVE3I_3Be1zVPiv582SMdsSZy0LqlFa2E8NZWjPxc7k22KlSjmLW-iob9ODf0GVpJWpqqRCnNF8cr9CTX0rL6kDdYXbeeaYd82io1u_DNyfCeyfU6Wq7ryq4TyFHDj08hbZL-WxmRgPVIJuTy4XCnliES9HLXtypljV40zHY7VhdKt7DXIXgfZ63xE3g-_mbXFPG4d_Qm3ZxiJhbjDF_X8RHd6rZU1MuaZdWkCiZmwRZqIDD4lJGo25jDJer-5urMOjb7B8oi8GR6DXuNhjal8fYFjUmxPDHo0Ii9aUAwrEQriujyCJx96lNxM_v8_tHb7Wl6TB-OjwwN9sDfZf0kexgG0CYvlOllezC_8BkRfi-JVgDwlP-5ax34DOpM9SQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrUBcEG8WChgJTmCtYzuJc0CoZbtqKawqoKg349hOVakky2ZL1b_Gr2MmrwoBvfWyh43X8o6_ecWebwh5oXMFblNI5qRyTHkpmdVRzJyXhcpD5HnDM_txnuwcqPeH8eEa-dXXwuC1yt4mNobaVw7fkU8Al6CXGC1Piu5axP509nbxg2EHKTxp7dtptBDZC-dnkL7Vb3ansNcvhZhtf3m3w7oOA8wpHa9YEpwOWaxyXgDUlROCqzzNCq881w6LSiPvYME5WIEccgnPC5dj7WpmXRZbJGIC87-eYlY0Iutb2_P9T8MbHkicIq7TrlKHSz2pFfL7MXCLDDlbJMv-8IZN04B_Rbp_ndI2zm92i9zsola62cLsNlkL5R1yrbk96uq7JHw9rrE4sy3ppFVBHdoOG6gtPf2-ms43KfJSLNsqipr-PLb0M9hMWtqywsKYc4oX8I-opSfVGa2RbbSda4Fd3Ci2vQn3yMGVSPc-GZVVGR4SyhNAUUii4LAWtrA2BVuSKMjswQErpcYk6uVoXEdujj02TkxzyC61aWVvQPamkb3JxuTV8JtFS-1x6egt3J5hJNJyN19UyyPTabnRzirBU-eTGNI06fIklil8KkjbnOAwyUa_uaazFbW5QPaYPB8eg5bj0Y0tQ3WKYxJsVgxaNSYPWlAMK5Eaorwsgieve5RcTP7_P_To8rU8I9dBv8yH3fneY3JDNJiNmVAbZLRanoYnEIqt8qcd5in5dtVq9hukgkLk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualization+of+cristae+and+mtDNA+interactions+via+STED+nanoscopy+using+a+low+saturation+power+probe&rft.jtitle=Light%2C+science+%26+applications&rft.au=Ren%2C+Wei&rft.au=Ge%2C+Xichuan&rft.au=Li%2C+Meiqi&rft.au=Sun%2C+Jing&rft.date=2024-05-24&rft.issn=2047-7538&rft.eissn=2047-7538&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41377-024-01463-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41377_024_01463_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon |