Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies

Luteolin (3′, 4′, 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using variou...

Full description

Saved in:
Bibliographic Details
Published inJournal of ethnopharmacology Vol. 225; no. NA; pp. 342 - 358
Main Authors Aziz, Nur, Kim, Mi-Yeon, Cho, Jae Youl
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 28.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Luteolin (3′, 4′, 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity. This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug. We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents. Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)− 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases. In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans. [Display omitted]
AbstractList Luteolin (3', 4', 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity.ETHNOPHARMACOLOGICAL RELEVANCELuteolin (3', 4', 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity.This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug.AIM OF THE REVIEWThis paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug.We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents.MATERIALS AND METHODSWe summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents.Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)- 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases.RESULTSLuteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)- 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases.In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans.CONCLUSIONIn silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans.
Luteolin (3′, 4′, 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity.This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug.We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents.Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)− 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases.In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans.
Luteolin (3', 4', 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity. This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug. We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents. Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)- 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases. In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans.
Ethnopharmacological relevance Luteolin (3′, 4′, 5, 7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity. Aim of the review This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug. Materials and methods We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents. Results: Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo . Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)â^' 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3(STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases. Conclusion: In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans. Graphical abstract fx1
Luteolin (3′, 4′, 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity. This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug. We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents. Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)− 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases. In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans. [Display omitted]
Author Aziz, Nur
Kim, Mi-Yeon
Cho, Jae Youl
Author_xml – sequence: 1
  givenname: Nur
  surname: Aziz
  fullname: Aziz, Nur
  organization: Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
– sequence: 2
  givenname: Mi-Yeon
  surname: Kim
  fullname: Kim, Mi-Yeon
  email: kimmy@ssu.ac.kr
  organization: School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
– sequence: 3
  givenname: Jae Youl
  surname: Cho
  fullname: Cho, Jae Youl
  email: jaecho@skku.edu
  organization: Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29801717$$D View this record in MEDLINE/PubMed
BookMark eNqNkTtvFDEURi0URDaBH0CDpqRgBt_x-DFQrSJeUiQaqCgsr30teTVjL7Zno_x7ZrVJQxGo7kPnu8U9V-QipoiEvAbaAQXxft_t8dD1FFRHeUdhfEY2oGTfSi7ZBdlQJlWr5ACX5KqUPaVUwkBfkMt-VBQkyA35tY01tCH6ycyzqSnfN-g92lqa5JtpqZimED802ybjMeDdaRticww1p3fn7rg2JrrTUMIUbGpKXVzA8pI892Yq-OqhXpOfnz_9uPna3n7_8u1me9vaQfHaCslhMNxx4ThjjvmeIR2c3ykvUA07tuMgfO8MmBGdN1Y52RtQo-UWnLDsmrw93z3k9HvBUvUcisVpMhHTUnQPSgATSsF_oJwJKugg_43SgfeKjbJf0TcP6LKb0elDDrPJ9_rxzSsgz4DNqZSMXttQTQ0p1mzCpIHqk1C916tQfRKqKder0DUJfyUfjz-V-XjO4Pr0VVrWxQaMFl3Iq1ntUngi_QfTe7cn
CitedBy_id crossref_primary_10_3390_ijms26051809
crossref_primary_10_1038_s44321_024_00160_9
crossref_primary_10_1016_j_jep_2018_11_013
crossref_primary_10_1155_2022_2635375
crossref_primary_10_3390_biology10070618
crossref_primary_10_1016_j_fbio_2023_102366
crossref_primary_10_1002_cbdv_202302065
crossref_primary_10_1007_s42977_022_00110_x
crossref_primary_10_1111_jfbc_13198
crossref_primary_10_33483_jfpau_1459098
crossref_primary_10_3389_fimmu_2024_1366197
crossref_primary_10_3389_fvets_2024_1431233
crossref_primary_10_1016_j_phymed_2019_152883
crossref_primary_10_2174_1386207325666220215144847
crossref_primary_10_3390_ph13030050
crossref_primary_10_1155_2023_1810503
crossref_primary_10_3389_fbioe_2023_1165465
crossref_primary_10_1016_j_ejmech_2020_112216
crossref_primary_10_1016_j_fct_2020_111436
crossref_primary_10_1080_0886022X_2025_2474203
crossref_primary_10_1002_jcp_31101
crossref_primary_10_3390_molecules27082471
crossref_primary_10_1016_j_jep_2024_118576
crossref_primary_10_1155_2021_8883962
crossref_primary_10_1080_10406638_2022_2080728
crossref_primary_10_1016_j_jep_2021_114275
crossref_primary_10_1007_s11101_024_09980_6
crossref_primary_10_1016_j_vetmic_2022_109527
crossref_primary_10_3390_metabo12040288
crossref_primary_10_3390_ijms26051911
crossref_primary_10_34172_apb_2024_057
crossref_primary_10_3390_pharmaceutics10040248
crossref_primary_10_1016_j_intimp_2023_111059
crossref_primary_10_3390_plants11182371
crossref_primary_10_1039_D3TB00839H
crossref_primary_10_3390_biomedicines8100442
crossref_primary_10_1007_s10876_022_02232_7
crossref_primary_10_1016_j_phymed_2022_154503
crossref_primary_10_1111_jfbc_14072
crossref_primary_10_1016_j_jconrel_2019_01_029
crossref_primary_10_1111_ijfs_17115
crossref_primary_10_3390_metabo13010050
crossref_primary_10_1016_j_jnutbio_2019_06_002
crossref_primary_10_1155_2023_1327886
crossref_primary_10_2174_1570163820666230327133142
crossref_primary_10_1080_1120009X_2022_2102303
crossref_primary_10_1016_j_phymed_2021_153586
crossref_primary_10_1097_SHK_0000000000001624
crossref_primary_10_3390_nu15132967
crossref_primary_10_1016_j_ab_2023_115116
crossref_primary_10_1016_j_bcp_2020_114025
crossref_primary_10_1016_j_jep_2024_118479
crossref_primary_10_4103_pm_pm_34_21
crossref_primary_10_2174_1567201819666220823155526
crossref_primary_10_1016_j_heliyon_2024_e26701
crossref_primary_10_3390_ijms22179506
crossref_primary_10_1016_j_mad_2021_111559
crossref_primary_10_1177_1934578X221133579
crossref_primary_10_1080_16583655_2020_1812269
crossref_primary_10_1016_j_cbi_2021_109573
crossref_primary_10_3390_separations11120354
crossref_primary_10_3746_jkfn_2024_53_9_877
crossref_primary_10_32571_ijct_1469657
crossref_primary_10_1155_2020_8873371
crossref_primary_10_3390_molecules27154818
crossref_primary_10_3892_ol_2019_10052
crossref_primary_10_1080_08923973_2023_2228478
crossref_primary_10_3389_fphar_2019_00025
crossref_primary_10_1371_journal_pone_0268454
crossref_primary_10_2147_COPD_S442281
crossref_primary_10_3390_molecules27175475
crossref_primary_10_1097_IMNA_D_24_00022
crossref_primary_10_3389_fcell_2022_1011435
crossref_primary_10_1002_biof_1710
crossref_primary_10_53365_nrfhh_140607
crossref_primary_10_1080_09603123_2023_2256679
crossref_primary_10_1093_jpp_rgab046
crossref_primary_10_1002_biof_1706
crossref_primary_10_1039_C9CP01128E
crossref_primary_10_1016_j_isci_2019_05_012
crossref_primary_10_1093_jpp_rgab166
crossref_primary_10_1097_MD_0000000000034615
crossref_primary_10_1186_s13041_019_0539_z
crossref_primary_10_3390_metabo13020186
crossref_primary_10_5497_wjp_v11_i2_6
crossref_primary_10_1002_ptr_7070
crossref_primary_10_1080_10942912_2022_2057531
crossref_primary_10_1016_j_foodchem_2023_137873
crossref_primary_10_2147_JIR_S293135
crossref_primary_10_3389_fphar_2021_684486
crossref_primary_10_4162_nrp_2019_13_6_473
crossref_primary_10_3389_fphar_2022_969550
crossref_primary_10_1021_acs_jnatprod_3c00099
crossref_primary_10_2147_CCID_S385162
crossref_primary_10_1155_2019_4873870
crossref_primary_10_1155_2020_9421340
crossref_primary_10_1007_s11240_023_02645_w
crossref_primary_10_1016_j_prostaglandins_2023_106801
crossref_primary_10_1080_15287394_2023_2249944
crossref_primary_10_3390_sci4010014
crossref_primary_10_1016_j_jep_2024_118558
crossref_primary_10_4049_jimmunol_1900612
crossref_primary_10_2174_1573409919666230605123129
crossref_primary_10_1002_sscp_70012
crossref_primary_10_3390_biom10020238
crossref_primary_10_3390_molecules24183353
crossref_primary_10_13005_bpj_3025
crossref_primary_10_1016_j_neubiorev_2022_104818
crossref_primary_10_2174_1568026622666220107105233
crossref_primary_10_1155_2021_8819245
crossref_primary_10_3390_foods13040582
crossref_primary_10_1155_2021_3656272
crossref_primary_10_3389_fimmu_2022_1054875
crossref_primary_10_3389_fmed_2022_1072056
crossref_primary_10_1096_fj_202300611R
crossref_primary_10_3389_fimmu_2023_1196016
crossref_primary_10_3390_metabo13020249
crossref_primary_10_3390_antibiotics11040510
crossref_primary_10_1016_j_jep_2024_118182
crossref_primary_10_1016_j_nantod_2021_101266
crossref_primary_10_7831_ras_10_0_288
crossref_primary_10_1016_j_jff_2021_104876
crossref_primary_10_1111_cbdd_70059
crossref_primary_10_1016_j_jep_2023_116852
crossref_primary_10_1016_j_phymed_2023_155020
crossref_primary_10_3390_molecules29051093
crossref_primary_10_1177_1934578X20972914
crossref_primary_10_1016_j_colsurfa_2020_124805
crossref_primary_10_1186_s12985_020_01451_6
crossref_primary_10_4014_jmb_2104_04027
crossref_primary_10_1007_s12274_022_4285_7
crossref_primary_10_3390_molecules24203796
crossref_primary_10_3390_ijms23158719
crossref_primary_10_1016_j_heliyon_2023_e23790
crossref_primary_10_1007_s11696_024_03328_2
crossref_primary_10_1016_j_msec_2020_111760
crossref_primary_10_3390_metabo12111145
crossref_primary_10_3390_metabo13020260
crossref_primary_10_1186_s12906_020_03196_9
crossref_primary_10_1371_journal_ppat_1008887
crossref_primary_10_3390_ani12202747
crossref_primary_10_1134_S1062359022130180
crossref_primary_10_1155_2021_7671247
crossref_primary_10_3390_ani13081410
crossref_primary_10_1016_j_fct_2020_111179
crossref_primary_10_1515_jcim_2021_0045
crossref_primary_10_1080_10408398_2020_1768044
crossref_primary_10_1016_j_micpath_2025_107287
crossref_primary_10_3389_fvets_2024_1369153
