Fundamental limits and optimal estimation of the resonance frequency of a linear harmonic oscillator

All physical oscillators are subject to thermodynamic and quantum perturbations, fundamentally limiting measurement of their resonance frequency. Analyses assuming specific ways of estimating frequency can underestimate the available precision and overlook unconventional measurement regimes. Here we...

Full description

Saved in:
Bibliographic Details
Published inCommunications physics Vol. 4; no. 1; pp. 1 - 11
Main Authors Wang, Mingkang, Zhang, Rui, Ilic, Robert, Liu, Yuxiang, Aksyuk, Vladimir A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.09.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract All physical oscillators are subject to thermodynamic and quantum perturbations, fundamentally limiting measurement of their resonance frequency. Analyses assuming specific ways of estimating frequency can underestimate the available precision and overlook unconventional measurement regimes. Here we derive a general, estimation-method-independent Cramer Rao lower bound for a linear harmonic oscillator resonance frequency measurement uncertainty, seamlessly accounting for the quantum, thermodynamic and instrumental limitations, including Fisher information from quantum backaction- and thermodynamically driven fluctuations. We provide a universal and practical maximum-likelihood frequency estimator reaching the predicted limits in all regimes, and experimentally validate it on a thermodynamically limited nanomechanical oscillator. Low relative frequency uncertainty is obtained for both very high bandwidth measurements (≈10 −5 for τ = 30 μs) and measurements using thermal fluctuations alone (<10 −6 ). Beyond nanomechanics, these results advance frequency-based metrology across physical domains. Thermodynamic and quantum fluctuations limit the accuracy with which conventional methods can measure observables, often depending on the method chosen. Here, information theory is employed to determine the minimum uncertainty in the resonant frequency of a harmonic oscillator in a method-independent way.
AbstractList All physical oscillators are subject to thermodynamic and quantum perturbations, fundamentally limiting measurement of their resonance frequency. Analyses assuming specific ways of estimating frequency can underestimate the available precision and overlook unconventional measurement regimes. Here we derive a general, estimation-method-independent Cramer Rao lower bound for a linear harmonic oscillator resonance frequency measurement uncertainty, seamlessly accounting for the quantum, thermodynamic and instrumental limitations, including Fisher information from quantum backaction- and thermodynamically-driven fluctuations. We provide a universal and practical maximum-likelihood frequency estimator reaching the predicted limits in all regimes, and experimentally validate it on a thermodynamically-limited nanomechanical oscillator. Low relative frequency uncertainty is obtained for both very high bandwidth measurements (≈ 10-5 for τ=30μs) and measurements using thermal fluctuations alone (<10-6). Beyond nanomechanics, these results advance frequency-based metrology across physical domains.All physical oscillators are subject to thermodynamic and quantum perturbations, fundamentally limiting measurement of their resonance frequency. Analyses assuming specific ways of estimating frequency can underestimate the available precision and overlook unconventional measurement regimes. Here we derive a general, estimation-method-independent Cramer Rao lower bound for a linear harmonic oscillator resonance frequency measurement uncertainty, seamlessly accounting for the quantum, thermodynamic and instrumental limitations, including Fisher information from quantum backaction- and thermodynamically-driven fluctuations. We provide a universal and practical maximum-likelihood frequency estimator reaching the predicted limits in all regimes, and experimentally validate it on a thermodynamically-limited nanomechanical oscillator. Low relative frequency uncertainty is obtained for both very high bandwidth measurements (≈ 10-5 for τ=30μs) and measurements using thermal fluctuations alone (<10-6). Beyond nanomechanics, these results advance frequency-based metrology across physical domains.
All physical oscillators are subject to thermodynamic and quantum perturbations, fundamentally limiting measurement of their resonance frequency. Analyses assuming specific ways of estimating frequency can underestimate the available precision and overlook unconventional measurement regimes. Here we derive a general, estimation-method-independent Cramer Rao lower bound for a linear harmonic oscillator resonance frequency measurement uncertainty, seamlessly accounting for the quantum, thermodynamic and instrumental limitations, including Fisher information from quantum backaction- and thermodynamically driven fluctuations. We provide a universal and practical maximum-likelihood frequency estimator reaching the predicted limits in all regimes, and experimentally validate it on a thermodynamically limited nanomechanical oscillator. Low relative frequency uncertainty is obtained for both very high bandwidth measurements (≈10 −5 for τ = 30 μs) and measurements using thermal fluctuations alone (<10 −6 ). Beyond nanomechanics, these results advance frequency-based metrology across physical domains.
