Selective Activation of mGlu4 Metabotropic Glutamate Receptors Is Protective against Excitotoxic Neuronal Death

Activation of group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, and mGluR8) has been established to be neuroprotective in vitro and in vivo. To disclose the identity of the receptor subtype(s) that exert(s) the protective effect, we have used group III agonists in combination with...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 20; no. 17; pp. 6413 - 6420
Main Authors Bruno, V, Battaglia, G, Ksiazek, I, van der Putten, H, Catania, M. V, Giuffrida, R, Lukic, S, Leonhardt, T, Inderbitzin, W, Gasparini, F, Kuhn, R, Hampson, D. R, Nicoletti, F, Flor, P. J
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 01.09.2000
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Activation of group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, and mGluR8) has been established to be neuroprotective in vitro and in vivo. To disclose the identity of the receptor subtype(s) that exert(s) the protective effect, we have used group III agonists in combination with mGluR4 subtype-deficient mice (-/-). In cortical cultures prepared from wild-type (+/+) mice and exposed to a toxic pulse of NMDA, the selective group III agonist (+)-4-phosphonophenylglycine [(+)-PPG] reversed excitotoxicity with an EC(50) value of 4.9 microm, whereas its enantiomer (-)-PPG was inactive. This correlated closely with the potency of (+)-PPG in activating recombinant mGluR4a. In cortical neurons from -/- mice, (+)-PPG showed no protection against the NMDA insult up to 300 microm, whereas group I/II mGluR ligands still retained their protective activity. Classical group III agonists (l-2-amino-4-phosphonobutyrate and l-serine-O-phosphate) were also substantially neuroprotective against NMDA toxicity in +/+ and heterozygous (+/-) cultures but were inactive in -/- cultures. Interestingly, -/- cultures were more vulnerable to low concentrations of NMDA and showed higher extracellular glutamate levels compared with +/+ cultures. We have also examined neurodegeneration induced by intrastriatal infusion of NMDA in wild-type or mGluR4-deficient mice. Low doses of (R,S)-PPG (10 nmol/0.5 microl) substantially reduced NMDA toxicity in +/+ mice but were ineffective in -/- mice. Higher doses of (R,S)-PPG were neuroprotective in both strains of animals. Finally, microdialysis studies showed that intrastriatal infusion of NMDA increased extracellular glutamate levels to a greater extent in -/- than in +/+ mice, supporting the hypothesis that the mGluR4 subtype is necessary for the maintenance of the homeostasis of extracellular glutamate levels.
AbstractList Activation of group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, and mGluR8) has been established to be neuroprotective in vitro and in vivo. To disclose the identity of the receptor subtype(s) that exert(s) the protective effect, we have used group III agonists in combination with mGluR4 subtype-deficient mice (-/-). In cortical cultures prepared from wild-type (+/+) mice and exposed to a toxic pulse of NMDA, the selective group III agonist (+)-4-phosphonophenylglycine [(+)-PPG] reversed excitotoxicity with an EC(50) value of 4.9 microm, whereas its enantiomer (-)-PPG was inactive. This correlated closely with the potency of (+)-PPG in activating recombinant mGluR4a. In cortical neurons from -/- mice, (+)-PPG showed no protection against the NMDA insult up to 300 microm, whereas group I/II mGluR ligands still retained their protective activity. Classical group III agonists (l-2-amino-4-phosphonobutyrate and l-serine-O-phosphate) were also substantially neuroprotective against NMDA toxicity in +/+ and heterozygous (+/-) cultures but were inactive in -/- cultures. Interestingly, -/- cultures were more vulnerable to low concentrations of NMDA and showed higher extracellular glutamate levels compared with +/+ cultures. We have also examined neurodegeneration induced by intrastriatal infusion of NMDA in wild-type or mGluR4-deficient mice. Low doses of (R,S)-PPG (10 nmol/0.5 microl) substantially reduced NMDA toxicity in +/+ mice but were ineffective in -/- mice. Higher doses of (R,S)-PPG were neuroprotective in both strains of animals. Finally, microdialysis studies showed that intrastriatal infusion of NMDA increased extracellular glutamate levels to a greater extent in -/- than in +/+ mice, supporting the hypothesis that the mGluR4 subtype is necessary for the maintenance of the homeostasis of extracellular glutamate levels.
Activation of group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, and mGluR8) has been established to be neuroprotective in vitro and in vivo. To disclose the identity of the receptor subtype(s) that exert(s) the protective effect, we have used group III agonists in combination with mGluR4 subtype-deficient mice (-/-). In cortical cultures prepared from wild-type (+/+) mice and exposed to a toxic pulse of NMDA, the selective group III agonist (+)-4-phosphonophenylglycine [(+)-PPG] reversed excitotoxicity with an EC sub(50) value of 4.9 mu M, whereas its enantiomer (-)-PPG was inactive. This correlated closely with the potency of (+)-PPG in activating recombinant mGluR4a. In cortical neurons from -/- mice, (+)-PPG showed no protection against the NMDA insult up to 300 mu M, whereas group I/II mGluR ligands still retained their protective activity. Classical group III agonists (L-2-amino-4-phosphonobutyrate and L-serine-O-phosphate) were also substantially neuroprotective against NMDA toxicity in +/+ and heterozygous (+/-) cultures but were inactive in -/- cultures. Interestingly, -/- cultures were more vulnerable to low concentrations of NMDA and showed higher extracellular glutamate levels compared with +/+ cultures. We have also examined neurodegeneration induced by intrastriatal infusion of NMDA in wild-type or mGluR4-deficient mice. Low doses of (R,S)-PPG (10 nmol/0.5 mu l) substantially reduced NMDA toxicity in +/+ mice but were ineffective in -/- mice. Higher doses of (R,S)-PPG were neuroprotective in both strains of animals. Finally, microdialysis studies showed that intrastriatal infusion of NMDA increased extracellular glutamate levels to a greater extent in -/- than in +/+ mice, supporting the hypothesis that the mGluR4 subtype is necessary for the maintenance of the homeostasis of extracellular glutamate levels.
Activation of group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, and mGluR8) has been established to be neuroprotective in vitro and in vivo . To disclose the identity of the receptor subtype(s) that exert(s) the protective effect, we have used group III agonists in combination with mGluR4 subtype-deficient mice (−/−). In cortical cultures prepared from wild-type (+/+) mice and exposed to a toxic pulse of NMDA, the selective group III agonist (+)-4-phosphonophenylglycine [(+)-PPG] reversed excitotoxicity with an EC 50 value of 4.9 μ m , whereas its enantiomer (−)-PPG was inactive. This correlated closely with the potency of (+)-PPG in activating recombinant mGluR4a. In cortical neurons from −/− mice, (+)-PPG showed no protection against the NMDA insult up to 300 μ m , whereas group I/II mGluR ligands still retained their protective activity. Classical group III agonists ( l -2-amino-4-phosphonobutyrate and l -serine- O -phosphate) were also substantially neuroprotective against NMDA toxicity in +/+ and heterozygous (+/−) cultures but were inactive in −/− cultures. Interestingly, −/− cultures were more vulnerable to low concentrations of NMDA and showed higher extracellular glutamate levels compared with +/+ cultures. We have also examined neurodegeneration induced by intrastriatal infusion of NMDA in wild-type or mGluR4-deficient mice. Low doses of ( R , S )-PPG (10 nmol/0.5 μl) substantially reduced NMDA toxicity in +/+ mice but were ineffective in −/− mice. Higher doses of ( R , S )-PPG were neuroprotective in both strains of animals. Finally, microdialysis studies showed that intrastriatal infusion of NMDA increased extracellular glutamate levels to a greater extent in −/− than in +/+ mice, supporting the hypothesis that the mGluR4 subtype is necessary for the maintenance of the homeostasis of extracellular glutamate levels.
Author Bruno, V
Leonhardt, T
Battaglia, G
Gasparini, F
Kuhn, R
Catania, M. V
Inderbitzin, W
Nicoletti, F
van der Putten, H
Hampson, D. R
Giuffrida, R
Ksiazek, I
Flor, P. J
Lukic, S
AuthorAffiliation 1 Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy
2 Novartis Pharma AG, Nervous System Research, CH-4002 Basel, Switzerland
4 Faculty of Pharmacy, University of Toronto, Canada M5S 2S2, and
5 Department of Pharmaceutical Sciences, University of Catania, 95125 Catania, Italy
3 Istituto di Bioimmagini e Fisiopatologia del Sistema Nervoso Centrale, Consiglio Nazionale delle Ricerche, 95125 Catania, Italy
AuthorAffiliation_xml – name: 3 Istituto di Bioimmagini e Fisiopatologia del Sistema Nervoso Centrale, Consiglio Nazionale delle Ricerche, 95125 Catania, Italy
– name: 5 Department of Pharmaceutical Sciences, University of Catania, 95125 Catania, Italy
– name: 4 Faculty of Pharmacy, University of Toronto, Canada M5S 2S2, and
– name: 1 Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy
– name: 2 Novartis Pharma AG, Nervous System Research, CH-4002 Basel, Switzerland
Author_xml – sequence: 1
  fullname: Bruno, V
– sequence: 2
  fullname: Battaglia, G
– sequence: 3
  fullname: Ksiazek, I
– sequence: 4
  fullname: van der Putten, H
– sequence: 5
  fullname: Catania, M. V
– sequence: 6
  fullname: Giuffrida, R
– sequence: 7
  fullname: Lukic, S
– sequence: 8
  fullname: Leonhardt, T
– sequence: 9
  fullname: Inderbitzin, W
– sequence: 10
  fullname: Gasparini, F
– sequence: 11
  fullname: Kuhn, R
– sequence: 12
  fullname: Hampson, D. R
– sequence: 13
  fullname: Nicoletti, F
– sequence: 14
  fullname: Flor, P. J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10964947$$D View this record in MEDLINE/PubMed
BookMark eNpVkdFu0zAUhi00xLrBK6CIC7jKsBPHjrlAmkoZRWNDG7u2TtyT1iiJO9tZx9vjkmoaV8c6_v7Plv4TcjS4AQl5x-gZq4ry4_erxd3N9e18eVbQnMmcCs7KdKb0BZklQuUFp-yIzGghaS645MfkJITfCZCUyVfkmFEluOJyRtwtdmiifcDsfD8gWjdkrs36i27k2Q-M0Ljo3daaLG0i9BAxu0GD2-h8yJYh--ldPChgDXYIMVs8GhtddI8pdYWjdwN02ReEuHlNXrbQBXxzmKfk7uvi1_xbfnl9sZyfX-aG11XMhYKirVppFAJT0pQrNGUDdVFhjaumrBppmACEdoWiVYVpZa2E4MihqtKuPCWfJ-92bHpcGRyih05vve3B_9EOrP7_ZrAbvXYPWkhZKFEmwfuDwLv7EUPUvQ0Guw4GdGPQrKayrBVL4KcJNN6F4LF9eoRRve9LP_Wli7SR-l9fet9XCr99_s1n0amgBHyYgI1db3bWow49dF3Cmd7tdpNw7yv_Apvapqg
CitedBy_id crossref_primary_10_1074_jbc_M109_035477
crossref_primary_10_1016_j_euroneuro_2007_11_001
crossref_primary_10_1016_S0014_4886_02_00047_X
crossref_primary_10_1080_10253890_2017_1298587
crossref_primary_10_1016_j_nbd_2007_03_003
crossref_primary_10_1016_j_neuroscience_2005_05_033
crossref_primary_10_1016_j_neuropharm_2014_03_019
crossref_primary_10_1007_s12035_021_02435_5
crossref_primary_10_1016_j_brainres_2023_148349
crossref_primary_10_1016_j_neuropharm_2012_05_024
crossref_primary_10_1111_j_1535_7511_2008_00232_x
crossref_primary_10_1016_j_pneurobio_2016_06_001
crossref_primary_10_1007_s11064_014_1415_y
crossref_primary_10_1096_fj_02_0018fje
crossref_primary_10_1038_sj_bjp_0705159
crossref_primary_10_1016_j_neuropharm_2018_03_027
crossref_primary_10_3390_ijms241713554
crossref_primary_10_1124_mol_111_074765
crossref_primary_10_1038_jcbfm_2010_201
crossref_primary_10_1016_j_nbd_2013_09_013
