Therapeutic efficacy of monoclonal antibodies and antivirals against SARS-CoV-2 Omicron BA.1 in Syrian hamsters
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host’s protective immune response. Here we assessed the efficacy of therapeutic monoclonal antibodies (mAbs) against Omicron variant (B.1.1.529) sublineage BA.1 variants in Syrian h...
Saved in:
Published in | Nature microbiology Vol. 7; no. 8; pp. 1252 - 1258 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host’s protective immune response. Here we assessed the efficacy of therapeutic monoclonal antibodies (mAbs) against Omicron variant (B.1.1.529) sublineage BA.1 variants in Syrian hamsters. Of the FDA-approved therapeutic mAbs tested (that is, REGN10987/REGN10933, COV2-2196/COV2-2130 and S309), only COV2-2196/COV2-2130 efficiently inhibited BA.1 replication in the lungs of hamsters, and this effect was diminished against a BA.1.1 variant possessing the S-R346K substitution. In addition, treatment of BA.1-infected hamsters with molnupiravir (a SARS-CoV-2 RNA-dependent RNA polymerase inhibitor) or S-217622 (a SARS-CoV-2 protease inhibitor) strongly reduced virus replication in the lungs. These findings suggest that the use of therapeutic mAbs in Omicron-infected patients should be carefully considered due to mutations that affect efficacy, and demonstrate that the antiviral compounds molnupiravir and S-217622 are effective against Omicron BA.1 variants.
Therapeutic monoclonal antibodies (COV2-2196/COV2-2130) inhibited the replication of SARS-CoV-2 Omicron BA.1 but not BA.1.1 variants in the lungs of Syrian hamsters. Antivirals (molnupiravir and S-217622) were effective against BA.1 in hamsters. |
---|---|
AbstractList | The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host's protective immune response. Here we assessed the efficacy of therapeutic monoclonal antibodies (mAbs) against Omicron variant (B.1.1.529) sublineage BA.1 variants in Syrian hamsters. Of the FDA-approved therapeutic mAbs tested (that is, REGN10987/REGN10933, COV2-2196/COV2-2130 and S309), only COV2-2196/COV2-2130 efficiently inhibited BA.1 replication in the lungs of hamsters, and this effect was diminished against a BA.1.1 variant possessing the S-R346K substitution. In addition, treatment of BA.1-infected hamsters with molnupiravir (a SARS-CoV-2 RNA-dependent RNA polymerase inhibitor) or S-217622 (a SARS-CoV-2 protease inhibitor) strongly reduced virus replication in the lungs. These findings suggest that the use of therapeutic mAbs in Omicron-infected patients should be carefully considered due to mutations that affect efficacy, and demonstrate that the antiviral compounds molnupiravir and S-217622 are effective against Omicron BA.1 variants.The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host's protective immune response. Here we assessed the efficacy of therapeutic monoclonal antibodies (mAbs) against Omicron variant (B.1.1.529) sublineage BA.1 variants in Syrian hamsters. Of the FDA-approved therapeutic mAbs tested (that is, REGN10987/REGN10933, COV2-2196/COV2-2130 and S309), only COV2-2196/COV2-2130 efficiently inhibited BA.1 replication in the lungs of hamsters, and this effect was diminished against a BA.1.1 variant possessing the S-R346K substitution. In addition, treatment of BA.1-infected hamsters with molnupiravir (a SARS-CoV-2 RNA-dependent RNA polymerase inhibitor) or S-217622 (a SARS-CoV-2 protease inhibitor) strongly reduced virus replication in the lungs. These findings suggest that the use of therapeutic mAbs in Omicron-infected patients should be carefully considered due to mutations that affect efficacy, and demonstrate that the antiviral compounds molnupiravir and S-217622 are effective against Omicron BA.1 variants. The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host’s protective immune response. Here we assessed the efficacy of therapeutic monoclonal antibodies (mAbs) against Omicron variant (B.1.1.529) sublineage BA.1 variants in Syrian hamsters. Of the