All physical oscillators are subject to thermodynamic and quantum perturbations, fundamentally limiting measurement of their resonance frequency. Analyses assuming specific ways of estimating frequency can underestimate the available precision and overlook unconventional measurement regimes. Here we derive a general, estimation-method-independent Cramer Rao lower bound for a linear harmonic oscillator resonance frequency measurement uncertainty, seamlessly accounting for the quantum, thermodynamic and instrumental limitations, including Fisher information from quantum backaction- and thermodynamically driven fluctuations. We provide a universal and practical maximum-likelihood frequency estimator reaching the predicted limits in all regimes, and experimentally validate it on a thermodynamically limited nanomechanical oscillator. Low relative frequency uncertainty is obtained for both very high bandwidth measurements (≈10 −5 for τ = 30 μs) and measurements using thermal fluctuations alone (<10 −6 ). Beyond nanomechanics, these results advance frequency-based metrology across physical domains. Thermodynamic and quantum fluctuations limit the accuracy with which conventional methods can measure observables, often depending on the method chosen. Here, information theory is employed to determine the minimum uncertainty in the resonant frequency of a harmonic oscillator in a method-independent way.
Thermodynamic and quantum fluctuations limit the accuracy with which conventional methods can measure observables, often depending on the method chosen. Here, information theory is employed to determine the minimum uncertainty in the resonant frequency of a harmonic oscillator in a method-independent way.
All physical oscillators are subject to thermodynamic and quantum perturbations, fundamentally limiting measurement of their resonance frequency. Analyses assuming specific ways of estimating frequency can underestimate the available precision and overlook unconventional measurement regimes. Here we derive a general, estimation-method-independent Cramer Rao lower bound for a linear harmonic oscillator resonance frequency measurement uncertainty, seamlessly accounting for the quantum, thermodynamic and instrumental limitations, including Fisher information from quantum backaction- and thermodynamically driven fluctuations. We provide a universal and practical maximum-likelihood frequency estimator reaching the predicted limits in all regimes, and experimentally validate it on a thermodynamically limited nanomechanical oscillator. Low relative frequency uncertainty is obtained for both very high bandwidth measurements (≈10−5 for τ = 30 μs) and measurements using thermal fluctuations alone (<10−6). Beyond nanomechanics, these results advance frequency-based metrology across physical domains.Thermodynamic and quantum fluctuations limit the accuracy with which conventional methods can measure observables, often depending on the method chosen. Here, information theory is employed to determine the minimum uncertainty in the resonant frequency of a harmonic oscillator in a method-independent way.
All physical oscillators are subject to thermodynamic and quantum perturbations, fundamentally limiting measurement of their resonance frequency. Analyses assuming specific ways of estimating frequency can underestimate the available precision and overlook unconventional measurement regimes. Here we derive a general, estimation-method-independent Cramer Rao lower bound for a linear harmonic oscillator resonance frequency measurement uncertainty, seamlessly accounting for the quantum, thermodynamic and instrumental limitations, including Fisher information from quantum backaction- and thermodynamically-driven fluctuations. We provide a universal and practical maximum-likelihood frequency estimator reaching the predicted limits in all regimes, and experimentally validate it on a thermodynamically-limited nanomechanical oscillator. Low relative frequency uncertainty is obtained for both very high bandwidth measurements (≈ 10 for ) and measurements using thermal fluctuations alone (<10 ). Beyond nanomechanics, these results advance frequency-based metrology across physical domains.
ArticleNumber 207
Author Liu, Yuxiang
Aksyuk, Vladimir A.
Zhang, Rui
Wang, Mingkang
Ilic, Robert
Author_xml – sequence: 1
  givenname: Mingkang
  orcidid: 0000-0003-0418-4284
  surname: Wang
  fullname: Wang, Mingkang
  organization: Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Institute for Research in Electronics and Applied Physics, University of Maryland
– sequence: 2
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: Department of Mechanical Engineering, Worcester Polytechnic Institute
– sequence: 3
  givenname: Robert
  orcidid: 0000-0003-2504-4045
  surname: Ilic
  fullname: Ilic, Robert
  organization: Microsystems and Nanotechnology Division, National Institute of Standards and Technology
– sequence: 4
  givenname: Yuxiang
  surname: Liu
  fullname: Liu, Yuxiang
  organization: Department of Mechanical Engineering, Worcester Polytechnic Institute
– sequence: 5
  givenname: Vladimir A.
  orcidid: 0000-0002-9653-4722
  surname: Aksyuk
  fullname: Aksyuk, Vladimir A.
  email: vladimir.aksyuk@nist.gov
  organization: Microsystems and Nanotechnology Division, National Institute of Standards and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38680632$$D View this record in MEDLINE/PubMed
BookMark eNp9UcFu1TAQtFARLaU_wAFF4sIlsInt2DmiqoVKlbjA2fKz162fEvthO4f-Pc5LC6iHHqxd7c6MZj1vyUmIAQl538HnDqj8klkPwFvouxZAALTDK3LW03Fs6cDh5L_-lFzkvAeoUAaCDm_IKZWDhIH2Z8ReL8HqGUPRUzP52Zfc6GCbeCh-riPMay0-hia6ptxjkzDHoIPBxiX8vWAwD-tKV3ZAnZp7neYYvGliNn6adInpHXnt9JTx4rGek1_XVz8vv7e3P77dXH69bQ2TvLSD1TDiKKpN7SR3IzWWAddS7CSItZeasmpcSz06LgU3dEDGeuNA9HV3Tm42XRv1Xh1SdZ4eVNReHQcx3SmdijcTKkRAaZ3mOxRMUrtjzFgKYNjQMTd2VevTpnVIsV6Zi5p9NlgPChiXrCgwycb6hgr9-Ay6j0sK9VLVc9EL2g98RX14RC27Ge1fe09ZVIDcACbFnBM6ZXw5fn1J2k-qA7Umr7bkVY1THZNXq3b_jPqk_iKJbqRcweEO0z_bL7D-AHGovvM
CitedBy_id crossref_primary_10_3390_math12243981
crossref_primary_10_1103_PhysRevA_105_053517
crossref_primary_10_1103_PhysRevX_13_011018
crossref_primary_10_1126_sciadv_adf7595
crossref_primary_10_1103_PhysRevApplied_19_054074
Cites_doi 10.1364/OE.20.018268
10.1021/acs.nanolett.9b04995
10.1063/1.1642738
10.1038/32373
10.1109/18.481776
10.1103/PhysRevB.61.9968
10.1038/nnano.2016.19
10.1063/1.1499745
10.1038/s41586-018-0861-0
10.1109/T-UFFC.1987.26997
10.1038/nmeth.2071
10.1103/PhysRevLett.118.221101
10.1038/nature16066
10.1038/srep30306
10.1126/science.aad2449
10.1063/1.1853631
10.1063/1.5093310
10.1038/ncomms3860
10.1186/1297-9686-31-3-269
10.1038/nnano.2009.152
10.1063/1.347347
10.1103/RevModPhys.82.1155
10.1109/29.45547
10.1038/nphoton.2015.139
10.1038/nmeth.1449
10.1038/nature02658
10.1017/CBO9781139179027
10.1016/j.mee.2007.01.232
10.1063/1.4975347
10.1126/science.aar5220
10.1007/BF02888835
10.1038/nnano.2012.42
ContentType Journal Article
Copyright This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021
This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021
– notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOA
DOI 10.1038/s42005-021-00700-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database (ProQuest)
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2399-3650
EndPage 11
ExternalDocumentID oai_doaj_org_article_ee0e8dfa5be7483db44cd300c4614f91
38680632
10_1038_s42005_021_00700_6
Genre Journal Article
GrantInformation_xml – fundername: Intramural NIST DOC
  grantid: 9999-NIST
GroupedDBID 0R~
88I
AAFWJ
AAJSJ
ABDBF
ABJCF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADMLS
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCNDV
BENPR
BGLVJ
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
M2P
M7S
M~E
NAO
O9-
OK1
PIMPY
PTHSS
RNT
SNYQT
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
EJD
H13
NPM
PMFND
3V.
7XB
8FE
8FG
8FK
AARCD
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c485t-6da09e97140af85f93cd405a87b807cd408a34806a8a9f5875c36e442cf0728a3
IEDL.DBID C6C
ISSN 2399-3650
IngestDate Wed Aug 27 01:29:51 EDT 2025
Fri Jul 11 04:28:19 EDT 2025
Wed Aug 13 08:40:25 EDT 2025
Sat May 31 02:13:23 EDT 2025
Tue Jul 01 04:29:29 EDT 2025
Thu Apr 24 22:55:19 EDT 2025
Fri Feb 21 02:37:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-6da09e97140af85f93cd405a87b807cd408a34806a8a9f5875c36e442cf0728a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9653-4722
0000-0003-0418-4284
0000-0003-2504-4045
OpenAccessLink https://www.nature.com/articles/s42005-021-00700-6
PMID 38680632
PQID 2572732656
PQPubID 4669724
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_ee0e8dfa5be7483db44cd300c4614f91
proquest_miscellaneous_3048494846
proquest_journals_2572732656
pubmed_primary_38680632
crossref_citationtrail_10_1038_s42005_021_00700_6
crossref_primary_10_1038_s42005_021_00700_6
springer_journals_10_1038_s42005_021_00700_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Communications physics
PublicationTitleAbbrev Commun Phys
PublicationTitleAlternate Commun Phys
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Rugar, Budakian, Mamin, Chui (CR7) 2004; 430
Clerk, Devoret, Girvin, Marquardt, Schoelkopf (CR31) 2010; 82