crossref_primary_10_3390_ijms22168912
crossref_primary_10_2147_IJN_S400329
crossref_primary_10_1016_j_placenta_2023_12_004
crossref_primary_10_1080_07391102_2020_1803135
crossref_primary_10_3389_fvets_2024_1361792
crossref_primary_10_3389_fvets_2024_1396870
crossref_primary_10_2174_0115733998285798240217084632
crossref_primary_10_3390_foods12050988
crossref_primary_10_3389_fphar_2022_905347
crossref_primary_10_1080_17518253_2018_1543457
crossref_primary_10_1080_10717544_2021_1963351
crossref_primary_10_3390_antiox13030319
crossref_primary_10_1002_mnfr_202200729
crossref_primary_10_1016_j_foodhyd_2020_106312
crossref_primary_10_1016_j_ijbiomac_2023_127930
crossref_primary_10_1186_s12974_021_02204_0
crossref_primary_10_1038_s41401_024_01402_9
crossref_primary_10_3177_jnsv_69_259
crossref_primary_10_1016_j_phymed_2020_153396
crossref_primary_10_3390_brainsci13060873
crossref_primary_10_1016_j_jep_2019_111848
crossref_primary_10_1016_j_jep_2022_115549
crossref_primary_10_1002_jbt_23619
crossref_primary_10_1097_MD_0000000000032062
crossref_primary_10_1039_D1FO01096D
crossref_primary_10_1016_j_heliyon_2024_e41068
crossref_primary_10_1039_D1FO02173G
crossref_primary_10_1016_j_ejphar_2025_177439
crossref_primary_10_3390_molecules27144603
crossref_primary_10_1016_j_sajb_2022_04_046
crossref_primary_10_3390_antiox10020265
crossref_primary_10_4103_wjtcm_wjtcm_22_20
crossref_primary_10_1002_ptr_6273
crossref_primary_10_3390_molecules28237720
crossref_primary_10_1016_j_bioactmat_2021_11_027
crossref_primary_10_2147_DDDT_S319786
crossref_primary_10_1016_j_jep_2022_115779
crossref_primary_10_1155_2020_2861978
crossref_primary_10_2147_IDR_S253363
crossref_primary_10_1016_j_phymed_2021_153891
crossref_primary_10_1186_s12906_023_04205_3
crossref_primary_10_2174_1386207326666230823093958
crossref_primary_10_3390_ph14100961
crossref_primary_10_1155_2021_1987588
crossref_primary_10_1007_s10787_024_01596_8
crossref_primary_10_3389_fpls_2025_1521990
crossref_primary_10_1016_j_sajb_2022_03_032
crossref_primary_10_1002_pca_3429
crossref_primary_10_1016_j_lfs_2020_119008
crossref_primary_10_3390_bioengineering9050197
crossref_primary_10_1155_2022_2137188
crossref_primary_10_1016_j_ejps_2022_106188
crossref_primary_10_1007_s40496_024_00389_w
crossref_primary_10_1016_j_jep_2021_114136
crossref_primary_10_3389_fcell_2021_753279
crossref_primary_10_1016_j_lfs_2020_118173
crossref_primary_10_2174_1389557523666230214101821
crossref_primary_10_1186_s13040_020_00225_8
crossref_primary_10_1177_03946320231169175
crossref_primary_10_1039_D2TB01965E
crossref_primary_10_1021_acschemneuro_1c00157
crossref_primary_10_3390_ijms242417283
crossref_primary_10_2174_1871527321666220830164432
crossref_primary_10_3164_jcbn_20_192
crossref_primary_10_3389_fphar_2018_01318
crossref_primary_10_1021_acsomega_3c03716
crossref_primary_10_3389_fmicb_2022_987662
crossref_primary_10_1016_j_tifs_2020_01_010
crossref_primary_10_3389_fphar_2021_563436
crossref_primary_10_1016_j_prmcm_2024_100401
crossref_primary_10_3389_fphar_2023_1168990
crossref_primary_10_1016_j_pmpp_2024_102439
crossref_primary_10_3390_ijms21113802
crossref_primary_10_1186_s13020_025_01067_4
crossref_primary_10_4103_1673_5374_373680
crossref_primary_10_3390_molecules28114263
crossref_primary_10_1016_j_phymed_2024_155818
crossref_primary_10_3389_fimmu_2023_1066721
crossref_primary_10_1080_21655979_2022_2036897
crossref_primary_10_2174_1871524919666190502105855
crossref_primary_10_1016_j_micpath_2024_107258
crossref_primary_10_1016_j_intimp_2023_110996
crossref_primary_10_1016_j_jep_2023_116578
crossref_primary_10_1177_1934578X211046069
crossref_primary_10_1016_j_ijpharm_2023_123405
crossref_primary_10_1177_1934578X241239827
crossref_primary_10_1016_j_intimp_2019_106070
crossref_primary_10_1002_iid3_820
crossref_primary_10_1080_13510002_2021_1962094
crossref_primary_10_1155_mi_6393872
crossref_primary_10_3892_etm_2022_11396
crossref_primary_10_1016_j_ijbiomac_2023_126780
crossref_primary_10_2174_1386207325666220617151600
crossref_primary_10_1016_j_intimp_2023_110520
crossref_primary_10_3389_fpain_2023_1114428
crossref_primary_10_1097_SHK_0000000000002168
crossref_primary_10_1016_j_jep_2019_02_030
crossref_primary_10_3389_fphar_2021_700896
crossref_primary_10_3390_ph14111139
crossref_primary_10_1080_07391102_2023_2295973
crossref_primary_10_31083_j_rcm2505165
crossref_primary_10_1111_1750_3841_17468
crossref_primary_10_1016_j_ccmp_2023_100114
crossref_primary_10_2174_0113862073273675231114112804
crossref_primary_10_3390_ijms241411380
crossref_primary_10_2478_jtim_2021_0020
crossref_primary_10_1097_MD_0000000000036287
crossref_primary_10_1016_j_aninu_2024_11_005
crossref_primary_10_1002_biof_1699
crossref_primary_10_1016_j_jep_2022_115286
crossref_primary_10_3389_fphar_2021_693701
crossref_primary_10_1016_j_lfs_2018_08_029
crossref_primary_10_3390_molecules26061540
crossref_primary_10_1016_j_jep_2022_115046
crossref_primary_10_1080_07391102_2021_1931451
crossref_primary_10_3390_polym15010169
crossref_primary_10_3389_fnut_2024_1409339
crossref_primary_10_22159_ijpps_2023v15i12_49440
crossref_primary_10_1007_s12355_024_01507_9
crossref_primary_10_1016_j_canlet_2022_216019
crossref_primary_10_1016_j_sajb_2025_02_012
crossref_primary_10_3390_ijms24087247
crossref_primary_10_1039_D3TB01753B
crossref_primary_10_3390_foods12020320
crossref_primary_10_3390_ijerph18052483
crossref_primary_10_3390_app11104451
crossref_primary_10_3389_fnut_2023_1186161
crossref_primary_10_2174_1386207323666200122105410
crossref_primary_10_3389_fonc_2022_790713
crossref_primary_10_1177_0300060520903642
crossref_primary_10_1002_jcp_27638
crossref_primary_10_1007_s10787_023_01249_2
crossref_primary_10_1007_s11655_024_3917_z
crossref_primary_10_1155_2020_7130105
crossref_primary_10_1002_smtd_202400980
crossref_primary_10_1155_2022_7111901
crossref_primary_10_3390_ijms25010369
crossref_primary_10_1016_j_ejmech_2023_116075
crossref_primary_10_4103_2221_1691_391156
crossref_primary_10_3389_fmolb_2020_613401
crossref_primary_10_1080_10496475_2021_1943591
crossref_primary_10_3390_biom9110731
crossref_primary_10_3390_nu16081161
crossref_primary_10_1016_j_indcrop_2019_05_072
crossref_primary_10_1016_j_jep_2023_116896
crossref_primary_10_2478_cipms_2023_0035
crossref_primary_10_1080_15427528_2022_2126419
crossref_primary_10_1016_j_phymed_2022_154194
crossref_primary_10_1142_S0192415X24500903
crossref_primary_10_1021_acs_langmuir_4c01208
crossref_primary_10_5812_gct_149161
crossref_primary_10_1007_s10311_020_00981_3
crossref_primary_10_1016_j_jep_2021_114743
crossref_primary_10_1016_j_intimp_2023_110946
crossref_primary_10_1016_j_ipha_2024_07_004
crossref_primary_10_1007_s43440_024_00610_8
crossref_primary_10_1007_s13738_024_03122_7
crossref_primary_10_1097_MD_0000000000029829
crossref_primary_10_3389_fphar_2024_1355650
crossref_primary_10_1111_cbdd_70007
crossref_primary_10_1016_j_jff_2022_105023
crossref_primary_10_1166_jbn_2021_3101
crossref_primary_10_1038_s41598_023_41101_9
crossref_primary_10_1016_j_tranon_2022_101596
crossref_primary_10_3389_fphar_2023_1255069
crossref_primary_10_1038_s41419_019_1447_y
crossref_primary_10_1055_a_0998_7985
crossref_primary_10_3390_nu14061155
crossref_primary_10_3390_ijms24032136
crossref_primary_10_1155_2023_5301024
crossref_primary_10_1016_j_crbiot_2023_100152
crossref_primary_10_1016_j_lfs_2019_03_073
crossref_primary_10_3389_fnut_2023_1192758
crossref_primary_10_3390_molecules27144660
crossref_primary_10_2147_DDDT_S391978
crossref_primary_10_1016_j_scp_2024_101678
crossref_primary_10_1016_j_jaim_2024_101040
crossref_primary_10_1002_jbt_23482
crossref_primary_10_1021_acs_jafc_0c08085
crossref_primary_10_3390_ph16111539
crossref_primary_10_1016_j_fct_2021_112779
crossref_primary_10_1002_ffj_3847
crossref_primary_10_2174_2666862901666230601100713
crossref_primary_10_3389_fphar_2020_564131
crossref_primary_10_1016_j_prmcm_2023_100220
crossref_primary_10_1016_j_foodhyd_2022_107721
crossref_primary_10_1007_s00441_024_03927_1
crossref_primary_10_1016_j_phymed_2024_155535
crossref_primary_10_1080_13880209_2022_2160770
crossref_primary_10_1007_s00204_023_03661_7
crossref_primary_10_3390_vaccines11030554
crossref_primary_10_3390_biochem4010003
crossref_primary_10_3389_fphar_2022_894233
crossref_primary_10_1021_acsomega_0c05142
crossref_primary_10_1016_j_bbrc_2021_12_074
crossref_primary_10_1016_j_gendis_2023_06_016
crossref_primary_10_1016_j_jsps_2024_102107
crossref_primary_10_1016_j_phymed_2022_154329
crossref_primary_10_1097_FBP_0000000000000627
crossref_primary_10_3390_antiox11071344
crossref_primary_10_1080_09712119_2022_2154215
crossref_primary_10_3390_agronomy10060909
crossref_primary_10_1016_j_phymed_2023_154734
crossref_primary_10_2174_1573409918666221006122426
crossref_primary_10_3390_app10196785
crossref_primary_10_1016_j_ijpharm_2023_123482
crossref_primary_10_1007_s11816_023_00858_1
crossref_primary_10_1631_jzus_B2300777
crossref_primary_10_1016_j_phymed_2024_155516
crossref_primary_10_1080_10408398_2021_1947772
crossref_primary_10_3390_molecules25245946
crossref_primary_10_1186_s13020_021_00485_4
crossref_primary_10_7717_peerj_13670
crossref_primary_10_1159_000539651
crossref_primary_10_3389_fphar_2024_1450847
crossref_primary_10_1016_j_jddst_2020_101783
crossref_primary_10_1097_MD_0000000000039398
crossref_primary_10_1016_j_bioadv_2023_213363
crossref_primary_10_1186_s13020_021_00498_z
crossref_primary_10_1371_journal_pone_0276984
crossref_primary_10_1155_2020_7498525
crossref_primary_10_3389_fphar_2023_1178734
crossref_primary_10_12688_f1000research_154761_1
crossref_primary_10_3389_fphar_2021_747010
crossref_primary_10_3389_fphar_2022_806470
crossref_primary_10_1016_j_drudis_2024_104026
crossref_primary_10_1080_10601325_2022_2149341
crossref_primary_10_3390_cancers15020548
crossref_primary_10_1016_j_tice_2023_102259
crossref_primary_10_3389_fphar_2022_956219
crossref_primary_10_3390_ph17101402
crossref_primary_10_1080_22311866_2024_2351023
crossref_primary_10_1186_s13765_023_00786_2
crossref_primary_10_1016_j_biopha_2019_108698
crossref_primary_10_1016_j_heliyon_2023_e14029
crossref_primary_10_3390_molecules26092709
crossref_primary_10_1111_bph_14987
crossref_primary_10_1515_med_2024_1063
crossref_primary_10_1002_ptr_7826
crossref_primary_10_1007_s00299_022_02927_1
crossref_primary_10_1155_2021_3574321
crossref_primary_10_1021_cbmi_3c00112
crossref_primary_10_1016_j_phymed_2024_155611
crossref_primary_10_3390_ijms24043880
crossref_primary_10_1002_med_21592
crossref_primary_10_1016_j_prp_2024_155430
crossref_primary_10_1155_2019_2910278
crossref_primary_10_1155_2022_1602447
crossref_primary_10_1016_j_chmed_2020_12_005
crossref_primary_10_1002_ptr_7935
crossref_primary_10_3390_molecules27041329
crossref_primary_10_3390_antiox10121997