crossref_primary_10_1016_S0006_8993_01_02620_8
crossref_primary_10_1016_j_pbb_2022_173452
crossref_primary_10_3390_jcm10071475
crossref_primary_10_1016_j_neuint_2012_01_017
crossref_primary_10_1016_j_neuropharm_2015_11_025
crossref_primary_10_1016_j_ejphar_2003_12_033
crossref_primary_10_3389_fnins_2018_00320
crossref_primary_10_3389_fphar_2019_01282
crossref_primary_10_1111_j_1471_4159_2011_07611_x
crossref_primary_10_1016_j_lfs_2016_03_033
crossref_primary_10_1002_wmts_30
crossref_primary_10_1111_jnc_12608
crossref_primary_10_3389_fncel_2018_00449
crossref_primary_10_1007_s12640_013_9455_7
crossref_primary_10_1523_JNEUROSCI_1889_07_2007
crossref_primary_10_1016_j_neulet_2004_11_008
crossref_primary_10_1016_S0014_2999_02_01851_4
crossref_primary_10_1046_j_1460_9568_2003_02667_x
crossref_primary_10_1002_mus_10186
crossref_primary_10_2174_1570159X17666190618121859
crossref_primary_10_3389_fnmol_2019_00020
crossref_primary_10_1016_j_bcp_2012_04_013
crossref_primary_10_1111_j_1528_1167_2007_01062_x
crossref_primary_10_1007_BF03033204
crossref_primary_10_1089_neu_2006_23_117
crossref_primary_10_1016_j_bbrc_2009_09_070
crossref_primary_10_1517_14728222_5_6_669
crossref_primary_10_1523_JNEUROSCI_21_22_08734_2001
crossref_primary_10_1016_j_biopha_2023_115733
crossref_primary_10_1007_s12640_009_9068_3
crossref_primary_10_1016_j_neuroscience_2011_12_039
crossref_primary_10_1016_j_ejphar_2006_01_030
crossref_primary_10_3389_fnagi_2021_654931
crossref_primary_10_1016_j_bbih_2024_100808
crossref_primary_10_1016_j_neuropharm_2007_11_015
crossref_primary_10_1080_00207450390162245
crossref_primary_10_1016_S0957_4166_02_00082_4
crossref_primary_10_1038_nrn1763
crossref_primary_10_1089_scd_2015_0067
crossref_primary_10_1016_j_coph_2018_03_004
crossref_primary_10_1124_mol_104_002956
crossref_primary_10_1016_j_hgmx_2017_07_002
crossref_primary_10_1097_00004647_200109000_00001
crossref_primary_10_1074_jbc_M110476200
crossref_primary_10_1016_j_brainres_2021_147561
crossref_primary_10_1016_j_neuint_2014_12_010
crossref_primary_10_1124_mol_65_5_1103
crossref_primary_10_1016_j_phrs_2016_11_013
crossref_primary_10_1006_exnr_2001_7828
crossref_primary_10_1007_s00441_006_0266_5
crossref_primary_10_1016_j_nurt_2008_10_038
crossref_primary_10_1124_jpet_106_108159
crossref_primary_10_1016_j_bone_2007_01_013
crossref_primary_10_1523_JNEUROSCI_0118_06_2006
crossref_primary_10_1046_j_0953_816x_2001_01541_x
ContentType Journal Article
Copyright Copyright © 2000 Society for Neuroscience 2000
Copyright_xml – notice: Copyright © 2000 Society for Neuroscience 2000
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
5PM
DOI 10.1523/JNEUROSCI.20-17-06413.2000
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
DatabaseTitleList MEDLINE
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 6420
ExternalDocumentID 10_1523_JNEUROSCI_20_17_06413_2000
10964947
www20_17_6413
Genre Journal Article
GroupedDBID -
08R
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GJ
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RIG
RPM
TFN
UQL
VH1
WH7
WOQ
X
X7M
XJT
ZA5
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
18M
AAFWJ
ABBAR
ACGUR
AFCFT
AFHIN
AFOSN
AHWXS
AI.