Cleland, Roukes (CR12) 2002; 92
Sansa (CR15) 2016; 11
CR19
Lee, Lee, Lee, Nha (CR26) 2016; 6
Gavartin, Verlot, Kippenberg (CR14) 2013; 4
Campos (CR17) 1979; 30
Errico (CR21) 2015; 527
CR34
Tanaka (CR9) 2007; 84
Gelman, Carlin, Stern, Rubin (CR32) 2014
Hänggi, Ingold (CR33) 2005; 15
Liu, Miao, Aksyuk, Srinivasan (CR29) 2012; 20
Losby (CR3) 2015; 350
Smith, Joseph, Rieger, Lidke (CR24) 2010; 7
Malécot (CR18) 1999; 31
Naik, Hanay, Hiebert, Feng, Roukes (CR8) 2009; 4
Giessibl, Bielefeldt (CR10) 2000; 61
Sauer, Diao, Westwood-Bachman, Freeman, Hiebert (CR5) 2017; 7
Jacobs (CR30) 2014
Roy, Sauer, Westwood-Bachman, Venkatasubramanian, Hiebert (CR16) 2018; 360
Chaste (CR2) 2012; 7
Allan (CR28) 1987; 34
Cleland, Roukes (CR4) 1998; 392
Wang, Zhang, Ilic, Aksyuk, Liu (CR35) 2020; 20
Berni (CR25) 2015; 9
(CR1) 2017; 118
Albrecht, Grütter, Horne, Rugar (CR11) 1991; 69
Zhou, Handley, Carles, Harvey (CR22) 2019; 4
Rissanen (CR20) 1996; 42
Ekinci, Yang, Roukes (CR13) 2004; 95
Parthasarathy (CR23) 2012; 9
Kay (CR27) 1989; 37
Barnard, Zhang, Wiederhecker, Lipson, McEuen (CR6) 2019; 566
JJ Rissanen (700_CR20) 1996; 42
LIGO Scientific and Virgo Collaboration. (700_CR1) 2017; 118
M Sansa (700_CR15) 2016; 11
CS Smith (700_CR24) 2010; 7
J Chaste (700_CR2) 2012; 7
KL Ekinci (700_CR13) 2004; 95
AN Cleland (700_CR4) 1998; 392
FJ Giessibl (700_CR10) 2000; 61
AW Barnard (700_CR6) 2019; 566
G Malécot (700_CR18) 1999; 31
SK Roy (700_CR16) 2018; 360
700_CR19
A Gelman (700_CR32) 2014
TR Albrecht (700_CR11) 1991; 69
K Jacobs (700_CR30) 2014
700_CR34
P Hänggi (700_CR33) 2005; 15
AK Naik (700_CR8) 2009; 4
M Wang (700_CR35) 2020; 20
R Parthasarathy (700_CR23) 2012; 9
DW Allan (700_CR28) 1987; 34
AN Cleland (700_CR12) 2002; 92
S Kay (700_CR27) 1989; 37
AD Campos (700_CR17) 1979; 30
C Errico (700_CR21) 2015; 527
AA Berni (700_CR25) 2015; 9
Y Liu (700_CR29) 2012; 20
D Rugar (700_CR7) 2004; 430
Y Zhou (700_CR22) 2019; 4
S-Y Lee (700_CR26) 2016; 6
M Tanaka (700_CR9) 2007; 84
VTK Sauer (700_CR5) 2017; 7
JE Losby (700_CR3) 2015; 350
E Gavartin (700_CR14) 2013; 4
AA Clerk (700_CR31) 2010; 82
References_xml – volume: 20
  start-page: 18268
  year: 2012
  end-page: 18280
  ident: CR29
  article-title: Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy
  publication-title: Opt. Express, OE
  doi: 10.1364/OE.20.018268
– volume: 20
  start-page: 3050
  year: 2020
  end-page: 3057
  ident: CR35
  article-title: Frequency Stabilization of Nanomechanical Resonators Using Thermally Invariant Strain Engineering
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b04995
– volume: 95
  start-page: 2682
  year: 2004
  end-page: 2689
  ident: CR13
  article-title: Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1642738
– volume: 392
  start-page: 160
  year: 1998
  end-page: 162
  ident: CR4
  article-title: A nanometre-scale mechanical electrometer
  publication-title: Nature
  doi: 10.1038/32373
– volume: 42
  start-page: 40
  year: 1996
  end-page: 47
  ident: CR20
  article-title: Fisher information and stochastic complexity
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.481776
– volume: 61
  start-page: 9968
  year: 2000
  end-page: 9971
  ident: CR10
  article-title: Physical interpretation of frequency-modulation atomic force microscopy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.9968
– volume: 11
  start-page: 552
  year: 2016
  end-page: 558
  ident: CR15
  article-title: Frequency fluctuations in silicon nanoresonators
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2016.19
– volume: 92
  start-page: 2758
  year: 2002
  end-page: 2769
  ident: CR12
  article-title: Noise processes in nanomechanical resonators
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1499745
– volume: 566
  start-page: 89
  year: 2019
  end-page: 93
  ident: CR6
  article-title: Real-time vibrations of a carbon nanotube
  publication-title: Nature
  doi: 10.1038/s41586-018-0861-0
– volume: 34
  start-page: 647