crossref_primary_10_2174_2215083809666230308093244
crossref_primary_10_3390_molecules27041320
crossref_primary_10_1016_j_compbiomed_2024_108878
crossref_primary_10_1016_j_ejphar_2020_173503
crossref_primary_10_3390_molecules25173846
crossref_primary_10_1016_j_cbi_2021_109712
crossref_primary_10_1039_D4RA02131B
crossref_primary_10_1111_cns_70025
crossref_primary_10_1080_13880209_2021_1938613
crossref_primary_10_1016_j_aimed_2023_07_004
crossref_primary_10_3390_life14060710
crossref_primary_10_1038_s41401_021_00702_8
crossref_primary_10_1155_2020_9210304
crossref_primary_10_2174_1381612828666220422085128
crossref_primary_10_1080_21691401_2019_1646749
crossref_primary_10_4239_wjd_v14_i11_1603
crossref_primary_10_1016_j_jiec_2022_03_053
crossref_primary_10_1016_j_lwt_2024_117201
crossref_primary_10_3390_md21080436
crossref_primary_10_3390_cells12131764
crossref_primary_10_1002_marc_202400528
crossref_primary_10_1007_s11033_023_08804_8
crossref_primary_10_3390_ph15020205
crossref_primary_10_1038_s41598_021_87628_7
crossref_primary_10_1016_j_taap_2023_116790
crossref_primary_10_1038_s41598_021_92135_w
crossref_primary_10_3390_ijms24065313
crossref_primary_10_1002_cbdv_202500026
crossref_primary_10_2174_0113816128287109240321074628
Cites_doi 10.1016/j.freeradbiomed.2016.03.019
10.1016/j.jep.2017.03.001
10.3390/molecules15010385
10.1155/2014/178931
10.1016/j.bcp.2009.01.009
10.3390/molecules18078083
10.3390/molecules21101321
10.1101/cshperspect.a000034
10.1016/j.jep.2014.01.030
10.1089/jmf.2014.3262
10.1016/j.fct.2011.07.012
10.1016/j.jnutbio.2014.11.008
10.1016/j.bbamcr.2014.05.014
10.1016/j.jep.2010.11.015
10.1002/med.20156
10.6026/97320630011543
10.1007/s10753-014-9995-x
10.1016/S0167-4889(02)00321-X
10.1016/j.jgr.2016.02.001
10.1007/s10753-010-9271-7
10.1016/j.apsb.2013.04.004
10.1039/C6FO01529H
10.3389/fphar.2012.00119
10.1016/j.jep.2007.11.025
10.3892/ol.2017.6380
10.1080/14786419.2014.981181
10.1016/j.jgr.2016.11.001
10.1016/j.jep.2012.06.012
10.3390/molecules19066941
10.1146/annurev-immunol-032713-120145
10.1016/j.jgr.2016.08.003
10.3892/etm.2016.3854
10.1016/j.jep.2015.08.028
10.1101/cshperspect.a001651
10.1016/j.jnutbio.2010.01.011
10.4103/0974-8520.100295
10.3892/ijmm.2016.2809
10.1016/j.jep.2017.04.022
10.1155/2013/485201
10.5897/IJBC11.163
10.5551/jat.23697
10.1038/tp.2015.142
10.1016/j.brainres.2016.07.014
10.4162/nrp.2013.7.6.423
10.1016/j.intimp.2004.09.027
10.3390/molecules170910774
10.1021/acs.jmedchem.7b00154
10.1016/j.clinthera.2013.04.006
10.1177/1758834016638019
10.1155/2016/3475356
10.1111/j.1538-7836.2009.03396.x
10.1124/dmd.110.037333
10.1292/jvms.16-0196
10.1155/2015/967053
10.1016/S0254-6272(14)60018-2
10.7314/APJCP.2014.15.14.5501
10.1387/ijdb.150204om
10.1007/s12272-014-0351-3
10.1177/039463201202500201
10.3390/molecules22030195
10.1016/j.brainres.2012.02.003
10.1016/j.ejphar.2011.04.007
10.1016/j.jnutbio.2016.12.014
10.2174/138955709787001712
10.1097/CEJ.0000000000000128
10.1111/1750-3841.13300
10.3389/fimmu.2013.00068
10.1080/13880200902939283
10.1016/j.jep.2015.12.016
10.1016/j.tox.2013.05.015
10.1038/aps.2010.62
10.1016/j.ejphar.2014.09.046
10.1016/j.jep.2009.04.059
10.1055/s-0028-1088314
10.18632/oncotarget.16092
10.1016/j.fct.2012.04.011
10.1002/ptr.4736
10.1038/cddis.2017.38
10.3109/00207454.2011.569040
10.1002/jnr.22714
10.1248/bpb.34.1032
10.1371/journal.pone.0039468
10.1038/srep17645
10.1016/j.fct.2010.06.029
10.1155/2012/383608
10.1016/j.brainres.2014.07.042
10.1016/j.lfs.2014.11.014
10.1038/cddis.2016.201
10.1016/j.jep.2017.01.039
10.1021/acs.jafc.5b00232
10.1002/ptr.5141
10.1016/j.jnutbio.2015.05.004
10.1016/j.jep.2014.05.013
10.4103/0973-1296.160470
10.1016/j.bbrc.2013.11.122
10.1016/j.pharep.2014.12.016
10.3390/molecules22030334
10.1016/j.jep.2014.04.021
10.1016/j.cbi.2014.10.031
10.1021/jf072612+
10.1002/cbic.201000487
10.1155/2011/792639
10.2478/10004-1254-61-2010-2012
10.1016/j.bbamcr.2014.10.010
10.3109/08923973.2015.1095763
10.1016/j.febslet.2009.10.045
10.5530/pc.2011.1.3
10.1016/j.jgr.2016.09.002
10.1016/j.biochi.2010.11.002
10.1007/s10787-007-0013-x
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jep.2018.05.019
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1872-7573
EndPage 358
ExternalDocumentID 29801717
10_1016_j_jep_2018_05_019
S0378874117334578
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATCM
AAWTL
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SPT
SSP
SSZ
T5K
TN5
~G-
~KM
.GJ
29K
53G
5VS
AAHBH
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
FEDTE
FGOYB
G-2
HMT
HVGLF
HX~
HZ~
R2-
SEW
SSH
WUQ
ZGI
NPM
7X8
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c485t-67514a5d56d533d3f23e04dfb8f6e84b3b516f2da1a9edfac8d72a189c5c1d6c3
IEDL.DBID .~1
ISSN 0378-8741
1872-7573
IngestDate Wed Jul 30 11:17:29 EDT 2025
Fri Jul 11 09:58:38 EDT 2025
Fri Jul 11 01:48:06 EDT 2025
Wed Feb 19 02:41:56 EST 2025
Tue Jul 01 01:35:41 EDT 2025
Thu Apr 24 23:11:55 EDT 2025
Fri Feb 23 02:28:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue NA
Keywords JNK
ICAM-1
HMGB1
Luteolin (PubChem CID: 5280445)
AP-1
CXCL2
MyD88
NF-κB
IFN-β
TBK1
PI3K
PRV
iNOS
Syk
PKC
MAPK
IL-1β
IP-10
SIRT1
MMP
ERK1/2
BMMCs
MIP
ROS
IRF
TRIF
HUVECs
HDAC
NO
MCP-1
COX-2
Src
HO-1
Flavonoid
LPS
Inflammatory diseases
NFAT
Luteolin-7-O-glucoside (PubChem CID: 5280637)
IκB
GFP
LDH
CREB
CCL2
TLR
Luteolin
Inflammatory signaling
GSH
Luteolin-6-C-glucoside (PubChem CID: 49852298)
PGE2
HSP90
NK cells
PMA
STAT3
IKK
SOD
AKT
SOCS
Luteolin-8-C-glucoside (PubChem CID: 5281675)
VCAM-1
TNF-α
JAK
LTC4
HAT
ATP
TIMP
Luteolin-5-O-glucoside (PubChem CID: 44258061)
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-67514a5d56d533d3f23e04dfb8f6e84b3b516f2da1a9edfac8d72a189c5c1d6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 29801717
PQID 2045283972
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2186136881
proquest_miscellaneous_2153606047
proquest_miscellaneous_2045283972
pubmed_primary_29801717
crossref_citationtrail_10_1016_j_jep_2018_05_019
crossref_primary_10_1016_j_jep_2018_05_019
elsevier_sciencedirect_doi_10_1016_j_jep_2018_05_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-28
PublicationDateYYYYMMDD 2018-10-28
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-28
  day: 28
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Journal of ethnopharmacology
PublicationTitleAlternate J Ethnopharmacol
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Akram, Syed, Kim, Lee, Jong, Chang, Kim, Bae (bib2) 2015; 174
Griffith, Sokol, Luster (bib28) 2014; 32
Kim, Yoon, Lee, Yang, Kim, Sung, Baek, Kim, Htwe, Kim, Hong, Kim, Cho (bib44) 2014; 155
Lu, Li, Li, Aisa (bib61) 2017; 14
Taliou, Zintzaras, Lykouras, Francis (bib91) 2013; 35
Jung, Jin, Min, Kim, Choi (bib38) 2012; 50
Backhouse, Rosales, Apablaza, Goïty, Erazo, Negrete, Theodoluz, Rodríguez, Delporte (bib6) 2008; 116
Funaro, Wu, Song, Zheng, Guo, Rakariyatham, Rodriguez-Estrada, Xiao (bib25) 2016; 81
Wall, Lim, Poljak, Lappas (bib97) 2013; 2013
Chen, Guo, Feng, Ke, Chen, Pan (bib10) 2016; 8
Wu, Li, Zong, Zhu, Pan, Xu, Wang, Wang (bib100) 2013; 18
Azab, Nassar, Azab (bib5) 2016; 21
Silva, Mendes, Tomasco, Pinto, de Oliveira, Rodrigues, Aragão, Aguiar, Alves, Castañon, Ribeiro, Scio (bib87) 2017; 198
Lee, Kim, Kim, Lee, Hwang, Lee (bib52) 2009; 77
Jin, Son, Chang (bib37) 2011; 34
Xiong, Wang, Yuan, Xing, Ni, Hu, Chen, Wang (bib103) 2017; 39
Deqiu, Kang, Jiali, Baolin, Gaolin (bib21) 2011; 93
Wu, Xu, Li, Kou, Huang, Liu, Liu (bib99) 2014; 745
Sharma, Al-Omran, Parvathy (bib85) 2007; 15
Kunle, Egharevba, Ahmadu (bib47) 2012; 4
Ode, Asuzu (bib67) 2014; 4
Choi, Lee (bib12) 2010; 48
Lawrence (bib51) 2009; 1
Xia, Chen, Liu, Ye, Pan, Ge, Mao, Wang, Wang, Xie (bib102) 2016; 12
Qiao, Zhang, Zhu, Dong, Wang, Zhang, Xing, Wang, Ji, Cao (bib76) 2012; 1448
Yu, Yang, Kwak, Song, Kim, Rhee, Cho (bib109) 2017; 41
Hytti, Piippo, Korhonen, Honkakoski, Kaarniranta, Kauppinen (bib30) 2015; 5
Farzaei, Abbasabadi, Ardekani, Rahimi, Farzaei (bib23) 2013; 33
Zeng, Zhang, Pan, Jia, Guo, Li, Zhu, Chen (bib110) 2013; 3
Yang, Kim, Yi, Kim, Jeong, Hwang, Kim, Park, Cho (bib106) 2017; 201
Guo, Xu, Sun, Zhao, Li, Guo (bib29) 2017; 8
Liu, Lin, Yang, Chen, Tseng, Chang, Chang (bib58) 2016; 95
Song, Su, Xu, Niu, Chen, Min, Zhang, Sun, Xie, Wang, Gao (bib89) 2017; 8
Kuo, Liao, Chen, Li, Yang, Lin, Kuan (bib48) 2011; 49
Lv, Lv, Zhang, Kong (bib62) 2011; 34
Nunes, Almeida, Barbosa, Laranjinha (bib66) 2017; 8
Lee, Jeong, Kim, Cho (bib53) 2015; 2015
Xu, Wang, Lu, Ding, Zhang, He, Wei, Wu (bib104) 2014; 1582
Moura, Sultan, Georgin-Lavialle, Barete, Lortholary, Gaillard, Hermine (bib63) 2012; 7
Turner, Nedjai, Hurst, Pennington (bib96) 2014; 1843
Ferrari, Ferreira, Souza, Grabe-Guimarães, Paula, Rezende, Saúde-Guimarães (bib24) 2013; 27
Xia, Wang, Jin, Liu, Meng, Liu, Sun (bib101) 2014; 21
Tsilioni, Taliou, Francis, Theoharides (bib94) 2015; 5
Zhang, Xing, Wang, Jiang, Guo, Liu (bib111) 2017; 22
Ramezani, Nasri, Yassa (bib78) 2009; 47
de Souza, de Paula, Pereira de Resende, Grabe-Guimarães, de Souza Filho, Saúde-Guimarães (bib19) 2012; 142
Parrella, Porrini, Iorio, Benarese, Lanzillotta, Mota, Fusco, Tonin, Spano, Pizzi (bib74) 2016; 1648
Tuorkey (bib95) 2016; 25
Zhu, Bi, Qi, Wang, Lu (bib115) 2011; 121
Zhou, Li, Luo, Jiang, Zeng (bib113) 2008; 56
Jia, Nallasamy, Liu, Shah, Li, Chitrakar, Si, McCormick, Zhu, Zhen, Li (bib36) 2015; 26
Serhan (bib84) 2009; 7
Domitrovic, Cvijanovic, Pugel, Zagorac, Mahmutefendic, Skoda (bib22) 2013; 310
Li, Yeh, Yang, Kuan (bib57) 2012; 2012
Pandurangan, Esa (bib70) 2014; 15
Park, Song (bib73) 2013; 7
Xu, Zhang, Liu, Li, Li, Wang, Ma, Liu (bib105) 2015; 29
Kim, Kim, Kang, Choi, Park, Choi, Kim, Yun, Nah, Lee (bib46) 2005; 5
Lee, Li, Chen, Lin, Huang, Chen, Kuan, Liao, Chen, Kuan (bib54) 2010; 31
Park, Jin, Lee, Song (bib71) 2011; 660
Theoharides, Asadi, Panagiotidou (bib92) 2012; 25
Lou, Liu, Zhou, Wei, Deng, Dong, Chai (bib60) 2015; 37
Choi, Islam, Ali, Kim, Park, Sohn, Jung (bib13) 2014; 37
Araujo, Zhang, Yin (bib4) 2012; 3
Rostoka, Isajevs, Baumane, Line, Silina, Dzintare, Sharipova, Svirina, Kalvinsh, Sjakste (bib81) 2010; 61
Shi, Zhou, Ji, Xu, Yang (bib86) 2015; 226
Zhu, Chen, Tan, Liu, Wang (bib114) 2017; 22
Kenneth (bib43) 2003
Rasoanaivo, Wright, Willcox, Gilbert (bib79) 2011; 10
Ribeiro, Freitas, Tomé, Silva, Laufer, Lima, Fernandes (bib80) 2015; 38
Park, Park, Noh, Shin, Song (bib72) 2011; 133
Chen, Chen, Pan, Sun, Li, Zeng, Jiang (bib11) 2011; 39
Katiyar, Gupta, Kanjilal, Katiyar (bib42) 2012; 33
Lopez-Lazaro (bib59) 2009; 9
Son, Cheong, Kim, Chung, Kang, Pae (bib88) 2011; 2011
Abdallah, Esmat (bib1) 2017; 205
Lee, Kim, Lee, Kwon, Song, Oh, Yoon (bib55) 2015; 67
Jeong, Yi, Sung, Yang, Park, Yoon, Yoon, Song, Lee, Rhee, Kim, Kim, Cho (bib35) 2014; 152
Wright, Watson, McGuffin, Lovegrove, Gibbins (bib98) 2015; 26