AOIJS
BTFSW
CGR
CUY
CVF
ECM
EIF
NPM
TR2
W8F
YBU
YHG
YKV
YNH
YSK
YYP
AAYXX
CITATION
7TK
5PM
ID FETCH-LOGICAL-c485t-69a2f5f7c9ea197c3dec3ba825e8edb35b7c16aeafde6f92cf789664e4a55fde3
IEDL.DBID RPM
ISSN 0270-6474
IngestDate Tue Sep 17 21:12:17 EDT 2024
Fri Aug 16 00:57:08 EDT 2024
Thu Sep 26 17:00:51 EDT 2024
Sat Sep 28 08:47:50 EDT 2024
Tue Nov 10 19:48:34 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-69a2f5f7c9ea197c3dec3ba825e8edb35b7c16aeafde6f92cf789664e4a55fde3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.jneurosci.org/content/jneuro/20/17/6413.full.pdf
PMID 10964947
PQID 18073891
PQPubID 23462
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6772963
proquest_miscellaneous_18073891
crossref_primary_10_1523_JNEUROSCI_20_17_06413_2000
pubmed_primary_10964947
highwire_smallpub1_www20_17_6413
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate 20000901
2000-Sep-01
2000-09-01
PublicationDateYYYYMMDD 2000-09-01
PublicationDate_xml – month: 09
  year: 2000
  text: 20000901
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2000
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
SSID ssj0007017
Score 2.0236137
Snippet Activation of group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, and mGluR8) has been established to be neuroprotective in vitro and in vivo....
Activation of group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, and mGluR8) has been established to be neuroprotective in vitro and in vivo ....
SourceID pubmedcentral
proquest
crossref
pubmed
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 6413
SubjectTerms Aminobutyrates - pharmacology
Animals
Cells, Cultured
Cerebral Cortex - cytology
Cerebral Cortex - physiology
Excitatory Amino Acid Agonists - pharmacology
Glutamic Acid - metabolism
Glycine - analogs & derivatives
Glycine - pharmacology
Heterozygote
Mice
Mice, Knockout
N-Methyl-D-aspartic acid
N-Methylaspartate - toxicity
Nerve Degeneration - chemically induced
Nerve Degeneration - physiopathology
Neurons - cytology
Neurons - drug effects
Neurons - physiology
Neuroprotective Agents - pharmacology
Neurotoxins - pharmacology
Receptors, Metabotropic Glutamate - deficiency
Receptors, Metabotropic Glutamate - genetics
Receptors, Metabotropic Glutamate - physiology
Stereoisomerism
Title Selective Activation of mGlu4 Metabotropic Glutamate Receptors Is Protective against Excitotoxic Neuronal Death
URI http://www.jneurosci.org/cgi/content/abstract/20/17/6413
https://www.ncbi.nlm.nih.gov/pubmed/10964947
https://search.proquest.com/docview/18073891
https://pubmed.ncbi.nlm.nih.gov/PMC6772963