  year: 1987
  end-page: 654
  ident: CR28
  article-title: Time and Frequency (Time-Domain) Characterization, Estimation, and Prediction of Precision Clocks and Oscillators
  publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
  doi: 10.1109/T-UFFC.1987.26997
– volume: 9
  start-page: 724
  year: 2012
  end-page: 726
  ident: CR23
  article-title: Rapid, accurate particle tracking by calculation of radial symmetry centers
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2071
– year: 2014
  ident: CR32
– volume: 118
  start-page: 221101
  year: 2017
  ident: CR1
  article-title: GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.221101
– volume: 527
  start-page: 499
  year: 2015
  end-page: 502
  ident: CR21
  article-title: Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging
  publication-title: Nature
  doi: 10.1038/nature16066
– volume: 6
  start-page: 30306
  year: 2016
  ident: CR26
  article-title: Quantum phase estimation using path-symmetric entangled states
  publication-title: Sci. Rep.
  doi: 10.1038/srep30306
– volume: 350
  start-page: 798
  year: 2015
  end-page: 801
  ident: CR3
  article-title: Torque-mixing magnetic resonance spectroscopy
  publication-title: Science
  doi: 10.1126/science.aad2449
– volume: 15
  start-page: 026105
  year: 2005
  ident: CR33
  article-title: Fundamental aspects of quantum Brownian motion
  publication-title: Chaos
  doi: 10.1063/1.1853631
– ident: CR19
– volume: 4
  start-page: 060901
  year: 2019
  ident: CR22
  article-title: Advances in 3D single particle localization microscopy
  publication-title: APL Photonics
  doi: 10.1063/1.5093310
– volume: 4
  year: 2013
  ident: CR14
  article-title: Stabilization of a linear nanomechanical oscillator to its thermodynamic limit
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3860
– volume: 31
  year: 1999
  ident: CR18
  article-title: Statistical methods and the subjective basis of scientific knowledge
  publication-title: Genet. Selection Evolution
  doi: 10.1186/1297-9686-31-3-269
– volume: 4
  start-page: 445
  year: 2009
  end-page: 450
  ident: CR8
  article-title: Towards single-molecule nanomechanical mass spectrometry
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2009.152
– volume: 69
  start-page: 668
  year: 1991
  end-page: 673
  ident: CR11
  article-title: Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.347347
– volume: 82
  start-page: 1155
  year: 2010
  end-page: 1208
  ident: CR31
  article-title: Introduction to quantum noise, measurement, and amplification
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.1155
– volume: 37
  start-page: 1987
  year: 1989
  end-page: 1990
  ident: CR27
  article-title: A fast and accurate single frequency estimator
  publication-title: IEEE Trans. Acoust., Speech, Signal Process.
  doi: 10.1109/29.45547
– volume: 9
  start-page: 577
  year: 2015
  end-page: 581
  ident: CR25
  article-title: Ab initio quantum-enhanced optical phase estimation using real-time feedback control
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.139
– volume: 7
  start-page: 373
  year: 2010
  end-page: 375
  ident: CR24
  article-title: Fast, single-molecule localization that achieves theoretically minimum uncertainty
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1449
– volume: 430
  start-page: 329
  year: 2004
  end-page: 332
  ident: CR7
  article-title: Single spin detection by magnetic resonance force microscopy
  publication-title: Nature
  doi: 10.1038/nature02658
– year: 2014
  ident: CR30
  doi: 10.1017/CBO9781139179027
– volume: 84
  start-page: 1341
  year: 2007
  end-page: 1344
  ident: CR9
  article-title: An industrial and applied review of new MEMS devices features
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2007.01.232
– volume: 7
  start-page: 015115
  year: 2017
  ident: CR5
  article-title: Single laser modulated drive and detection of a nano-optomechanical cantilever
  publication-title: AIP Adv.
