Directed crystalline symmetry transformation of blue-phase liquid crystals by reverse electrostriction

Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transit...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 7038 - 10
Main Authors Lin, Tsung-Hsien, Guo, Duan-Yi, Chen, Chun-Wei, Feng, Ting-Mao, Zeng, Wen-Xin, Chen, Po-Chang, Wu, Liang-Ying, Guo, Wen-Ming, Chang, Li-Min, Jau, Hung-Chang, Wang, Chun-Ta, Bunning, Timothy J., Khoo, Iam Choon
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.08.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials. Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications but face fabrication limitations for large monocrystalline structures. The authors report a method to rapidly form large-area monocrystalline BPLCs with various symmetries and tunable properties through an application of electric fields and temperature control.
AbstractList Abstract Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials.
Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials.Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications but face fabrication limitations for large monocrystalline structures. The authors report a method to rapidly form large-area monocrystalline BPLCs with various symmetries and tunable properties through an application of electric fields and temperature control.
Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials.
Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials.Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials.
Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials. Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications but face fabrication limitations for large monocrystalline structures. The authors report a method to rapidly form large-area monocrystalline BPLCs with various symmetries and tunable properties through an application of electric fields and temperature control.
ArticleNumber 7038
Author Chen, Po-Chang
Khoo, Iam Choon
Zeng, Wen-Xin
Wang, Chun-Ta
Guo, Duan-Yi
Feng, Ting-Mao
Wu, Liang-Ying
Jau, Hung-Chang
Chang, Li-Min
Guo, Wen-Ming
Chen, Chun-Wei
Bunning, Timothy J.
Lin, Tsung-Hsien
Author_xml – sequence: 1
  givenname: Tsung-Hsien
  orcidid: 0000-0003-0101-5637
  surname: Lin
  fullname: Lin, Tsung-Hsien
  email: jameslin@mail.nsysu.edu.tw
  organization: Department of Photonics, National Sun Yat-sen University
– sequence: 2
  givenname: Duan-Yi
  surname: Guo
  fullname: Guo, Duan-Yi
  organization: Department of Photonics, National Sun Yat-sen University
– sequence: 3
  givenname: Chun-Wei
  orcidid: 0000-0002-2020-5332
  surname: Chen
  fullname: Chen, Chun-Wei
  organization: Edward L. Ginzton Laboratory, Stanford University
– sequence: 4
  givenname: Ting-Mao
  orcidid: 0000-0002-1228-0017
  surname: Feng
  fullname: Feng, Ting-Mao
  organization: Department of Photonics, National Sun Yat-sen University
– sequence: 5
  givenname: Wen-Xin
  surname: Zeng
  fullname: Zeng, Wen-Xin
  organization: Department of Photonics, National Sun Yat-sen University
– sequence: 6
  givenname: Po-Chang
  surname: Chen
  fullname: Chen, Po-Chang
  organization: Department of Photonics, National Sun Yat-sen University
– sequence: 7
  givenname: Liang-Ying
  surname: Wu
  fullname: Wu, Liang-Ying
  organization: Department of Photonics, National Sun Yat-sen University
– sequence: 8
  givenname: Wen-Ming
  surname: Guo
  fullname: Guo, Wen-Ming
  organization: Department of Photonics, National Sun Yat-sen University
– sequence: 9
  givenname: Li-Min
  surname: Chang
  fullname: Chang, Li-Min
  organization: Department of Photonics, National Sun Yat-sen University
– sequence: 10
  givenname: Hung-Chang
  surname: Jau
  fullname: Jau, Hung-Chang
  organization: Department of Photonics, National Sun Yat-sen University
– sequence: 11
  givenname: Chun-Ta
  surname: Wang
  fullname: Wang, Chun-Ta
  organization: Department of Photonics, National Sun Yat-sen University
– sequence: 12
  givenname: Timothy J.
  surname: Bunning
  fullname: Bunning, Timothy J.
  organization: Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base
– sequence: 13
  givenname: Iam Choon
  orcidid: 0000-0002-2374-9589
  surname: Khoo
  fullname: Khoo, Iam Choon
  email: ick1@psu.edu
  organization: Department of Electrical Engineering, The Pennsylvania State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39147846$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u3SAQhVGVqknTvEAXlaVuunELHmzDskr_IkXqJnuE8ZByhc0N4Ep--3Cvk7TKImwYwXeOZua8JSdzmJGQ94x-ZhTEl8QZ7_qaNrxuGaei5q_IWUM5q1nfwMl_9Sm5SGlHywHJBOdvyGkpeC94d0bsNxfRZBwrE9eUtfduxiqt04Q5rlWOek42xElnF-Yq2GrwC9b7Pzph5d3d4p6EqRrWKuJfjOULfTGNIeXozEH5jry2BcGLh_uc3Pz4fnP5q77-_fPq8ut1bbhoc921rNVC9pz3WvcohRYwdpoZYYUcTCuZllKP0jAYBi1xwLZjaKgYKLSUwzm52mzHoHdqH92k46qCdur4EOKt0jE741GZxnBqwYKRmgPYQRrTdBJ6YTizY1e8Pm1e-xjuFkxZTS4Z9F7PGJakgEpoJQgpC_rxGboLS5zLoEcKKDTQF-rDA7UME45P7T2GUQCxAaZsLkW0yrh8XHyJwXnFqDpEr7boVYleHaNXh8GbZ9JH9xdFsIlSgedbjP_afkF1D8mUwXE
CitedBy_id crossref_primary_10_1002_adom_202402581
crossref_primary_10_1002_lpor_202401635
crossref_primary_10_1007_s12034_024_03388_w
crossref_primary_10_1002_adom_202402844
Cites_doi 10.1080/21680396.2018.1509387
10.1364/OE.24.010458
10.1002/adom.201800409
10.1038/srep44575
10.1364/OE.17.005265
10.1038/s41427-020-0225-8
10.1038/nmat3330
10.1126/sciadv.aay5986
10.1080/02678290903057390
10.1103/PhysRevLett.105.233909
10.1051/jphys:0198100420105300
10.1038/s41467-021-23631-w
10.1126/sciadv.adh9393
10.1364/OME.4.000960
10.1038/35013024
10.1103/RevModPhys.61.385
10.1038/35003523
10.1073/pnas.1711207114
10.1038/s41586-020-2718-6
10.1364/BOE.8.001712
10.1002/smsc.202100007
10.1038/am.2012.38
10.1002/adma.200502287
10.1039/C9TC04380B
10.1038/nmat1155
10.1039/b921576j
10.1038/s41598-020-67083-6
10.1126/science.289.5479.604
10.1038/s41467-021-21564-y
10.1002/1616-3028(200104)11:2<95::AID-ADFM95>3.0.CO;2-O
10.1103/PhysRevA.88.043837
10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
10.1038/35104529
10.1038/nature03932
10.1021/acs.chemrev.1c00761
10.1039/c0sm00979b
10.1103/PhysRevE.105.044707
10.1073/pnas.2021304118
10.1364/OE.26.028818
10.1038/s41467-017-00822-y
10.1051/jphys:0198900500190299100
10.1038/nature02575
10.1051/jphys:01986004701013900
10.1103/PhysRevE.94.042703
10.1039/C9TC02938A
10.1038/s43246-021-00146-x
10.1364/OE.19.025441
10.1002/adfm.201000134
10.1038/s41563-019-0512-3
10.1021/cm202632m
10.1039/D2SM00244B
10.1038/28343
10.1103/PhysRevB.56.7313
10.1038/ncomms15854
10.1038/nmat802
10.1103/PhysRevE.87.042506
10.1063/1.3318288
10.5281/zenodo.12792108
10.1063/1.1842855
10.3389/frsfm.2022.1011618
10.1063/1.2822844
10.5281/zenodo.12792301
10.1063/1.4803922
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-024-51408-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_c2c40f3f3c9a433fb9cc269378c41fd6
39147846
10_1038_s41467_024_51408_4
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c485t-6515a897447aa7e98a83d6a1c8f89bc591a99ad9c13bba9ebe561ec08b035043
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:04:54 EDT 2025
Tue Aug 05 10:22:15 EDT 2025
Wed Aug 13 04:55:06 EDT 2025
Mon Jul 21 05:40:54 EDT 2025
Tue Jul 01 02:37:28 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Fri Feb 21 02:37:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-6515a897447aa7e98a83d6a1c8f89bc591a99ad9c13bba9ebe561ec08b035043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1228-0017
0000-0003-0101-5637
0000-0002-2374-9589
0000-0002-2020-5332
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-51408-4
PMID 39147846
PQID 3093303237
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_c2c40f3f3c9a433fb9cc269378c41fd6
proquest_miscellaneous_3093593899
proquest_journals_3093303237
pubmed_primary_39147846
crossref_citationtrail_10_1038_s41467_024_51408_4
crossref_primary_10_1038_s41467_024_51408_4
springer_journals_10_1038_s41467_024_51408_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-15
PublicationDateYYYYMMDD 2024-08-15
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wright, Mermin (CR11) 1989; 61
Qi (CR5) 2004; 429
Campbell, Sharp, Harrison, Denning, Turberfield (CR3) 2000; 404
CR36
Blanco (CR32) 2000; 405
Zhou (CR34) 2012; 4
Oton, Netter, Nakano, D.-Katayama, Inoue (CR19) 2017; 7
Pierański, Cladis, Garel, Barbet-Massin (CR38) 1986; 47
Bisoyi, Li (CR27) 2022; 122
Khanikaev, Steel (CR42) 2009; 17
Yang (CR22) 2019; 7
Liu (CR58) 2016; 24
Yoshida (CR16) 2014; 4
Castles (CR30) 2012; 11
Vlasov, Bo, Sturm, Norris (CR9) 2001; 414
Rey (CR12) 2010; 6
Hosein, Lee, Liddell (CR43) 2010; 20
He (CR10) 2020; 585
King (CR6) 2006; 18
Bagchi, Emeršič, Martínez-González, de Pablo, Nealey (CR28) 2023; 9
Anderson, Giapis (CR39) 1997; 56
Manda (CR24) 2020; 12
Coles, Pivnenko (CR29) 2005; 436
Tiribocchi, Gonnella, Marenduzzo, Orlandini (CR53) 2011; 7
CR41
CR40
Lowe, Abbott (CR15) 2012; 24
Yannopapas (CR45) 2013; 88
Liu (CR56) 2021; 12
Li (CR54) 2017; 114
Cho, Takahashi, Fukuda, Yoshida, Ozaki (CR37) 2021; 2
Chen, Wang, Yu, Lin (CR14) 2011; 19
Lin (CR1) 1998; 394
Fukuda, Žumer (CR49) 2013; 87
Guo (CR47) 2020; 19
CR13
Chen (CR35) 2017; 8
Hu (CR31) 2021; 12
Ozin, Yang (CR8) 2001; 11
CR50
Liu (CR59) 2018; 26
Aoki (CR4) 2003; 2
Yamashita, Fukuda (CR57) 2022; 105
Deubel (CR33) 2004; 3
Lee, Chang, Lee (CR17) 2017; 8
Chen, Khoo (CR61) 2021; 118
Martínez-González (CR18) 2017; 8
Wang (CR20) 2018; 6
Xia, Gates, Yin, Lu (CR7) 2000; 12
Otón (CR25) 2020; 10
Heppke, Jérôme, Kitzerow, Pieranski (CR46) 1989; 50
Zhang (CR48) 2022; 18
Noda, Tomoda, Yamamoto, Chutinan (CR2) 2000; 289
Yang (CR23) 2019; 7
Yoshida (CR60) 2016; 94
Jin (CR55) 2020; 6
CR63
Pieranski, Dubois-Violette, Rothen, Strzelecki (CR51) 1981; 42
CR62
Alexander, Yeomans (CR52) 2009; 36
Kontogeorgos (CR44) 2010; 105
Yang, Wang, Yang, Li (CR26) 2021; 1
Khoo (CR21) 2018; 6
SY Lin (51408_CR1) 1998; 394
A Tiribocchi (51408_CR53) 2011; 7
A Yamashita (51408_CR57) 2022; 105
M Qi (51408_CR5) 2004; 429
J-i Fukuda (51408_CR49) 2013; 87
CM Anderson (51408_CR39) 1997; 56
AD Rey (51408_CR12) 2010; 6
Y Liu (51408_CR58) 2016; 24
51408_CR13
GA Ozin (51408_CR8) 2001; 11
H Yoshida (51408_CR16) 2014; 4
51408_CR50
X Li (51408_CR54) 2017; 114
P Pierański (51408_CR38) 1986; 47
H Yoshida (51408_CR60) 2016; 94
YA Vlasov (51408_CR9) 2001; 414
A Blanco (51408_CR32) 2000; 405
JA Martínez-González (51408_CR18) 2017; 8
J Yang (51408_CR23) 2019; 7
K Bagchi (51408_CR28) 2023; 9
F Castles (51408_CR30) 2012; 11
S Noda (51408_CR2) 2000; 289
GP Alexander (51408_CR52) 2009; 36
HK Bisoyi (51408_CR27) 2022; 122
A Kontogeorgos (51408_CR44) 2010; 105
Y Zhang (51408_CR48) 2022; 18
J Yang (51408_CR22) 2019; 7
C-W Chen (51408_CR35) 2017; 8
V Yannopapas (51408_CR45) 2013; 88
51408_CR63
AB Khanikaev (51408_CR42) 2009; 17
51408_CR62
ID Hosein (51408_CR43) 2010; 20
G Heppke (51408_CR46) 1989; 50
HM Jin (51408_CR55) 2020; 6
R Manda (51408_CR24) 2020; 12
K Aoki (51408_CR4) 2003; 2
M Campbell (51408_CR3) 2000; 404
M Deubel (51408_CR33) 2004; 3
IC Khoo (51408_CR21) 2018; 6
M-J Lee (51408_CR17) 2017; 8
51408_CR36
E Otón (51408_CR25) 2020; 10
J Zhou (51408_CR34) 2012; 4
M Wang (51408_CR20) 2018; 6
Y Liu (51408_CR59) 2018; 26
HJ Coles (51408_CR29) 2005; 436
DC Wright (51408_CR11) 1989; 61
AM Lowe (51408_CR15) 2012; 24
J Liu (51408_CR56) 2021; 12
Y-H Chen (51408_CR14) 2011; 19
C-W Chen (51408_CR61) 2021; 118
Y Xia (51408_CR7) 2000; 12
S Cho (51408_CR37) 2021; 2
P Pieranski (51408_CR51) 1981; 42
E Oton (51408_CR19) 2017; 7
51408_CR41
D-Y Guo (51408_CR47) 2020; 19
JS King (51408_CR6) 2006; 18
W Hu (51408_CR31) 2021; 12
51408_CR40
M He (51408_CR10) 2020; 585
Y Yang (51408_CR26) 2021; 1
References_xml – volume: 6
  start-page: 53
  year: 2018
  end-page: 77
  ident: CR21
  article-title: Cholesteric and blue-phase liquid photonic crystals for nonlinear optics and ultrafast laser pulse modulations
  publication-title: Liq. Cryst. Rev.
  doi: 10.1080/21680396.2018.1509387
– volume: 24
  start-page: 10458
  year: 2016
  end-page: 10465
  ident: CR58
  article-title: Ultrafast pulse compression, stretching-and-recompression using cholesteric liquid crystals
  publication-title: Opt. Express
  doi: 10.1364/OE.24.010458
– volume: 6
  start-page: 1800409
  year: 2018
  ident: CR20
  article-title: Bias-polarity dependent bidirectional modulation of photonic bandgap in a nanoengineered 3D blue phase polymer scaffold for tunable laser application
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800409
– volume: 7
  year: 2017
  ident: CR19
  article-title: Monodomain blue phase liquid crystal layers for phase modulation
  publication-title: Sci. Rep.