FDA-approved therapeutic mAbs tested (that is, REGN10987/REGN10933, COV2-2196/COV2-2130 and S309), only COV2-2196/COV2-2130 efficiently inhibited BA.1 replication in the lungs of hamsters, and this effect was diminished against a BA.1.1 variant possessing the S-R346K substitution. In addition, treatment of BA.1-infected hamsters with molnupiravir (a SARS-CoV-2 RNA-dependent RNA polymerase inhibitor) or S-217622 (a SARS-CoV-2 protease inhibitor) strongly reduced virus replication in the lungs. These findings suggest that the use of therapeutic mAbs in Omicron-infected patients should be carefully considered due to mutations that affect efficacy, and demonstrate that the antiviral compounds molnupiravir and S-217622 are effective against Omicron BA.1 variants. Therapeutic monoclonal antibodies (COV2-2196/COV2-2130) inhibited the replication of SARS-CoV-2 Omicron BA.1 but not BA.1.1 variants in the lungs of Syrian hamsters. Antivirals (molnupiravir and S-217622) were effective against BA.1 in hamsters. The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host's protective immune response. Here we assessed the efficacy of therapeutic monoclonal antibodies (mAbs) against Omicron variant (B.1.1.529) sublineage BA.1 variants in Syrian hamsters. Of the FDA-approved therapeutic mAbs tested (that is, REGN10987/REGN10933, COV2-2196/COV2-2130 and S309), only COV2-2196/COV2-2130 efficiently inhibited BA.1 replication in the lungs of hamsters, and this effect was diminished against a BA.1.1 variant possessing the S-R346K substitution. In addition, treatment of BA.1-infected hamsters with molnupiravir (a SARS-CoV-2 RNA-dependent RNA polymerase inhibitor) or S-217622 (a SARS-CoV-2 protease inhibitor) strongly reduced virus replication in the lungs. These findings suggest that the use of therapeutic mAbs in Omicron-infected patients should be carefully considered due to mutations that affect efficacy, and demonstrate that the antiviral compounds molnupiravir and S-217622 are effective against Omicron BA.1 variants. The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host’s protective immune response. Here we assessed the efficacy of therapeutic monoclonal antibodies (mAbs) against Omicron variant (B.1.1.529) sublineage BA.1 variants in Syrian hamsters. Of the FDA-approved therapeutic mAbs tested (that is, REGN10987/REGN10933, COV2-2196/COV2-2130 and S309), only COV2-2196/COV2-2130 efficiently inhibited BA.1 replication in the lungs of hamsters, and this effect was diminished against a BA.1.1 variant possessing the S-R346K substitution. In addition, treatment of BA.1-infected hamsters with molnupiravir (a SARS-CoV-2 RNA-dependent RNA polymerase inhibitor) or S-217622 (a SARS-CoV-2 protease inhibitor) strongly reduced virus replication in the lungs. These findings suggest that the use of therapeutic mAbs in Omicron-infected patients should be carefully considered due to mutations that affect efficacy, and demonstrate that the antiviral compounds molnupiravir and S-217622 are effective against Omicron BA.1 variants.Therapeutic monoclonal antibodies (COV2-2196/COV2-2130) inhibited the replication of SARS-CoV-2 Omicron BA.1 but not BA.1.1 variants in the lungs of Syrian hamsters. Antivirals (molnupiravir and S-217622) were effective against BA.1 in hamsters. |
Author | Takashita, Emi Uraki, Ryuta Watanabe, Shinji Ujie, Michiko Yasuhara, Atsuhiro Iwatsuki-Horimoto, Kiyoko Yamayoshi, Seiya Fujisaki, Seiichiro Kiso, Maki Furusawa, Yuri Kawaoka, Yoshihiro Sakai-Tagawa, Yuko Imai, Masaki Ito, Mutsumi Hasegawa, Hideki |