  doi: 10.1063/1.4975347
– volume: 360
  start-page: eaar5220
  year: 2018
  ident: CR16
  article-title: Improving mechanical sensor performance through larger damping
  publication-title: Science
  doi: 10.1126/science.aar5220
– ident: CR34
– volume: 30
  start-page: 65
  year: 1979
  end-page: 70
  ident: CR17
  article-title: An extension of the Cramér-Rao inequality for the sequential case
  publication-title: Trabajos de. Estad. y. de. Investigacion Operativa
  doi: 10.1007/BF02888835
– volume: 7
  start-page: 301
  year: 2012
  end-page: 304
  ident: CR2
  article-title: A nanomechanical mass sensor with yoctogram resolution
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2012.42
– volume: 118
  start-page: 221101
  year: 2017
  ident: 700_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.221101
– volume: 7
  start-page: 015115
  year: 2017
  ident: 700_CR5
  publication-title: AIP Adv.
  doi: 10.1063/1.4975347
– volume: 392
  start-page: 160
  year: 1998
  ident: 700_CR4
  publication-title: Nature
  doi: 10.1038/32373
– volume: 37
  start-page: 1987
  year: 1989
  ident: 700_CR27
  publication-title: IEEE Trans. Acoust., Speech, Signal Process.
  doi: 10.1109/29.45547
– volume-title: Bayesian data analysis
  year: 2014
  ident: 700_CR32
– volume-title: Quantum Measurement Theory and its Applications
  year: 2014
  ident: 700_CR30
  doi: 10.1017/CBO9781139179027
– volume: 7
  start-page: 301
  year: 2012
  ident: 700_CR2
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2012.42
– volume: 9
  start-page: 577
  year: 2015
  ident: 700_CR25
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.139
– volume: 6
  start-page: 30306
  year: 2016
  ident: 700_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/srep30306
– volume: 15
  start-page: 026105
  year: 2005
  ident: 700_CR33
  publication-title: Chaos
  doi: 10.1063/1.1853631
– volume: 360
  start-page: eaar5220
  year: 2018
  ident: 700_CR16
  publication-title: Science
  doi: 10.1126/science.aar5220
– volume: 527
  start-page: 499
  year: 2015
  ident: 700_CR21
  publication-title: Nature
  doi: 10.1038/nature16066
– volume: 430
  start-page: 329
  year: 2004
  ident: 700_CR7
  publication-title: Nature
  doi: 10.1038/nature02658
– volume: 95
  start-page: 2682
  year: 2004
  ident: 700_CR13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1642738
– volume: 4
  start-page: 060901
  year: 2019
  ident: 700_CR22
  publication-title: APL Photonics
  doi: 10.1063/1.5093310
– volume: 82
  start-page: 1155
  year: 2010
  ident: 700_CR31
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.1155
– volume: 7
  start-page: 373
  year: 2010
  ident: 700_CR24
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1449
– volume: 11
  start-page: 552
  year: 2016
  ident: 700_CR15
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2016.19
– volume: 92
  start-page: 2758
  year: 2002
  ident: 700_CR12
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1499745
– volume: 69
  start-page: 668
  year: 1991
  ident: 700_CR11
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.347347
– volume: 9
  start-page: 724
  year: 2012
  ident: 700_CR23
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2071
– volume: 4
  year: 2013
  ident: 700_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3860
– volume: 20
  start-page: 18268
  year: 2012
  ident: 700_CR29
  publication-title: Opt. Express, OE
  doi: 10.1364/OE.20.018268
– volume: 30
  start-page: 65
  year: 1979
  ident: 700_CR17
  publication-title: Trabajos de. Estad. y. de. Investigacion Operativa
  doi: 10.1007/BF02888835
– volume: 31
  year: 1999
  ident: 700_CR18
  publication-title: Genet. Selection Evolution
  doi: 10.1186/1297-9686-31-3-269
– volume: 350
  start-page: 798
  year: 2015
  ident: 700_CR3
  publication-title: Science
  doi: 10.1126/science.aad2449
– volume: 61
  start-page: 9968
  year: 2000
  ident: 700_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.9968
– volume: 34
  start-page: 647
  year: 1987
  ident: 700_CR28
  publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
  doi: 10.1109/T-UFFC.1987.26997
– ident: 700_CR34
– volume: 84
  start-page: 1341
  year: 2007
  ident: 700_CR9
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2007.01.232
– ident: 700_CR19
– volume: 4
  start-page: 445
  year: 2009
  ident: 700_CR8
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2009.152
– volume: 42
  start-page: 40
  year: 1996
  ident: 700_CR20
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.481776
– volume: 566
  start-page: 89
  year: 2019
  ident: 700_CR6
  publication-title: Nature
  doi: 10.1038/s41586-018-0861-0
– volume: 20
  start-page: 3050
  year: 2020
  ident: 700_CR35
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b04995
SSID ssj0002140736
Score 2.2316558
Snippet All physical oscillators are subject to thermodynamic and quantum perturbations, fundamentally limiting measurement of their resonance frequency. Analyses...