  doi: 10.1038/srep44575
– volume: 17
  start-page: 5265
  year: 2009
  end-page: 5272
  ident: CR42
  article-title: Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional devices
  publication-title: Opt. Express
  doi: 10.1364/OE.17.005265
– volume: 12
  year: 2020
  ident: CR24
  article-title: Electrically tunable photonic band gap structure in monodomain blue-phase liquid crystals
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-020-0225-8
– volume: 11
  start-page: 599
  year: 2012
  end-page: 603
  ident: CR30
  article-title: Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3330
– volume: 6
  start-page: eaay5986
  year: 2020
  ident: CR55
  article-title: Soft crystal martensites: an in situ resonant soft x-ray scattering study of a liquid crystal martensitic transformation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay5986
– volume: 36
  start-page: 1215
  year: 2009
  end-page: 1227
  ident: CR52
  article-title: Numerical results for the blue phases
  publication-title: Liq. Cryst.
  doi: 10.1080/02678290903057390
– volume: 105
  start-page: 233909
  year: 2010
  ident: CR44
  article-title: Inducing symmetry breaking in nanostructures: anisotropic stretch-tuning photonic crystals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.233909
– volume: 42
  start-page: 53
  year: 1981
  end-page: 60
  ident: CR51
  article-title: Geometry of Kossel lines in colloidal crystals
  publication-title: J. Phys. Fr.
  doi: 10.1051/jphys:0198100420105300
– volume: 12
  year: 2021
  ident: CR56
  article-title: Diffusionless transformation of soft cubic superstructure from amorphous to simple cubic and body-centered cubic phases
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23631-w
– volume: 9
  start-page: eadh9393
  year: 2023
  ident: CR28
  article-title: Functional soft materials from blue phase liquid crystals
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adh9393
– volume: 4
  start-page: 960
  year: 2014
  end-page: 968
  ident: CR16
  article-title: Secondary electro-optic effect in liquid crystalline cholesteric blue phases
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.4.000960
– volume: 405
  start-page: 437
  year: 2000
  end-page: 440
  ident: CR32
  article-title: Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres
  publication-title: Nature
  doi: 10.1038/35013024
– volume: 61
  start-page: 385
  year: 1989
  ident: CR11
  article-title: Crystalline liquids: the blue phases
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.61.385
– volume: 404
  start-page: 53
  year: 2000
  end-page: 56
  ident: CR3
  article-title: Fabrication of photonic crystals for the visible spectrum by holographic lithography
  publication-title: Nature
  doi: 10.1038/35003523
– volume: 114
  start-page: 10011
  year: 2017
  end-page: 10016
  ident: CR54
  article-title: Mesoscale martensitic transformation in single crystals of topological defects
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1711207114
– volume: 585
  start-page: 524
  year: 2020
  end-page: 529
  ident: CR10
  article-title: Colloidal diamond
  publication-title: Nature
  doi: 10.1038/s41586-020-2718-6
– volume: 8
  start-page: 1712
  year: 2017
  end-page: 1720
  ident: CR17
  article-title: Label-free protein sensing by employing blue phase liquid crystal
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.001712
– volume: 1
  start-page: 2100007
  year: 2021
  ident: CR26
  article-title: 3D chiral photonic nanostructures based on blue-phase liquid crystals
  publication-title: Small Sci.
  doi: 10.1002/smsc.202100007
– volume: 4
  start-page: e21
  year: 2012
  ident: CR34
  article-title: Large-area crack-free single-crystal photonic crystals via combined effects of polymerization-assisted assembly and flexible substrate
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2012.38
– volume: 18
  start-page: 1561
  year: 2006
  end-page: 1565
  ident: CR6
  article-title: Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200502287
– volume: 7
  start-page: 13352
  year: 2019
  end-page: 13366
  ident: CR22
  article-title: Liquid crystalline blue phase materials with three-dimensional nanostructures
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C9TC04380B
– ident: CR50
– volume: 3
  start-page: 444
  year: 2004
  end-page: 447
  ident: CR33
  article-title: Direct laser writing of three-dimensional photonic-crystal templates for telecommunications
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1155
– volume: 6
  start-page: 3402
  year: 2010
  end-page: 3429
  ident: CR12
  article-title: Liquid crystal models of biological materials and processes
  publication-title: Soft Matter
  doi: 10.1039/b921576j
– volume: 10
  year: 2020
  ident: CR25
  article-title: Orientation control of ideal blue phase photonic crystals
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-67083-6
– volume: 289
  start-page: 604
  year: 2000
  end-page: 606
  ident: CR2
  article-title: Full three-dimensional photonic bandgap crystals at near-infrared wavelengths
  publication-title: Science
  doi: 10.1126/science.289.5479.604
– volume: 12
  year: 2021
  ident: CR31
  article-title: Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21564-y
– ident: CR36
– volume: 11
  start-page: 95
  year: 2001
  end-page: 104
  ident: CR8
  article-title: The race for the photonic chip: colloidal crystal assembly in silicon wafers
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/1616-3028(200104)11:2<95::AID-ADFM95>3.0.CO;2-O
– volume: 88
  start-page: 043837
  year: 2013
  ident: CR45