Kanai, Nagata, Hatta, Sugiura, Sato, Yamashita, Kimura, Itoh (bib39) 2016; 78
Palombo, Savini, Avigliano, Madonna, Cavani, Albanesi, Mauriello, Melino, Terrinoni (bib69) 2016; 7
Baek, Yi, Son, Yoo, Sung, Kim, Hong, Aravinthan, Kim, Cho (bib7) 2016; 40
Debant, Hemon, Brigaudeau, Renaudineau, Mignen (bib20) 2015; 59
Yasuda, Fujita, Hosoya, Imai, Shimoi (bib107) 2015; 63
Hytti, Szabo, Piippo, Korhonen, Honkakoski, Kaarniranta, Petrovski, Kauppinen (bib31) 2017; 42
Lamy, Moldovan, Ben Saad, Annabi (bib50) 2015; 1853
Kutil, Temml, Maghradze, Pribylova, Dvorakova, Schuster, Vanek, Landa (bib49) 2014; 2014
Goettert, Schattel, Koch, Merfort, Laufer (bib27) 2010; 11
Sung, Lee (bib90) 2015; 18
Gautam, Jachak (bib26) 2009; 29
Oeckinghaus, Ghosh (bib68) 2009; 1
Baek, Yi, Son, Jeong, Sung, Aravinthan, Kim, Cho (bib8) 2017; 41
Costa, Ferreira, Vitorino, Pina, Sousa, Figueiredo, Batista (bib16) 2016; 178
Pohjala, Tammela (bib75) 2012; 17
Kao, Ou, Lin, Pan, Song, Raung, Lai, Liao, Lu, Chen (bib41) 2011; 22
Sae-wong, Tansakul, Tewtrakul (bib82) 2009; 124
Yu, Li, Tian, Liu, Shang (bib108) 2015; 122
Seelinger, Merfort, Schempp (bib83) 2008; 74
Nkengla (bib65) 2014
Jeon, Kim, Kang, Lee, Jeong, Kim, Jang (bib34) 2014; 19
Ishihara, Hirano (bib32) 2002; 1592
Dash, Uddin, Hosen, Rahim, Dinar, Kabir, Sultan, Islam, Hossain (bib18) 2015; 11
Kang, Choi, Lee, Kwon (bib40) 2010; 15
Cock (bib15) 2011; 1
Kim, Lee, Yun (bib45) 2014; 28
da Silva, Farias, Boeing, Somensi, Beber, Cury, Santin, Faloni de Andrade (bib17) 2016; 2016
Chen, Bi, Dong, Jiang, Rui, Liu, Yin, Luo (bib9) 2014; 443
Thitilertdecha, Guy, Rowan (bib93) 2014; 154
Ando, Takahashi, Hirai, Nishimura, Lin, Uemura, Goto, Yu, Nakagami, Murakami, Kawada (bib3) 2009; 583
Jasial, Hu, Bajorath (bib33) 2017; 60
Nepali, Son, Poudel, Lee, Lee, Kim (bib64) 2015; 11
Li, Liang, Lotze (bib56) 2013; 4
Zhou, Qu, Lv, Chen, Liu, Liu, Li, Sun (bib112) 2011; 89
Choi, Kwak, Bang, Jeong, Kim (bib14) 2017; 41
Rafacho, Stice, Liu, Greenberg, Ausman, Wang (bib77) 2015; 4
Backhouse (10.1016/j.jep.2018.05.019_bib6) 2008; 116
Theoharides (10.1016/j.jep.2018.05.019_bib92) 2012; 25
Ramezani (10.1016/j.jep.2018.05.019_bib78) 2009; 47
Tuorkey (10.1016/j.jep.2018.05.019_bib95) 2016; 25
Baek (10.1016/j.jep.2018.05.019_bib8) 2017; 41
Turner (10.1016/j.jep.2018.05.019_bib96) 2014; 1843
Yu (10.1016/j.jep.2018.05.019_bib108) 2015; 122
Lou (10.1016/j.jep.2018.05.019_bib60) 2015; 37
Ferrari (10.1016/j.jep.2018.05.019_bib24) 2013; 27
Yu (10.1016/j.jep.2018.05.019_bib109) 2017; 41
Kenneth (10.1016/j.jep.2018.05.019_bib43) 2003
Wu (10.1016/j.jep.2018.05.019_bib99) 2014; 745
Costa (10.1016/j.jep.2018.05.019_bib16) 2016; 178
Ishihara (10.1016/j.jep.2018.05.019_bib32) 2002; 1592
Qiao (10.1016/j.jep.2018.05.019_bib76) 2012; 1448
Nepali (10.1016/j.jep.2018.05.019_bib64) 2015; 11
Hytti (10.1016/j.jep.2018.05.019_bib30) 2015; 5
Choi (10.1016/j.jep.2018.05.019_bib14) 2017; 41
Jeong (10.1016/j.jep.2018.05.019_bib35) 2014; 152
Azab (10.1016/j.jep.2018.05.019_bib5) 2016; 21
Zhang (10.1016/j.jep.2018.05.019_bib111) 2017; 22
Sharma (10.1016/j.jep.2018.05.019_bib85) 2007; 15
Rasoanaivo (10.1016/j.jep.2018.05.019_bib79) 2011; 10
Rostoka (10.1016/j.jep.2018.05.019_bib81) 2010; 61
Dash (10.1016/j.jep.2018.05.019_bib18) 2015; 11
Jeon (10.1016/j.jep.2018.05.019_bib34) 2014; 19
Yasuda (10.1016/j.jep.2018.05.019_bib107) 2015; 63
Oeckinghaus (10.1016/j.jep.2018.05.019_bib68) 2009; 1
Xia (10.1016/j.jep.2018.05.019_bib101) 2014; 21
Seelinger (10.1016/j.jep.2018.05.019_bib83) 2008; 74
Funaro (10.1016/j.jep.2018.05.019_bib25) 2016; 81
da Silva (10.1016/j.jep.2018.05.019_bib17) 2016; 2016
Hytti (10.1016/j.jep.2018.05.019_bib31) 2017; 42
Zhu (10.1016/j.jep.2018.05.019_bib114) 2017; 22
Farzaei (10.1016/j.jep.2018.05.019_bib23) 2013; 33
Xu (10.1016/j.jep.2018.05.019_bib105) 2015; 29
Katiyar (10.1016/j.jep.2018.05.019_bib42) 2012; 33
Kim (10.1016/j.jep.2018.05.019_bib44) 2014; 155
Li (10.1016/j.jep.2018.05.019_bib57) 2012; 2012
Wall (10.1016/j.jep.2018.05.019_bib97) 2013; 2013
Nunes (10.1016/j.jep.2018.05.019_bib66) 2017; 8
Moura (10.1016/j.jep.2018.05.019_bib63) 2012; 7
Kunle (10.1016/j.jep.2018.05.019_bib47) 2012; 4
Silva (10.1016/j.jep.2018.05.019_bib87) 2017; 198
Cock (10.1016/j.jep.2018.05.019_bib15) 2011; 1
Lee (10.1016/j.jep.2018.05.019_bib54) 2010; 31
Lee (10.1016/j.jep.2018.05.019_bib55) 2015; 67
Song (10.1016/j.jep.2018.05.019_bib89) 2017; 8
Serhan (10.1016/j.jep.2018.05.019_bib84) 2009; 7
Ando (10.1016/j.jep.2018.05.019_bib3) 2009; 583
Zeng (10.1016/j.jep.2018.05.019_bib110) 2013; 3
Parrella (10.1016/j.jep.2018.05.019_bib74) 2016; 1648
Zhu (10.1016/j.jep.2018.05.019_bib115) 2011; 121
Araujo (10.1016/j.jep.2018.05.019_bib4) 2012; 3
Liu (10.1016/j.jep.2018.05.019_bib58) 2016; 95
Lee (10.1016/j.jep.2018.05.019_bib52) 2009; 77
Domitrovic (10.1016/j.jep.2018.05.019_bib22) 2013; 310
Sung (10.1016/j.jep.2018.05.019_bib90) 2015; 18
Rafacho (10.1016/j.jep.2018.05.019_bib77) 2015; 4
Kang (10.1016/j.jep.2018.05.019_bib40) 2010; 15
Chen (10.1016/j.jep.2018.05.019_bib10) 2016; 8
Deqiu (10.1016/j.jep.2018.05.019_bib21) 2011; 93
Jung (10.1016/j.jep.2018.05.019_bib38) 2012; 50
Jasial (10.1016/j.jep.2018.05.019_bib33) 2017; 60
Kao (10.1016/j.jep.2018.05.019_bib41) 2011; 22
Jia (10.1016/j.jep.2018.05.019_bib36) 2015; 26
Kim (10.1016/j.jep.2018.05.019_bib45) 2014; 28
Palombo (10.1016/j.jep.2018.05.019_bib69) 2016; 7
Ribeiro (10.1016/j.jep.2018.05.019_bib80) 2015; 38
Shi (10.1016/j.jep.2018.05.019_bib86) 2015; 226
Wright (10.1016/j.jep.2018.05.019_bib98) 2015; 26
Kanai (10.1016/j.jep.2018.05.019_bib39) 2016; 78
Debant (10.1016/j.jep.2018.05.019_bib20) 2015; 59
Akram (10.1016/j.jep.2018.05.019_bib2) 2015; 174
Kuo (10.1016/j.jep.2018.05.019_bib48) 2011; 49
Xu (10.1016/j.jep.2018.05.019_bib104) 2014; 1582
Nkengla (10.1016/j.jep.2018.05.019_bib65) 2014
Zhou (10.1016/j.jep.2018.05.019_bib113) 2008; 56
Pandurangan (10.1016/j.jep.2018.05.019_bib70) 2014; 15
Son (10.1016/j.jep.2018.05.019_bib88) 2011; 2011
Xia (10.1016/j.jep.2018.05.019_bib102) 2016; 12
Kutil (10.1016/j.jep.2018.05.019_bib49) 2014; 2014
Guo (10.1016/j.jep.2018.05.019_bib29) 2017; 8
Choi (10.1016/j.jep.2018.05.019_bib12) 2010; 48
Xiong (10.1016/j.jep.2018.05.019_bib103) 2017; 39
Lamy (10.1016/j.jep.2018.05.019_bib50) 2015; 1853
Lopez-Lazaro (10.1016/j.jep.2018.05.019_bib59) 2009; 9
Gautam (10.1016/j.jep.2018.05.019_bib26) 2009; 29
Griffith (10.1016/j.jep.2018.05.019_bib28) 2014; 32
Ode (10.1016/j.jep.2018.05.019_bib67) 2014; 4
Baek (10.1016/j.jep.2018.05.019_bib7) 2016; 40
Chen (10.1016/j.jep.2018.05.019_bib11) 2011; 39
Park (10.1016/j.jep.2018.05.019_bib73) 2013; 7
Taliou (10.1016/j.jep.2018.05.019_bib91) 2013; 35
de Souza (10.1016/j.jep.2018.05.019_bib19) 2012; 142
Goettert (10.1016/j.jep.2018.05.019_bib27) 2010; 11
Choi (10.1016/j.jep.2018.05.019_bib13) 2014; 37
Zhou (10.1016/j.jep.2018.05.019_bib112) 2011; 89
Lee (10.1016/j.jep.2018.05.019_bib53) 2015; 2015
Lu (10.1016/j.jep.2018.05.019_bib61) 2017; 14
Abdallah (10.1016/j.jep.2018.05.019_bib1) 2017; 205
Sae-wong (10.1016/j.jep.2018.05.019_bib82) 2009; 124
Pohjala (10.1016/j.jep.2018.05.019_bib75) 2012; 17
Park (10.1016/j.jep.2018.05.019_bib71) 2011; 660
Yang (10.1016/j.jep.2018.05.019_bib106) 2017; 201
Chen (10.1016/j.jep.2018.05.019_bib9) 2014; 443
Lv (10.1016/j.jep.2018.05.019_bib62) 2011; 34
Li (10.1016/j.jep.2018.05.019_bib56) 2013; 4
Kim (10.1016/j.jep.2018.05.019_bib46) 2005; 5
Park (10.1016/j.jep.2018.05.019_bib72) 2011; 133
Jin (10.1016/j.jep.2018.05.019_bib37) 2011; 34
Tsilioni (10.1016/j.jep.2018.05.019_bib94) 2015; 5
Lawrence (10.1016/j.jep.2018.05.019_bib51) 2009; 1
Thitilertdecha (10.1016/j.jep.2018.05.019_bib93) 2014; 154
Wu (10.1016/j.jep.2018.05.019_bib100) 2013; 18
References_xml – volume: 1
  start-page: a000034
  year: 2009
  ident: bib68
  article-title: The NF-κB family of transcription factors and its regulation
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 116
  start-page: 263
  year: 2008
  end-page: 269
  ident: bib6
  article-title: Analgesic, anti-inflammatory and antioxidant properties of
  publication-title: J. Ethnopharmacol.
– volume: 121
  start-page: 329
  year: 2011
  end-page: 336
  ident: bib115
  article-title: Luteolin inhibits microglial inflammation and improves neuron survival against inflammation
  publication-title: Int. J. Neurosci.
– volume: 4
  start-page: 124
  year: 2015
  end-page: 134
  ident: bib77
  article-title: Inhibition of diethylnitrosamine-initiated alcohol-promoted hepatic inflammation and precancerous lesions by flavonoid luteolin is associated with increased sirtuin 1 activity in mice
  publication-title: Hepatobiliary Surg. Nutr.
– volume: 8
  start-page: 160
  year: 2016
  end-page: 167
  ident: bib10
  article-title: The preoperative platelet-lymphocyte ratio versus neutrophil-lymphocyte ratio: which is better as a prognostic factor in oral squamous cell carcinoma?
  publication-title: Ther. Adv. Med. Oncol.
– volume: 174
  start-page: 322
  year: 2015
  end-page: 330
  ident: bib2
  article-title: Heme oxygenase 1-mediated novel anti-inflammatory activities of
  publication-title: J. Ethnopharmacol.
– volume: 10
  year: 2011
  ident: bib79
  article-title: Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions
  publication-title: Malar. J.
– volume: 26
  start-page: 293
  year: 2015
  end-page: 302
  ident: bib36
  article-title: Luteolin protects against vascular inflammation in mice and TNF-alpha-induced monocyte adhesion to endothelial cells via suppressing IKappaBalpha/NF-kappaB signaling pathway
  publication-title: J. Nutr. Biochem.
– volume: 29
  start-page: 1078
  year: 2015
  end-page: 1082
  ident: bib105
  article-title: Luteolin attenuate the
  publication-title: Nat. Prod. Res.
– volume: 81
  start-page: H1320
  year: 2016
  end-page: H1327
  ident: bib25
  article-title: Enhanced anti-inflammatory activities by the combination of luteolin and tangeretin
  publication-title: J. Food Sci.
– volume: 42
  start-page: 37
  year: 2017
  end-page: 42
  ident: bib31
  article-title: Two dietary polyphenols, fisetin and luteolin, reduce inflammation but augment DNA damage-induced toxicity in human RPE cells
  publication-title: J. Nutr. Biochem.
– year: 2014
  ident: bib65
  article-title: Investigation of the In Vitro Bioavailability of Luteolin from Modified Preparations of
– volume: 1648
  start-page: 409
  year: 2016
  end-page: 417
  ident: bib74
  article-title: PEA and luteolin synergistically reduce mast cell-mediated toxicity and elicit neuroprotection in cell-based models of brain ischemia
  publication-title: Brain Res.
– volume: 26
  start-page: 1156
  year: 2015
  end-page: 1165
  ident: bib98
  article-title: GRID and docking analyses reveal a molecular basis for flavonoid inhibition of Src family kinase activity
  publication-title: J. Nutr. Biochem.
– volume: 89
  start-page: 1859
  year: 2011
  end-page: 1868
  ident: bib112
  article-title: Luteolin protects against reactive oxygen species-mediated cell death induced by zinc toxicity via the PI3K-Akt-NF-kappaB-ERK-dependent pathway
  publication-title: J. Neurosci. Res.
– volume: 154
  start-page: 400
  year: 2014
  end-page: 407
  ident: bib93
  article-title: Characterisation of polyphenolic compounds in
  publication-title: J. Ethnopharmacol.
– volume: 29
  start-page: 767
  year: 2009
  end-page: 820
  ident: bib26
  article-title: Recent developments in anti-inflammatory natural products
  publication-title: Med. Res. Rev.
– volume: 19
  start-page: 6941
  year: 2014
  end-page: 6951
  ident: bib34
  article-title: Anti-inflammatory and antipruritic effects of luteolin from Perilla (
  publication-title: Molecules
– volume: 155
  start-page: 185
  year: 2014
  end-page: 193
  ident: bib44
  article-title: Syk/Src-targeted anti-inflammatory activity of
  publication-title: J. Ethnopharmacol.
– volume: 7
  start-page: e2344
  year: 2016
  ident: bib69
  article-title: Luteolin-7-glucoside inhibits IL-22/STAT3 pathway, reducing proliferation, acanthosis, and inflammation in keratinocytes and in mouse psoriatic model
  publication-title: Cell Death. Dis.
– volume: 142
  start-page: 845
  year: 2012
  end-page: 850
  ident: bib19
  article-title: Pharmacological basis for use of
  publication-title: J. Ethnopharmacol.
– volume: 49
  start-page: 2660
  year: 2011
  end-page: 2666
  ident: bib48
  article-title: Luteolin attenuates the pulmonary inflammatory response involves abilities of antioxidation and inhibition of MAPK and NFkappaB pathways in mice with endotoxin-induced acute lung injury
  publication-title: Food Chem. Toxicol.
– volume: 7
  start-page: 44
  year: 2009
  end-page: 48
  ident: bib84
  article-title: Systems approach to inflammation resolution: identification of novel anti-inflammatory and pro-resolving mediators
  publication-title: J. Thromb. Haemost.
– volume: 8
  start-page: 387
  year: 2017
  end-page: 396
  ident: bib66
  article-title: Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation
  publication-title: Food Funct.
– volume: 17
  start-page: 10774
  year: 2012
  end-page: 10790
  ident: bib75
  article-title: Aggregating behavior of phenolic compounds—a source of false bioassay results?
  publication-title: Molecules
– volume: 33
  start-page: 815
  year: 2013
  end-page: 826
  ident: bib23
  article-title: Parsley: a review of ethnopharmacology, phytochemistry and biological activities
  publication-title: J. Tradit. Chin. Med.
– volume: 8
  start-page: 28481
  year: 2017
  end-page: 28493
  ident: bib29
  article-title: Luteolin reduces inflammation in
  publication-title: Oncotarget
– volume: 8
  start-page: e2612
  year: 2017
  ident: bib89
  article-title: Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1
  publication-title: Cell Death. Dis.
– volume: 39
  start-page: 667
  year: 2011
  end-page: 674
  ident: bib11
  article-title: Role of catechol-O-methyltransferase in the disposition of luteolin in rats
  publication-title: Drug. Metab. Dispos.
– volume: 226
  start-page: 82
  year: 2015
  end-page: 87
  ident: bib86
  article-title: Anti-arthritic activity of luteolin in Freund's complete adjuvant-induced arthritis in rats by suppressing P2×4 pathway
  publication-title: Chem. Biol. Interact.
– volume: 11
  start-page: 543
  year: 2015
  end-page: 549
  ident: bib18
  article-title: Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer
  publication-title: Bioinformation
– volume: 61
  start-page: 275
  year: 2010
  end-page: 285
  ident: bib81
  article-title: Effects of lycopene, indole-3-carbinol, and luteolin on nitric oxide production and iNOS expression are organ-specific in rats
  publication-title: Arh Hig Rada Toksikol.
– volume: 5
  start-page: 209
  year: 2005
  end-page: 217
  ident: bib46
  article-title: Inhibitory effect of luteolin on TNF-alpha-induced IL-8 production in human colon epithelial cells
  publication-title: Int. Immunopharmacol.
– volume: 18
  start-page: 8083
  year: 2013
  end-page: 8094
  ident: bib100
  article-title: Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability
  publication-title: Molecules
– volume: 78
  start-page: 1381
  year: 2016
  end-page: 1384
  ident: bib39
  article-title: Therapeutic anti-inflammatory effects of luteolin on endotoxin-induced uveitis in Lewis rats
  publication-title: J. Vet. Med. Sci.
– volume: 198
  start-page: 399
  year: 2017
  end-page: 406
  ident: bib87
  article-title: New aspects on the hepatoprotective potential associated with the antioxidant, hypocholesterolemic and anti-inflammatory activities of
  publication-title: J. Ethnopharmacol.
– volume: 21
  start-page: 768
  year: 2014
  end-page: 783
  ident: bib101
  article-title: Luteolin protects HUVECs from TNF-alpha-induced oxidative stress and inflammation via its effects on the Nox4/ROS-NF-kappaB and MAPK pathways
  publication-title: J. Atheroscler. Thromb.
– volume: 41
  start-page: 386
  year: 2017
  end-page: 391
  ident: bib8
  article-title: Comparison of anticancer activities of Korean red ginseng-derived fractions
  publication-title: J. Ginseng Res.
– volume: 27
  start-page: 384
  year: 2013
  end-page: 389
  ident: bib24
  article-title: Anti-Inflammatory sesquiterpene lactones from
  publication-title: Phytother. Res.
– volume: 4
  start-page: 68
  year: 2013
  ident: bib56
  article-title: HMGB1: the central cytokine for all lymphoid cells
  publication-title: Front Immunol.
– volume: 7
  start-page: e39468
  year: 2012
  ident: bib63
  article-title: Evidence for cognitive impairment in mastocytosis: prevalence, features and correlations to depression
  publication-title: PLoS One
– volume: 67
  start-page: 581
  year: 2015
  end-page: 587
  ident: bib55
  article-title: Luteolin 8-C-beta-fucopyranoside downregulates IL-6 expression by inhibiting MAPKs and the NF-kappaB signaling pathway in human monocytic cells
  publication-title: Pharmacol. Rep.
– volume: 205
  start-page: 51
  year: 2017
  end-page: 56
  ident: bib1
  article-title: Antioxidant and anti-inflammatory activities of the major phenolics from
  publication-title: J. Ethnopharmacol.
– volume: 59
  start-page: 379
  year: 2015
  end-page: 389
  ident: bib20
  article-title: Calcium signaling and cell fate: how can Ca
  publication-title: Int. J. Dev. Biol.
– volume: 2013
  start-page: 485201
  year: 2013
  ident: bib97
  article-title: Dietary flavonoids as therapeutics for preterm birth: luteolin and kaempferol suppress inflammation in human gestational tissues
  publication-title: Oxid. Med. Cell Longev.
– volume: 1592
  start-page: 281
  year: 2002
  end-page: 296
  ident: bib32
  article-title: Molecular basis of the cell specificity of cytokine action
  publication-title: Biochim. Biophys. Acta - Mol. Cell Res.
– volume: 1
  start-page: a001651
  year: 2009
  ident: bib51
  article-title: The nuclear factor NF-κB pathway in inflammation
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 37
  start-page: 1354
  year: 2014
  end-page: 1363
  ident: bib13
  article-title: The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer's disease, anti-diabetic, and anti-inflammatory activities
  publication-title: Arch. Pharm. Res.
– volume: 47
  start-page: 740
  year: 2009
  end-page: 743
  ident: bib78
  article-title: Antinociceptive and anti-inflammatory effects of isolated fractions from
  publication-title: Pharm. Biol.
– volume: 1853
  start-page: 126
  year: 2015
  end-page: 135
  ident: bib50
  article-title: Biphasic effects of luteolin on interleukin-1beta-induced cyclooxygenase-2 expression in glioblastoma cells
  publication-title: Biochim. Biophys. Acta
– volume: 41
  start-page: 503
  year: 2017
  end-page: 512
  ident: bib14
  article-title: Chronic saponin treatment attenuates damage to the pancreas in chronic alcohol-treated diabetic rats
  publication-title: J. Ginseng Res.
– volume: 2011
  start-page: 6
  year: 2011
  ident: bib88
  article-title: Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways?
  publication-title: J. Signal. Transduct.
– volume: 40
  start-page: 437
  year: 2016
  end-page: 444
  ident: bib7
  article-title: In vitro and in vivo anti-inflammatory activities of Korean Red Ginseng-derived components
  publication-title: J. Ginseng Res.
– volume: 15
  start-page: 385
  year: 2010
  end-page: 398
  ident: bib40
  article-title: Luteolin isolated from the flowers of
  publication-title: Molecules
– volume: 152
  start-page: 487
  year: 2014
  end-page: 496
  ident: bib35
  article-title: Anti-inflammatory activities and mechanisms of
  publication-title: J. Ethnopharmacol.
– volume: 50
  start-page: 2171
  year: 2012
  end-page: 2179
  ident: bib38
  article-title: Anti-inflammatory activity of Korean thistle
  publication-title: Food Chem. Toxicol.
– volume: 310
  start-page: 115
  year: 2013
  end-page: 123
  ident: bib22
  article-title: Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney
  publication-title: Toxicology
– volume: 60
  start-page: 3879
  year: 2017
  end-page: 3886
  ident: bib33
  article-title: How frequently are pan-assay interference compounds active? Large-scale analysis of screening data reveals diverse activity profiles, low global hit frequency, and many consistently inactive compounds
  publication-title: J. Med. Chem.
– volume: 22
  start-page: E195
  year: 2017
  ident: bib114
  article-title: Flavonoids from
  publication-title: Molecules
– volume: 443
  start-page: 326
  year: 2014
  end-page: 332
  ident: bib9
  article-title: Luteolin exhibits anti-inflammatory effects by blocking the activity of heat shock protein 90 in macrophages
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 15
  start-page: 5501
  year: 2014
  end-page: 5508
  ident: bib70
  article-title: Luteolin, a bioflavonoid inhibits colorectal cancer through modulation of multiple signaling pathways: a review
  publication-title: Asian Pac. J. Cancer Prev.
– volume: 11
  start-page: 2579
  year: 2010
  end-page: 2588
  ident: bib27
  article-title: Biological evaluation and structural determinants of p38alpha mitogen-activated-protein kinase and c-Jun-N-terminal kinase 3 inhibition by flavonoids
  publication-title: Chembiochem
– volume: 95
  start-page: 180
  year: 2016
  end-page: 189
  ident: bib58
  article-title: Luteolin inhibits viral-induced inflammatory response in RAW264.7 cells via suppression of STAT1/3 dependent NF-kappaB and activation of HO-1
  publication-title: Free Radic. Biol. Med.
– volume: 745
  start-page: 59
  year: 2014
  end-page: 68
  ident: bib99
  article-title: Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells
  publication-title: Eur. J. Pharmacol.
– volume: 2016
  start-page: 3475356
  year: 2016
  ident: bib17
  article-title: Hydroalcoholic extract from inflorescences of
  publication-title: Evid. Based Complement. Altern. Med.
– volume: 14
  start-page: 1993
  year: 2017
  end-page: 2000
  ident: bib61
  article-title: Luteolin induces apoptosis
  publication-title: Oncol. Lett.
– volume: 4
  start-page: 17
  year: 2014
  end-page: 23
  ident: bib67
  article-title: Luteolin isolate from the methanol extract identified as the single-carbon compound responsible for broad antiulcer activities of
  publication-title: IOSR J. Pharm.
– volume: 18
  start-page: 557
  year: 2015
  end-page: 564
  ident: bib90
  article-title: Anti-inflammatory activity of butein and luteolin through suppression of NFkappaB activation and induction of heme oxygenase-1
  publication-title: J. Med. Food
– volume: 12
  start-page: 4049
  year: 2016
  end-page: 4054
  ident: bib102
  article-title: Anti-inflammatory effects of luteolin on experimental autoimmune thyroiditis in mice
  publication-title: Exp. Ther. Med.
– volume: 5
  start-page: e647
  year: 2015
  ident: bib94
  article-title: Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6
  publication-title: Transl. Psychiatry
– volume: 31
  start-page: 831
  year: 2010
  end-page: 838
  ident: bib54
  article-title: Protective effects of luteolin against lipopolysaccharide-induced acute lung injury involves inhibition of MEK/ERK and PI3K/Akt pathways in neutrophils
  publication-title: Acta Pharmacol. Sin.
– volume: 48
  start-page: 2607
  year: 2010
  end-page: 2611
  ident: bib12
  article-title: Luteolin suppresses IL-1beta-induced cytokines and MMPs production via p38 MAPK, JNK, NF-kappaB and AP-1 activation in human synovial sarcoma cell line, SW982
  publication-title: Food Chem. Toxicol.
– volume: 28
  start-page: 1383
  year: 2014
  end-page: 1391
  ident: bib45
  article-title: Luteolin inhibits hyperglycemia-induced proinflammatory cytokine production and its epigenetic mechanism in human monocytes
  publication-title: Phytother. Res.
– volume: 63
  start-page: 7693
  year: 2015
  end-page: 7699
  ident: bib107
  article-title: Absorption and metabolism of luteolin and its glycosides from the extract of
  publication-title: J. Agric. Food Chem.
– volume: 22
  start-page: 612
  year: 2011
  end-page: 624
  ident: bib41
  article-title: Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia
  publication-title: J. Nutr. Biochem.
– volume: 41
  start-page: 127
  year: 2017
  end-page: 133
  ident: bib109
  article-title: Ginsenoside Rc from
  publication-title: J. Ginseng Res.
– volume: 201
  start-page: 82
  year: 2017
  end-page: 90
  ident: bib106
  article-title: AKT-targeted anti-inflammatory activity of the methanol extract of
  publication-title: J. Ethnopharmacol.
– volume: 35
  start-page: 592
  year: 2013
  end-page: 602
  ident: bib91
  article-title: An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders
  publication-title: Clin. Ther.
– volume: 11
  start-page: 627
  year: 2015
  end-page: 635
  ident: bib64
  article-title: Luteolin is a bioflavonoid that attenuates adipocyte-derived inflammatory responses via suppression of nuclear factor-κB/mitogen-activated protein kinases pathway
  publication-title: Pharmacogn. Mag.
– volume: 93
  start-page: 506
  year: 2011
  end-page: 512
  ident: bib21
  article-title: Luteolin inhibits inflammatory response and improves insulin sensitivity in the endothelium
  publication-title: Biochimie
– volume: 33
  start-page: 10
  year: 2012
  end-page: 19
  ident: bib42
  article-title: Drug discovery from plant sources: an integrated approach
  publication-title: Ayu
– volume: 1448
  start-page: 71
  year: 2012
  end-page: 81
  ident: bib76
  article-title: Luteolin downregulates TLR4, TLR5, NF-kappaB and p-p38MAPK expression, upregulates the p-ERK expression, and protects rat brains against focal ischemia
  publication-title: Brain Res.
– volume: 2012
  start-page: 383608
  year: 2012
  ident: bib57
  article-title: Luteolin suppresses inflammatory mediator expression by blocking the Akt/NFkappaB pathway in acute lung injury induced by lipopolysaccharide in mice
  publication-title: Evid. Based Complement. Altern. Med.
– volume: 22
  start-page: E334
  year: 2017
  ident: bib111
  article-title: Luteolin inhibits fibrillary beta-amyloid1-40-induced inflammation in a human blood-brain barrier model by suppressing the p38 MAPK-mediated NF-kappaB signaling pathways
  publication-title: Molecules
– volume: 4
  start-page: 101
  year: 2012
  end-page: 112
  ident: bib47
  article-title: Standardization of herbal medicines - a review
  publication-title: Int. J. Biodivers. Conserv.
– volume: 583
  start-page: 3649
  year: 2009
  end-page: 3654
  ident: bib3
  article-title: Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation
  publication-title: FEBS Lett.
– volume: 7
  start-page: 423
  year: 2013
  end-page: 429
  ident: bib73
  article-title: Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-kappaB/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells
  publication-title: Nutr. Res. Pract.
– volume: 1582
  start-page: 237
  year: 2014
  end-page: 246
  ident: bib104
  article-title: Posttraumatic administration of luteolin protects mice from traumatic brain injury: implication of autophagy and inflammation
  publication-title: Brain Res.
– volume: 3
  start-page: 119
  year: 2012
  ident: bib4
  article-title: Heme oxygenase-1, oxidation, inflammation, and atherosclerosis
  publication-title: Front. Pharmacol.
– volume: 32
  start-page: 659
  year: 2014
  end-page: 702
  ident: bib28
  article-title: Chemokines and chemokine receptors: positioning cells for host defense and immunity
  publication-title: Annu. Rev. Immunol.
– volume: 38
  start-page: 858
  year: 2015
  end-page: 870
  ident: bib80
  article-title: Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood
  publication-title: Inflammation
– volume: 39
  start-page: 113
  year: 2017
  end-page: 125
  ident: bib103
  article-title: Luteolin protects mice from severe acute pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects
  publication-title: Int. J. Mol. Med.
– volume: 3
  start-page: 154
  year: 2013
  end-page: 162
  ident: bib110
  article-title: Advances in studying of the pharmacological activities and structure–activity relationships of natural C-glycosylflavonoids
  publication-title: Acta Pharm. Sin. B.
– volume: 5
  start-page: 17645
  year: 2015
  ident: bib30
  article-title: Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation
  publication-title: Sci. Rep.
– volume: 133
  start-page: 834
  year: 2011
  end-page: 842
  ident: bib72
  article-title: Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-κB modulation in RAW 264.7 cells
  publication-title: J. Ethnopharmacol.
– volume: 25
  start-page: 65
  year: 2016
  end-page: 76
  ident: bib95
  article-title: Molecular targets of luteolin in cancer
  publication-title: Eur. J. Cancer Prev.
– volume: 660
  start-page: 454
  year: 2011
  end-page: 459
  ident: bib71
  article-title: Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-kappaB translocation in LPS stimulated RAW 264.7 cells
  publication-title: Eur. J. Pharmacol.
– volume: 21
  start-page: 1321
  year: 2016
  ident: bib5
  article-title: Anti-inflammatory activity of natural products
  publication-title: Molecules
– volume: 124
  start-page: 576
  year: 2009
  end-page: 580
  ident: bib82
  article-title: Anti-inflammatory mechanism of
  publication-title: J. Ethnopharmacol.
– volume: 122
  start-page: 15
  year: 2015
  end-page: 25
  ident: bib108
  article-title: Luteolin inhibits ROS-activated MAPK pathway in myocardial ischemia/reperfusion injury
  publication-title: Life Sci.
– volume: 56
  start-page: 296
  year: 2008
  end-page: 300
  ident: bib113
  article-title: Intestinal absorption of luteolin from peanut hull extract is more efficient than that from individual pure luteolin
  publication-title: J. Agric. Food Chem.
– volume: 2014
  start-page: 8
  year: 2014
  ident: bib49
  article-title: Impact of wines and wine constituents on cyclooxygenase-1, cyclooxygenase-2, and 5-lipoxygenase catalytic activity
  publication-title: Mediat. Inflamm.
– volume: 2015
  start-page: 967053
  year: 2015
  ident: bib53
  article-title: ATP-binding pocket-targeted suppression of Src and Syk by luteolin contributes to its anti-inflammatory action
  publication-title: Mediat. Inflamm.
– volume: 37
  start-page: 499
  year: 2015
  end-page: 507
  ident: bib60
  article-title: Chlorogenic acid and luteolin synergistically inhibit the proliferation of interleukin-1beta-induced fibroblast-like synoviocytes through regulating the activation of NF-kappaB and JAK/STAT-signaling pathways
  publication-title: Immunopharmacol. Immunotoxicol.
– volume: 34
  start-page: 620
  year: 2011
  end-page: 629
  ident: bib62
  article-title: Luteolin prevents LPS-induced TNF-α expression in cardiac myocytes through inhibiting NF-κB signaling pathway
  publication-title: Inflammation
– year: 2003
  ident: bib43
  article-title: 75-Day Premarket Notification of New Dietary Ingredients [Memorandum]
– volume: 25
  start-page: 317
  year: 2012
  end-page: 323
  ident: bib92
  article-title: A case series of a luteolin formulation (NeuroProtek(R)) in children with autism spectrum disorders
  publication-title: Int. J. Immunopathol. Pharmacol.
– volume: 77
  start-page: 1391
  year: 2009
  end-page: 1400
  ident: bib52
  article-title: Suppression of the TRIF-dependent signaling pathway of Toll-like receptors by luteolin
  publication-title: Biochem. Pharmacol.
– volume: 9
  start-page: 31
  year: 2009
  end-page: 59
  ident: bib59
  article-title: Distribution and biological activities of the flavonoid luteolin
  publication-title: Mini Rev. Med. Chem.
– volume: 74
  start-page: 1667
  year: 2008
  end-page: 1677
  ident: bib83
  article-title: Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin
  publication-title: Planta Med.
– volume: 34
  start-page: 1032
  year: 2011
  end-page: 1036
  ident: bib37
  article-title: Luteolin-7-O-glucoside suppresses leukotriene C(4) production and degranulation by inhibiting the phosphorylation of mitogen activated protein kinases and phospholipase Cgamma1 in activated mouse bone marrow-derived mast cells
  publication-title: Biol. Pharm. Bull.
– volume: 178
  start-page: 222
  year: 2016
  end-page: 228
  ident: bib16
  article-title: Polyphenols from
  publication-title: J. Ethnopharmacol.
– volume: 15
  start-page: 252
  year: 2007
  end-page: 259
  ident: bib85
  article-title: Role of nitric oxide in inflammatory diseases
  publication-title: Inflammopharmacology
– volume: 1
  start-page: 52
  year: 2011
  end-page: 62
  ident: bib15
  article-title: Problems of reproducibility and efficacy of bioassays using crude extracts, with reference to
  publication-title: Phcog. Commun.
– volume: 1843
  start-page: 2563
  year: 2014
  end-page: 2582
  ident: bib96
  article-title: Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease
  publication-title: Biochim. Biophys. Acta
– volume: 95
  start-page: 180
  year: 2016
  ident: 10.1016/j.jep.2018.05.019_bib58
  article-title: Luteolin inhibits viral-induced inflammatory response in RAW264.7 cells via suppression of STAT1/3 dependent NF-kappaB and activation of HO-1
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.03.019
– volume: 201
  start-page: 82
  year: 2017
  ident: 10.1016/j.jep.2018.05.019_bib106
  article-title: AKT-targeted anti-inflammatory activity of the methanol extract of Chrysanthemum indicum var. albescens
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2017.03.001
– volume: 15
  start-page: 385
  year: 2010
  ident: 10.1016/j.jep.2018.05.019_bib40
  article-title: Luteolin isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF-κB and MAPKs activation pathways in HMC-1 Cells
  publication-title: Molecules
  doi: 10.3390/molecules15010385
– volume: 2014
  start-page: 8
  year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib49
  article-title: Impact of wines and wine constituents on cyclooxygenase-1, cyclooxygenase-2, and 5-lipoxygenase catalytic activity
  publication-title: Mediat. Inflamm.
  doi: 10.1155/2014/178931
– volume: 77
  start-page: 1391
  year: 2009
  ident: 10.1016/j.jep.2018.05.019_bib52
  article-title: Suppression of the TRIF-dependent signaling pathway of Toll-like receptors by luteolin
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2009.01.009
– volume: 18
  start-page: 8083
  year: 2013
  ident: 10.1016/j.jep.2018.05.019_bib100
  article-title: Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability
  publication-title: Molecules
  doi: 10.3390/molecules18078083
– volume: 21
  start-page: 1321
  year: 2016
  ident: 10.1016/j.jep.2018.05.019_bib5
  article-title: Anti-inflammatory activity of natural products
  publication-title: Molecules
  doi: 10.3390/molecules21101321
– volume: 1
  start-page: a000034
  year: 2009
  ident: 10.1016/j.jep.2018.05.019_bib68
  article-title: The NF-κB family of transcription factors and its regulation
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a000034
– volume: 152
  start-page: 487
  year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib35
  article-title: Anti-inflammatory activities and mechanisms of Artemisia asiatica ethanol extract
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2014.01.030
– volume: 18
  start-page: 557
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib90
  article-title: Anti-inflammatory activity of butein and luteolin through suppression of NFkappaB activation and induction of heme oxygenase-1
  publication-title: J. Med. Food
  doi: 10.1089/jmf.2014.3262
– volume: 49
  start-page: 2660
  year: 2011
  ident: 10.1016/j.jep.2018.05.019_bib48
  article-title: Luteolin attenuates the pulmonary inflammatory response involves abilities of antioxidation and inhibition of MAPK and NFkappaB pathways in mice with endotoxin-induced acute lung injury
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2011.07.012
– year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib65
– volume: 26
  start-page: 293
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib36
  article-title: Luteolin protects against vascular inflammation in mice and TNF-alpha-induced monocyte adhesion to endothelial cells via suppressing IKappaBalpha/NF-kappaB signaling pathway
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2014.11.008
– volume: 1843
  start-page: 2563
  year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib96
  article-title: Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2014.05.014
– volume: 133
  start-page: 834
  year: 2011
  ident: 10.1016/j.jep.2018.05.019_bib72
  article-title: Taraxacum officinale Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-κB modulation in RAW 264.7 cells
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2010.11.015
– volume: 29
  start-page: 767
  year: 2009
  ident: 10.1016/j.jep.2018.05.019_bib26
  article-title: Recent developments in anti-inflammatory natural products
  publication-title: Med. Res. Rev.
  doi: 10.1002/med.20156
– volume: 11
  start-page: 543
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib18
  article-title: Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer
  publication-title: Bioinformation
  doi: 10.6026/97320630011543
– volume: 38
  start-page: 858
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib80
  article-title: Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood
  publication-title: Inflammation
  doi: 10.1007/s10753-014-9995-x
– volume: 1592
  start-page: 281
  year: 2002
  ident: 10.1016/j.jep.2018.05.019_bib32
  article-title: Molecular basis of the cell specificity of cytokine action
  publication-title: Biochim. Biophys. Acta - Mol. Cell Res.
  doi: 10.1016/S0167-4889(02)00321-X
– volume: 41
  start-page: 127
  year: 2017
  ident: 10.1016/j.jep.2018.05.019_bib109
  article-title: Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2016.02.001
– volume: 34
  start-page: 620
  year: 2011
  ident: 10.1016/j.jep.2018.05.019_bib62
  article-title: Luteolin prevents LPS-induced TNF-α expression in cardiac myocytes through inhibiting NF-κB signaling pathway
  publication-title: Inflammation
  doi: 10.1007/s10753-010-9271-7
– volume: 3
  start-page: 154
  year: 2013
  ident: 10.1016/j.jep.2018.05.019_bib110
  article-title: Advances in studying of the pharmacological activities and structure–activity relationships of natural C-glycosylflavonoids
  publication-title: Acta Pharm. Sin. B.
  doi: 10.1016/j.apsb.2013.04.004
– volume: 8
  start-page: 387
  year: 2017
  ident: 10.1016/j.jep.2018.05.019_bib66
  article-title: Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation
  publication-title: Food Funct.
  doi: 10.1039/C6FO01529H
– volume: 3
  start-page: 119
  year: 2012
  ident: 10.1016/j.jep.2018.05.019_bib4
  article-title: Heme oxygenase-1, oxidation, inflammation, and atherosclerosis
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2012.00119
– volume: 116
  start-page: 263
  year: 2008
  ident: 10.1016/j.jep.2018.05.019_bib6
  article-title: Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa, Buddlejaceae
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2007.11.025
– volume: 14
  start-page: 1993
  year: 2017
  ident: 10.1016/j.jep.2018.05.019_bib61
  article-title: Luteolin induces apoptosis in vitro through suppressing the MAPK and PI3K signaling pathways in gastric cancer
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2017.6380
– volume: 29
  start-page: 1078
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib105
  article-title: Luteolin attenuate the D-galactose-induced renal damage by attenuation of oxidative stress and inflammation
  publication-title: Nat. Prod. Res.
  doi: 10.1080/14786419.2014.981181
– volume: 41
  start-page: 386
  year: 2017
  ident: 10.1016/j.jep.2018.05.019_bib8
  article-title: Comparison of anticancer activities of Korean red ginseng-derived fractions
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2016.11.001
– volume: 142
  start-page: 845
  year: 2012
  ident: 10.1016/j.jep.2018.05.019_bib19
  article-title: Pharmacological basis for use of Lychnophora trichocarpha in gouty arthritis: anti-hyperuricemic and anti-inflammatory effects of its extract, fraction and constituents
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2012.06.012
– volume: 19
  start-page: 6941
  year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib34
  article-title: Anti-inflammatory and antipruritic effects of luteolin from Perilla (P. frutescens L.) leaves
  publication-title: Molecules
  doi: 10.3390/molecules19066941
– volume: 32
  start-page: 659
  year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib28
  article-title: Chemokines and chemokine receptors: positioning cells for host defense and immunity
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032713-120145
– volume: 40
  start-page: 437
  year: 2016
  ident: 10.1016/j.jep.2018.05.019_bib7
  article-title: In vitro and in vivo anti-inflammatory activities of Korean Red Ginseng-derived components
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2016.08.003
– volume: 12
  start-page: 4049
  year: 2016
  ident: 10.1016/j.jep.2018.05.019_bib102
  article-title: Anti-inflammatory effects of luteolin on experimental autoimmune thyroiditis in mice
  publication-title: Exp. Ther. Med.
  doi: 10.3892/etm.2016.3854
– volume: 174
  start-page: 322
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib2
  article-title: Heme oxygenase 1-mediated novel anti-inflammatory activities of Salvia plebeia and its active components
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2015.08.028
– volume: 1
  start-page: a001651
  year: 2009
  ident: 10.1016/j.jep.2018.05.019_bib51
  article-title: The nuclear factor NF-κB pathway in inflammation
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a001651
– volume: 22
  start-page: 612
  year: 2011
  ident: 10.1016/j.jep.2018.05.019_bib41
  article-title: Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2010.01.011
– volume: 33
  start-page: 10
  year: 2012
  ident: 10.1016/j.jep.2018.05.019_bib42
  article-title: Drug discovery from plant sources: an integrated approach
  publication-title: Ayu
  doi: 10.4103/0974-8520.100295
– volume: 39
  start-page: 113
  year: 2017
  ident: 10.1016/j.jep.2018.05.019_bib103
  article-title: Luteolin protects mice from severe acute pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2016.2809
– volume: 205
  start-page: 51
  year: 2017
  ident: 10.1016/j.jep.2018.05.019_bib1
  article-title: Antioxidant and anti-inflammatory activities of the major phenolics from Zygophyllum simplex L
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2017.04.022
– volume: 2013
  start-page: 485201
  year: 2013
  ident: 10.1016/j.jep.2018.05.019_bib97
  article-title: Dietary flavonoids as therapeutics for preterm birth: luteolin and kaempferol suppress inflammation in human gestational tissues in vitro
  publication-title: Oxid. Med. Cell Longev.
  doi: 10.1155/2013/485201
– volume: 4
  start-page: 101
  year: 2012
  ident: 10.1016/j.jep.2018.05.019_bib47
  article-title: Standardization of herbal medicines - a review
  publication-title: Int. J. Biodivers. Conserv.
  doi: 10.5897/IJBC11.163
– volume: 21
  start-page: 768
  year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib101
  article-title: Luteolin protects HUVECs from TNF-alpha-induced oxidative stress and inflammation via its effects on the Nox4/ROS-NF-kappaB and MAPK pathways
  publication-title: J. Atheroscler. Thromb.
  doi: 10.5551/jat.23697
– volume: 5
  start-page: e647
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib94
  article-title: Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2015.142
– volume: 1648
  start-page: 409
  year: 2016
  ident: 10.1016/j.jep.2018.05.019_bib74
  article-title: PEA and luteolin synergistically reduce mast cell-mediated toxicity and elicit neuroprotection in cell-based models of brain ischemia
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2016.07.014
– volume: 7
  start-page: 423
  year: 2013
  ident: 10.1016/j.jep.2018.05.019_bib73
  article-title: Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-kappaB/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells
  publication-title: Nutr. Res. Pract.
  doi: 10.4162/nrp.2013.7.6.423
– volume: 5
  start-page: 209
  year: 2005
  ident: 10.1016/j.jep.2018.05.019_bib46
  article-title: Inhibitory effect of luteolin on TNF-alpha-induced IL-8 production in human colon epithelial cells
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2004.09.027
– volume: 17
  start-page: 10774
  year: 2012
  ident: 10.1016/j.jep.2018.05.019_bib75
  article-title: Aggregating behavior of phenolic compounds—a source of false bioassay results?
  publication-title: Molecules
  doi: 10.3390/molecules170910774
– volume: 60
  start-page: 3879
  year: 2017
  ident: 10.1016/j.jep.2018.05.019_bib33
  article-title: How frequently are pan-assay interference compounds active? Large-scale analysis of screening data reveals diverse activity profiles, low global hit frequency, and many consistently inactive compounds
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.7b00154
– volume: 35
  start-page: 592
  year: 2013
  ident: 10.1016/j.jep.2018.05.019_bib91
  article-title: An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders
  publication-title: Clin. Ther.
  doi: 10.1016/j.clinthera.2013.04.006
– volume: 8
  start-page: 160
  year: 2016
  ident: 10.1016/j.jep.2018.05.019_bib10
  article-title: The preoperative platelet-lymphocyte ratio versus neutrophil-lymphocyte ratio: which is better as a prognostic factor in oral squamous cell carcinoma?
  publication-title: Ther. Adv. Med. Oncol.
  doi: 10.1177/1758834016638019
– volume: 2016
  start-page: 3475356
  year: 2016
  ident: 10.1016/j.jep.2018.05.019_bib17
  article-title: Hydroalcoholic extract from inflorescences of Achyrocline satureioides (Compositae) ameliorates dextran sulphate sodium-induced colitis in mice by attenuation in the production of inflammatory cytokines and oxidative mediators
  publication-title: Evid. Based Complement. Altern. Med.
  doi: 10.1155/2016/3475356
– volume: 7
  start-page: 44
  year: 2009
  ident: 10.1016/j.jep.2018.05.019_bib84
  article-title: Systems approach to inflammation resolution: identification of novel anti-inflammatory and pro-resolving mediators
  publication-title: J. Thromb. Haemost.
  doi: 10.1111/j.1538-7836.2009.03396.x
– volume: 39
  start-page: 667
  year: 2011
  ident: 10.1016/j.jep.2018.05.019_bib11
  article-title: Role of catechol-O-methyltransferase in the disposition of luteolin in rats
  publication-title: Drug. Metab. Dispos.
  doi: 10.1124/dmd.110.037333
– volume: 78
  start-page: 1381
  year: 2016
  ident: 10.1016/j.jep.2018.05.019_bib39
  article-title: Therapeutic anti-inflammatory effects of luteolin on endotoxin-induced uveitis in Lewis rats
  publication-title: J. Vet. Med. Sci.
  doi: 10.1292/jvms.16-0196
– volume: 2015
  start-page: 967053
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib53
  article-title: ATP-binding pocket-targeted suppression of Src and Syk by luteolin contributes to its anti-inflammatory action
  publication-title: Mediat. Inflamm.
  doi: 10.1155/2015/967053
– volume: 33
  start-page: 815
  year: 2013
  ident: 10.1016/j.jep.2018.05.019_bib23
  article-title: Parsley: a review of ethnopharmacology, phytochemistry and biological activities
  publication-title: J. Tradit. Chin. Med.
  doi: 10.1016/S0254-6272(14)60018-2
– volume: 15
  start-page: 5501
  year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib70
  article-title: Luteolin, a bioflavonoid inhibits colorectal cancer through modulation of multiple signaling pathways: a review
  publication-title: Asian Pac. J. Cancer Prev.
  doi: 10.7314/APJCP.2014.15.14.5501
– volume: 59
  start-page: 379
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib20
  article-title: Calcium signaling and cell fate: how can Ca2+ signals contribute to wrong decisions for chronic lymphocytic leukemic B lymphocyte outcome?
  publication-title: Int. J. Dev. Biol.
  doi: 10.1387/ijdb.150204om
– volume: 37
  start-page: 1354
  year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib13
  article-title: The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer's disease, anti-diabetic, and anti-inflammatory activities
  publication-title: Arch. Pharm. Res.
  doi: 10.1007/s12272-014-0351-3
– volume: 25
  start-page: 317
  year: 2012
  ident: 10.1016/j.jep.2018.05.019_bib92
  article-title: A case series of a luteolin formulation (NeuroProtek(R)) in children with autism spectrum disorders
  publication-title: Int. J. Immunopathol. Pharmacol.
  doi: 10.1177/039463201202500201
– volume: 22
  start-page: E195
  year: 2017
  ident: 10.1016/j.jep.2018.05.019_bib114
  article-title: Flavonoids from Agrimonia pilosa Ledeb: free radical scavenging and DNA oxidative damage protection activities and analysis of bioactivity-structure relationship based on molecular and electronic structures
  publication-title: Molecules
  doi: 10.3390/molecules22030195
– volume: 1448
  start-page: 71
  year: 2012
  ident: 10.1016/j.jep.2018.05.019_bib76
  article-title: Luteolin downregulates TLR4, TLR5, NF-kappaB and p-p38MAPK expression, upregulates the p-ERK expression, and protects rat brains against focal ischemia
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2012.02.003
– volume: 660
  start-page: 454
  year: 2011
  ident: 10.1016/j.jep.2018.05.019_bib71
  article-title: Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-kappaB translocation in LPS stimulated RAW 264.7 cells
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2011.04.007
– volume: 42
  start-page: 37
  year: 2017
  ident: 10.1016/j.jep.2018.05.019_bib31
  article-title: Two dietary polyphenols, fisetin and luteolin, reduce inflammation but augment DNA damage-induced toxicity in human RPE cells
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2016.12.014
– volume: 9
  start-page: 31
  year: 2009
  ident: 10.1016/j.jep.2018.05.019_bib59
  article-title: Distribution and biological activities of the flavonoid luteolin
  publication-title: Mini Rev. Med. Chem.
  doi: 10.2174/138955709787001712
– volume: 25
  start-page: 65
  year: 2016
  ident: 10.1016/j.jep.2018.05.019_bib95
  article-title: Molecular targets of luteolin in cancer
  publication-title: Eur. J. Cancer Prev.
  doi: 10.1097/CEJ.0000000000000128
– volume: 81
  start-page: H1320
  year: 2016
  ident: 10.1016/j.jep.2018.05.019_bib25
  article-title: Enhanced anti-inflammatory activities by the combination of luteolin and tangeretin
  publication-title: J. Food Sci.
  doi: 10.1111/1750-3841.13300
– volume: 4
  start-page: 68
  year: 2013
  ident: 10.1016/j.jep.2018.05.019_bib56
  article-title: HMGB1: the central cytokine for all lymphoid cells
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2013.00068
– volume: 47
  start-page: 740
  year: 2009
  ident: 10.1016/j.jep.2018.05.019_bib78
  article-title: Antinociceptive and anti-inflammatory effects of isolated fractions from Apium graveolens seeds in mice
  publication-title: Pharm. Biol.
  doi: 10.1080/13880200902939283
– volume: 178
  start-page: 222
  year: 2016
  ident: 10.1016/j.jep.2018.05.019_bib16
  article-title: Polyphenols from Cymbopogon citratus leaves as topical anti-inflammatory agents
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2015.12.016
– volume: 310
  start-page: 115
  year: 2013
  ident: 10.1016/j.jep.2018.05.019_bib22
  article-title: Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney
  publication-title: Toxicology
  doi: 10.1016/j.tox.2013.05.015
– volume: 31
  start-page: 831
  year: 2010
  ident: 10.1016/j.jep.2018.05.019_bib54
  article-title: Protective effects of luteolin against lipopolysaccharide-induced acute lung injury involves inhibition of MEK/ERK and PI3K/Akt pathways in neutrophils
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2010.62
– volume: 745
  start-page: 59
  year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib99
  article-title: Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2014.09.046
– volume: 124
  start-page: 576
  year: 2009
  ident: 10.1016/j.jep.2018.05.019_bib82
  article-title: Anti-inflammatory mechanism of Kaempferia parviflora in murine macrophage cells (RAW 264.7) and in experimental animals
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2009.04.059
– volume: 74
  start-page: 1667
  year: 2008
  ident: 10.1016/j.jep.2018.05.019_bib83
  article-title: Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin
  publication-title: Planta Med.
  doi: 10.1055/s-0028-1088314
– volume: 8
  start-page: 28481
  year: 2017
  ident: 10.1016/j.jep.2018.05.019_bib29
  article-title: Luteolin reduces inflammation in Staphylococcus aureus-induced mastitis by inhibiting NF-κB activation and MMPs expression
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.16092
– volume: 50
  start-page: 2171
  year: 2012
  ident: 10.1016/j.jep.2018.05.019_bib38
  article-title: Anti-inflammatory activity of Korean thistle Cirsium maackii and its major flavonoid, luteolin 5-O-glucoside
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2012.04.011
– volume: 27
  start-page: 384
  year: 2013
  ident: 10.1016/j.jep.2018.05.019_bib24
  article-title: Anti-Inflammatory sesquiterpene lactones from Lychnophora trichocarpha Spreng. (Brazilian arnica)
  publication-title: Phytother. Res.
  doi: 10.1002/ptr.4736
– volume: 8
  start-page: e2612
  year: 2017
  ident: 10.1016/j.jep.2018.05.019_bib89
  article-title: Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1
  publication-title: Cell Death. Dis.
  doi: 10.1038/cddis.2017.38
– volume: 121
  start-page: 329
  year: 2011
  ident: 10.1016/j.jep.2018.05.019_bib115
  article-title: Luteolin inhibits microglial inflammation and improves neuron survival against inflammation
  publication-title: Int. J. Neurosci.
  doi: 10.3109/00207454.2011.569040
– volume: 89
  start-page: 1859
  year: 2011
  ident: 10.1016/j.jep.2018.05.019_bib112
  article-title: Luteolin protects against reactive oxygen species-mediated cell death induced by zinc toxicity via the PI3K-Akt-NF-kappaB-ERK-dependent pathway
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.22714
– volume: 34
  start-page: 1032
  year: 2011
  ident: 10.1016/j.jep.2018.05.019_bib37
  article-title: Luteolin-7-O-glucoside suppresses leukotriene C(4) production and degranulation by inhibiting the phosphorylation of mitogen activated protein kinases and phospholipase Cgamma1 in activated mouse bone marrow-derived mast cells
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.34.1032
– volume: 7
  start-page: e39468
  year: 2012
  ident: 10.1016/j.jep.2018.05.019_bib63
  article-title: Evidence for cognitive impairment in mastocytosis: prevalence, features and correlations to depression
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0039468
– volume: 5
  start-page: 17645
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib30
  article-title: Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation
  publication-title: Sci. Rep.
  doi: 10.1038/srep17645
– volume: 48
  start-page: 2607
  year: 2010
  ident: 10.1016/j.jep.2018.05.019_bib12
  article-title: Luteolin suppresses IL-1beta-induced cytokines and MMPs production via p38 MAPK, JNK, NF-kappaB and AP-1 activation in human synovial sarcoma cell line, SW982
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2010.06.029
– volume: 2012
  start-page: 383608
  year: 2012
  ident: 10.1016/j.jep.2018.05.019_bib57
  article-title: Luteolin suppresses inflammatory mediator expression by blocking the Akt/NFkappaB pathway in acute lung injury induced by lipopolysaccharide in mice
  publication-title: Evid. Based Complement. Altern. Med.
  doi: 10.1155/2012/383608
– volume: 1582
  start-page: 237
  year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib104
  article-title: Posttraumatic administration of luteolin protects mice from traumatic brain injury: implication of autophagy and inflammation
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2014.07.042
– volume: 122
  start-page: 15
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib108
  article-title: Luteolin inhibits ROS-activated MAPK pathway in myocardial ischemia/reperfusion injury
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2014.11.014
– volume: 7
  start-page: e2344
  year: 2016
  ident: 10.1016/j.jep.2018.05.019_bib69
  article-title: Luteolin-7-glucoside inhibits IL-22/STAT3 pathway, reducing proliferation, acanthosis, and inflammation in keratinocytes and in mouse psoriatic model
  publication-title: Cell Death. Dis.
  doi: 10.1038/cddis.2016.201
– volume: 198
  start-page: 399
  year: 2017
  ident: 10.1016/j.jep.2018.05.019_bib87
  article-title: New aspects on the hepatoprotective potential associated with the antioxidant, hypocholesterolemic and anti-inflammatory activities of Vernonia condensata Baker
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2017.01.039
– volume: 63
  start-page: 7693
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib107
  article-title: Absorption and metabolism of luteolin and its glycosides from the extract of Chrysanthemum morifolium flowers in rats and Caco-2 cells
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.5b00232
– volume: 28
  start-page: 1383
  year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib45
  article-title: Luteolin inhibits hyperglycemia-induced proinflammatory cytokine production and its epigenetic mechanism in human monocytes
  publication-title: Phytother. Res.
  doi: 10.1002/ptr.5141
– volume: 10
  issue: Suppl 1
  year: 2011
  ident: 10.1016/j.jep.2018.05.019_bib79
  article-title: Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions
  publication-title: Malar. J.
– volume: 4
  start-page: 124
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib77
  article-title: Inhibition of diethylnitrosamine-initiated alcohol-promoted hepatic inflammation and precancerous lesions by flavonoid luteolin is associated with increased sirtuin 1 activity in mice
  publication-title: Hepatobiliary Surg. Nutr.
– volume: 26
  start-page: 1156
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib98
  article-title: GRID and docking analyses reveal a molecular basis for flavonoid inhibition of Src family kinase activity
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2015.05.004
– volume: 155
  start-page: 185
  year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib44
  article-title: Syk/Src-targeted anti-inflammatory activity of Codariocalyx motorius ethanolic extract
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2014.05.013
– volume: 11
  start-page: 627
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib64
  article-title: Luteolin is a bioflavonoid that attenuates adipocyte-derived inflammatory responses via suppression of nuclear factor-κB/mitogen-activated protein kinases pathway
  publication-title: Pharmacogn. Mag.
  doi: 10.4103/0973-1296.160470
– volume: 443
  start-page: 326
  year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib9
  article-title: Luteolin exhibits anti-inflammatory effects by blocking the activity of heat shock protein 90 in macrophages
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2013.11.122
– volume: 67
  start-page: 581
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib55
  article-title: Luteolin 8-C-beta-fucopyranoside downregulates IL-6 expression by inhibiting MAPKs and the NF-kappaB signaling pathway in human monocytic cells
  publication-title: Pharmacol. Rep.
  doi: 10.1016/j.pharep.2014.12.016
– volume: 22
  start-page: E334
  issue: 3
  year: 2017
  ident: 10.1016/j.jep.2018.05.019_bib111
  article-title: Luteolin inhibits fibrillary beta-amyloid1-40-induced inflammation in a human blood-brain barrier model by suppressing the p38 MAPK-mediated NF-kappaB signaling pathways
  publication-title: Molecules
  doi: 10.3390/molecules22030334
– volume: 154
  start-page: 400
  year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib93
  article-title: Characterisation of polyphenolic compounds in Clerodendrum petasites S. Moore and their potential for topical delivery through the skin
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2014.04.021
– year: 2003
  ident: 10.1016/j.jep.2018.05.019_bib43
– volume: 226
  start-page: 82
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib86
  article-title: Anti-arthritic activity of luteolin in Freund's complete adjuvant-induced arthritis in rats by suppressing P2×4 pathway
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2014.10.031
– volume: 56
  start-page: 296
  year: 2008
  ident: 10.1016/j.jep.2018.05.019_bib113
  article-title: Intestinal absorption of luteolin from peanut hull extract is more efficient than that from individual pure luteolin
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf072612+
– volume: 11
  start-page: 2579
  year: 2010
  ident: 10.1016/j.jep.2018.05.019_bib27
  article-title: Biological evaluation and structural determinants of p38alpha mitogen-activated-protein kinase and c-Jun-N-terminal kinase 3 inhibition by flavonoids
  publication-title: Chembiochem
  doi: 10.1002/cbic.201000487
– volume: 2011
  start-page: 6
  year: 2011
  ident: 10.1016/j.jep.2018.05.019_bib88
  article-title: Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways?
  publication-title: J. Signal. Transduct.
  doi: 10.1155/2011/792639
– volume: 61
  start-page: 275
  year: 2010
  ident: 10.1016/j.jep.2018.05.019_bib81
  article-title: Effects of lycopene, indole-3-carbinol, and luteolin on nitric oxide production and iNOS expression are organ-specific in rats
  publication-title: Arh Hig Rada Toksikol.
  doi: 10.2478/10004-1254-61-2010-2012
– volume: 1853
  start-page: 126
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib50
  article-title: Biphasic effects of luteolin on interleukin-1beta-induced cyclooxygenase-2 expression in glioblastoma cells
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2014.10.010
– volume: 37
  start-page: 499
  year: 2015
  ident: 10.1016/j.jep.2018.05.019_bib60
  article-title: Chlorogenic acid and luteolin synergistically inhibit the proliferation of interleukin-1beta-induced fibroblast-like synoviocytes through regulating the activation of NF-kappaB and JAK/STAT-signaling pathways
  publication-title: Immunopharmacol. Immunotoxicol.
  doi: 10.3109/08923973.2015.1095763
– volume: 583
  start-page: 3649
  year: 2009
  ident: 10.1016/j.jep.2018.05.019_bib3
  article-title: Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2009.10.045
– volume: 1
  start-page: 52
  year: 2011
  ident: 10.1016/j.jep.2018.05.019_bib15
  article-title: Problems of reproducibility and efficacy of bioassays using crude extracts, with reference to Aloe vera
  publication-title: Phcog. Commun.
  doi: 10.5530/pc.2011.1.3
– volume: 4
  start-page: 17
  year: 2014
  ident: 10.1016/j.jep.2018.05.019_bib67
  article-title: Luteolin isolate from the methanol extract identified as the single-carbon compound responsible for broad antiulcer activities of Cassia singueana Leaves
  publication-title: IOSR J. Pharm.
– volume: 41
  start-page: 503
  year: 2017
  ident: 10.1016/j.jep.2018.05.019_bib14
  article-title: Chronic saponin treatment attenuates damage to the pancreas in chronic alcohol-treated diabetic rats
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2016.09.002
– volume: 93
  start-page: 506
  year: 2011
  ident: 10.1016/j.jep.2018.05.019_bib21
  article-title: Luteolin inhibits inflammatory response and improves insulin sensitivity in the endothelium
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2010.11.002
– volume: 15
  start-page: 252
  year: 2007
  ident: 10.1016/j.jep.2018.05.019_bib85
  article-title: Role of nitric oxide in inflammatory diseases
  publication-title: Inflammopharmacology
  doi: 10.1007/s10787-007-0013-x
SSID ssj0007140
Score 2.681958
SecondaryResourceType review_article
Snippet Luteolin (3′, 4′, 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used...
Luteolin (3', 4', 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used...
Ethnopharmacological relevance Luteolin (3′, 4′, 5, 7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 342
SubjectTerms anti-inflammatory activity
clinical trials
Flavonoid
Inflammatory diseases
Inflammatory signaling
Luteolin
medicinal plants
mitogen-activated protein kinase
signal transduction
therapeutics
traditional medicine
transactivators
transcription (genetics)
transcription factor NF-kappa B
Title Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies
URI https://dx.doi.org/10.1016/j.jep.2018.05.019
https://www.ncbi.nlm.nih.gov/pubmed/29801717
https://www.proquest.com/docview/2045283972
https://www.proquest.com/docview/2153606047
https://www.proquest.com/docview/2186136881
Volume 225
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhufRS-u72ERQoOZRV17JlPXJbQsOmhRBoAoEehCzJ4JB4Q9YJ5NLf3hnLztJD9tCbJI9A1nzSjNDMJ0K-uNpo7wRnHj4zUdWcmSoYpgpeeMVz6XwfIHsiF-fix0V5sUUOx1wYDKsc9v60p_e79dAyG2ZzdtM0s18ZUqGDQeSqKAQADzPYhUKUf_uzDvNQKSkShRlKjzebfYzXZUTKSq4Tead5yjY95Xv2NujoBXk-OI90nsb3kmzF9hXZP03s0w9TerZOplpN6T49XfNSP7wmv-dt1zBAFIDgur9cp0M0B13WFBAY8QGfAzqnKZ8FW5uW3jfd7XKaSvdQcG3Ayqq5AhDRVYpDfEPOj76fHS7Y8LYC80KXHYNzAheuDKUM4PCFos6LmIlQV7qWUYuqqEou6zw47kwMtfM6qNxxbXzpeZC-eEu222Ub3xNqpNMOTiWZDE5koay8gYXtDDhi4GBEPyHZOKvWD8Tj-P7FlR0jzC4tKMKiImxWWlDEhHx97HKTWDc2CYtRVfYf6FiwCpu67Y1qtbCk8J7EtXF5t7LI0A9el1H5BhmwFBKJh9QmGQ3OktSaT8i7hJvHv8mNRqYi9eH_Bv-RPMMaGtFcfyLb3e1d_AzeUVft9vDfJTvz45-Lk7_RCg5B
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFlff2AUaCHtCGjR3HsZE4rIBqS0tVia1UiYPr2I6UqmSrJi3aC3-qf5BxnHTFoXtA6i3xI3I845nP8vgbhN7qQgqjGYkMVEcsL0gkcyujLCGJyQjl2rQBsgd8csS-HafHK-i6vwvjwyo72x9semutu5JRN5uj87Ic_Yg9FTo4RJIlCQPF6yIr99z8N-zb6k-7X0DI7yjd-Tr9PIm61AKRYSJtIoDJhOnUptwC3rFJQRMXM1vkouBOsDzJU8ILajXR0tlCG2EzqomQJjXEcpPAd--h-wzMhU-b8OHPIq4kC7cw_egiP7z-KLUNKjt1niOTiMAWKm9zhreB3dbp7ayhRx1axeMwIY_RiqueoO3DQHc9H-Lp4vZWPcTb-HBBhD1_in6Oq6aMQIVB6361p_m4Cx_BswKDyjufMegjHuNwgcaXlhW-KpuL2TA8XcGDrqx_qcsz0Fpch8DHZ-joTmb8OVqtZpV7ibDkWmjYBsXcahbbNDcSLImWgPwA0TgzQHE_q8p0TOc-4caZ6kPaThUIQnlBqDhVIIgBen_T5TzQfCxrzHpRqX90VYEbWtbtTS9WBWvYH8zoys0ua-VTAgDMkxld0gZcE_dMR9myNgLQGReCDNCLoDc3f0Ol8NRI2fr_Df41ejCZft9X-7sHexvooa_xHpyKTbTaXFy6LYBmTf6qXQoYndz12vsLo5VLMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-inflammatory+effects+of+luteolin%3A+A+review+of+in+vitro%2C+in+vivo%2C+and+in+silico+studies&rft.jtitle=Journal+of+ethnopharmacology&rft.au=Aziz%2C+Nur&rft.au=Kim%2C+Mi-Yeon&rft.au=Cho%2C+Jae+Youl&rft.date=2018-10-28&rft.pub=Elsevier+B.V&rft.issn=0378-8741&rft.eissn=1872-7573&rft.volume=225&rft.spage=342&rft.epage=358&rft_id=info:doi/10.1016%2Fj.jep.2018.05.019&rft.externalDocID=S0378874117334578
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-8741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-8741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-8741&client=summon