Thermodynamic and quantum fluctuations limit the accuracy with which conventional methods can measure observables, often depending on the method chosen. Here,...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms 639/766/530/2804
639/925/927
Bandwidths
Fisher information
Frequency analysis
Frequency measurement
Harmonic oscillators
Information theory
Lower bounds
Maximum likelihood estimators
Noise
Oscillators
Perturbation
Physics
Physics and Astronomy
Resonance
Resonant frequencies
Silicon nitride
Uncertainty
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9wgEEZVTrlUrfryNo2IlFtrLQaM8bGpuooipadE2hsaYzht7Wq9e8i_74zxOlv1dcnNAoxgGJhvNMwHY5dSxgjCtnlZaZNrNBh5A3VDXITeKyiMCRTRvf1mru_1zbpcHz31RXfCEj1wEtwyBBFsG6FsQqWtahutfauE8NivTnnrEm3ekTNFZ7BEv6GiuOQi5ZXb5aBH0k26kUAUN-gz_WKJRsL-P6HM3yKko-FZvWDPJ8TIP6eRvmTPQveKtSvK4EjE_HxDSUoDh67lPZ4A37GIuDNSUiLvI0eQx9Gt7olcI_C4TdenH6gKOOFM2HKisCaaXE7slqgb6Iu_Zverr3dfrvPpwYTca1vuctOCqENNHHwQbRlr5VsEZGCrxoqKvi0obYUBC3Us0VXxygStpY-iklj3hp10fRfeMV5I2UBhfQAJWiiobah91IVH8y6bQmasOAjP-YlNnB612Lgxqq2sSwJ3KHA3CtyZjH2c__mRuDT-2fqK1mRuSTzYYwFqh5u0w_1POzJ2dlhRN23OweEphaBNIpLN2MVcjduKYiXQhX4_OIUnGzHnaGzzNmnCPBJlDcpQoQw-HVTjsfO_T2jxFBN6z07lqMN1XpRn7GS33YcPCIt2zfm4A34CvEUGiQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEA-1RfAiWr9eW0sEb7o0m2SzyUms9FEKFhELvYVsPry0u_Xt68H_vjPZvC2i9rYk2SU7mcxHZuYXQt5znpJjOlRNK1UlQWFUnTMdYhF6L1ytVMSI7tdzdXohzy6by3LgNpa0yo1MzII6DB7PyI-AtUDTcjA_Pt38qvDWKIyulis0HpEdEMEanK-d45Pzb9_nUxYO_kOL8cm9qb5cH40yg29iZgJC3YDv9IdGysD9_7I2_4qUZgW0fEaeFsuRfp6W-jnZiv0ueZwzOP34goQl1nRMUP30CsuWRur6QAeQCdfQhGgaU5kiHRIFs4-Coz0g3EakaTUlVP_GLkfR8nQriqDWCJxLEe8SuAW885fkYnny48tpVa5QqLzUzbpSwTETDaLyuaSbZIQPYKI53XaatfisnZCaKaedSQ04L16oKCX3ibUc-l6R7X7o4xtCa847V2sfHXeSCWd0ND7J2oPC513NF6TekNH6gi-O11xc2RznFtpOpLdAeptJb9WCfJjfuZnQNR4cfYyrM49EZOzcMKx-2rLRbIws6pBc08VWahE6KX0QjHngQ5lMvSAHm7W1ZbuO9p65FuTd3A0bDaMnro_D7WgFyDrE0pEw5vXEE_NMhFZAQwE0-LhhkvuP__-H9h6eyz55wjOfmqpuDsj2enUb34IJtO4OC5_fAdOxAaE
  priority: 102
  providerName: ProQuest
Title Fundamental limits and optimal estimation of the resonance frequency of a linear harmonic oscillator
URI https://link.springer.com/article/10.1038/s42005-021-00700-6
https://www.ncbi.nlm.nih.gov/pubmed/38680632
https://www.proquest.com/docview/2572732656
https://www.proquest.com/docview/3048494846
https://doaj.org/article/ee0e8dfa5be7483db44cd300c4614f91