Author_xml | – sequence: 1 givenname: Ryuta orcidid: 0000-0003-0890-1922 surname: Uraki fullname: Uraki, Ryuta organization: Division of Virology, Institute of Medical Science, University of Tokyo, The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute – sequence: 2 givenname: Maki surname: Kiso fullname: Kiso, Maki organization: Division of Virology, Institute of Medical Science, University of Tokyo – sequence: 3 givenname: Masaki orcidid: 0000-0001-6988-1975 surname: Imai fullname: Imai, Masaki organization: Division of Virology, Institute of Medical Science, University of Tokyo, The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute – sequence: 4 givenname: Seiya orcidid: 0000-0001-7768-5157 surname: Yamayoshi fullname: Yamayoshi, Seiya organization: Division of Virology, Institute of Medical Science, University of Tokyo, The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute – sequence: 5 givenname: Mutsumi surname: Ito fullname: Ito, Mutsumi organization: Division of Virology, Institute of Medical Science, University of Tokyo – sequence: 6 givenname: Seiichiro surname: Fujisaki fullname: Fujisaki, Seiichiro organization: Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashimurayama – sequence: 7 givenname: Emi orcidid: 0000-0002-9064-4699 surname: Takashita fullname: Takashita, Emi organization: Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashimurayama – sequence: 8 givenname: Michiko surname: Ujie fullname: Ujie, Michiko organization: Division of Virology, Institute of Medical Science, University of Tokyo, The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute – sequence: 9 givenname: Yuri surname: Furusawa fullname: Furusawa, Yuri organization: Division of Virology, Institute of Medical Science, University of Tokyo, The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute – sequence: 10 givenname: Atsuhiro surname: Yasuhara fullname: Yasuhara, Atsuhiro organization: Division of Virology, Institute of Medical Science, University of Tokyo – sequence: 11 givenname: Kiyoko orcidid: 0000-0002-8266-020X surname: Iwatsuki-Horimoto fullname: Iwatsuki-Horimoto, Kiyoko organization: Division of Virology, Institute of Medical Science, University of Tokyo – sequence: 12 givenname: Yuko surname: Sakai-Tagawa fullname: Sakai-Tagawa, Yuko organization: Division of Virology, Institute of Medical Science, University of Tokyo – sequence: 13 givenname: Shinji surname: Watanabe fullname: Watanabe, Shinji organization: Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashimurayama – sequence: 14 givenname: Hideki surname: Hasegawa fullname: Hasegawa, Hideki organization: Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashimurayama – sequence: 15 givenname: Yoshihiro orcidid: 0000-0001-5061-8296 surname: Kawaoka fullname: Kawaoka, Yoshihiro email: yoshihiro.kawaoka@wisc.edu organization: Division of Virology, Institute of Medical Science, University of Tokyo, The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35705860$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rHDEMhk1JadI0f6CHYuilF6f-tnvcLv2CQKCb9mo8HjtxmLG3tiew_77ebEJLDjlJQs8rJL2vwVHKyQPwluBzgpn-WDkRkiNMKcKEKIz4C3BCsdBIUCWP_suPwVmttxhjIqmUWr4Cx0yo3pX4BOSrG1_s1i8tOuhDiM66HcwBzjllN-VkJ2hTi0Meo689He_Lu1js1MtrG1NtcLP6uUHr_BtReDlHV3KCn1fnBMYEN7sSbYI3dq7Nl_oGvAxd6c8e4in49fXL1fo7urj89mO9ukCOa9GQdAO2WFGiXbDcCzUOY7A4SI_JIDmRTgxaac2dlora0bkgsGYuMOsUoSM7BR8Oc7cl_1l8bWaO1flpssnnpRoqlRKKYcE7-v4JepuX0g_fU580k4wT2ql3D9QyzH402xJnW3bm8ZUd0Aegn19r8cG42GyLObVi42QINnvjzME4040z98aZ_Qb0ifRx-rMidhDVDqdrX_6t_YzqL_2IqWQ |
CitedBy_id | crossref_primary_10_1016_j_ebiom_2024_105439 crossref_primary_10_1371_journal_ppat_1012600 crossref_primary_10_1016_j_ebiom_2023_104950 crossref_primary_10_1128_aac_00697_22 crossref_primary_10_3390_ph15081021 crossref_primary_10_1080_10717544_2022_2163003 crossref_primary_10_1016_j_apsb_2023_02_010 crossref_primary_10_3390_v15112151 crossref_primary_10_1021_acscentsci_2c01203 crossref_primary_10_1080_14656566_2022_2146493 crossref_primary_10_3390_v15061300 crossref_primary_10_1016_j_clim_2024_109902 crossref_primary_10_1016_j_cmpb_2024_108543 crossref_primary_10_3390_ijms24032264 crossref_primary_10_1002_iid3_1262 crossref_primary_10_3389_fcell_2023_1238027 crossref_primary_10_3389_fmicb_2023_1132501 crossref_primary_10_1016_j_chembiol_2024_03_008 crossref_primary_10_1097_MD_0000000000033024 crossref_primary_10_1016_j_isci_2024_110729 crossref_primary_10_1016_j_heliyon_2024_e30222 crossref_primary_10_1016_j_jcyt_2022_10_003 |