  article-title: One-way photonic band gaps and optical isolation with three-dimensional photonic crystals of low symmetry
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.043837
– volume: 12
  start-page: 693
  year: 2000
  end-page: 713
  ident: CR7
  article-title: Monodispersed colloidal spheres: old materials with new applications
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
– volume: 414
  start-page: 289
  year: 2001
  end-page: 293
  ident: CR9
  article-title: On-chip natural assembly of silicon photonic bandgap crystals
  publication-title: Nature
  doi: 10.1038/35104529
– volume: 436
  start-page: 997
  year: 2005
  end-page: 1000
  ident: CR29
  article-title: Liquid crystal ‘blue phases’ with a wide temperature range
  publication-title: Nature
  doi: 10.1038/nature03932
– volume: 122
  start-page: 4887
  year: 2022
  end-page: 4926
  ident: CR27
  article-title: Liquid crystals: versatile self-organized smart soft materials
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00761
– volume: 7
  start-page: 3295
  year: 2011
  end-page: 3306
  ident: CR53
  article-title: Switching dynamics in cholesteric blue phases
  publication-title: Soft Matter
  doi: 10.1039/c0sm00979b
– volume: 105
  start-page: 044707
  year: 2022
  ident: CR57
  article-title: Structure of twin boundaries of cholesteric blue phase I
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.105.044707
– volume: 118
  start-page: e2021304118
  year: 2021
  ident: CR61
  article-title: Optical vector field rotation and switching with near-unity transmission by fully developed chiral photonic crystals
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2021304118
– volume: 26
  start-page: 28818
  year: 2018
  end-page: 28826
  ident: CR59
  article-title: Ultrafast switching of optical singularity eigenstates with compact integrable liquid crystal structures
  publication-title: Opt. Express
  doi: 10.1364/OE.26.028818
– volume: 8
  year: 2017
  ident: CR35
  article-title: Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00822-y
– volume: 50
  start-page: 2991
  year: 1989
  end-page: 2998
  ident: CR46
  article-title: Electrostriction of the cholesteric blue phases BPI and BPII in mixtures with positive dielectric anisotropy
  publication-title: J. Phys. Fr.
  doi: 10.1051/jphys:0198900500190299100
– volume: 429
  start-page: 538
  year: 2004
  end-page: 542
  ident: CR5
  article-title: A three-dimensional optical photonic crystal with designed point defects
  publication-title: Nature
  doi: 10.1038/nature02575
– volume: 47
  start-page: 139
  year: 1986
  end-page: 143
  ident: CR38
  article-title: Orientation of crystals of blue phases by electric fields
  publication-title: J. Phys. Fr.
  doi: 10.1051/jphys:01986004701013900
– volume: 94
  start-page: 042703
  year: 2016
  ident: CR60
  article-title: Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.042703
– volume: 7
  start-page: 9460
  year: 2019
  end-page: 9466
  ident: CR23
  article-title: Fabrication and photonic applications of large-domain blue phase films
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C9TC02938A
– volume: 2
  start-page: 39
  year: 2021
  ident: CR37
  article-title: Directed self-assembly of soft 3D photonic crystals for holograms with omnidirectional circular-polarization selectivity
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-021-00146-x
– volume: 19
  start-page: 25441
  year: 2011
  end-page: 25446
  ident: CR14
  article-title: Polarization independent Fabry-Pérot filter based on polymer-stabilized blue phase liquid crystals with fast response time
  publication-title: Opt. Express
  doi: 10.1364/OE.19.025441
– volume: 20
  start-page: 3085
  year: 2010
  end-page: 3091
  ident: CR43
  article-title: Dimer-based three-dimensional photonic crystals
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000134
– ident: CR40
– ident: CR63
– volume: 19
  start-page: 94
  year: 2020
  end-page: 101
  ident: CR47
  article-title: Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0512-3
– volume: 24
  start-page: 746
  year: 2012
  end-page: 758
  ident: CR15
  article-title: Liquid crystalline materials for biological applications
  publication-title: Chem. Mater.
  doi: 10.1021/cm202632m
– volume: 18
  start-page: 3328
  year: 2022
  end-page: 3334
  ident: CR48
  article-title: Three-dimensional lattice deformation of blue phase liquid crystals under electrostriction
  publication-title: Soft Matter
  doi: 10.1039/D2SM00244B
– volume: 394
  start-page: 251
  year: 1998
  end-page: 253
  ident: CR1
  article-title: A three-dimensional photonic crystal operating at infrared wavelengths
  publication-title: Nature
  doi: 10.1038/28343
– volume: 56
  start-page: 7313
  year: 1997
  ident: CR39
  article-title: Symmetry reduction in group 4mm photonic crystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.56.7313
– ident: CR13
– volume: 8
  year: 2017
  ident: CR18
  article-title: Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15854
– ident: CR41
– ident: CR62
– volume: 2
  start-page: 117
  year: 2003
  end-page: 121
  ident: CR4
  article-title: Microassembly of semiconductor three-dimensional photonic crystals
  publication-title: Nat. Mater.
  doi: 10.1038/nmat802
– volume: 87
  start-page: 042506
  year: 2013
  ident: CR49
  article-title: Field-induced dynamics and structures in a cholesteric-blue-phase cell
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.042506
– volume: 1
  start-page: 2100007
  year: 2021
  ident: 51408_CR26
  publication-title: Small Sci.
  doi: 10.1002/smsc.202100007
– volume: 94
  start-page: 042703
  year: 2016
  ident: 51408_CR60
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.042703
– volume: 4
  start-page: 960
  year: 2014
  ident: 51408_CR16
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.4.000960
– volume: 11
  start-page: 95
  year: 2001
  ident: 51408_CR8
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/1616-3028(200104)11:2<95::AID-ADFM95>3.0.CO;2-O
– volume: 122
  start-page: 4887
  year: 2022
  ident: 51408_CR27
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00761
– volume: 9
  start-page: eadh9393
  year: 2023
  ident: 51408_CR28
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adh9393
– volume: 7
  start-page: 13352
  year: 2019
  ident: 51408_CR22
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C9TC04380B
– volume: 7
  start-page: 3295
  year: 2011
  ident: 51408_CR53
  publication-title: Soft Matter
  doi: 10.1039/c0sm00979b
– volume: 20
  start-page: 3085
  year: 2010
  ident: 51408_CR43
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000134
– volume: 12
  year: 2021
  ident: 51408_CR56
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23631-w
– volume: 24
  start-page: 746
  year: 2012
  ident: 51408_CR15
  publication-title: Chem. Mater.
  doi: 10.1021/cm202632m
– volume: 11
  start-page: 599
  year: 2012
  ident: 51408_CR30
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3330
– volume: 19
  start-page: 25441
  year: 2011
  ident: 51408_CR14
  publication-title: Opt. Express
  doi: 10.1364/OE.19.025441
– volume: 6
  start-page: 53
  year: 2018
  ident: 51408_CR21
  publication-title: Liq. Cryst. Rev.
  doi: 10.1080/21680396.2018.1509387
– volume: 42
  start-page: 53
  year: 1981
  ident: 51408_CR51
  publication-title: J. Phys. Fr.
  doi: 10.1051/jphys:0198100420105300
– volume: 6
  start-page: 3402
  year: 2010
  ident: 51408_CR12
  publication-title: Soft Matter
  doi: 10.1039/b921576j
– ident: 51408_CR13
  doi: 10.1063/1.3318288
– volume: 8
  year: 2017
  ident: 51408_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00822-y
– volume: 26
  start-page: 28818
  year: 2018
  ident: 51408_CR59
  publication-title: Opt. Express
  doi: 10.1364/OE.26.028818
– ident: 51408_CR62
  doi: 10.5281/zenodo.12792108
– volume: 6
  start-page: 1800409
  year: 2018
  ident: 51408_CR20
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800409
– volume: 105
  start-page: 233909
  year: 2010
  ident: 51408_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.233909
– volume: 585
  start-page: 524
  year: 2020
  ident: 51408_CR10
  publication-title: Nature
  doi: 10.1038/s41586-020-2718-6
– volume: 436
  start-page: 997
  year: 2005
  ident: 51408_CR29
  publication-title: Nature
  doi: 10.1038/nature03932
– volume: 4
  start-page: e21
  year: 2012
  ident: 51408_CR34
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2012.38
– ident: 51408_CR40
  doi: 10.1063/1.1842855
– ident: 51408_CR50
  doi: 10.3389/frsfm.2022.1011618
– volume: 56
  start-page: 7313
  year: 1997
  ident: 51408_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.56.7313
– volume: 24
  start-page: 10458
  year: 2016
  ident: 51408_CR58
  publication-title: Opt. Express
  doi: 10.1364/OE.24.010458
– volume: 7
  year: 2017
  ident: 51408_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/srep44575
– volume: 36
  start-page: 1215
  year: 2009
  ident: 51408_CR52
  publication-title: Liq. Cryst.
  doi: 10.1080/02678290903057390
– volume: 289
  start-page: 604
  year: 2000
  ident: 51408_CR2
  publication-title: Science
  doi: 10.1126/science.289.5479.604
– volume: 8
  year: 2017
  ident: 51408_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15854
– volume: 118
  start-page: e2021304118
  year: 2021
  ident: 51408_CR61
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2021304118
– volume: 19
  start-page: 94
  year: 2020
  ident: 51408_CR47
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0512-3
– volume: 2
  start-page: 117
  year: 2003
  ident: 51408_CR4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat802
– volume: 10
  year: 2020
  ident: 51408_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-67083-6
– volume: 47
  start-page: 139
  year: 1986
  ident: 51408_CR38
  publication-title: J. Phys. Fr.