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1La9wwEICHPCj0UpI-N0kXFXprTW1JluXjZsk2LDSUtoHchCxLvSR2WW8O_feZkR-hNC3kZGPJxh6PpBnPzGeA95yHYFNdJ3khVSJxwUgqW1bEInRO2EwpTxHdLxfq_FKur_KrHeBjLUxM2o9IyzhNj9lhnzoZmZmUUECEGnR5dmGf0O2k1Uu1nL6rcPQYCopIHvUV5fqBU_9YgyKq_yH78q_YaFxyVgfwbLAV2aK_u0PY8c1zeBJzNl33AuoVVXH0cH52TYVKHbNNzVqcBW7wEPEz-sJE1gaGhh5D17olwIZnYdOnUP-mJsvI1rQbRhhrQuUyIlyifqA__hIuV2c_lufJ8NOExEmdbxNV27T0JXH4bNB5KIWr0Sizuqh0WtC-tkLqVFlty5Cju-KE8lJyF9KCY9sr2Gvaxr8BlnFe2Uw7b7mVqbCl9qULMnO4xPMq4zPIRjEaNxDF6ccW1yZGtoU2vegNit5E0Rs1gw_TOb96nsZ_e5_S25l6Egs7Hmg3P82gG8b71Os62LzyhdSirqR0tUhTh5onQ5nN4GR8t2YYoJ3BmQoNN47W7AzeTc04tCheYhvf3nZG4OxG9ByJfV73OjHdidAKZShQBh9HJbm_-L8f6Ohx3Y_hKY96WyZZfgJ7282tf4tG0Laaw65efZ7D_mKx_r7G7enZxddv8zgW5vHDwh2gdALQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLNsKWAkOEHUxHYS-4AQr2VLH6dW6s04js2lJCXZCvVP8RuZcTapENBbb5HtWMn483js8XwD8ILzEGyq6iQvZZFIXDCSyuqKuAidEzYrCk8e3f2DYnEkvxznx2vwa4yFoWuVo06MirpuHZ2RbyO0cKXlaH68Pf2RUNYo8q6OKTQGWOz685-4Zevf7HzE8X3J-fzT4YdFssoqkDip8mVS1DbVXhNRnQ0qD1q4Gq0Wq8pKpSU9KyukSgurrA452vNOFF5K7kJacqzDfq_BdSmEphml5p-nMx2OfZbkDd0cotnVdi8j1SfdgyBiHdyp_bH-xTQB_7Jt__LLxuVufgdur-xU9m4A1l1Y8809uBHvi7r-PtRziiAZEgOwEwqS6pltataiBvqORcTdMQRFsjYwNDIZbutbIvfwLHTD9e1zqrKM7FzbMaLQJppeRuyaiM1l2z2AoysR7UNYb9rGPwKWcV7ZTDlvuZWpsFp57YLMHJoXvMr4DLJRjMat2MwpqcaJiV51ocwgeoOiN1H0ppjBq-md04HL49LW72l0ppbEwx0L2u6bWU1r433qVR1sXvlSKlFXUrpapKlD1MugsxlsjWNrVsqhNxdQnsHzqRqnNflqbOPbs94I1KzE3COxzcaAielLhCpQhgJl8HoEyUXn__-hzcu_5RncXBzu75m9nYPdx3CLR8zqJMu3YH3ZnfknaHwtq6cR8Qy-XvUU-w0iqDvz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9UwELZKEagXxM5rCxiJG4Q6tuPYR_rgqWwVByr1ZjleuJSkenk99N8z4yyoolTiFnmJnPHY_iYz85mQ15yn5JgORVVLVUg4MIrGmQa5CL0XrlQqokf327E6OpGfT6vTLaKmXJgctJ8pLfM2PUWHHfQyc2ZiQAEy1IDJ8-48pFvkNuBthkbXUi3nfyscrIYavZK7Q1a5vqb7lXMo0_VfhzH_8o_mY2d1n9wb8SJ9P4zwAdmK7UNyJ8dt-v4RCSvM5BgI-ukZJiv11LWBdrAT_IIi5NAYkhNplyiAPQrmdYckG5Gm9RBGfYlVjiLedGuKVNZIl0uR5RJ0BGzyx-Rk9fHH8qgYL04ovNTVplDBMRMNcvG5pKtkhA8AzJyuG81qfNZOSM2U086kCkTohYpScp9YzaHuCdluuzY-I7TkvHGl9tFxJ5lwRkfjkyw9HPO8KfmClJMYrR9ZxfFyizObvdtC20H0FkRvs-itWpA3c5_zgVPjxtaHODtzS-TDzgXd-qcd9cPGyKIOyVVNrKUWoZHSB8GYB-2TyZQLsj_NrR0XaW9htwLwxgHRLsiruRqWF_pMXBu7i94K2OGQQUdCm6eDTswjEVqBDAXI4O2kJH9e_u8P2v2_5i_J3e8fVvbrp-Mve2SHZxU2RVntk-3N-iI-B0y0aV7kBfAbYIgBxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fundamental+limits+and+optimal+estimation+of+the+resonance+frequency+of+a+linear+harmonic+oscillator&rft.jtitle=Communications+physics&rft.au=Wang%2C+Mingkang&rft.au=Zhang%2C+Rui&rft.au=Ilic%2C+Robert&rft.au=Liu%2C+Yuxiang&rft.date=2021-09-15&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2399-3650&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1038%2Fs42005-021-00700-6&rft.externalDocID=10_1038_s42005_021_00700_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3650&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3650&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3650&client=summon