Cites_doi | 10.1107/S0907444908007877 10.1038/s41564-021-00972-2 10.1073/pnas.2002589117 10.1038/s41586-020-2342-5 10.1038/s41586-022-04474-x 10.1038/s41467-021-24435-8 10.1086/500465 10.1038/s41541-020-00279-z 10.1056/NEJMc2119407 10.1126/science.abd0826 10.1038/s41586-021-03925-1 10.1016/j.cell.2021.05.005 10.1038/s41586-022-04441-6 10.4049/jimmunol.169.9.5171 10.1086/516358 10.1016/j.cell.2021.02.026 10.1038/s41586-021-03720-y 10.1016/S0002-9343(97)00007-7 10.1038/s41586-021-03312-w 10.1016/j.cell.2020.02.058 10.1038/s41586-020-2852-1 10.1038/s41467-021-26096-z 10.1038/s41586-020-2548-6 10.1126/science.abd0831 10.1038/s41564-019-0401-1 10.1002/cpim.116 10.1371/journal.ppat.1010340 10.1016/j.eclinm.2021.100734 10.1038/nbt.1601 10.1073/pnas.2009799117 10.1038/s41594-021-00651-0 10.5501/wjv.v5.i2.85 10.1016/j.cell.2021.12.033 10.1038/s41586-021-04388-0 10.1038/s41586-022-04399-5 10.1038/s41586-022-04856-1 10.1038/s41586-021-04389-z 10.1038/s41586-021-04386-2 10.1038/s41586-021-04385-3 10.1073/pnas.2106535118 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022 2022. The Author(s), under exclusive licence to Springer Nature Limited. The Author(s), under exclusive licence to Springer Nature Limited 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited. – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. |
DBID | AAYXX CITATION NPM 8FE 8FH AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1038/s41564-022-01170-4 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2058-5276 |
EndPage | 1258 |
ExternalDocumentID | 35705860 10_1038_s41564_022_01170_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP21fk0108615; JP20fk0108472; JP20nk0101632; JP21wm0125002; JP20fk0108412 funderid: https://doi.org/10.13039/100009619 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: HHSN272201400008C; 75N93021C00014 funderid: https://doi.org/10.13039/100000060 – fundername: NIAID NIH HHS grantid: HHSN272201400008C – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP21wm0125002 – fundername: NIAID NIH HHS grantid: 75N93021C00014 – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP20fk0108412 – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP20fk0108472 – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP20nk0101632 – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP21fk0108615 |
GroupedDBID | 0R~ 53G 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABJNI ABLJU ACBWK ACGFS ADBBV AFBBN AFKRA AFSHS AFWHJ AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD BBNVY BENPR BHPHI BKKNO CCPQU EBS EJD FSGXE FZEXT HCIFZ HZ~ LK8 M7P NNMJJ O9- ODYON R9- RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ATHPR CITATION PHGZM PHGZT NPM AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c485t-6cb0a07218cfa4e57dbdfa0f6e01b6416c5b87884c8672adccf5083cf3ac712d3 |
IEDL.DBID | BENPR |
ISSN | 2058-5276 |
IngestDate | Fri Jul 11 13:09:12 EDT 2025 Sat Aug 23 12:25:26 EDT 2025 Wed Feb 19 02:26:19 EST 2025 Thu Apr 24 23:03:35 EDT 2025 Tue Jul 01 00:55:57 EDT 2025 Fri Feb 21 02:38:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-6cb0a07218cfa4e57dbdfa0f6e01b6416c5b87884c8672adccf5083cf3ac712d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9064-4699 0000-0001-7768-5157 0000-0001-5061-8296 0000-0003-0890-1922 0000-0001-6988-1975 0000-0002-8266-020X |
OpenAccessLink | https://www.nature.com/articles/s41564-022-01170-4.pdf |
PMID | 35705860 |
PQID | 2698363412 |
PQPubID | 2069616 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2677573054 proquest_journals_2698363412 pubmed_primary_35705860 crossref_citationtrail_10_1038_s41564_022_01170_4 crossref_primary_10_1038_s41564_022_01170_4 springer_journals_10_1038_s41564_022_01170_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature microbiology |
PublicationTitleAbbrev | Nat Microbiol |
PublicationTitleAlternate | Nat Microbiol |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Meng (CR31) 2022; 603 Englund (CR24) 1998; 26 Tomris (CR33) 2022; 18 Chan (CR9) 2020; 71 Lempp (CR28) 2021; 598 Barnes (CR18) 2020; 588 Winkler (CR29) 2021; 184 Corti, Purcell, Snell, Veesler (CR13) 2021; 184 Ferren (CR32) 2021; 12 CR35 Matsuyama (CR34) 2020; 117 Kabinger (CR27) 2021; 28 Ramakrishnan (CR40) 2016; 5 Hsieh (CR38) 2020; 369 Takashita (CR14) 2022; 386 Chen (CR17) 2021; 596 Halfmann (CR30) 2022; 603 Imai (CR7) 2020; 117 CR2 Brocato (CR26) 2021; 6 Walls (CR1) 2020; 181 CR4 CR3 CR6 Baum (CR15) 2020; 369 CR5 Vanderheiden (CR39) 2020; 131 Sia (CR8) 2020; 583 Ison, Gubareva, Atmar, Treanor, Hayden (CR25) 2006; 193 Wahl (CR22) 2021; 591 Dong (CR19) 2021; 6 Greaney (CR20) 2021; 12 CR21 Zost (CR16) 2020; 584 CR41 Oganesyan, Gao, Shirinian, Wu, Dall’Acqua (CR12) 2008; 64 Yamayoshi (CR37) 2021; 32 Bowden (CR23) 1997; 102 Yasuhara (CR36) 2019; 4 Zalevsky (CR10) 2010; 28 Dall’Acqua (CR11) 2002; 169 SF Sia (1170_CR8) 2020; 583 CL Hsieh (1170_CR38) 2020; 369 ES Winkler (1170_CR29) 2021; 184 MG Ison (1170_CR25) 2006; 193 M Ferren (1170_CR32) 2021; 12 1170_CR3 A Wahl (1170_CR22) 2021; 591 RL Brocato (1170_CR26) 2021; 6 1170_CR4 A Vanderheiden (1170_CR39) 2020; 131 1170_CR2 FA Lempp (1170_CR28) 2021; 598 V Oganesyan (1170_CR12) 2008; 64 M Imai (1170_CR7) 2020; 117 WF Dall’Acqua (1170_CR11) 2002; 169 MA Ramakrishnan (1170_CR40) 2016; 5 1170_CR21 J Zalevsky (1170_CR10) 2010; 28 F Kabinger (1170_CR27) 2021; 28 D Corti (1170_CR13) 2021; 184 1170_CR41 PJ Halfmann (1170_CR30) 2022; 603 RE Chen (1170_CR17) 2021; 596 S Yamayoshi (1170_CR37) 2021; 32 JA Englund (1170_CR24) 1998; 26 JF Chan (1170_CR9) 2020; 71 RA Bowden (1170_CR23) 1997; 102 A Yasuhara (1170_CR36) 2019; 4 A Baum (1170_CR15) 2020; 369 B Meng (1170_CR31) 2022; 603 S Matsuyama (1170_CR34) 2020; 117 I Tomris (1170_CR33) 2022; 18 E Takashita (1170_CR14) 2022; 386 AJ Greaney (1170_CR20) 2021; 12 1170_CR5 1170_CR6 CO Barnes (1170_CR18) 2020; 588 1170_CR35 AC Walls (1170_CR1) 2020; 181 J Dong (1170_CR19) 2021; 6 SJ Zost (1170_CR16) 2020; 584 |
References_xml | – volume: 64 start-page: 700 year: 2008 end-page: 704 ident: CR12 article-title: Structural characterization of a human Fc fragment engineered for lack of effector functions publication-title: Acta Crystallogr. D doi: 10.1107/S0907444908007877 – volume: 6 start-page: 1233 year: 2021 end-page: 1244 ident: CR19 article-title: Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail publication-title: Nat. Microbiol. doi: 10.1038/s41564-021-00972-2 – volume: 117 start-page: 7001 year: 2020 end-page: 7003 ident: CR34 article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2002589117 – volume: 583 start-page: 834 year: 2020 end-page: 838 ident: CR8 article-title: Pathogenesis and transmission of SARS-CoV-2 in golden hamsters publication-title: Nature doi: 10.1038/s41586-020-2342-5 – ident: CR4 – ident: CR2 – volume: 71 start-page: 2428 year: 2020 end-page: 2446 ident: CR9 article-title: Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility publication-title: Clin. Infect. Dis. – volume: 603 start-page: 706 year: 2022 end-page: 714 ident: CR31 article-title: Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity publication-title: Nature doi: 10.1038/s41586-022-04474-x – volume: 12 year: 2021 ident: CR20 article-title: Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies publication-title: Nat. Commun. doi: 10.1038/s41467-021-24435-8 – volume: 193 start-page: 760 year: 2006 end-page: 764 ident: CR25 article-title: Recovery of drug-resistant influenza virus from immunocompromised patients: a case series publication-title: J. Infect. Dis. doi: 10.1086/500465 – ident: CR35 – ident: CR6 – volume: 6 year: 2021 ident: CR26 article-title: Protective efficacy of a SARS-CoV-2 DNA vaccine in wild-type and immunosuppressed Syrian hamsters publication-title: NPJ Vaccines doi: 10.1038/s41541-020-00279-z – volume: 386 start-page: 995 year: 2022 end-page: 998 ident: CR14 article-title: Efficacy of antibodies and antivirals against a SARS-CoV-2 Omicron variant publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2119407 – volume: 369 start-page: 1501 year: 2020 end-page: 1505 ident: CR38 article-title: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes publication-title: Science doi: 10.1126/science.abd0826 – volume: 598 start-page: 342 year: 2021 end-page: 347 ident: CR28 article-title: Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies publication-title: Nature doi: 10.1038/s41586-021-03925-1 – volume: 184 start-page: 3086 year: 2021 end-page: 3108 ident: CR13 article-title: Tackling COVID-19 with neutralizing monoclonal antibodies publication-title: Cell doi: 10.1016/j.cell.2021.05.005 – volume: 603 start-page: 687 year: 2022 end-page: 692 ident: CR30 article-title: SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters publication-title: Nature doi: 10.1038/s41586-022-04441-6 – volume: 169 start-page: 5171 year: 2002 end-page: 5180 ident: CR11 article-title: Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences publication-title: J. Immunol. doi: 10.4049/jimmunol.169.9.5171 – ident: CR21 – volume: 26 start-page: 1418 year: 1998 end-page: 1424 ident: CR24 article-title: Common emergence of amantadine- and rimantadine-resistant influenza A viruses in symptomatic immunocompromised adults publication-title: Clin. Infect. Dis. doi: 10.1086/516358 – volume: 184 start-page: 1804 year: 2021 end-page: 1820.e16 ident: CR29 article-title: Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection publication-title: Cell doi: 10.1016/j.cell.2021.02.026 – volume: 596 start-page: 103 year: 2021 end-page: 108 ident: CR17 article-title: In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains publication-title: Nature doi: 10.1038/s41586-021-03720-y – volume: 102 start-page: 27 year: 1997 end-page: 30 ident: CR23 article-title: Respiratory virus infections after marrow transplant: the Fred Hutchinson Cancer Research Center experience publication-title: Am. J. Med doi: 10.1016/S0002-9343(97)00007-7 – ident: CR3 – volume: 591 start-page: 451 year: 2021 end-page: 457 ident: CR22 article-title: SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801 publication-title: Nature doi: 10.1038/s41586-021-03312-w – volume: 181 start-page: 281 year: 2020 end-page: 292.e6 ident: CR1 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 588 start-page: 682 year: 2020 end-page: 687 ident: CR18 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature doi: 10.1038/s41586-020-2852-1 – volume: 12 year: 2021 ident: CR32 article-title: Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection publication-title: Nat. Commun. doi: 10.1038/s41467-021-26096-z – volume: 584 start-page: 443 year: 2020 end-page: 449 ident: CR16 article-title: Potently neutralizing and protective human antibodies against SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2548-6 – volume: 369 start-page: 1014 year: 2020 end-page: 1018 ident: CR15 article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies publication-title: Science doi: 10.1126/science.abd0831 – volume: 4 start-page: 1024 year: 2019 end-page: 1034 ident: CR36 article-title: Antigenic drift originating from changes to the lateral surface of the neuraminidase head of influenza A virus publication-title: Nat. Microbiol. doi: 10.1038/s41564-019-0401-1 – volume: 131 start-page: e116 year: 2020 ident: CR39 article-title: Development of a rapid focus reduction neutralization test assay for measuring SARS-CoV-2 neutralizing antibodies publication-title: Curr. Protoc. Immunol. doi: 10.1002/cpim.116 – volume: 18 start-page: e1010340 year: 2022 ident: CR33 article-title: Distinct spatial arrangements of ACE2 and TMPRSS2 expression in Syrian hamster lung lobes dictates SARS-CoV-2 infection patterns publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1010340 – ident: CR5 – volume: 32 start-page: 100734 year: 2021 ident: CR37 article-title: Antibody titers against SARS-CoV-2 decline, but do not disappear for several months publication-title: EClinicalMedicine doi: 10.1016/j.eclinm.2021.100734 – volume: 28 