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwEB5lc-qlapo-aNLUh6o3sgt-clxt86w2SpVGyg3ZxrQrLbDKslLy7zs2EGWjnno1Nlh84-H78HgG4GsmJNVZgiutMCpmGUtjQy2uqwk3RZEkZRpO8c-vxPktu7zjdzvAh7MwIWjfmsVxvayO68WfEFu5qux4iBMbX89nwlNCQccjGElKB4neu185CWV2UW6hLmKS9ZlGUXCNL698eNzN7AJ1YZz4sC904eGwis8dimQe5yq3P1BD0uB_EdCXcZTPPkynb-B1zyjJtJv5Huy4-i3sT2tU09Uj-UZCjGf4eb4PzU0oe4MejkztUNiMNCWpzpYbRuauRZto75vVwhJsaTXyWUeQWrqVr8pDLtbkukvs4G-hf-sFskty8mDRL7TNA44KyT78fL57bvkObk9Pfs3O477kQmyZ4m0sMp2WvJQ2czrJpKWFs9RolJFOucJQbqRNhHa6LJwos9SWUqFgYo5pzrGNvofduqndRyDW-C24UhTCCoZ-w3AnnDE8ZbRQQvEI6PCe81WXWSP3igSByp-AylNskXkAylfMnERABkjydaWXS0QgydFquo6-XwRfBqhyXCt-A0TXrtms80ShQ1NZEsGHDrhnD-7Aj0BuQfrUwWfh3r6CxhmycffG-Om_Rx7Aq-58vw9cO4Td9n7jPiPTac0RjH78VEfBvv8C5U__RA
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB2k6aG9pEu6KF3CQ9GbbEviIh0NN6mdxkaAJEVuBElRqVFLMmIZSPv1HVJWEAe9tFeKWoh5M5onDd8AfMq4SFQWoaflOg1pRuNQJwb9asB0nkdREftd_NMZH1_Skyt2tQOs2wvji_aNnveqRdmr5j98beWyNP2uTqx_Nh1xlxLypP8IHqO_xqIj6ZsALAa-0S4SLmRGVNCN1ihSrv7JzBXInY8myAzDyBV-YRD321Wceiim8_i0YvsV1ckG_y0FfVhJee_VdPwMvneLaitSfvbWje6Z3w_0Hv951c9hb5OskmF7-AXs2Ool7A8rJOrlL_KZ-PJR_11-H-pz31EHgycZmq5nGqkLUn5drCmZ2gbh1tzUy7khONIoTJUtwazVLl3DHzJZkbNWM8JdQl2rOSau5OjWYMhp6ls8y-uIuOf54tLWV3B5fHQxGoebbg6hoSlrQp6puGCFMJlVUSZMkluTaIUM1aY21wnTwkRcWVXklhdZbAqRIhejlirGcCx5DbtVXdm3QIx2f_cKnnPDKYYkzSy3WrOYJnnKUxZA0hlQLlvRDunIDiJA3iFAxjgipEeAa8Y5CIB0tparUi0WaNpIomnaiW5eAIcdBiS6ofu3oipbr1cySjFWplkUwJsWEfdu3KIqALGFlbsJTuB7-wgiwAt9byx-8N9nHsKT8cX0VJ5OZt_ewdNWRsDVx72H3eZmbT9gQtXoj959_gCE4SBe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF1BkRAXKJQPA6V7QNwcx_Z-2McobdoUEkUqlSouq931ukTEH2ocqfDrmV3bVVL11OtmndiaN-M38fMbhL6mjMcyDSHTMpX4JCWRr2INeTWkKsvCMI_cW_yzOTu7JOdX9Gpr1JcT7Wu1HJSrYlAufzttZV3ooNeJBYvZmFlKyOKgzvLgKXoGORulfaPeFWE-dMN2oemC7ohw0vmNQtsVnM-tSO5iPIXu0A-t-AsKuXtlxTqIAqWHM-a7t6neOvghGnpfTbl1e5q8Qr_6C2tVKX8Gm0YN9L97no-PuvJ99LIjrXjUbnmNnpjyDToYldCwF3_xN-xkpO7_-QNUXbjJOlBE8Uj3s9NwlePidLUheGYagF1zU9VLjWGlkUCZDQb2amo7-AdP13jRekfYr5DXcgkEFp_caig9TXULRzk_EXs-x5a-vkWXk5Of4zO_m-rga5LQxmepjHKac50aGaZcx5nRsZLQqZrEZCqmiuuQSSPzzLA8jXTOE-jJiCGSUliL36G9sirNB4S1sk_5cpYxzQiUJkUNM0rRiMRZwhLqobgPoqhb8w5hmx5AgbhDgYhghQuHAjuUc-gh3MdbrAu5WkF4QwHhaTfafR466nEgIB3tMxZZmmqzFmECNTNJQw-9b1Gx9cMtsjzEd_Byt8Eafe9-Aihwht9d1D8--sgj9HxxPBE_pvPvn9CL1k3AyuQ-o73mZmMOgVc16ovLoP93UyLe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Activation+of+mGlu4+Metabotropic+Glutamate+Receptors+Is+Protective+against+Excitotoxic+Neuronal+Death&rft.jtitle=The+Journal+of+neuroscience&rft.au=Bruno%2C+V&rft.au=Battaglia%2C+G&rft.au=Ksiazek%2C+I&rft.au=van+der+Putten%2C+H&rft.date=2000-09-01&rft.pub=Soc+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=20&rft.issue=17&rft.spage=6413&rft_id=info:doi/10.1523%2FJNEUROSCI.20-17-06413.2000&rft_id=info%3Apmid%2F10964947&rft.externalDBID=n%2Fa&rft.externalDocID=www20_17_6413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon