Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies
Luteolin (3′, 4′, 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using variou...
Saved in:
Published in | Journal of ethnopharmacology Vol. 225; no. NA; pp. 342 - 358 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
28.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Luteolin (3′, 4′, 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity.
This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug.
We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents.
Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)− 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases.
In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans.
[Display omitted] |
---|---|
AbstractList | Luteolin (3', 4', 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity.ETHNOPHARMACOLOGICAL RELEVANCELuteolin (3', 4', 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity.This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug.AIM OF THE REVIEWThis paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug.We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents.MATERIALS AND METHODSWe summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents.Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)- 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases.RESULTSLuteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)- 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases.In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans.CONCLUSIONIn silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans. Luteolin (3′, 4′, 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity.This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug.We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents.Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)− 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases.In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans. Luteolin (3', 4', 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity. This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug. We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents. Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)- 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases. In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans. Ethnopharmacological relevance Luteolin (3â², 4â², 5, 7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity. Aim of the review This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug. Materials and methods We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents. Results: Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo . Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)â^' 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3(STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases. Conclusion: In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans. Graphical abstract fx1 Luteolin (3′, 4′, 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity. This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug. We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents. Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)− 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases. In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans. [Display omitted] |
Author | Aziz, Nur Kim, Mi-Yeon Cho, Jae Youl |
Author_xml | – sequence: 1 givenname: Nur surname: Aziz fullname: Aziz, Nur organization: Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea – sequence: 2 givenname: Mi-Yeon surname: Kim fullname: Kim, Mi-Yeon email: kimmy@ssu.ac.kr organization: School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea – sequence: 3 givenname: Jae Youl surname: Cho fullname: Cho, Jae Youl email: jaecho@skku.edu organization: Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29801717$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkTtvFDEURi0URDaBH0CDpqRgBt_x-DFQrSJeUiQaqCgsr30teTVjL7Zno_x7ZrVJQxGo7kPnu8U9V-QipoiEvAbaAQXxft_t8dD1FFRHeUdhfEY2oGTfSi7ZBdlQJlWr5ACX5KqUPaVUwkBfkMt-VBQkyA35tY01tCH6ycyzqSnfN-g92lqa5JtpqZimED802ybjMeDdaRticww1p3fn7rg2JrrTUMIUbGpKXVzA8pI892Yq-OqhXpOfnz_9uPna3n7_8u1me9vaQfHaCslhMNxx4ThjjvmeIR2c3ykvUA07tuMgfO8MmBGdN1Y52RtQo-UWnLDsmrw93z3k9HvBUvUcisVpMhHTUnQPSgATSsF_oJwJKugg_43SgfeKjbJf0TcP6LKb0elDDrPJ9_rxzSsgz4DNqZSMXttQTQ0p1mzCpIHqk1C916tQfRKqKder0DUJfyUfjz-V-XjO4Pr0VVrWxQaMFl3Iq1ntUngi_QfTe7cn |
CitedBy_id | crossref_primary_10_3390_ijms26051809 crossref_primary_10_1038_s44321_024_00160_9 crossref_primary_10_1016_j_jep_2018_11_013 crossref_primary_10_1155_2022_2635375 crossref_primary_10_3390_biology10070618 crossref_primary_10_1016_j_fbio_2023_102366 crossref_primary_10_1002_cbdv_202302065 crossref_primary_10_1007_s42977_022_00110_x crossref_primary_10_1111_jfbc_13198 crossref_primary_10_33483_jfpau_1459098 crossref_primary_10_3389_fimmu_2024_1366197 crossref_primary_10_3389_fvets_2024_1431233 crossref_primary_10_1016_j_phymed_2019_152883 crossref_primary_10_2174_1386207325666220215144847 crossref_primary_10_3390_ph13030050 crossref_primary_10_1155_2023_1810503 crossref_primary_10_3389_fbioe_2023_1165465 crossref_primary_10_1016_j_ejmech_2020_112216 crossref_primary_10_1016_j_fct_2020_111436 crossref_primary_10_1080_0886022X_2025_2474203 crossref_primary_10_1002_jcp_31101 crossref_primary_10_3390_molecules27082471 crossref_primary_10_1016_j_jep_2024_118576 crossref_primary_10_1155_2021_8883962 crossref_primary_10_1080_10406638_2022_2080728 crossref_primary_10_1016_j_jep_2021_114275 crossref_primary_10_1007_s11101_024_09980_6 crossref_primary_10_1016_j_vetmic_2022_109527 crossref_primary_10_3390_metabo12040288 crossref_primary_10_3390_ijms26051911 crossref_primary_10_34172_apb_2024_057 crossref_primary_10_3390_pharmaceutics10040248 crossref_primary_10_1016_j_intimp_2023_111059 crossref_primary_10_3390_plants11182371 crossref_primary_10_1039_D3TB00839H crossref_primary_10_3390_biomedicines8100442 crossref_primary_10_1007_s10876_022_02232_7 crossref_primary_10_1016_j_phymed_2022_154503 crossref_primary_10_1111_jfbc_14072 crossref_primary_10_1016_j_jconrel_2019_01_029 crossref_primary_10_1111_ijfs_17115 crossref_primary_10_3390_metabo13010050 crossref_primary_10_1016_j_jnutbio_2019_06_002 crossref_primary_10_1155_2023_1327886 crossref_primary_10_2174_1570163820666230327133142 crossref_primary_10_1080_1120009X_2022_2102303 crossref_primary_10_1016_j_phymed_2021_153586 crossref_primary_10_1097_SHK_0000000000001624 crossref_primary_10_3390_nu15132967 crossref_primary_10_1016_j_ab_2023_115116 crossref_primary_10_1016_j_bcp_2020_114025 crossref_primary_10_1016_j_jep_2024_118479 crossref_primary_10_4103_pm_pm_34_21 crossref_primary_10_2174_1567201819666220823155526 crossref_primary_10_1016_j_heliyon_2024_e26701 crossref_primary_10_3390_ijms22179506 crossref_primary_10_1016_j_mad_2021_111559 crossref_primary_10_1177_1934578X221133579 crossref_primary_10_1080_16583655_2020_1812269 crossref_primary_10_1016_j_cbi_2021_109573 crossref_primary_10_3390_separations11120354 crossref_primary_10_3746_jkfn_2024_53_9_877 crossref_primary_10_32571_ijct_1469657 crossref_primary_10_1155_2020_8873371 crossref_primary_10_3390_molecules27154818 crossref_primary_10_3892_ol_2019_10052 crossref_primary_10_1080_08923973_2023_2228478 crossref_primary_10_3389_fphar_2019_00025 crossref_primary_10_1371_journal_pone_0268454 crossref_primary_10_2147_COPD_S442281 crossref_primary_10_3390_molecules27175475 crossref_primary_10_1097_IMNA_D_24_00022 crossref_primary_10_3389_fcell_2022_1011435 crossref_primary_10_1002_biof_1710 crossref_primary_10_53365_nrfhh_140607 crossref_primary_10_1080_09603123_2023_2256679 crossref_primary_10_1093_jpp_rgab046 crossref_primary_10_1002_biof_1706 crossref_primary_10_1039_C9CP01128E crossref_primary_10_1016_j_isci_2019_05_012 crossref_primary_10_1093_jpp_rgab166 crossref_primary_10_1097_MD_0000000000034615 crossref_primary_10_1186_s13041_019_0539_z crossref_primary_10_3390_metabo13020186 crossref_primary_10_5497_wjp_v11_i2_6 crossref_primary_10_1002_ptr_7070 crossref_primary_10_1080_10942912_2022_2057531 crossref_primary_10_1016_j_foodchem_2023_137873 crossref_primary_10_2147_JIR_S293135 crossref_primary_10_3389_fphar_2021_684486 crossref_primary_10_4162_nrp_2019_13_6_473 crossref_primary_10_3389_fphar_2022_969550 crossref_primary_10_1021_acs_jnatprod_3c00099 crossref_primary_10_2147_CCID_S385162 crossref_primary_10_1155_2019_4873870 crossref_primary_10_1155_2020_9421340 crossref_primary_10_1007_s11240_023_02645_w crossref_primary_10_1016_j_prostaglandins_2023_106801 crossref_primary_10_1080_15287394_2023_2249944 crossref_primary_10_3390_sci4010014 crossref_primary_10_1016_j_jep_2024_118558 crossref_primary_10_4049_jimmunol_1900612 crossref_primary_10_2174_1573409919666230605123129 crossref_primary_10_1002_sscp_70012 crossref_primary_10_3390_biom10020238 crossref_primary_10_3390_molecules24183353 crossref_primary_10_13005_bpj_3025 crossref_primary_10_1016_j_neubiorev_2022_104818 crossref_primary_10_2174_1568026622666220107105233 crossref_primary_10_1155_2021_8819245 crossref_primary_10_3390_foods13040582 crossref_primary_10_1155_2021_3656272 crossref_primary_10_3389_fimmu_2022_1054875 crossref_primary_10_3389_fmed_2022_1072056 crossref_primary_10_1096_fj_202300611R crossref_primary_10_3389_fimmu_2023_1196016 crossref_primary_10_3390_metabo13020249 crossref_primary_10_3390_antibiotics11040510 crossref_primary_10_1016_j_jep_2024_118182 crossref_primary_10_1016_j_nantod_2021_101266 crossref_primary_10_7831_ras_10_0_288 crossref_primary_10_1016_j_jff_2021_104876 crossref_primary_10_1111_cbdd_70059 crossref_primary_10_1016_j_jep_2023_116852 crossref_primary_10_1016_j_phymed_2023_155020 crossref_primary_10_3390_molecules29051093 crossref_primary_10_1177_1934578X20972914 crossref_primary_10_1016_j_colsurfa_2020_124805 crossref_primary_10_1186_s12985_020_01451_6 crossref_primary_10_4014_jmb_2104_04027 crossref_primary_10_1007_s12274_022_4285_7 crossref_primary_10_3390_molecules24203796 crossref_primary_10_3390_ijms23158719 crossref_primary_10_1016_j_heliyon_2023_e23790 crossref_primary_10_1007_s11696_024_03328_2 crossref_primary_10_1016_j_msec_2020_111760 crossref_primary_10_3390_metabo12111145 crossref_primary_10_3390_metabo13020260 crossref_primary_10_1186_s12906_020_03196_9 crossref_primary_10_1371_journal_ppat_1008887 crossref_primary_10_3390_ani12202747 crossref_primary_10_1134_S1062359022130180 crossref_primary_10_1155_2021_7671247 crossref_primary_10_3390_ani13081410 crossref_primary_10_1016_j_fct_2020_111179 crossref_primary_10_1515_jcim_2021_0045 crossref_primary_10_1080_10408398_2020_1768044 crossref_primary_10_1016_j_micpath_2025_107287 crossref_primary_10_3389_fvets_2024_1369153 crossref_primary_10_3390_ijms22168912 crossref_primary_10_2147_IJN_S400329 crossref_primary_10_1016_j_placenta_2023_12_004 crossref_primary_10_1080_07391102_2020_1803135 crossref_primary_10_3389_fvets_2024_1361792 crossref_primary_10_3389_fvets_2024_1396870 crossref_primary_10_2174_0115733998285798240217084632 crossref_primary_10_3390_foods12050988 crossref_primary_10_3389_fphar_2022_905347 crossref_primary_10_1080_17518253_2018_1543457 crossref_primary_10_1080_10717544_2021_1963351 crossref_primary_10_3390_antiox13030319 crossref_primary_10_1002_mnfr_202200729 crossref_primary_10_1016_j_foodhyd_2020_106312 crossref_primary_10_1016_j_ijbiomac_2023_127930 crossref_primary_10_1186_s12974_021_02204_0 crossref_primary_10_1038_s41401_024_01402_9 crossref_primary_10_3177_jnsv_69_259 crossref_primary_10_1016_j_phymed_2020_153396 crossref_primary_10_3390_brainsci13060873 crossref_primary_10_1016_j_jep_2019_111848 crossref_primary_10_1016_j_jep_2022_115549 crossref_primary_10_1002_jbt_23619 crossref_primary_10_1097_MD_0000000000032062 crossref_primary_10_1039_D1FO01096D crossref_primary_10_1016_j_heliyon_2024_e41068 crossref_primary_10_1039_D1FO02173G crossref_primary_10_1016_j_ejphar_2025_177439 crossref_primary_10_3390_molecules27144603 crossref_primary_10_1016_j_sajb_2022_04_046 crossref_primary_10_3390_antiox10020265 crossref_primary_10_4103_wjtcm_wjtcm_22_20 crossref_primary_10_1002_ptr_6273 