start-page: 157 year: 2010 end-page: 159 ident: CR10 article-title: Enhanced antibody half-life improves in vivo activity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1601 – volume: 117 start-page: 16587 year: 2020 end-page: 16595 ident: CR7 article-title: Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2009799117 – ident: CR41 – volume: 28 start-page: 740 year: 2021 end-page: 746 ident: CR27 article-title: Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-021-00651-0 – volume: 5 start-page: 85 year: 2016 end-page: 86 ident: CR40 article-title: Determination of 50% endpoint titer using a simple formula publication-title: World J. Virol. doi: 10.5501/wjv.v5.i2.85 – volume: 169 start-page: 5171 year: 2002 ident: 1170_CR11 publication-title: J. Immunol. doi: 10.4049/jimmunol.169.9.5171 – ident: 1170_CR21 doi: 10.1016/j.cell.2021.12.033 – volume: 26 start-page: 1418 year: 1998 ident: 1170_CR24 publication-title: Clin. Infect. Dis. doi: 10.1086/516358 – ident: 1170_CR6 doi: 10.1038/s41586-021-04388-0 – volume: 6 start-page: 1233 year: 2021 ident: 1170_CR19 publication-title: Nat. Microbiol. doi: 10.1038/s41564-021-00972-2 – volume: 584 start-page: 443 year: 2020 ident: 1170_CR16 publication-title: Nature doi: 10.1038/s41586-020-2548-6 – volume: 32 start-page: 100734 year: 2021 ident: 1170_CR37 publication-title: EClinicalMedicine doi: 10.1016/j.eclinm.2021.100734 – volume: 4 start-page: 1024 year: 2019 ident: 1170_CR36 publication-title: Nat. Microbiol. doi: 10.1038/s41564-019-0401-1 – volume: 583 start-page: 834 year: 2020 ident: 1170_CR8 publication-title: Nature doi: 10.1038/s41586-020-2342-5 – volume: 28 start-page: 740 year: 2021 ident: 1170_CR27 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-021-00651-0 – volume: 5 start-page: 85 year: 2016 ident: 1170_CR40 publication-title: World J. Virol. doi: 10.5501/wjv.v5.i2.85 – ident: 1170_CR5 doi: 10.1038/s41586-022-04399-5 – volume: 12 year: 2021 ident: 1170_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26096-z – ident: 1170_CR41 doi: 10.1038/s41586-022-04856-1 – volume: 117 start-page: 16587 year: 2020 ident: 1170_CR7 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2009799117 – volume: 193 start-page: 760 year: 2006 ident: 1170_CR25 publication-title: J. Infect. Dis. doi: 10.1086/500465 – volume: 603 start-page: 687 year: 2022 ident: 1170_CR30 publication-title: Nature doi: 10.1038/s41586-022-04441-6 – volume: 18 start-page: e1010340 year: 2022 ident: 1170_CR33 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1010340 – volume: 598 start-page: 342 year: 2021 ident: 1170_CR28 publication-title: Nature doi: 10.1038/s41586-021-03925-1 – volume: 6 year: 2021 ident: 1170_CR26 publication-title: NPJ Vaccines doi: 10.1038/s41541-020-00279-z – ident: 1170_CR2 doi: 10.1038/s41586-021-04389-z – volume: 184 start-page: 1804 year: 2021 ident: 1170_CR29 publication-title: Cell doi: 10.1016/j.cell.2021.02.026 – volume: 64 start-page: 700 year: 2008 ident: 1170_CR12 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444908007877 – volume: 71 start-page: 2428 year: 2020 ident: 1170_CR9 publication-title: Clin. Infect. Dis. – volume: 12 year: 2021 ident: 1170_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24435-8 – volume: 596 start-page: 103 year: 2021 ident: 1170_CR17 publication-title: Nature doi: 10.1038/s41586-021-03720-y – volume: 28 start-page: 157 year: 2010 ident: 1170_CR10 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1601 – volume: 117 start-page: 7001 year: 2020 ident: 1170_CR34 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2002589117 – volume: 181 start-page: 281 year: 2020 ident: 1170_CR1 publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 184 start-page: 3086 year: 2021 ident: 1170_CR13 publication-title: Cell doi: 10.1016/j.cell.2021.05.005 – ident: 1170_CR3 doi: 10.1038/s41586-021-04386-2 – ident: 1170_CR4 doi: 10.1038/s41586-021-04385-3 – volume: 369 start-page: 1014 year: 2020 ident: 1170_CR15 publication-title: Science doi: 