crossref_primary_10_3390_molecules28237720 crossref_primary_10_1016_j_bioactmat_2021_11_027 crossref_primary_10_2147_DDDT_S319786 crossref_primary_10_1016_j_jep_2022_115779 crossref_primary_10_1155_2020_2861978 crossref_primary_10_2147_IDR_S253363 crossref_primary_10_1016_j_phymed_2021_153891 crossref_primary_10_1186_s12906_023_04205_3 crossref_primary_10_2174_1386207326666230823093958 crossref_primary_10_3390_ph14100961 crossref_primary_10_1155_2021_1987588 crossref_primary_10_1007_s10787_024_01596_8 crossref_primary_10_3389_fpls_2025_1521990 crossref_primary_10_1016_j_sajb_2022_03_032 crossref_primary_10_1002_pca_3429 crossref_primary_10_1016_j_lfs_2020_119008 crossref_primary_10_3390_bioengineering9050197 crossref_primary_10_1155_2022_2137188 crossref_primary_10_1016_j_ejps_2022_106188 crossref_primary_10_1007_s40496_024_00389_w crossref_primary_10_1016_j_jep_2021_114136 crossref_primary_10_3389_fcell_2021_753279 crossref_primary_10_1016_j_lfs_2020_118173 crossref_primary_10_2174_1389557523666230214101821 crossref_primary_10_1186_s13040_020_00225_8 crossref_primary_10_1177_03946320231169175 crossref_primary_10_1039_D2TB01965E crossref_primary_10_1021_acschemneuro_1c00157 crossref_primary_10_3390_ijms242417283 crossref_primary_10_2174_1871527321666220830164432 crossref_primary_10_3164_jcbn_20_192 crossref_primary_10_3389_fphar_2018_01318 crossref_primary_10_1021_acsomega_3c03716 crossref_primary_10_3389_fmicb_2022_987662 crossref_primary_10_1016_j_tifs_2020_01_010 crossref_primary_10_3389_fphar_2021_563436 crossref_primary_10_1016_j_prmcm_2024_100401 crossref_primary_10_3389_fphar_2023_1168990 crossref_primary_10_1016_j_pmpp_2024_102439 crossref_primary_10_3390_ijms21113802 crossref_primary_10_1186_s13020_025_01067_4 crossref_primary_10_4103_1673_5374_373680 crossref_primary_10_3390_molecules28114263 crossref_primary_10_1016_j_phymed_2024_155818 crossref_primary_10_3389_fimmu_2023_1066721 crossref_primary_10_1080_21655979_2022_2036897 crossref_primary_10_2174_1871524919666190502105855 crossref_primary_10_1016_j_micpath_2024_107258 crossref_primary_10_1016_j_intimp_2023_110996 crossref_primary_10_1016_j_jep_2023_116578 crossref_primary_10_1177_1934578X211046069 crossref_primary_10_1016_j_ijpharm_2023_123405 crossref_primary_10_1177_1934578X241239827 crossref_primary_10_1016_j_intimp_2019_106070 crossref_primary_10_1002_iid3_820 crossref_primary_10_1080_13510002_2021_1962094 crossref_primary_10_1155_mi_6393872 crossref_primary_10_3892_etm_2022_11396 crossref_primary_10_1016_j_ijbiomac_2023_126780 crossref_primary_10_2174_1386207325666220617151600 crossref_primary_10_1016_j_intimp_2023_110520 crossref_primary_10_3389_fpain_2023_1114428 crossref_primary_10_1097_SHK_0000000000002168 crossref_primary_10_1016_j_jep_2019_02_030 crossref_primary_10_3389_fphar_2021_700896 crossref_primary_10_3390_ph14111139 crossref_primary_10_1080_07391102_2023_2295973 crossref_primary_10_31083_j_rcm2505165 crossref_primary_10_1111_1750_3841_17468 crossref_primary_10_1016_j_ccmp_2023_100114 crossref_primary_10_2174_0113862073273675231114112804 crossref_primary_10_3390_ijms241411380 crossref_primary_10_2478_jtim_2021_0020 crossref_primary_10_1097_MD_0000000000036287 crossref_primary_10_1016_j_aninu_2024_11_005 crossref_primary_10_1002_biof_1699 crossref_primary_10_1016_j_jep_2022_115286 crossref_primary_10_3389_fphar_2021_693701 crossref_primary_10_1016_j_lfs_2018_08_029 crossref_primary_10_3390_molecules26061540 crossref_primary_10_1016_j_jep_2022_115046 crossref_primary_10_1080_07391102_2021_1931451 crossref_primary_10_3390_polym15010169 crossref_primary_10_3389_fnut_2024_1409339 crossref_primary_10_22159_ijpps_2023v15i12_49440 crossref_primary_10_1007_s12355_024_01507_9 crossref_primary_10_1016_j_canlet_2022_216019 crossref_primary_10_1016_j_sajb_2025_02_012 crossref_primary_10_3390_ijms24087247 crossref_primary_10_1039_D3TB01753B crossref_primary_10_3390_foods12020320 crossref_primary_10_3390_ijerph18052483 crossref_primary_10_3390_app11104451 crossref_primary_10_3389_fnut_2023_1186161 crossref_primary_10_2174_1386207323666200122105410 crossref_primary_10_3389_fonc_2022_790713 crossref_primary_10_1177_0300060520903642 crossref_primary_10_1002_jcp_27638 crossref_primary_10_1007_s10787_023_01249_2 crossref_primary_10_1007_s11655_024_3917_z crossref_primary_10_1155_2020_7130105 crossref_primary_10_1002_smtd_202400980 crossref_primary_10_1155_2022_7111901 crossref_primary_10_3390_ijms25010369 crossref_primary_10_1016_j_ejmech_2023_116075 crossref_primary_10_4103_2221_1691_391156 crossref_primary_10_3389_fmolb_2020_613401 crossref_primary_10_1080_10496475_2021_1943591 crossref_primary_10_3390_biom9110731 crossref_primary_10_3390_nu16081161 crossref_primary_10_1016_j_indcrop_2019_05_072 crossref_primary_10_1016_j_jep_2023_116896 crossref_primary_10_2478_cipms_2023_0035 crossref_primary_10_1080_15427528_2022_2126419 crossref_primary_10_1016_j_phymed_2022_154194 crossref_primary_10_1142_S0192415X24500903 crossref_primary_10_1021_acs_langmuir_4c01208 crossref_primary_10_5812_gct_149161 crossref_primary_10_1007_s10311_020_00981_3 crossref_primary_10_1016_j_jep_2021_114743 crossref_primary_10_1016_j_intimp_2023_110946 crossref_primary_10_1016_j_ipha_2024_07_004 crossref_primary_10_1007_s43440_024_00610_8 crossref_primary_10_1007_s13738_024_03122_7 crossref_primary_10_1097_MD_0000000000029829 crossref_primary_10_3389_fphar_2024_1355650 crossref_primary_10_1111_cbdd_70007 crossref_primary_10_1016_j_jff_2022_105023 crossref_primary_10_1166_jbn_2021_3101 crossref_primary_10_1038_s41598_023_41101_9 crossref_primary_10_1016_j_tranon_2022_101596 crossref_primary_10_3389_fphar_2023_1255069 crossref_primary_10_1038_s41419_019_1447_y crossref_primary_10_1055_a_0998_7985 crossref_primary_10_3390_nu14061155 crossref_primary_10_3390_ijms24032136 crossref_primary_10_1155_2023_5301024 crossref_primary_10_1016_j_crbiot_2023_100152 crossref_primary_10_1016_j_lfs_2019_03_073 crossref_primary_10_3389_fnut_2023_1192758 crossref_primary_10_3390_molecules27144660 crossref_primary_10_2147_DDDT_S391978 crossref_primary_10_1016_j_scp_2024_101678 crossref_primary_10_1016_j_jaim_2024_101040 crossref_primary_10_1002_jbt_23482 crossref_primary_10_1021_acs_jafc_0c08085 crossref_primary_10_3390_ph16111539 crossref_primary_10_1016_j_fct_2021_112779 crossref_primary_10_1002_ffj_3847 crossref_primary_10_2174_2666862901666230601100713 crossref_primary_10_3389_fphar_2020_564131 crossref_primary_10_1016_j_prmcm_2023_100220 crossref_primary_10_1016_j_foodhyd_2022_107721 crossref_primary_10_1007_s00441_024_03927_1 crossref_primary_10_1016_j_phymed_2024_155535 crossref_primary_10_1080_13880209_2022_2160770 crossref_primary_10_1007_s00204_023_03661_7 crossref_primary_10_3390_vaccines11030554 crossref_primary_10_3390_biochem4010003 crossref_primary_10_3389_fphar_2022_894233 crossref_primary_10_1021_acsomega_0c05142 crossref_primary_10_1016_j_bbrc_2021_12_074 crossref_primary_10_1016_j_gendis_2023_06_016 crossref_primary_10_1016_j_jsps_2024_102107 crossref_primary_10_1016_j_phymed_2022_154329 crossref_primary_10_1097_FBP_0000000000000627 crossref_primary_10_3390_antiox11071344 crossref_primary_10_1080_09712119_2022_2154215 crossref_primary_10_3390_agronomy10060909 crossref_primary_10_1016_j_phymed_2023_154734 crossref_primary_10_2174_1573409918666221006122426 crossref_primary_10_3390_app10196785 crossref_primary_10_1016_j_ijpharm_2023_123482 crossref_primary_10_1007_s11816_023_00858_1 crossref_primary_10_1631_jzus_B2300777 crossref_primary_10_1016_j_phymed_2024_155516 crossref_primary_10_1080_10408398_2021_1947772 crossref_primary_10_3390_molecules25245946 crossref_primary_10_1186_s13020_021_00485_4 crossref_primary_10_7717_peerj_13670 crossref_primary_10_1159_000539651 crossref_primary_10_3389_fphar_2024_1450847 crossref_primary_10_1016_j_jddst_2020_101783 crossref_primary_10_1097_MD_0000000000039398 crossref_primary_10_1016_j_bioadv_2023_213363 crossref_primary_10_1186_s13020_021_00498_z crossref_primary_10_1371_journal_pone_0276984 crossref_primary_10_1155_2020_7498525 crossref_primary_10_3389_fphar_2023_1178734 crossref_primary_10_12688_f1000research_154761_1 crossref_primary_10_3389_fphar_2021_747010 crossref_primary_10_3389_fphar_2022_806470 crossref_primary_10_1016_j_drudis_2024_104026 crossref_primary_10_1080_10601325_2022_2149341 crossref_primary_10_3390_cancers15020548 crossref_primary_10_1016_j_tice_2023_102259 crossref_primary_10_3389_fphar_2022_956219 crossref_primary_10_3390_ph17101402 crossref_primary_10_1080_22311866_2024_2351023 crossref_primary_10_1186_s13765_023_00786_2 crossref_primary_10_1016_j_biopha_2019_108698 crossref_primary_10_1016_j_heliyon_2023_e14029 crossref_primary_10_3390_molecules26092709 crossref_primary_10_1111_bph_14987 crossref_primary_10_1515_med_2024_1063 crossref_primary_10_1002_ptr_7826 crossref_primary_10_1007_s00299_022_02927_1 crossref_primary_10_1155_2021_3574321 crossref_primary_10_1021_cbmi_3c00112 crossref_primary_10_1016_j_phymed_2024_155611 crossref_primary_10_3390_ijms24043880 crossref_primary_10_1002_med_21592 crossref_primary_10_1016_j_prp_2024_155430 crossref_primary_10_1155_2019_2910278 crossref_primary_10_1155_2022_1602447 crossref_primary_10_1016_j_chmed_2020_12_005 crossref_primary_10_1002_ptr_7935 crossref_primary_10_3390_molecules27041329 crossref_primary_10_3390_antiox10121997 crossref_primary_10_2174_2215083809666230308093244 crossref_primary_10_3390_molecules27041320 crossref_primary_10_1016_j_compbiomed_2024_108878 crossref_primary_10_1016_j_ejphar_2020_173503 crossref_primary_10_3390_molecules25173846 crossref_primary_10_1016_j_cbi_2021_109712 crossref_primary_10_1039_D4RA02131B crossref_primary_10_1111_cns_70025 crossref_primary_10_1080_13880209_2021_1938613 crossref_primary_10_1016_j_aimed_2023_07_004 crossref_primary_10_3390_life14060710 crossref_primary_10_1038_s41401_021_00702_8 crossref_primary_10_1155_2020_9210304 crossref_primary_10_2174_1381612828666220422085128 crossref_primary_10_1080_21691401_2019_1646749 crossref_primary_10_4239_wjd_v14_i11_1603 crossref_primary_10_1016_j_jiec_2022_03_053 crossref_primary_10_1016_j_lwt_2024_117201 crossref_primary_10_3390_md21080436 crossref_primary_10_3390_cells12131764 crossref_primary_10_1002_marc_202400528 crossref_primary_10_1007_s11033_023_08804_8 crossref_primary_10_3390_ph15020205 crossref_primary_10_1038_s41598_021_87628_7 crossref_primary_10_1016_j_taap_2023_116790 crossref_primary_10_1038_s41598_021_92135_w crossref_primary_10_3390_ijms24065313 crossref_primary_10_1002_cbdv_202500026 crossref_primary_10_2174_0113816128287109240321074628 |
Cites_doi | 10.1016/j.freeradbiomed.2016.03.019 10.1016/j.jep.2017.03.001 10.3390/molecules15010385 10.1155/2014/178931 10.1016/j.bcp.2009.01.009 10.3390/molecules18078083 10.3390/molecules21101321 10.1101/cshperspect.a000034 10.1016/j.jep.2014.01.030 10.1089/jmf.2014.3262 10.1016/j.fct.2011.07.012 10.1016/j.jnutbio.2014.11.008 10.1016/j.bbamcr.2014.05.014 10.1016/j.jep.2010.11.015 10.1002/med.20156 10.6026/97320630011543 10.1007/s10753-014-9995-x 10.1016/S0167-4889(02)00321-X 10.1016/j.jgr.2016.02.001 10.1007/s10753-010-9271-7 10.1016/j.apsb.2013.04.004 10.1039/C6FO01529H 10.3389/fphar.2012.00119 10.1016/j.jep.2007.11.025 10.3892/ol.2017.6380 10.1080/14786419.2014.981181 10.1016/j.jgr.2016.11.001 10.1016/j.jep.2012.06.012 10.3390/molecules19066941 10.1146/annurev-immunol-032713-120145 10.1016/j.jgr.2016.08.003 10.3892/etm.2016.3854 10.1016/j.jep.2015.08.028 10.1101/cshperspect.a001651 10.1016/j.jnutbio.2010.01.011 10.4103/0974-8520.100295 10.3892/ijmm.2016.2809 10.1016/j.jep.2017.04.022 10.1155/2013/485201 10.5897/IJBC11.163 10.5551/jat.23697 10.1038/tp.2015.142 10.1016/j.brainres.2016.07.014 10.4162/nrp.2013.7.6.423 10.1016/j.intimp.2004.09.027 10.3390/molecules170910774 10.1021/acs.jmedchem.7b00154 10.1016/j.clinthera.2013.04.006 10.1177/1758834016638019 10.1155/2016/3475356 10.1111/j.1538-7836.2009.03396.x 10.1124/dmd.110.037333 10.1292/jvms.16-0196 10.1155/2015/967053 10.1016/S0254-6272(14)60018-2 10.7314/APJCP.2014.15.14.5501 10.1387/ijdb.150204om 10.1007/s12272-014-0351-3 10.1177/039463201202500201 10.3390/molecules22030195 10.1016/j.brainres.2012.02.003 10.1016/j.ejphar.2011.04.007 10.1016/j.jnutbio.2016.12.014 10.2174/138955709787001712 10.1097/CEJ.0000000000000128 10.1111/1750-3841.13300 10.3389/fimmu.2013.00068 10.1080/13880200902939283 10.1016/j.jep.2015.12.016 10.1016/j.tox.2013.05.015 10.1038/aps.2010.62 10.1016/j.ejphar.2014.09.046 10.1016/j.jep.2009.04.059 10.1055/s-0028-1088314 10.18632/oncotarget.16092 10.1016/j.fct.2012.04.011 10.1002/ptr.4736 10.1038/cddis.2017.38 10.3109/00207454.2011.569040 10.1002/jnr.22714 10.1248/bpb.34.1032 10.1371/journal.pone.0039468 10.1038/srep17645 10.1016/j.fct.2010.06.029 10.1155/2012/383608 10.1016/j.brainres.2014.07.042 10.1016/j.lfs.2014.11.014 10.1038/cddis.2016.201 10.1016/j.jep.2017.01.039 10.1021/acs.jafc.5b00232 10.1002/ptr.5141 10.1016/j.jnutbio.2015.05.004 10.1016/j.jep.2014.05.013 10.4103/0973-1296.160470 10.1016/j.bbrc.2013.11.122 10.1016/j.pharep.2014.12.016 10.3390/molecules22030334 10.1016/j.jep.2014.04.021 10.1016/j.cbi.2014.10.031 10.1021/jf072612+ 10.1002/cbic.201000487 10.1155/2011/792639 10.2478/10004-1254-61-2010-2012 10.1016/j.bbamcr.2014.10.010 10.3109/08923973.2015.1095763 10.1016/j.febslet.2009.10.045 10.5530/pc.2011.1.3 10.1016/j.jgr.2016.09.002 10.1016/j.biochi.2010.11.002 10.1007/s10787-007-0013-x |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jep.2018.05.019 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1872-7573 |
EndPage | 358 |
ExternalDocumentID | 29801717 10_1016_j_jep_2018_05_019 S0378874117334578 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATCM AAWTL AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPCBC SPT SSP SSZ T5K TN5 ~G- ~KM .GJ 29K 53G 5VS AAHBH AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I FEDTE FGOYB G-2 HMT HVGLF HX~ HZ~ R2- SEW SSH WUQ ZGI NPM 7X8 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c485t-67514a5d56d533d3f23e04dfb8f6e84b3b516f2da1a9edfac8d72a189c5c1d6c3 |
IEDL.DBID | .~1 |
ISSN | 0378-8741 1872-7573 |
IngestDate | Wed Jul 30 11:17:29 EDT 2025 Fri Jul 11 09:58:38 EDT 2025 Fri Jul 11 01:48:06 EDT 2025 Wed Feb 19 02:41:56 EST 2025 Tue Jul 01 01:35:41 EDT 2025 Thu Apr 24 23:11:55 EDT 2025 Fri Feb 23 02:28:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | NA |
Keywords | JNK ICAM-1 HMGB1 Luteolin (PubChem CID: 5280445) AP-1 CXCL2 MyD88 NF-κB IFN-β TBK1 PI3K PRV iNOS Syk PKC MAPK IL-1β IP-10 SIRT1 MMP ERK1/2 BMMCs MIP ROS IRF TRIF HUVECs HDAC NO MCP-1 COX-2 Src HO-1 Flavonoid LPS Inflammatory diseases NFAT Luteolin-7-O-glucoside (PubChem CID: 5280637) IκB GFP LDH CREB CCL2 TLR Luteolin Inflammatory signaling GSH Luteolin-6-C-glucoside (PubChem CID: 49852298) PGE2 HSP90 NK cells PMA STAT3 IKK SOD AKT SOCS Luteolin-8-C-glucoside (PubChem CID: 5281675) VCAM-1 TNF-α JAK LTC4 HAT ATP TIMP Luteolin-5-O-glucoside (PubChem CID: 44258061) |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-67514a5d56d533d3f23e04dfb8f6e84b3b516f2da1a9edfac8d72a189c5c1d6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 29801717 |
PQID | 2045283972 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2186136881 proquest_miscellaneous_2153606047 proquest_miscellaneous_2045283972 pubmed_primary_29801717 crossref_citationtrail_10_1016_j_jep_2018_05_019 crossref_primary_10_1016_j_jep_2018_05_019 elsevier_sciencedirect_doi_10_1016_j_jep_2018_05_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-28 |
PublicationDateYYYYMMDD | 2018-10-28 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Journal of ethnopharmacology |
PublicationTitleAlternate | J Ethnopharmacol |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Akram, Syed, Kim, Lee, Jong, Chang, Kim, Bae (bib2) 2015; 174 Griffith, Sokol, Luster (bib28) 2014; 32 Kim, Yoon, Lee, Yang, Kim, Sung, Baek, Kim, Htwe, Kim, Hong, Kim, Cho (bib44) 2014; 155 Lu, Li, Li, Aisa (bib61) 2017; 14 Taliou, Zintzaras, Lykouras, Francis (bib91) 2013; 35 Jung, Jin, Min, Kim, Choi (bib38) 2012; 50 Backhouse, Rosales, Apablaza, Goïty, Erazo, Negrete, Theodoluz, Rodríguez, Delporte (bib6) 2008; 116 Funaro, Wu, Song, Zheng, Guo, Rakariyatham, Rodriguez-Estrada, Xiao (bib25) 2016; 81 Wall, Lim, Poljak, Lappas (bib97) 2013; 2013 Chen, Guo, Feng, Ke, Chen, Pan (bib10) 2016; 8 Wu, Li, Zong, Zhu, Pan, Xu, Wang, Wang (bib100) 2013; 18 Azab, Nassar, Azab (bib5) 2016; 21 Silva, Mendes, Tomasco, Pinto, de Oliveira, Rodrigues, Aragão, Aguiar, Alves, Castañon, Ribeiro, Scio (bib87) 2017; 198 Lee, Kim, Kim, Lee, Hwang, Lee (bib52) 2009; 77 Jin, Son, Chang (bib37) 2011; 34 Xiong, Wang, Yuan, Xing, Ni, Hu, Chen, Wang (bib103) 2017; 39 Deqiu, Kang, Jiali, Baolin, Gaolin (bib21) 2011; 93 Wu, Xu, Li, Kou, Huang, Liu, Liu (bib99) 2014; 745 Sharma, Al-Omran, Parvathy (bib85) 2007; 15 Kunle, Egharevba, Ahmadu (bib47) 2012; 4 Ode, Asuzu (bib67) 2014; 4 Choi, Lee (bib12) 2010; 48 Lawrence (bib51) 2009; 1 Xia, Chen, Liu, Ye, Pan, Ge, Mao, Wang, Wang, Xie (bib102) 2016; 12 Qiao, Zhang, Zhu, Dong, Wang, Zhang, Xing, Wang, Ji, Cao (bib76) 2012; 1448 Yu, Yang, Kwak, Song, Kim, Rhee, Cho (bib109) 2017; 41 Hytti, Piippo, Korhonen, Honkakoski, Kaarniranta, Kauppinen (bib30) 2015; 5 Farzaei, Abbasabadi, Ardekani, Rahimi, Farzaei (bib23) 2013; 33 Zeng, Zhang, Pan, Jia, Guo, Li, Zhu, Chen (bib110) 2013; 3 Yang, Kim, Yi, Kim, Jeong, Hwang, Kim, Park, Cho (bib106) 2017; 201 Guo, Xu, Sun, Zhao, Li, Guo (bib29) 2017; 8 Liu, Lin, Yang, Chen, Tseng, Chang, Chang (bib58) 2016; 95 Song, Su, Xu, Niu, Chen, Min, Zhang, Sun, Xie, Wang, Gao (bib89) 2017; 8 Kuo, Liao, Chen, Li, Yang, Lin, Kuan (bib48) 2011; 49 Lv, Lv, Zhang, Kong (bib62) 2011; 34 Nunes, Almeida, Barbosa, Laranjinha (bib66) 2017; 8 Lee, Jeong, Kim, Cho (bib53) 2015; 2015 Xu, Wang, Lu, Ding, Zhang, He, Wei, Wu (bib104) 2014; 1582 Moura, Sultan, Georgin-Lavialle, Barete, Lortholary, Gaillard, Hermine (bib63) 2012; 7 Turner, Nedjai, Hurst, Pennington (bib96) 2014; 1843 Ferrari, Ferreira, Souza, Grabe-Guimarães, Paula, Rezende, Saúde-Guimarães (bib24) 2013; 27 Xia, Wang, Jin, Liu, Meng, Liu, Sun (bib101) 2014; 21 Tsilioni, Taliou, Francis, Theoharides (bib94) 2015; 5 Zhang, Xing, Wang, Jiang, Guo, Liu (bib111) 2017; 22 Ramezani, Nasri, Yassa (bib78) 2009; 47 de Souza, de Paula, Pereira de Resende, Grabe-Guimarães, de Souza Filho, Saúde-Guimarães (bib19) 2012; 142 Parrella, Porrini, Iorio, Benarese, Lanzillotta, Mota, Fusco, Tonin, Spano, Pizzi (bib74) 2016; 1648 Tuorkey (bib95) 2016; 25 Zhu, Bi, Qi, Wang, Lu (bib115) 2011; 121 Zhou, Li, Luo, Jiang, Zeng (bib113) 2008; 56 Jia, Nallasamy, Liu, Shah, Li, Chitrakar, Si, McCormick, Zhu, Zhen, Li (bib36) 2015; 26 Serhan (bib84) 2009; 7 Domitrovic, Cvijanovic, Pugel, Zagorac, Mahmutefendic, Skoda (bib22) 2013; 310 Li, Yeh, Yang, Kuan (bib57) 2012; 2012 Pandurangan, Esa (bib70) 2014; 15 Park, Song (bib73) 2013; 7 Xu, Zhang, Liu, Li, Li, Wang, Ma, Liu (bib105) 2015; 29 Kim, Kim, Kang, Choi, Park, Choi, Kim, Yun, Nah, Lee (bib46) 2005; 5 Lee, Li, Chen, Lin, Huang, Chen, Kuan, Liao, Chen, Kuan (bib54) 2010; 31 Park, Jin, Lee, Song (bib71) 2011; 660 Theoharides, Asadi, Panagiotidou (bib92) 2012; 25 Lou, Liu, Zhou, Wei, Deng, Dong, Chai (bib60) 2015; 37 Choi, Islam, Ali, Kim, Park, Sohn, Jung (bib13) 2014; 37 Araujo, Zhang, Yin (bib4) 2012; 3 Rostoka, Isajevs, Baumane, Line, Silina, Dzintare, Sharipova, Svirina, Kalvinsh, Sjakste (bib81) 2010; 61 Shi, Zhou, Ji, Xu, Yang (bib86) 2015; 226 Zhu, Chen, Tan, Liu, Wang (bib114) 2017; 22 Kenneth (bib43) 2003 Rasoanaivo, Wright, Willcox, Gilbert (bib79) 2011; 10 Ribeiro, Freitas, Tomé, Silva, Laufer, Lima, Fernandes (bib80) 2015; 38 Park, Park, Noh, Shin, Song (bib72) 2011; 133 Chen, Chen, Pan, Sun, Li, Zeng, Jiang (bib11) 2011; 39 Katiyar, Gupta, Kanjilal, Katiyar (bib42) 2012; 33 Lopez-Lazaro (bib59) 2009; 9 Son, Cheong, Kim, Chung, Kang, Pae (bib88) 2011; 2011 Abdallah, Esmat (bib1) 2017; 205 Lee, Kim, Lee, Kwon, Song, Oh, Yoon (bib55) 2015; 67 Jeong, Yi, Sung, Yang, Park, Yoon, Yoon, Song, Lee, Rhee, Kim, Kim, Cho (bib35) 2014; 152 Wright, Watson, McGuffin, Lovegrove, Gibbins (bib98) 2015; 26 Kanai, Nagata, Hatta, Sugiura, Sato, Yamashita, Kimura, Itoh (bib39) 2016; 78 Palombo, Savini, Avigliano, Madonna, Cavani, Albanesi, Mauriello, Melino, Terrinoni (bib69) 2016; 7 Baek, Yi, Son, Yoo, Sung, Kim, Hong, Aravinthan, Kim, Cho (bib7) 2016; 40 Debant, Hemon, Brigaudeau, Renaudineau, Mignen (bib20) 2015; 59 Yasuda, Fujita, Hosoya, Imai, Shimoi (bib107) 2015; 63 Hytti, Szabo, Piippo, Korhonen, Honkakoski, Kaarniranta, Petrovski, Kauppinen (bib31) 2017; 42 Lamy, Moldovan, Ben Saad, Annabi (bib50) 2015; 1853 Kutil, Temml, Maghradze, Pribylova, Dvorakova, Schuster, Vanek, Landa (bib49) 2014; 2014 Goettert, Schattel, Koch, Merfort, Laufer (bib27) 2010; 11 Sung, Lee (bib90) 2015; 18 Gautam, Jachak (bib26) 2009; 29 Oeckinghaus, Ghosh (bib68) 2009; 1 Baek, Yi, Son, Jeong, Sung, Aravinthan, Kim, Cho (bib8) 2017; 41 Costa, Ferreira, Vitorino, Pina, Sousa, Figueiredo, Batista (bib16) 2016; 178 Pohjala, Tammela (bib75) 2012; 17 Kao, Ou, Lin, Pan, Song, Raung, Lai, Liao, Lu, Chen (bib41) 2011; 22 Sae-wong, Tansakul, Tewtrakul (bib82) 2009; 124 Yu, Li, Tian, Liu, Shang (bib108) 2015; 122 Seelinger, Merfort, Schempp (bib83) 2008; 74 Nkengla (bib65) 2014 Jeon, Kim, Kang, Lee, Jeong, Kim, Jang (bib34) 2014; 19 Ishihara, Hirano (bib32) 2002; 1592 Dash, Uddin, Hosen, Rahim, Dinar, Kabir, Sultan, Islam, Hossain (bib18) 2015; 11 Kang, Choi, Lee, Kwon (bib40) 2010; 15 Cock (bib15) 2011; 1 Kim, Lee, Yun (bib45) 2014; 28 da Silva, Farias, Boeing, Somensi, Beber, Cury, Santin, Faloni de Andrade (bib17) 2016; 2016 Chen, Bi, Dong, Jiang, Rui, Liu, Yin, Luo (bib9) 2014; 443 Thitilertdecha, Guy, Rowan (bib93) 2014; 154 Ando, Takahashi, Hirai, Nishimura, Lin, Uemura, Goto, Yu, Nakagami, Murakami, Kawada (bib3) 2009; 583 Jasial, Hu, Bajorath (bib33) 2017; 60 Nepali, Son, Poudel, Lee, Lee, Kim (bib64) 2015; 11 Li, Liang, Lotze (bib56) 2013; 4 Zhou, Qu, Lv, Chen, Liu, Liu, Li, Sun (bib112) 2011; 89 Choi, Kwak, Bang, Jeong, Kim (bib14) 2017; 41 Rafacho, Stice, Liu, Greenberg, Ausman, Wang (bib77) 2015; 4 Backhouse (10.1016/j.jep.2018.05.019_bib6) 2008; 116 Theoharides (10.1016/j.jep.2018.05.019_bib92) 2012; 25 Ramezani (10.1016/j.jep.2018.05.019_bib78) 2009; 47 Tuorkey (10.1016/j.jep.2018.05.019_bib95) 2016; 25 Baek (10.1016/j.jep.2018.05.019_bib8) 2017; 41 Turner (10.1016/j.jep.2018.05.019_bib96) 2014; 1843 Yu (10.1016/j.jep.2018.05.019_bib108) 2015; 122 Lou (10.1016/j.jep.2018.05.019_bib60) 2015; 37 Ferrari (10.1016/j.jep.2018.05.019_bib24) 2013; 27 Yu (10.1016/j.jep.2018.05.019_bib109) 2017; 41 Kenneth (10.1016/j.jep.2018.05.019_bib43) 2003 Wu (10.1016/j.jep.2018.05.019_bib99) 2014; 745 Costa (10.1016/j.jep.2018.05.019_bib16) 2016; 178 Ishihara (10.1016/j.jep.2018.05.019_bib32) 2002; 1592 Qiao (10.1016/j.jep.2018.05.019_bib76) 2012; 1448 Nepali (10.1016/j.jep.2018.05.019_bib64) 2015; 11 Hytti (10.1016/j.jep.2018.05.019_bib30) 2015; 5 Choi (10.1016/j.jep.2018.05.019_bib14) 2017; 41 Jeong (10.1016/j.jep.2018.05.019_bib35) 2014; 152 Azab (10.1016/j.jep.2018.05.019_bib5) 2016; 21 Zhang (10.1016/j.jep.2018.05.019_bib111) 2017; 22 Sharma (10.1016/j.jep.2018.05.019_bib85) 2007; 15 Rasoanaivo (10.1016/j.jep.2018.05.019_bib79) 2011; 10 Rostoka (10.1016/j.jep.2018.05.019_bib81) 2010; 61 Dash (10.1016/j.jep.2018.05.019_bib18) 2015; 11 Jeon (10.1016/j.jep.2018.05.019_bib34) 2014; 19 Yasuda (10.1016/j.jep.2018.05.019_bib107) 2015; 63 Oeckinghaus (10.1016/j.jep.2018.05.019_bib68) 2009; 1 Xia (10.1016/j.jep.2018.05.019_bib101) 2014; 21 Seelinger (10.1016/j.jep.2018.05.019_bib83) 2008; 74 Funaro (10.1016/j.jep.2018.05.019_bib25) 2016; 81 da Silva (10.1016/j.jep.2018.05.019_bib17) 2016; 2016 Hytti (10.1016/j.jep.2018.05.019_bib31) 2017; 42 Zhu (10.1016/j.jep.2018.05.019_bib114) 2017; 22 Farzaei (10.1016/j.jep.2018.05.019_bib23) 2013; 33 Xu (10.1016/j.jep.2018.05.019_bib105) 2015; 29 Katiyar (10.1016/j.jep.2018.05.019_bib42) 2012; 33 Kim (10.1016/j.jep.2018.05.019_bib44) 2014; 155 Li (10.1016/j.jep.2018.05.019_bib57) 2012; 2012 Wall (10.1016/j.jep.2018.05.019_bib97) 2013; 2013 Nunes (10.1016/j.jep.2018.05.019_bib66) 2017; 8 Moura (10.1016/j.jep.2018.05.019_bib63) 2012; 