10.1126/science.abd0831 – volume: 369 start-page: 1501 year: 2020 ident: 1170_CR38 publication-title: Science doi: 10.1126/science.abd0826 – volume: 131 start-page: e116 year: 2020 ident: 1170_CR39 publication-title: Curr. Protoc. Immunol. doi: 10.1002/cpim.116 – volume: 102 start-page: 27 year: 1997 ident: 1170_CR23 publication-title: Am. J. Med doi: 10.1016/S0002-9343(97)00007-7 – volume: 591 start-page: 451 year: 2021 ident: 1170_CR22 publication-title: Nature doi: 10.1038/s41586-021-03312-w – ident: 1170_CR35 doi: 10.1073/pnas.2106535118 – volume: 386 start-page: 995 year: 2022 ident: 1170_CR14 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2119407 – volume: 588 start-page: 682 year: 2020 ident: 1170_CR18 publication-title: Nature doi: 10.1038/s41586-020-2852-1 – volume: 603 start-page: 706 year: 2022 ident: 1170_CR31 publication-title: Nature doi: 10.1038/s41586-022-04474-x |
SSID | ssj0001626686 |
Score | 2.328583 |
Snippet | The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host’s protective immune response. Here... The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host's protective immune response. Here... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1252 |
SubjectTerms | 631/326/596/1296 631/326/596/4130 64 82/1 Antiviral agents Biomedical and Life Sciences Coronaviruses DNA-directed RNA polymerase Immune response Infectious Diseases Life Sciences Medical Microbiology Microbiology Monoclonal antibodies Parasitology Proteinase inhibitors Replication RNA polymerase RNA-directed RNA polymerase Rodents Severe acute respiratory syndrome coronavirus 2 Spike protein Virology |
Title | Therapeutic efficacy of monoclonal antibodies and antivirals against SARS-CoV-2 Omicron BA.1 in Syrian hamsters |
URI | https://link.springer.com/article/10.1038/s41564-022-01170-4 https://www.ncbi.nlm.nih.gov/pubmed/35705860 https://www.proquest.com/docview/2698363412 https://www.proquest.com/docview/2677573054 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELe2VpP2Mm1jGx0MeRJvm8FJ_NWnqUVUaA8FUUC8RY5jQ6WSsLU89L_nLnFbIQRvseIv3Z3PP_vOd4TsG5HavjR9ZoOCA4rWnBX9pGQBH1kq43gSGgfZsTq5FH-v5XW8cJtHt8qVTmwUdVk7vCM_TFXfZAp0bvrn_h_DrFFoXY0pNN6SLqhgYzqkOzwen51vblkAryuj4msZnpnDOZ5YBEMndt5kXRFPd6RnMPOZibTZeUYfyYcIGemg5fEn8sZXn8m7NonkcovUF5snVNRjRAjrlrQOFGZcuxkibQrkmxY1OgzCZ9kU0bl3BsUbOwWESCeD8wk7qq9YSk_v0EmvosPBQUKnFZ0sQUgremvvMKjC_Au5HB1fHJ2wmEaBOWHkgilXcIth0IwLVnipy6IMlgfleVIoAGROFgZOwsIZpVNbOhcwRrwLmXU6ScvsK-lUdeW3CRU6WAwR6I3lwgJUcK5UMvNaOC58KnokWZEydzHGOKa6mOWNrTszeUv-HMifN-TPoc2vdZv7NsLGq7V3VxzK42qb5xvZ6JGf69-wTtD4YStfP2AdrSWoMwldfGs5ux4uk5pLo3iP_F6xetP5y3P5_vpcdsj7tBEz9BbcJZ3F_wf_AxDMotgj3cFoOBzvRXF9BJnC7O8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqdELwg7hQGGAmewMxxHNt9QKgbmzo2Clo7tLfgOPZWqUsG7YT6U3wj5-TSCk3sbW-xYjvWueUcnxshr40UtpeYHrNBgYGiNWdZL8pZwCRLZRyPQhUgO1SDI_n5ODleI3_aXBgMq2xlYiWo89LhHfmmUD0TK5C54uP5T4Zdo9C72rbQqMli3y9-g8k2-7D3CfD7RojdnfH2gDVdBZiTJpkz5TJusSqYccFKn-g8y4PlQXkeZQr0E5dkBgxD6YzSwubOBSyZ7kJsnY5EHsO-N8i6jBUXHbK-tTP8dri61QH7QBnVZOfw2GzO0EKSDIPmedXlRf77B7yk1l5yyVZ_ut275E6jotJ-TVP3yJov7pObddPKxQNSjlcpW9RjBQrrFrQMFCBUuilq9hTQNclKDFCEx7waYjDxFIYndgIaKR31D0dsu_zOBP16hkGBBd3qv4_opKCjBTBFQU_tGRZxmD0kR9cC4EekU5SFf0Ko1MFiSUJvLJcWVBPncpXEXkvHpReyS6IWlKlrappja41pWvnWY5PW4E8B_GkF_hTWvF2uOa8relw5e6PFUNpw9yxd0WKXvFq-Br5EZ4stfHmBc7ROQHwmsMXjGrPLz8WJ5olRvEvetahebf7_szy9-iwvya3B-MtBerA33H9GbouK5DBScYN05r8u_HPQnubZi4ZkKflx3VzyFyLMKZc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Therapeutic+efficacy+of+monoclonal+antibodies+and+antivirals+against+SARS-CoV-2+Omicron+BA.1+in+Syrian+hamsters&rft.jtitle=Nature+microbiology&rft.au=Uraki%2C+Ryuta&rft.au=Kiso%2C+Maki&rft.au=Imai%2C+Masaki&rft.au=Yamayoshi%2C+Seiya&rft.date=2022-08-01&rft.issn=2058-5276&rft.eissn=2058-5276&rft.volume=7&rft.issue=8&rft.spage=1252&rft_id=info:doi/10.1038%2Fs41564-022-01170-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-5276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-5276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-5276&client=summon |