7 Kunle (10.1016/j.jep.2018.05.019_bib47) 2012; 4 Silva (10.1016/j.jep.2018.05.019_bib87) 2017; 198 Cock (10.1016/j.jep.2018.05.019_bib15) 2011; 1 Lee (10.1016/j.jep.2018.05.019_bib54) 2010; 31 Lee (10.1016/j.jep.2018.05.019_bib55) 2015; 67 Song (10.1016/j.jep.2018.05.019_bib89) 2017; 8 Serhan (10.1016/j.jep.2018.05.019_bib84) 2009; 7 Ando (10.1016/j.jep.2018.05.019_bib3) 2009; 583 Zeng (10.1016/j.jep.2018.05.019_bib110) 2013; 3 Parrella (10.1016/j.jep.2018.05.019_bib74) 2016; 1648 Zhu (10.1016/j.jep.2018.05.019_bib115) 2011; 121 Araujo (10.1016/j.jep.2018.05.019_bib4) 2012; 3 Liu (10.1016/j.jep.2018.05.019_bib58) 2016; 95 Lee (10.1016/j.jep.2018.05.019_bib52) 2009; 77 Domitrovic (10.1016/j.jep.2018.05.019_bib22) 2013; 310 Sung (10.1016/j.jep.2018.05.019_bib90) 2015; 18 Rafacho (10.1016/j.jep.2018.05.019_bib77) 2015; 4 Kang (10.1016/j.jep.2018.05.019_bib40) 2010; 15 Chen (10.1016/j.jep.2018.05.019_bib10) 2016; 8 Deqiu (10.1016/j.jep.2018.05.019_bib21) 2011; 93 Jung (10.1016/j.jep.2018.05.019_bib38) 2012; 50 Jasial (10.1016/j.jep.2018.05.019_bib33) 2017; 60 Kao (10.1016/j.jep.2018.05.019_bib41) 2011; 22 Jia (10.1016/j.jep.2018.05.019_bib36) 2015; 26 Kim (10.1016/j.jep.2018.05.019_bib45) 2014; 28 Palombo (10.1016/j.jep.2018.05.019_bib69) 2016; 7 Ribeiro (10.1016/j.jep.2018.05.019_bib80) 2015; 38 Shi (10.1016/j.jep.2018.05.019_bib86) 2015; 226 Wright (10.1016/j.jep.2018.05.019_bib98) 2015; 26 Kanai (10.1016/j.jep.2018.05.019_bib39) 2016; 78 Debant (10.1016/j.jep.2018.05.019_bib20) 2015; 59 Akram (10.1016/j.jep.2018.05.019_bib2) 2015; 174 Kuo (10.1016/j.jep.2018.05.019_bib48) 2011; 49 Xu (10.1016/j.jep.2018.05.019_bib104) 2014; 1582 Nkengla (10.1016/j.jep.2018.05.019_bib65) 2014 Zhou (10.1016/j.jep.2018.05.019_bib113) 2008; 56 Pandurangan (10.1016/j.jep.2018.05.019_bib70) 2014; 15 Son (10.1016/j.jep.2018.05.019_bib88) 2011; 2011 Xia (10.1016/j.jep.2018.05.019_bib102) 2016; 12 Kutil (10.1016/j.jep.2018.05.019_bib49) 2014; 2014 Guo (10.1016/j.jep.2018.05.019_bib29) 2017; 8 Choi (10.1016/j.jep.2018.05.019_bib12) 2010; 48 Xiong (10.1016/j.jep.2018.05.019_bib103) 2017; 39 Lamy (10.1016/j.jep.2018.05.019_bib50) 2015; 1853 Lopez-Lazaro (10.1016/j.jep.2018.05.019_bib59) 2009; 9 Gautam (10.1016/j.jep.2018.05.019_bib26) 2009; 29 Griffith (10.1016/j.jep.2018.05.019_bib28) 2014; 32 Ode (10.1016/j.jep.2018.05.019_bib67) 2014; 4 Baek (10.1016/j.jep.2018.05.019_bib7) 2016; 40 Chen (10.1016/j.jep.2018.05.019_bib11) 2011; 39 Park (10.1016/j.jep.2018.05.019_bib73) 2013; 7 Taliou (10.1016/j.jep.2018.05.019_bib91) 2013; 35 de Souza (10.1016/j.jep.2018.05.019_bib19) 2012; 142 Goettert (10.1016/j.jep.2018.05.019_bib27) 2010; 11 Choi (10.1016/j.jep.2018.05.019_bib13) 2014; 37 Zhou (10.1016/j.jep.2018.05.019_bib112) 2011; 89 Lee (10.1016/j.jep.2018.05.019_bib53) 2015; 2015 Lu (10.1016/j.jep.2018.05.019_bib61) 2017; 14 Abdallah (10.1016/j.jep.2018.05.019_bib1) 2017; 205 Sae-wong (10.1016/j.jep.2018.05.019_bib82) 2009; 124 Pohjala (10.1016/j.jep.2018.05.019_bib75) 2012; 17 Park (10.1016/j.jep.2018.05.019_bib71) 2011; 660 Yang (10.1016/j.jep.2018.05.019_bib106) 2017; 201 Chen (10.1016/j.jep.2018.05.019_bib9) 2014; 443 Lv (10.1016/j.jep.2018.05.019_bib62) 2011; 34 Li (10.1016/j.jep.2018.05.019_bib56) 2013; 4 Kim (10.1016/j.jep.2018.05.019_bib46) 2005; 5 Park (10.1016/j.jep.2018.05.019_bib72) 2011; 133 Jin (10.1016/j.jep.2018.05.019_bib37) 2011; 34 Tsilioni (10.1016/j.jep.2018.05.019_bib94) 2015; 5 Lawrence (10.1016/j.jep.2018.05.019_bib51) 2009; 1 Thitilertdecha (10.1016/j.jep.2018.05.019_bib93) 2014; 154 Wu (10.1016/j.jep.2018.05.019_bib100) 2013; 18 |
References_xml | – volume: 1 start-page: a000034 year: 2009 ident: bib68 article-title: The NF-κB family of transcription factors and its regulation publication-title: Cold Spring Harb. Perspect. Biol. – volume: 116 start-page: 263 year: 2008 end-page: 269 ident: bib6 article-title: Analgesic, anti-inflammatory and antioxidant properties of publication-title: J. Ethnopharmacol. – volume: 121 start-page: 329 year: 2011 end-page: 336 ident: bib115 article-title: Luteolin inhibits microglial inflammation and improves neuron survival against inflammation publication-title: Int. J. Neurosci. – volume: 4 start-page: 124 year: 2015 end-page: 134 ident: bib77 article-title: Inhibition of diethylnitrosamine-initiated alcohol-promoted hepatic inflammation and precancerous lesions by flavonoid luteolin is associated with increased sirtuin 1 activity in mice publication-title: Hepatobiliary Surg. Nutr. – volume: 8 start-page: 160 year: 2016 end-page: 167 ident: bib10 article-title: The preoperative platelet-lymphocyte ratio versus neutrophil-lymphocyte ratio: which is better as a prognostic factor in oral squamous cell carcinoma? publication-title: Ther. Adv. Med. Oncol. – volume: 174 start-page: 322 year: 2015 end-page: 330 ident: bib2 article-title: Heme oxygenase 1-mediated novel anti-inflammatory activities of publication-title: J. Ethnopharmacol. – volume: 10 year: 2011 ident: bib79 article-title: Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions publication-title: Malar. J. – volume: 26 start-page: 293 year: 2015 end-page: 302 ident: bib36 article-title: Luteolin protects against vascular inflammation in mice and TNF-alpha-induced monocyte adhesion to endothelial cells via suppressing IKappaBalpha/NF-kappaB signaling pathway publication-title: J. Nutr. Biochem. – volume: 29 start-page: 1078 year: 2015 end-page: 1082 ident: bib105 article-title: Luteolin attenuate the publication-title: Nat. Prod. Res. – volume: 81 start-page: H1320 year: 2016 end-page: H1327 ident: bib25 article-title: Enhanced anti-inflammatory activities by the combination of luteolin and tangeretin publication-title: J. Food Sci. – volume: 42 start-page: 37 year: 2017 end-page: 42 ident: bib31 article-title: Two dietary polyphenols, fisetin and luteolin, reduce inflammation but augment DNA damage-induced toxicity in human RPE cells publication-title: J. Nutr. Biochem. – year: 2014 ident: bib65 article-title: Investigation of the In Vitro Bioavailability of Luteolin from Modified Preparations of – volume: 1648 start-page: 409 year: 2016 end-page: 417 ident: bib74 article-title: PEA and luteolin synergistically reduce mast cell-mediated toxicity and elicit neuroprotection in cell-based models of brain ischemia publication-title: Brain Res. – volume: 26 start-page: 1156 year: 2015 end-page: 1165 ident: bib98 article-title: GRID and docking analyses reveal a molecular basis for flavonoid inhibition of Src family kinase activity publication-title: J. Nutr. Biochem. – volume: 89 start-page: 1859 year: 2011 end-page: 1868 ident: bib112 article-title: Luteolin protects against reactive oxygen species-mediated cell death induced by zinc toxicity via the PI3K-Akt-NF-kappaB-ERK-dependent pathway publication-title: J. Neurosci. Res. – volume: 154 start-page: 400 year: 2014 end-page: 407 ident: bib93 article-title: Characterisation of polyphenolic compounds in publication-title: J. Ethnopharmacol. – volume: 29 start-page: 767 year: 2009 end-page: 820 ident: bib26 article-title: Recent developments in anti-inflammatory natural products publication-title: Med. Res. Rev. – volume: 19 start-page: 6941 year: 2014 end-page: 6951 ident: bib34 article-title: Anti-inflammatory and antipruritic effects of luteolin from Perilla ( publication-title: Molecules – volume: 155 start-page: 185 year: 2014 end-page: 193 ident: bib44 article-title: Syk/Src-targeted anti-inflammatory activity of publication-title: J. Ethnopharmacol. – volume: 7 start-page: e2344 year: 2016 ident: bib69 article-title: Luteolin-7-glucoside inhibits IL-22/STAT3 pathway, reducing proliferation, acanthosis, and inflammation in keratinocytes and in mouse psoriatic model publication-title: Cell Death. Dis. – volume: 142 start-page: 845 year: 2012 end-page: 850 ident: bib19 article-title: Pharmacological basis for use of publication-title: J. Ethnopharmacol. – volume: 49 start-page: 2660 year: 2011 end-page: 2666 ident: bib48 article-title: Luteolin attenuates the pulmonary inflammatory response involves abilities of antioxidation and inhibition of MAPK and NFkappaB pathways in mice with endotoxin-induced acute lung injury publication-title: Food Chem. Toxicol. – volume: 7 start-page: 44 year: 2009 end-page: 48 ident: bib84 article-title: Systems approach to inflammation resolution: identification of novel anti-inflammatory and pro-resolving mediators publication-title: J. Thromb. Haemost. – volume: 8 start-page: 387 year: 2017 end-page: 396 ident: bib66 article-title: Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation publication-title: Food Funct. – volume: 17 start-page: 10774 year: 2012 end-page: 10790 ident: bib75 article-title: Aggregating behavior of phenolic compounds—a source of false bioassay results? publication-title: Molecules – volume: 33 start-page: 815 year: 2013 end-page: 826 ident: bib23 article-title: Parsley: a review of ethnopharmacology, phytochemistry and biological activities publication-title: J. Tradit. Chin. Med. – volume: 8 start-page: 28481 year: 2017 end-page: 28493 ident: bib29 article-title: Luteolin reduces inflammation in publication-title: Oncotarget – volume: 8 start-page: e2612 year: 2017 ident: bib89 article-title: Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1 publication-title: Cell Death. Dis. – volume: 39 start-page: 667 year: 2011 end-page: 674 ident: bib11 article-title: Role of catechol-O-methyltransferase in the disposition of luteolin in rats publication-title: Drug. Metab. Dispos. – volume: 226 start-page: 82 year: 2015 end-page: 87 ident: bib86 article-title: Anti-arthritic activity of luteolin in Freund's complete adjuvant-induced arthritis in rats by suppressing P2×4 pathway publication-title: Chem. Biol. Interact. – volume: 11 start-page: 543 year: 2015 end-page: 549 ident: bib18 article-title: Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer publication-title: Bioinformation – volume: 61 start-page: 275 year: 2010 end-page: 285 ident: bib81 article-title: Effects of lycopene, indole-3-carbinol, and luteolin on nitric oxide production and iNOS expression are organ-specific in rats publication-title: Arh Hig Rada Toksikol. – volume: 5 start-page: 209 year: 2005 end-page: 217 ident: bib46 article-title: Inhibitory effect of luteolin on TNF-alpha-induced IL-8 production in human colon epithelial cells publication-title: Int. Immunopharmacol. – volume: 18 start-page: 8083 year: 2013 end-page: 8094 ident: bib100 article-title: Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability publication-title: Molecules – volume: 78 start-page: 1381 year: 2016 end-page: 1384 ident: bib39 article-title: Therapeutic anti-inflammatory effects of luteolin on endotoxin-induced uveitis in Lewis rats publication-title: J. Vet. Med. Sci. – volume: 198 start-page: 399 year: 2017 end-page: 406 ident: bib87 article-title: New aspects on the hepatoprotective potential associated with the antioxidant, hypocholesterolemic and anti-inflammatory activities of publication-title: J. Ethnopharmacol. – volume: 21 start-page: 768 year: 2014 end-page: 783 ident: bib101 article-title: Luteolin protects HUVECs from TNF-alpha-induced oxidative stress and inflammation via its effects on the Nox4/ROS-NF-kappaB and MAPK pathways publication-title: J. Atheroscler. Thromb. – volume: 41 start-page: 386 year: 2017 end-page: 391 ident: bib8 article-title: Comparison of anticancer activities of Korean red ginseng-derived fractions publication-title: J. Ginseng Res. – volume: 27 start-page: 384 year: 2013 end-page: 389 ident: bib24 article-title: Anti-Inflammatory sesquiterpene lactones from publication-title: Phytother. Res. – volume: 4 start-page: 68 year: 2013 ident: bib56 article-title: HMGB1: the central cytokine for all lymphoid cells publication-title: Front Immunol. – volume: 7 start-page: e39468 year: 2012 ident: bib63 article-title: Evidence for cognitive impairment in mastocytosis: prevalence, features and correlations to depression publication-title: PLoS One – volume: 67 start-page: 581 year: 2015 end-page: 587 ident: bib55 article-title: Luteolin 8-C-beta-fucopyranoside downregulates IL-6 expression by inhibiting MAPKs and the NF-kappaB signaling pathway in human monocytic cells publication-title: Pharmacol. Rep. – volume: 205 start-page: 51 year: 2017 end-page: 56 ident: bib1 article-title: Antioxidant and anti-inflammatory activities of the major phenolics from publication-title: J. Ethnopharmacol. – volume: 59 start-page: 379 year: 2015 end-page: 389 ident: bib20 article-title: Calcium signaling and cell fate: how can Ca publication-title: Int. J. Dev. Biol. – volume: 2013 start-page: 485201 year: 2013 ident: bib97 article-title: Dietary flavonoids as therapeutics for preterm birth: luteolin and kaempferol suppress inflammation in human gestational tissues publication-title: Oxid. Med. Cell Longev. – volume: 1592 start-page: 281 year: 2002 end-page: 296 ident: bib32 article-title: Molecular basis of the cell specificity of cytokine action publication-title: Biochim. Biophys. Acta - Mol. Cell Res. – volume: 1 start-page: a001651 year: 2009 ident: bib51 article-title: The nuclear factor NF-κB pathway in inflammation publication-title: Cold Spring Harb. Perspect. Biol. – volume: 37 start-page: 1354 year: 2014 end-page: 1363 ident: bib13 article-title: The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer's disease, anti-diabetic, and anti-inflammatory activities publication-title: Arch. Pharm. Res. – volume: 47 start-page: 740 year: 2009 end-page: 743 ident: bib78 article-title: Antinociceptive and anti-inflammatory effects of isolated fractions from publication-title: Pharm. Biol. – volume: 1853 start-page: 126 year: 2015 end-page: 135 ident: bib50 article-title: Biphasic effects of luteolin on interleukin-1beta-induced cyclooxygenase-2 expression in glioblastoma cells publication-title: Biochim. Biophys. Acta – volume: 41 start-page: 503 year: 2017 end-page: 512 ident: bib14 article-title: Chronic saponin treatment attenuates damage to the pancreas in chronic alcohol-treated diabetic rats publication-title: J. Ginseng Res. – volume: 2011 start-page: 6 year: 2011 ident: bib88 article-title: Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? publication-title: J. Signal. Transduct. – volume: 40 start-page: 437 year: 2016 end-page: 444 ident: bib7 article-title: In vitro and in vivo anti-inflammatory activities of Korean Red Ginseng-derived components publication-title: J. Ginseng Res. – volume: 15 start-page: 385 year: 2010 end-page: 398 ident: bib40 article-title: Luteolin isolated from the flowers of publication-title: Molecules – volume: 152 start-page: 487 year: 2014 end-page: 496 ident: bib35 article-title: Anti-inflammatory activities and mechanisms of publication-title: J. Ethnopharmacol. – volume: 50 start-page: 2171 year: 2012 end-page: 2179 ident: bib38 article-title: Anti-inflammatory activity of Korean thistle publication-title: Food Chem. Toxicol. – volume: 310 start-page: 115 year: 2013 end-page: 123 ident: bib22 article-title: Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney publication-title: Toxicology – volume: 60 start-page: 3879 year: 2017 end-page: 3886 ident: bib33 article-title: How frequently are pan-assay interference compounds active? Large-scale analysis of screening data reveals diverse activity profiles, low global hit frequency, and many consistently inactive compounds publication-title: J. Med. Chem. – volume: 22 start-page: E195 year: 2017 ident: bib114 article-title: Flavonoids from publication-title: Molecules – volume: 443 start-page: 326 year: 2014 end-page: 332 ident: bib9 article-title: Luteolin exhibits anti-inflammatory effects by blocking the activity of heat shock protein 90 in macrophages publication-title: Biochem. Biophys. Res. Commun. – volume: 15 start-page: 5501 year: 2014 end-page: 5508 ident: bib70 article-title: Luteolin, a bioflavonoid inhibits colorectal cancer through modulation of multiple signaling pathways: a review publication-title: Asian Pac. J. Cancer Prev. – volume: 11 start-page: 2579 year: 2010 end-page: 2588 ident: bib27 article-title: Biological evaluation and structural determinants of p38alpha mitogen-activated-protein kinase and c-Jun-N-terminal kinase 3 inhibition by flavonoids publication-title: Chembiochem – volume: 95 start-page: 180 year: 2016 end-page: 189 ident: bib58 article-title: Luteolin inhibits viral-induced inflammatory response in RAW264.7 cells via suppression of STAT1/3 dependent NF-kappaB and activation of HO-1 publication-title: Free Radic. Biol. Med. – volume: 745 start-page: 59 year: 2014 end-page: 68 ident: bib99 article-title: Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells publication-title: Eur. J. Pharmacol. – volume: 2016 start-page: 3475356 year: 2016 ident: bib17 article-title: Hydroalcoholic extract from inflorescences of publication-title: Evid. Based Complement. Altern. Med. – volume: 14 start-page: 1993 year: 2017 end-page: 2000 ident: bib61 article-title: Luteolin induces apoptosis publication-title: Oncol. Lett. – volume: 4 start-page: 17 year: 2014 end-page: 23 ident: bib67 article-title: Luteolin isolate from the methanol extract identified as the single-carbon compound responsible for broad antiulcer activities of publication-title: IOSR J. Pharm. – volume: 18 start-page: 557 year: 2015 end-page: 564 ident: bib90 article-title: Anti-inflammatory activity of butein and luteolin through suppression of NFkappaB activation and induction of heme oxygenase-1 publication-title: J. Med. Food – volume: 12 start-page: 4049 year: 2016 end-page: 4054 ident: bib102 article-title: Anti-inflammatory effects of luteolin on experimental autoimmune thyroiditis in mice publication-title: Exp. Ther. Med. – volume: 5 start-page: e647 year: 2015 ident: bib94 article-title: Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6 publication-title: Transl. Psychiatry – volume: 31 start-page: 831 year: 2010 end-page: 838 ident: bib54 article-title: Protective effects of luteolin against lipopolysaccharide-induced acute lung injury involves inhibition of MEK/ERK and PI3K/Akt pathways in neutrophils publication-title: Acta Pharmacol. Sin. – volume: 48 start-page: 2607 year: 2010 end-page: 2611 ident: bib12 article-title: Luteolin suppresses IL-1beta-induced cytokines and MMPs production via p38 MAPK, JNK, NF-kappaB and AP-1 activation in human synovial sarcoma cell line, SW982 publication-title: Food Chem. Toxicol. – volume: 28 start-page: 1383 year: 2014 end-page: 1391 ident: bib45 article-title: Luteolin inhibits hyperglycemia-induced proinflammatory cytokine production and its epigenetic mechanism in human monocytes publication-title: Phytother. Res. – volume: 63 start-page: 7693 year: 2015 end-page: 7699 ident: bib107 article-title: Absorption and metabolism of luteolin and its glycosides from the extract of publication-title: J. Agric. Food Chem. – volume: 22 start-page: 612 year: 2011 end-page: 624 ident: bib41 article-title: Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia publication-title: J. Nutr. Biochem. – volume: 41 start-page: 127 year: 2017 end-page: 133 ident: bib109 article-title: Ginsenoside Rc from publication-title: J. Ginseng Res. – volume: 201 start-page: 82 year: 2017 end-page: 90 ident: bib106 article-title: AKT-targeted anti-inflammatory activity of the methanol extract of publication-title: J. Ethnopharmacol. – volume: 35 start-page: 592 year: 2013 end-page: 602 ident: bib91 article-title: An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders publication-title: Clin. Ther. – volume: 11 start-page: 627 year: 2015 end-page: 635 ident: bib64 article-title: Luteolin is a bioflavonoid that attenuates adipocyte-derived inflammatory responses via suppression of nuclear factor-κB/mitogen-activated protein kinases pathway publication-title: Pharmacogn. Mag. – volume: 93 start-page: 506 year: 2011 end-page: 512 ident: bib21 article-title: Luteolin inhibits inflammatory response and improves insulin sensitivity in the endothelium publication-title: Biochimie – volume: 33 start-page: 10 year: 2012 end-page: 19 ident: bib42 article-title: Drug discovery from plant sources: an integrated approach publication-title: Ayu – volume: 1448 start-page: 71 year: 2012 end-page: 81 ident: bib76 article-title: Luteolin downregulates TLR4, TLR5, NF-kappaB and p-p38MAPK expression, upregulates the p-ERK expression, and protects rat brains against focal ischemia publication-title: Brain Res. – volume: 2012 start-page: 383608 year: 2012 ident: bib57 article-title: Luteolin suppresses inflammatory mediator expression by blocking the Akt/NFkappaB pathway in acute lung injury induced by lipopolysaccharide in mice publication-title: Evid. Based Complement. Altern. Med. – volume: 22 start-page: E334 year: 2017 ident: bib111 article-title: Luteolin inhibits fibrillary beta-amyloid1-40-induced inflammation in a human blood-brain barrier model by suppressing the p38 MAPK-mediated NF-kappaB signaling pathways publication-title: Molecules – volume: 4 start-page: 101 year: 2012 end-page: 112 ident: bib47 article-title: Standardization of herbal medicines - a review publication-title: Int. J. Biodivers. Conserv. – volume: 583 start-page: 3649 year: 2009 end-page: 3654 ident: bib3 article-title: Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation publication-title: FEBS Lett. – volume: 7 start-page: 423 year: 2013 end-page: 429 ident: bib73 article-title: Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-kappaB/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells publication-title: Nutr. Res. Pract. – volume: 1582 start-page: 237 year: 2014 end-page: 246 ident: bib104 article-title: Posttraumatic administration of luteolin protects mice from traumatic brain injury: implication of autophagy and inflammation publication-title: Brain Res. – volume: 3 start-page: 119 year: 2012 ident: bib4 article-title: Heme oxygenase-1, oxidation, inflammation, and atherosclerosis publication-title: Front. Pharmacol. – volume: 32 start-page: 659 year: 2014 end-page: 702 ident: bib28 article-title: Chemokines and chemokine receptors: positioning cells for host defense and immunity publication-title: Annu. Rev. Immunol. – volume: 38 start-page: 858 year: 2015 end-page: 870 ident: bib80 article-title: Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood publication-title: Inflammation – volume: 39 start-page: 113 year: 2017 end-page: 125 ident: bib103 article-title: Luteolin protects mice from severe acute pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects publication-title: Int. J. Mol. Med. – volume: 3 start-page: 154 year: 2013 end-page: 162 ident: bib110 article-title: Advances in studying of the pharmacological activities and structure–activity relationships of natural C-glycosylflavonoids publication-title: Acta Pharm. Sin. B. – volume: 5 start-page: 17645 year: 2015 ident: bib30 article-title: Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation publication-title: Sci. Rep. – volume: 133 start-page: 834 year: 2011 end-page: 842 ident: bib72 article-title: Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-κB modulation in RAW 264.7 cells publication-title: J. Ethnopharmacol. – volume: 25 start-page: 65 year: 2016 end-page: 76 ident: bib95 article-title: Molecular targets of luteolin in cancer publication-title: Eur. J. Cancer Prev. – volume: 660 start-page: 454 year: 2011 end-page: 459 ident: bib71 article-title: Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-kappaB translocation in LPS stimulated RAW 264.7 cells publication-title: Eur. J. Pharmacol. – volume: 21 start-page: 1321 year: 2016 ident: bib5 article-title: Anti-inflammatory activity of natural products publication-title: Molecules – volume: 124 start-page: 576 year: 2009 end-page: 580 ident: bib82 article-title: Anti-inflammatory mechanism of publication-title: J. Ethnopharmacol. – volume: 122 start-page: 15 year: 2015 end-page: 25 ident: bib108 article-title: Luteolin inhibits ROS-activated MAPK pathway in myocardial ischemia/reperfusion injury publication-title: Life Sci. – volume: 56 start-page: 296 year: 2008 end-page: 300 ident: bib113 article-title: Intestinal absorption of luteolin from peanut hull extract is more efficient than that from individual pure luteolin publication-title: J. Agric. Food Chem. – volume: 2014 start-page: 8 year: 2014 ident: bib49 article-title: Impact of wines and wine constituents on cyclooxygenase-1, cyclooxygenase-2, and 5-lipoxygenase catalytic activity publication-title: Mediat. Inflamm. – volume: 2015 start-page: 967053 year: 2015 ident: bib53 article-title: ATP-binding pocket-targeted suppression of Src and Syk by luteolin contributes to its anti-inflammatory action publication-title: Mediat. Inflamm. – volume: 37 start-page: 499 year: 2015 end-page: 507 ident: bib60 article-title: Chlorogenic acid and luteolin synergistically inhibit the proliferation of interleukin-1beta-induced fibroblast-like synoviocytes through regulating the activation of NF-kappaB and JAK/STAT-signaling pathways publication-title: Immunopharmacol. Immunotoxicol. – volume: 34 start-page: 620 year: 2011 end-page: 629 ident: bib62 article-title: Luteolin prevents LPS-induced TNF-α expression in cardiac myocytes through inhibiting NF-κB signaling pathway publication-title: Inflammation – year: 2003 ident: bib43 article-title: 75-Day Premarket Notification of New Dietary Ingredients [Memorandum] – volume: 25 start-page: 317 year: 2012 end-page: 323 ident: bib92 article-title: A case series of a luteolin formulation (NeuroProtek(R)) in children with autism spectrum disorders publication-title: Int. J. Immunopathol. Pharmacol. – volume: 77 start-page: 1391 year: 2009 end-page: 1400 ident: bib52 article-title: Suppression of the TRIF-dependent signaling pathway of Toll-like receptors by luteolin publication-title: Biochem. Pharmacol. – volume: 9 start-page: 31 year: 2009 end-page: 59 ident: bib59 article-title: Distribution and biological activities of the flavonoid luteolin publication-title: Mini Rev. Med. Chem. – volume: 74 start-page: 1667 year: 2008 end-page: 1677 ident: bib83 article-title: Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin publication-title: Planta Med. – volume: 34 start-page: 1032 year: 2011 end-page: 1036 ident: bib37 article-title: Luteolin-7-O-glucoside suppresses leukotriene C(4) production and degranulation by inhibiting the phosphorylation of mitogen activated protein kinases and phospholipase Cgamma1 in activated mouse bone marrow-derived mast cells publication-title: Biol. Pharm. Bull. – volume: 178 start-page: 222 year: 2016 end-page: 228 ident: bib16 article-title: Polyphenols from publication-title: J. Ethnopharmacol. – volume: 15 start-page: 252 year: 2007 end-page: 259 ident: bib85 article-title: Role of nitric oxide in inflammatory diseases publication-title: Inflammopharmacology – volume: 1 start-page: 52 year: 2011 end-page: 62 ident: bib15 article-title: Problems of reproducibility and efficacy of bioassays using crude extracts, with reference to publication-title: Phcog. Commun. – volume: 1843 start-page: 2563 year: 2014 end-page: 2582 ident: bib96 article-title: Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease publication-title: Biochim. Biophys. Acta – volume: 95 start-page: 180 year: 2016 ident: 10.1016/j.jep.2018.05.019_bib58 article-title: Luteolin inhibits viral-induced inflammatory response in RAW264.7 cells via suppression of STAT1/3 dependent NF-kappaB and activation of HO-1 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2016.03.019 – volume: 201 start-page: 82 year: 2017 ident: 10.1016/j.jep.2018.05.019_bib106 article-title: AKT-targeted anti-inflammatory activity of the methanol extract of Chrysanthemum indicum var. albescens publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2017.03.001 – volume: 15 start-page: 385 year: 2010 ident: 10.1016/j.jep.2018.05.019_bib40 article-title: Luteolin isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF-κB and MAPKs activation pathways in HMC-1 Cells publication-title: Molecules doi: 10.3390/molecules15010385 – volume: 2014 start-page: 8 year: 2014 ident: 10.1016/j.jep.2018.05.019_bib49 article-title: Impact of wines and wine constituents on cyclooxygenase-1, cyclooxygenase-2, and 5-lipoxygenase catalytic activity publication-title: Mediat. Inflamm. doi: 10.1155/2014/178931 – volume: 77 start-page: 1391 year: 2009 ident: 10.1016/j.jep.2018.05.019_bib52 article-title: Suppression of the TRIF-dependent signaling pathway of Toll-like receptors by luteolin publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2009.01.009 – volume: 18 start-page: 8083 year: 2013 ident: 10.1016/j.jep.2018.05.019_bib100 article-title: Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability publication-title: Molecules doi: 10.3390/molecules18078083 – volume: 21 start-page: 1321 year: 2016 ident: 10.1016/j.jep.2018.05.019_bib5 article-title: Anti-inflammatory activity of natural products publication-title: Molecules doi: 10.3390/molecules21101321 – volume: 1 start-page: a000034 year: 2009 ident: 10.1016/j.jep.2018.05.019_bib68 article-title: The NF-κB family of transcription factors and its regulation publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a000034 – volume: 152 start-page: 487 year: 2014 ident: 10.1016/j.jep.2018.05.019_bib35 article-title: Anti-inflammatory activities and mechanisms of Artemisia asiatica ethanol extract publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2014.01.030 – volume: 18 start-page: 557 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib90 article-title: Anti-inflammatory activity of butein and luteolin through suppression of NFkappaB activation and induction of heme oxygenase-1 publication-title: J. Med. Food doi: 10.1089/jmf.2014.3262 – volume: 49 start-page: 2660 year: 2011 ident: 10.1016/j.jep.2018.05.019_bib48 article-title: Luteolin attenuates the pulmonary inflammatory response involves abilities of antioxidation and inhibition of MAPK and NFkappaB pathways in mice with endotoxin-induced acute lung injury publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2011.07.012 – year: 2014 ident: 10.1016/j.jep.2018.05.019_bib65 – volume: 26 start-page: 293 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib36 article-title: Luteolin protects against vascular inflammation in mice and TNF-alpha-induced monocyte adhesion to endothelial cells via suppressing IKappaBalpha/NF-kappaB signaling pathway publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2014.11.008 – volume: 1843 start-page: 2563 year: 2014 ident: 10.1016/j.jep.2018.05.019_bib96 article-title: Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2014.05.014 – volume: 133 start-page: 834 year: 2011 ident: 10.1016/j.jep.2018.05.019_bib72 article-title: Taraxacum officinale Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-κB modulation in RAW 264.7 cells publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2010.11.015 – volume: 29 start-page: 767 year: 2009 ident: 10.1016/j.jep.2018.05.019_bib26 article-title: Recent developments in anti-inflammatory natural products publication-title: Med. Res. Rev. doi: 10.1002/med.20156 – volume: 11 start-page: 543 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib18 article-title: Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer publication-title: Bioinformation doi: 10.6026/97320630011543 – volume: 38 start-page: 858 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib80 article-title: Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood publication-title: Inflammation doi: 10.1007/s10753-014-9995-x – volume: 1592 start-page: 281 year: 2002 ident: 10.1016/j.jep.2018.05.019_bib32 article-title: Molecular basis of the cell specificity of cytokine action publication-title: Biochim. Biophys. Acta - Mol. Cell Res. doi: 10.1016/S0167-4889(02)00321-X – volume: 41 start-page: 127 year: 2017 ident: 10.1016/j.jep.2018.05.019_bib109 article-title: Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2 publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2016.02.001 – volume: 34 start-page: 620 year: 2011 ident: 10.1016/j.jep.2018.05.019_bib62 article-title: Luteolin prevents LPS-induced TNF-α expression in cardiac myocytes through inhibiting NF-κB signaling pathway publication-title: Inflammation doi: 10.1007/s10753-010-9271-7 – volume: 3 start-page: 154 year: 2013 ident: 10.1016/j.jep.2018.05.019_bib110 article-title: Advances in studying of the pharmacological activities and structure–activity relationships of natural C-glycosylflavonoids publication-title: Acta Pharm. Sin. B. doi: 10.1016/j.apsb.2013.04.004 – volume: 8 start-page: 387 year: 2017 ident: 10.1016/j.jep.2018.05.019_bib66 article-title: Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation publication-title: Food Funct. doi: 10.1039/C6FO01529H – volume: 3 start-page: 119 year: 2012 ident: 10.1016/j.jep.2018.05.019_bib4 article-title: Heme oxygenase-1, oxidation, inflammation, and atherosclerosis publication-title: Front. Pharmacol. doi: 10.3389/fphar.2012.00119 – volume: 116 start-page: 263 year: 2008 ident: 10.1016/j.jep.2018.05.019_bib6 article-title: Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa, Buddlejaceae publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2007.11.025 – volume: 14 start-page: 1993 year: 2017 ident: 10.1016/j.jep.2018.05.019_bib61 article-title: Luteolin induces apoptosis in vitro through suppressing the MAPK and PI3K signaling pathways in gastric cancer publication-title: Oncol. Lett. doi: 10.3892/ol.2017.6380 – volume: 29 start-page: 1078 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib105 article-title: Luteolin attenuate the D-galactose-induced renal damage by attenuation of oxidative stress and inflammation publication-title: Nat. Prod. Res. doi: 10.1080/14786419.2014.981181 – volume: 41 start-page: 386 year: 2017 ident: 10.1016/j.jep.2018.05.019_bib8 article-title: Comparison of anticancer activities of Korean red ginseng-derived fractions publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2016.11.001 – volume: 142 start-page: 845 year: 2012 ident: 10.1016/j.jep.2018.05.019_bib19 article-title: Pharmacological basis for use of Lychnophora trichocarpha in gouty arthritis: anti-hyperuricemic and anti-inflammatory effects of its extract, fraction and constituents publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2012.06.012 – volume: 19 start-page: 6941 year: 2014 ident: 10.1016/j.jep.2018.05.019_bib34 article-title: Anti-inflammatory and antipruritic effects of luteolin from Perilla (P. frutescens L.) leaves publication-title: Molecules doi: 10.3390/molecules19066941 – volume: 32 start-page: 659 year: 2014 ident: 10.1016/j.jep.2018.05.019_bib28 article-title: Chemokines and chemokine receptors: positioning cells for host defense and immunity publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032713-120145 – volume: 40 start-page: 437 year: 2016 ident: 10.1016/j.jep.2018.05.019_bib7 article-title: In vitro and in vivo anti-inflammatory activities of Korean Red Ginseng-derived components publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2016.08.003 – volume: 12 start-page: 4049 year: 2016 ident: 10.1016/j.jep.2018.05.019_bib102 article-title: Anti-inflammatory effects of luteolin on experimental autoimmune thyroiditis in mice publication-title: Exp. Ther. Med. doi: 10.3892/etm.2016.3854 – volume: 174 start-page: 322 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib2 article-title: Heme oxygenase 1-mediated novel anti-inflammatory activities of Salvia plebeia and its active components publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2015.08.028 – volume: 1 start-page: a001651 year: 2009 ident: 10.1016/j.jep.2018.05.019_bib51 article-title: The nuclear factor NF-κB pathway in inflammation publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a001651 – volume: 22 start-page: 612 year: 2011 ident: 10.1016/j.jep.2018.05.019_bib41 article-title: Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2010.01.011 – volume: 33 start-page: 10 year: 2012 ident: 10.1016/j.jep.2018.05.019_bib42 article-title: Drug discovery from plant sources: an integrated approach publication-title: Ayu doi: 10.4103/0974-8520.100295 – volume: 39 start-page: 113 year: 2017 ident: 10.1016/j.jep.2018.05.019_bib103 article-title: Luteolin protects mice from severe acute pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2016.2809 – volume: 205 start-page: 51 year: 2017 ident: 10.1016/j.jep.2018.05.019_bib1 article-title: Antioxidant and anti-inflammatory activities of the major phenolics from Zygophyllum simplex L publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2017.04.022 – volume: 2013 start-page: 485201 year: 2013 ident: 10.1016/j.jep.2018.05.019_bib97 article-title: Dietary flavonoids as therapeutics for preterm birth: luteolin and kaempferol suppress inflammation in human gestational tissues in vitro publication-title: Oxid. Med. Cell Longev. doi: 10.1155/2013/485201 – volume: 4 start-page: 101 year: 2012 ident: 10.1016/j.jep.2018.05.019_bib47 article-title: Standardization of herbal medicines - a review publication-title: Int. J. Biodivers. Conserv. doi: 10.5897/IJBC11.163 – volume: 21 start-page: 768 year: 2014 ident: 10.1016/j.jep.2018.05.019_bib101 article-title: Luteolin protects HUVECs from TNF-alpha-induced oxidative stress and inflammation via its effects on the Nox4/ROS-NF-kappaB and MAPK pathways publication-title: J. Atheroscler. Thromb. doi: 10.5551/jat.23697 – volume: 5 start-page: e647 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib94 article-title: Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6 publication-title: Transl. Psychiatry doi: 10.1038/tp.2015.142 – volume: 1648 start-page: 409 year: 2016 ident: 10.1016/j.jep.2018.05.019_bib74 article-title: PEA and luteolin synergistically reduce mast cell-mediated toxicity and elicit neuroprotection in cell-based models of brain ischemia publication-title: Brain Res. doi: 10.1016/j.brainres.2016.07.014 – volume: 7 start-page: 423 year: 2013 ident: 10.1016/j.jep.2018.05.019_bib73 article-title: Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-kappaB/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells publication-title: Nutr. Res. Pract. doi: 10.4162/nrp.2013.7.6.423 – volume: 5 start-page: 209 year: 2005 ident: 10.1016/j.jep.2018.05.019_bib46 article-title: Inhibitory effect of luteolin on TNF-alpha-induced IL-8 production in human colon epithelial cells publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2004.09.027 – volume: 17 start-page: 10774 year: 2012 ident: 10.1016/j.jep.2018.05.019_bib75 article-title: Aggregating behavior of phenolic compounds—a source of false bioassay results? publication-title: Molecules doi: 10.3390/molecules170910774 – volume: 60 start-page: 3879 year: 2017 ident: 10.1016/j.jep.2018.05.019_bib33 article-title: How frequently are pan-assay interference compounds active? Large-scale analysis of screening data reveals diverse activity profiles, low global hit frequency, and many consistently inactive compounds publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.7b00154 – volume: 35 start-page: 592 year: 2013 ident: 10.1016/j.jep.2018.05.019_bib91 article-title: An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders publication-title: Clin. Ther. doi: 10.1016/j.clinthera.2013.04.006 – volume: 8 start-page: 160 year: 2016 ident: 10.1016/j.jep.2018.05.019_bib10 article-title: The preoperative platelet-lymphocyte ratio versus neutrophil-lymphocyte ratio: which is better as a prognostic factor in oral squamous cell carcinoma? publication-title: Ther. Adv. Med. Oncol. doi: 10.1177/1758834016638019 – volume: 2016 start-page: 3475356 year: 2016 ident: 10.1016/j.jep.2018.05.019_bib17 article-title: Hydroalcoholic extract from inflorescences of Achyrocline satureioides (Compositae) ameliorates dextran sulphate sodium-induced colitis in mice by attenuation in the production of inflammatory cytokines and oxidative mediators publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2016/3475356 – volume: 7 start-page: 44 year: 2009 ident: 10.1016/j.jep.2018.05.019_bib84 article-title: Systems approach to inflammation resolution: identification of novel anti-inflammatory and pro-resolving mediators publication-title: J. Thromb. Haemost. doi: 10.1111/j.1538-7836.2009.03396.x – volume: 39 start-page: 667 year: 2011 ident: 10.1016/j.jep.2018.05.019_bib11 article-title: Role of catechol-O-methyltransferase in the disposition of luteolin in rats publication-title: Drug. Metab. Dispos. doi: 10.1124/dmd.110.037333 – volume: 78 start-page: 1381 year: 2016 ident: 10.1016/j.jep.2018.05.019_bib39 article-title: Therapeutic anti-inflammatory effects of luteolin on endotoxin-induced uveitis in Lewis rats publication-title: J. Vet. Med. Sci. doi: 10.1292/jvms.16-0196 – volume: 2015 start-page: 967053 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib53 article-title: ATP-binding pocket-targeted suppression of Src and Syk by luteolin contributes to its anti-inflammatory action publication-title: Mediat. Inflamm. doi: 10.1155/2015/967053 – volume: 33 start-page: 815 year: 2013 ident: 10.1016/j.jep.2018.05.019_bib23 article-title: Parsley: a review of ethnopharmacology, phytochemistry and biological activities publication-title: J. Tradit. Chin. Med. doi: 10.1016/S0254-6272(14)60018-2 – volume: 15 start-page: 5501 year: 2014 ident: 10.1016/j.jep.2018.05.019_bib70 article-title: Luteolin, a bioflavonoid inhibits colorectal cancer through modulation of multiple signaling pathways: a review publication-title: Asian Pac. J. Cancer Prev. doi: 10.7314/APJCP.2014.15.14.5501 – volume: 59 start-page: 379 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib20 article-title: Calcium signaling and cell fate: how can Ca2+ signals contribute to wrong decisions for chronic lymphocytic leukemic B lymphocyte outcome? publication-title: Int. J. Dev. Biol. doi: 10.1387/ijdb.150204om – volume: 37 start-page: 1354 year: 2014 ident: 10.1016/j.jep.2018.05.019_bib13 article-title: The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer's disease, anti-diabetic, and anti-inflammatory activities publication-title: Arch. Pharm. Res. doi: 10.1007/s12272-014-0351-3 – volume: 25 start-page: 317 year: 2012 ident: 10.1016/j.jep.2018.05.019_bib92 article-title: A case series of a luteolin formulation (NeuroProtek(R)) in children with autism spectrum disorders publication-title: Int. J. Immunopathol. Pharmacol. doi: 10.1177/039463201202500201 – volume: 22 start-page: E195 year: 2017 ident: 10.1016/j.jep.2018.05.019_bib114 article-title: Flavonoids from Agrimonia pilosa Ledeb: free radical scavenging and DNA oxidative damage protection activities and analysis of bioactivity-structure relationship based on molecular and electronic structures publication-title: Molecules doi: 10.3390/molecules22030195 – volume: 1448 start-page: 71 year: 2012 ident: 10.1016/j.jep.2018.05.019_bib76 article-title: Luteolin downregulates TLR4, TLR5, NF-kappaB and p-p38MAPK expression, upregulates the p-ERK expression, and protects rat brains against focal ischemia publication-title: Brain Res. doi: 10.1016/j.brainres.2012.02.003 – volume: 660 start-page: 454 year: 2011 ident: 10.1016/j.jep.2018.05.019_bib71 article-title: Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-kappaB translocation in LPS stimulated RAW 264.7 cells publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2011.04.007 – volume: 42 start-page: 37 year: 2017 ident: 10.1016/j.jep.2018.05.019_bib31 article-title: Two dietary polyphenols, fisetin and luteolin, reduce inflammation but augment DNA damage-induced toxicity in human RPE cells publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2016.12.014 – volume: 9 start-page: 31 year: 2009 ident: 10.1016/j.jep.2018.05.019_bib59 article-title: Distribution and biological activities of the flavonoid luteolin publication-title: Mini Rev. Med. Chem. doi: 10.2174/138955709787001712 – volume: 25 start-page: 65 year: 2016 ident: 10.1016/j.jep.2018.05.019_bib95 article-title: Molecular targets of luteolin in cancer publication-title: Eur. J. Cancer Prev. doi: 10.1097/CEJ.0000000000000128 – volume: 81 start-page: H1320 year: 2016 ident: 10.1016/j.jep.2018.05.019_bib25 article-title: Enhanced anti-inflammatory activities by the combination of luteolin and tangeretin publication-title: J. Food Sci. doi: 10.1111/1750-3841.13300 – volume: 4 start-page: 68 year: 2013 ident: 10.1016/j.jep.2018.05.019_bib56 article-title: HMGB1: the central cytokine for all lymphoid cells publication-title: Front Immunol. doi: 10.3389/fimmu.2013.00068 – volume: 47 start-page: 740 year: 2009 ident: 10.1016/j.jep.2018.05.019_bib78 article-title: Antinociceptive and anti-inflammatory effects of isolated fractions from Apium graveolens seeds in mice publication-title: Pharm. Biol. doi: 10.1080/13880200902939283 – volume: 178 start-page: 222 year: 2016 ident: 10.1016/j.jep.2018.05.019_bib16 article-title: Polyphenols from Cymbopogon citratus leaves as topical anti-inflammatory agents publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2015.12.016 – volume: 310 start-page: 115 year: 2013 ident: 10.1016/j.jep.2018.05.019_bib22 article-title: Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney publication-title: Toxicology doi: 10.1016/j.tox.2013.05.015 – volume: 31 start-page: 831 year: 2010 ident: 10.1016/j.jep.2018.05.019_bib54 article-title: Protective effects of luteolin against lipopolysaccharide-induced acute lung injury involves inhibition of MEK/ERK and PI3K/Akt pathways in neutrophils publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2010.62 – volume: 745 start-page: 59 year: 2014 ident: 10.1016/j.jep.2018.05.019_bib99 article-title: Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2014.09.046 – volume: 124 start-page: 576 year: 2009 ident: 10.1016/j.jep.2018.05.019_bib82 article-title: Anti-inflammatory mechanism of Kaempferia parviflora in murine macrophage cells (RAW 264.7) and in experimental animals publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2009.04.059 – volume: 74 start-page: 1667 year: 2008 ident: 10.1016/j.jep.2018.05.019_bib83 article-title: Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin publication-title: Planta Med. doi: 10.1055/s-0028-1088314 – volume: 8 start-page: 28481 year: 2017 ident: 10.1016/j.jep.2018.05.019_bib29 article-title: Luteolin reduces inflammation in Staphylococcus aureus-induced mastitis by inhibiting NF-κB activation and MMPs expression publication-title: Oncotarget doi: 10.18632/oncotarget.16092 – volume: 50 start-page: 2171 year: 2012 ident: 10.1016/j.jep.2018.05.019_bib38 article-title: Anti-inflammatory activity of Korean thistle Cirsium maackii and its major flavonoid, luteolin 5-O-glucoside publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2012.04.011 – volume: 27 start-page: 384 year: 2013 ident: 10.1016/j.jep.2018.05.019_bib24 article-title: Anti-Inflammatory sesquiterpene lactones from Lychnophora trichocarpha Spreng. (Brazilian arnica) publication-title: Phytother. Res. doi: 10.1002/ptr.4736 – volume: 8 start-page: e2612 year: 2017 ident: 10.1016/j.jep.2018.05.019_bib89 article-title: Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1 publication-title: Cell Death. Dis. doi: 10.1038/cddis.2017.38 – volume: 121 start-page: 329 year: 2011 ident: 10.1016/j.jep.2018.05.019_bib115 article-title: Luteolin inhibits microglial inflammation and improves neuron survival against inflammation publication-title: Int. J. Neurosci. doi: 10.3109/00207454.2011.569040 – volume: 89 start-page: 1859 year: 2011 ident: 10.1016/j.jep.2018.05.019_bib112 article-title: Luteolin protects against reactive oxygen species-mediated cell death induced by zinc toxicity via the PI3K-Akt-NF-kappaB-ERK-dependent pathway publication-title: J. Neurosci. Res. doi: 10.1002/jnr.22714 – volume: 34 start-page: 1032 year: 2011 ident: 10.1016/j.jep.2018.05.019_bib37 article-title: Luteolin-7-O-glucoside suppresses leukotriene C(4) production and degranulation by inhibiting the phosphorylation of mitogen activated protein kinases and phospholipase Cgamma1 in activated mouse bone marrow-derived mast cells publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.34.1032 – volume: 7 start-page: e39468 year: 2012 ident: 10.1016/j.jep.2018.05.019_bib63 article-title: Evidence for cognitive impairment in mastocytosis: prevalence, features and correlations to depression publication-title: PLoS One doi: 10.1371/journal.pone.0039468 – volume: 5 start-page: 17645 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib30 article-title: Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation publication-title: Sci. Rep. doi: 10.1038/srep17645 – volume: 48 start-page: 2607 year: 2010 ident: 10.1016/j.jep.2018.05.019_bib12 article-title: Luteolin suppresses IL-1beta-induced cytokines and MMPs production via p38 MAPK, JNK, NF-kappaB and AP-1 activation in human synovial sarcoma cell line, SW982 publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2010.06.029 – volume: 2012 start-page: 383608 year: 2012 ident: 10.1016/j.jep.2018.05.019_bib57 article-title: Luteolin suppresses inflammatory mediator expression by blocking the Akt/NFkappaB pathway in acute lung injury induced by lipopolysaccharide in mice publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2012/383608 – volume: 1582 start-page: 237 year: 2014 ident: 10.1016/j.jep.2018.05.019_bib104 article-title: Posttraumatic administration of luteolin protects mice from traumatic brain injury: implication of autophagy and inflammation publication-title: Brain Res. doi: 10.1016/j.brainres.2014.07.042 – volume: 122 start-page: 15 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib108 article-title: Luteolin inhibits ROS-activated MAPK pathway in myocardial ischemia/reperfusion injury publication-title: Life Sci. doi: 10.1016/j.lfs.2014.11.014 – volume: 7 start-page: e2344 year: 2016 ident: 10.1016/j.jep.2018.05.019_bib69 article-title: Luteolin-7-glucoside inhibits IL-22/STAT3 pathway, reducing proliferation, acanthosis, and inflammation in keratinocytes and in mouse psoriatic model publication-title: Cell Death. Dis. doi: 10.1038/cddis.2016.201 – volume: 198 start-page: 399 year: 2017 ident: 10.1016/j.jep.2018.05.019_bib87 article-title: New aspects on the hepatoprotective potential associated with the antioxidant, hypocholesterolemic and anti-inflammatory activities of Vernonia condensata Baker publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2017.01.039 – volume: 63 start-page: 7693 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib107 article-title: Absorption and metabolism of luteolin and its glycosides from the extract of Chrysanthemum morifolium flowers in rats and Caco-2 cells publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.5b00232 – volume: 28 start-page: 1383 year: 2014 ident: 10.1016/j.jep.2018.05.019_bib45 article-title: Luteolin inhibits hyperglycemia-induced proinflammatory cytokine production and its epigenetic mechanism in human monocytes publication-title: Phytother. Res. doi: 10.1002/ptr.5141 – volume: 10 issue: Suppl 1 year: 2011 ident: 10.1016/j.jep.2018.05.019_bib79 article-title: Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions publication-title: Malar. J. – volume: 4 start-page: 124 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib77 article-title: Inhibition of diethylnitrosamine-initiated alcohol-promoted hepatic inflammation and precancerous lesions by flavonoid luteolin is associated with increased sirtuin 1 activity in mice publication-title: Hepatobiliary Surg. Nutr. – volume: 26 start-page: 1156 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib98 article-title: GRID and docking analyses reveal a molecular basis for flavonoid inhibition of Src family kinase activity publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2015.05.004 – volume: 155 start-page: 185 year: 2014 ident: 10.1016/j.jep.2018.05.019_bib44 article-title: Syk/Src-targeted anti-inflammatory activity of Codariocalyx motorius ethanolic extract publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2014.05.013 – volume: 11 start-page: 627 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib64 article-title: Luteolin is a bioflavonoid that attenuates adipocyte-derived inflammatory responses via suppression of nuclear factor-κB/mitogen-activated protein kinases pathway publication-title: Pharmacogn. Mag. doi: 10.4103/0973-1296.160470 – volume: 443 start-page: 326 year: 2014 ident: 10.1016/j.jep.2018.05.019_bib9 article-title: Luteolin exhibits anti-inflammatory effects by blocking the activity of heat shock protein 90 in macrophages publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2013.11.122 – volume: 67 start-page: 581 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib55 article-title: Luteolin 8-C-beta-fucopyranoside downregulates IL-6 expression by inhibiting MAPKs and the NF-kappaB signaling pathway in human monocytic cells publication-title: Pharmacol. Rep. doi: 10.1016/j.pharep.2014.12.016 – volume: 22 start-page: E334 issue: 3 year: 2017 ident: 10.1016/j.jep.2018.05.019_bib111 article-title: Luteolin inhibits fibrillary beta-amyloid1-40-induced inflammation in a human blood-brain barrier model by suppressing the p38 MAPK-mediated NF-kappaB signaling pathways publication-title: Molecules doi: 10.3390/molecules22030334 – volume: 154 start-page: 400 year: 2014 ident: 10.1016/j.jep.2018.05.019_bib93 article-title: Characterisation of polyphenolic compounds in Clerodendrum petasites S. Moore and their potential for topical delivery through the skin publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2014.04.021 – year: 2003 ident: 10.1016/j.jep.2018.05.019_bib43 – volume: 226 start-page: 82 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib86 article-title: Anti-arthritic activity of luteolin in Freund's complete adjuvant-induced arthritis in rats by suppressing P2×4 pathway publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2014.10.031 – volume: 56 start-page: 296 year: 2008 ident: 10.1016/j.jep.2018.05.019_bib113 article-title: Intestinal absorption of luteolin from peanut hull extract is more efficient than that from individual pure luteolin publication-title: J. Agric. Food Chem. doi: 10.1021/jf072612+ – volume: 11 start-page: 2579 year: 2010 ident: 10.1016/j.jep.2018.05.019_bib27 article-title: Biological evaluation and structural determinants of p38alpha mitogen-activated-protein kinase and c-Jun-N-terminal kinase 3 inhibition by flavonoids publication-title: Chembiochem doi: 10.1002/cbic.201000487 – volume: 2011 start-page: 6 year: 2011 ident: 10.1016/j.jep.2018.05.019_bib88 article-title: Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? publication-title: J. Signal. Transduct. doi: 10.1155/2011/792639 – volume: 61 start-page: 275 year: 2010 ident: 10.1016/j.jep.2018.05.019_bib81 article-title: Effects of lycopene, indole-3-carbinol, and luteolin on nitric oxide production and iNOS expression are organ-specific in rats publication-title: Arh Hig Rada Toksikol. doi: 10.2478/10004-1254-61-2010-2012 – volume: 1853 start-page: 126 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib50 article-title: Biphasic effects of luteolin on interleukin-1beta-induced cyclooxygenase-2 expression in glioblastoma cells publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2014.10.010 – volume: 37 start-page: 499 year: 2015 ident: 10.1016/j.jep.2018.05.019_bib60 article-title: Chlorogenic acid and luteolin synergistically inhibit the proliferation of interleukin-1beta-induced fibroblast-like synoviocytes through regulating the activation of NF-kappaB and JAK/STAT-signaling pathways publication-title: Immunopharmacol. Immunotoxicol. doi: 10.3109/08923973.2015.1095763 – volume: 583 start-page: 3649 year: 2009 ident: 10.1016/j.jep.2018.05.019_bib3 article-title: Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation publication-title: FEBS Lett. doi: 10.1016/j.febslet.2009.10.045 – volume: 1 start-page: 52 year: 2011 ident: 10.1016/j.jep.2018.05.019_bib15 article-title: Problems of reproducibility and efficacy of bioassays using crude extracts, with reference to Aloe vera publication-title: Phcog. Commun. doi: 10.5530/pc.2011.1.3 – volume: 4 start-page: 17 year: 2014 ident: 10.1016/j.jep.2018.05.019_bib67 article-title: Luteolin isolate from the methanol extract identified as the single-carbon compound responsible for broad antiulcer activities of Cassia singueana Leaves publication-title: IOSR J. Pharm. – volume: 41 start-page: 503 year: 2017 ident: 10.1016/j.jep.2018.05.019_bib14 article-title: Chronic saponin treatment attenuates damage to the pancreas in chronic alcohol-treated diabetic rats publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2016.09.002 – volume: 93 start-page: 506 year: 2011 ident: 10.1016/j.jep.2018.05.019_bib21 article-title: Luteolin inhibits inflammatory response and improves insulin sensitivity in the endothelium publication-title: Biochimie doi: 10.1016/j.biochi.2010.11.002 – volume: 15 start-page: 252 year: 2007 ident: 10.1016/j.jep.2018.05.019_bib85 article-title: Role of nitric oxide in inflammatory diseases publication-title: Inflammopharmacology doi: 10.1007/s10787-007-0013-x |
SSID | ssj0007140 |
Score | 2.681958 |
SecondaryResourceType | review_article |
Snippet | Luteolin (3′, 4′, 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used... Luteolin (3', 4', 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used... Ethnopharmacological relevance Luteolin (3â², 4â², 5, 7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 342 |
SubjectTerms | anti-inflammatory activity clinical trials Flavonoid Inflammatory diseases Inflammatory signaling Luteolin medicinal plants mitogen-activated protein kinase signal transduction therapeutics traditional medicine transactivators transcription (genetics) transcription factor NF-kappa B |
Title | Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies |
URI | https://dx.doi.org/10.1016/j.jep.2018.05.019 https://www.ncbi.nlm.nih.gov/pubmed/29801717 https://www.proquest.com/docview/2045283972 https://www.proquest.com/docview/2153606047 https://www.proquest.com/docview/2186136881 |
Volume | 225 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhufRS-u72ERQoOZRV17JlPXJbQsOmhRBoAoEehCzJ4JB4Q9YJ5NLf3hnLztJD9tCbJI9A1nzSjNDMJ0K-uNpo7wRnHj4zUdWcmSoYpgpeeMVz6XwfIHsiF-fix0V5sUUOx1wYDKsc9v60p_e79dAyG2ZzdtM0s18ZUqGDQeSqKAQADzPYhUKUf_uzDvNQKSkShRlKjzebfYzXZUTKSq4Tead5yjY95Xv2NujoBXk-OI90nsb3kmzF9hXZP03s0w9TerZOplpN6T49XfNSP7wmv-dt1zBAFIDgur9cp0M0B13WFBAY8QGfAzqnKZ8FW5uW3jfd7XKaSvdQcG3Ayqq5AhDRVYpDfEPOj76fHS7Y8LYC80KXHYNzAheuDKUM4PCFos6LmIlQV7qWUYuqqEou6zw47kwMtfM6qNxxbXzpeZC-eEu222Ub3xNqpNMOTiWZDE5koay8gYXtDDhi4GBEPyHZOKvWD8Tj-P7FlR0jzC4tKMKiImxWWlDEhHx97HKTWDc2CYtRVfYf6FiwCpu67Y1qtbCk8J7EtXF5t7LI0A9el1H5BhmwFBKJh9QmGQ3OktSaT8i7hJvHv8mNRqYi9eH_Bv-RPMMaGtFcfyLb3e1d_AzeUVft9vDfJTvz45-Lk7_RCg5B |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFlff2AUaCHtCGjR3HsZE4rIBqS0tVia1UiYPr2I6UqmSrJi3aC3-qf5BxnHTFoXtA6i3xI3I845nP8vgbhN7qQgqjGYkMVEcsL0gkcyujLCGJyQjl2rQBsgd8csS-HafHK-i6vwvjwyo72x9semutu5JRN5uj87Ic_Yg9FTo4RJIlCQPF6yIr99z8N-zb6k-7X0DI7yjd-Tr9PIm61AKRYSJtIoDJhOnUptwC3rFJQRMXM1vkouBOsDzJU8ILajXR0tlCG2EzqomQJjXEcpPAd--h-wzMhU-b8OHPIq4kC7cw_egiP7z-KLUNKjt1niOTiMAWKm9zhreB3dbp7ayhRx1axeMwIY_RiqueoO3DQHc9H-Lp4vZWPcTb-HBBhD1_in6Oq6aMQIVB6361p_m4Cx_BswKDyjufMegjHuNwgcaXlhW-KpuL2TA8XcGDrqx_qcsz0Fpch8DHZ-joTmb8OVqtZpV7ibDkWmjYBsXcahbbNDcSLImWgPwA0TgzQHE_q8p0TOc-4caZ6kPaThUIQnlBqDhVIIgBen_T5TzQfCxrzHpRqX90VYEbWtbtTS9WBWvYH8zoys0ua-VTAgDMkxld0gZcE_dMR9myNgLQGReCDNCLoDc3f0Ol8NRI2fr_Df41ejCZft9X-7sHexvooa_xHpyKTbTaXFy6LYBmTf6qXQoYndz12vsLo5VLMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-inflammatory+effects+of+luteolin%3A+A+review+of+in+vitro%2C+in+vivo%2C+and+in+silico+studies&rft.jtitle=Journal+of+ethnopharmacology&rft.au=Aziz%2C+Nur&rft.au=Kim%2C+Mi-Yeon&rft.au=Cho%2C+Jae+Youl&rft.date=2018-10-28&rft.pub=Elsevier+B.V&rft.issn=0378-8741&rft.eissn=1872-7573&rft.volume=225&rft.spage=342&rft.epage=358&rft_id=info:doi/10.1016%2Fj.jep.2018.05.019&rft.externalDocID=S0378874117334578 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-8741&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-8741&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-8741&client=summon |