  doi: 10.1051/jphys:01986004701013900
– volume: 7
  start-page: 9460
  year: 2019
  ident: 51408_CR23
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C9TC02938A
– ident: 51408_CR41
  doi: 10.1063/1.2822844
– volume: 114
  start-page: 10011
  year: 2017
  ident: 51408_CR54
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1711207114
– volume: 405
  start-page: 437
  year: 2000
  ident: 51408_CR32
  publication-title: Nature
  doi: 10.1038/35013024
– volume: 6
  start-page: eaay5986
  year: 2020
  ident: 51408_CR55
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay5986
– volume: 429
  start-page: 538
  year: 2004
  ident: 51408_CR5
  publication-title: Nature
  doi: 10.1038/nature02575
– volume: 17
  start-page: 5265
  year: 2009
  ident: 51408_CR42
  publication-title: Opt. Express
  doi: 10.1364/OE.17.005265
– volume: 105
  start-page: 044707
  year: 2022
  ident: 51408_CR57
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.105.044707
– volume: 18
  start-page: 3328
  year: 2022
  ident: 51408_CR48
  publication-title: Soft Matter
  doi: 10.1039/D2SM00244B
– volume: 12
  start-page: 693
  year: 2000
  ident: 51408_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
– volume: 414
  start-page: 289
  year: 2001
  ident: 51408_CR9
  publication-title: Nature
  doi: 10.1038/35104529
– volume: 12
  year: 2021
  ident: 51408_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21564-y
– ident: 51408_CR63
  doi: 10.5281/zenodo.12792301
– volume: 88
  start-page: 043837
  year: 2013
  ident: 51408_CR45
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.043837
– volume: 2
  start-page: 39
  year: 2021
  ident: 51408_CR37
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-021-00146-x
– volume: 8
  start-page: 1712
  year: 2017
  ident: 51408_CR17
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.001712
– volume: 12
  year: 2020
  ident: 51408_CR24
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-020-0225-8
– volume: 87
  start-page: 042506
  year: 2013
  ident: 51408_CR49
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.042506
– volume: 3
  start-page: 444
  year: 2004
  ident: 51408_CR33
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1155
– volume: 61
  start-page: 385
  year: 1989
  ident: 51408_CR11
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.61.385
– volume: 404
  start-page: 53
  year: 2000
  ident: 51408_CR3
  publication-title: Nature
  doi: 10.1038/35003523
– volume: 394
  start-page: 251
  year: 1998
  ident: 51408_CR1
  publication-title: Nature
  doi: 10.1038/28343
– volume: 18
  start-page: 1561
  year: 2006
  ident: 51408_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200502287
– volume: 50
  start-page: 2991
  year: 1989
  ident: 51408_CR46
  publication-title: J. Phys. Fr.
  doi: 10.1051/jphys:0198900500190299100
– ident: 51408_CR36
  doi: 10.1063/1.4803922
SSID ssj0000391844
Score 2.503344
Snippet Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To...
Abstract Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7038
SubjectTerms 639/301/1019/1022
639/301/923/919
639/624/399/1022
Crystal growth
Crystal lattices
Crystal structure
Crystallization
Crystals
Cubic lattice
Electric fields
Electrostriction
Fabrication
Field strength
High temperature
Humanities and Social Sciences
Lattice parameters
Liquid crystals
multidisciplinary
Optical properties
Photonic crystals
Science
Science (multidisciplinary)
Self-assembly
Single crystals
Temperature control
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hSkhcEN8ECjISN4iaxE5iH1tEVXHgVKTeLHtsi0rbbNnNHvLvGdvZsIivC9fYjpzxjN9zJnkD8LauXY-ya0uLMc3Yu6Y0tnEx8KoucE6xmT6Q_dxdfBGfrtqrg1Jf8ZuwLA-cDXeCDYoq8MBRGcF5sAqx6QhUJYo6uCS2TZh3cJhKezBXdHQR818yFZcnW5H2BIKkkjhCJUvxExIlwf7fscxfMqQJeM4fwP2ZMbLTPNOHcMcPj-BuriE5PYaQNy3vGG4monpRY9uz7XRz48fNxMYDYroe2Dowu9r58vYroRdbXX_bXS8Dt8xOLCo6bahpLo8Tq3qkPx-ewOX5x8sPF-VcPKFEIduxjCXOjaTTguiN6b2SRnLXmRplkMpiq2qjlHEKa26tUbSWxKQ8VtLGXKPgT-FoWA_-ObBgOwLSINCRRZ2whiC_IpoTOoPBuKqAem9HjbOweKxvsdIpwc2lzrbXZHudbK9FAe-WMbdZVuOvvc_i8iw9oyR2ukCOomdH0f9ylAKO94ur5zjdap5e6PCG9wW8WZopwmLaxAx-vct9WhV1CAt4lp1imQm5meiJwhXwfu8lP27-5wd68T8e6CXca6I7R33e9hiOxs3OvyKGNNrXKRi-A3o_DHc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t20BRmJG0RNYiexTwgQS8WBU5F6s_yESttkm2QP---ZcbwpCOg1tiNnHp4vHvsbQt6UpWutaOrcWEwztq7KtakcOl7RBMbAN-MB2W_N2Xf-9aK-SBtuYzpWuV8T40Lteot75Kcs_nqzirXvN9c5Vo3C7GoqoXGX3Csh0uCRLrH6suyxIPu54DzdlSmYOB15XBkgMOWAFAqR8z_iUaTt_xfW_CtPGsPP6hF5mHAj_TAr-jG547sn5P5cSXL3lIR56fKO2mEHgA-Ztj0dd1dXfhp2dPoNnvYd7QM1663PNz8hhtH15fX2chk4UrOjyOs0QFMqkoO1PeL9h2fkfPX5_NNZnkoo5JaLesqx0LkW8M_AW61bL4UWzDW6tCIIaWwtSy2ldtKWzBgtQaOAp7wthMGMI2fPyUHXd_6Q0GAaCKeBWwcSddxoCPwFgJ3QaBu0KzJS7uWobKIXxyoXaxXT3EyoWfYKZK-i7BXPyNtlzGYm17i190dUz9ITibHjg374oZKfKVtZXgQWmJWaMxaMtLZqAIMJy8vgmoyc7JWrkreO6sa2MvJ6aQY_w-SJ7ny_nfvUEtkIM_JiNoplJmBmvAUgl5F3eyu5efn_P-jo9rkckwcVGiry79Yn5GAatv4lIKDJvIpm_gszqwNj
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcKsozfSAjcYOIJHYS-7ggqmoPXChSb5afUGmblGz2kH_fsfMAREHiGo8jZzzj-eKxvwF4k-e2NrwqU21CmrG2Rap0YYPjZZWnFH0zHpD9XF18Zeur8moPivkuTDy0Hykt4zI9nw57v2XRpTGipBjiM56yB3AQqNrRtg9Wq_WX9bKzEjjPOWPTDZmM8ns6_xaFIln_fQjzj-xoDDrnj-FwQotkNY7vCPZc8wQejvUjh6fgxwXLWWK6AWFe4Nd2ZDvc3Li-G0j_CyhtG9J6ojc7l95-x8hFNtc_dtdLxy3RAwlsTh02TaVxQkWPeOvhGVyef7r8eJFOhRNSw3jZp6G8ueL4p8BqpWonuOLUVio33HOhTSlyJYSywuRUayVwHhFFOZNxHfKMjD6H_aZt3EsgXlcYRD0zFjVqmVYY7jOEOL5SxiubJZDPepRmIhUPtS02Mia3KZej7iXqXkbdS5bA26XP7Uip8U_pD2F6FslAhx0ftN03OZmHNIVhmaeeGqEYpV4LY4oKkRc3LPe2SuB0nlw5-ehW0riZQwtaJ_B6aUbvCikT1bh2N8qUInAQJvBiNIplJGhmrEb4lsC72Up-vvzvH3T8f-In8KgIhhtYeMtT2O-7nTtDHNTrV5Ph3wEpiwKY
  priority: 102
  providerName: Springer Nature
Title Directed crystalline symmetry transformation of blue-phase liquid crystals by reverse electrostriction
URI https://link.springer.com/article/10.1038/s41467-024-51408-4
https://www.ncbi.nlm.nih.gov/pubmed/39147846
https://www.proquest.com/docview/3093303237
https://www.proquest.com/docview/3093593899
https://doaj.org/article/c2c40f3f3c9a433fb9cc269378c41fd6
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_uA8EX8dvquVTwTattk7bJg8jecuux4CF6B_sWkjTRg732rrsL9r93kn6ouIovLaRJ2k5mMr90mvkBvEySstAszyKlXZixKNNIqrR0hhfnlhC0Tf-D7Fl-ekEXy2y5BwPdUS_A9c6lneOTumhWb77ftO_R4N91W8bZ2zX15o7eJkL3H7OI7sMheqbCMRp87OG-n5kJxwWNCzSnMU0irED6fTS7u_nNV_mU_rtw6B8xVO-a5nfhTo8pw2mnBPdgz1T34VbHMtk-ANtNa6YMddMiGHRZuE24bq-uzKZpw80v0LWuwtqGarU10fU39G_h6vJmezk2XIeqDV3OpwYv9QQ6jvfD7414COfzk_PZadTTK0SasmwTORJ0yXA9QQspC8OZZKTMZaKZZVzpjCeSc1lynRClJMfRRqxldMyUi0ZS8ggOqroyTyC0KkdXa6kuUbolVRJBQYxAyOZSW1nGASSDHIXuU487BoyV8CFwwkQne4GyF172ggbwamxz3SXe-GftYzc8Y02XNNsX1M1X0dug0KmmsSWWaC4pIVZxrdMc8RnTNLFlHsDRMLhiUERB_CcfkpIigBfjZbRBF1iRlam3XZ2Mu0yFATzulGJ8ElQ5WiDIC-D1oCU_O__7Cz39j5s9g9up01aXoDc7goNNszXPESJt1AT2i2WBRzb_MIHD6XTxZYHn45OzT5-xdJbPJv7jw8Tbxw8IbRFR
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThA1iZ3EOSDEa9nS0tMi9Wb5CZW2m-1uVig_iv_I2HkUBPTWa-JEyfibmS-eeD6A52lqSs2LPFbalxlLk8VSZcY7XlI4StE3ww-yR8X0K_t8nB9vwc9hL4z_rXKIiSFQm1r7NfI9Gj69aUbLN8uz2KtG-erqIKHRweLAtj_wk239ev8Dzu-LLJt8nL2fxr2qQKwZz5vYa39LjjSalVKWtuKSU1PIVHPHK6XzKpVVJU2lU6qUrPAlkWJYnXDli3CM4m2vwFVGMZH7jemTT-OSjm-2zhnrt-YklO-tWQhEmAdjJCYJj9kf6S-oBPyL2v5Vlg3ZbnILbvY0lbztcHUbtuziDlzrhCvbu-C6SGkN0asW-aVv7G3Juj09tc2qJc1vbLhekNoRNd_YePkdUyaZn5xtTsYL10S1xLeRWuGpXpPHS4mE7Rb3YHYZtr0P24t6YR8AcarA7O2YNmhRw5REnpEgt3KF1E6aJIJ0sKPQfTdzL6oxF6GqTrnobC_Q9iLYXrAIXo7XLLteHheOfuenZxzp-3CHA_Xqm-jdWuhMs8RRR3UlERJOVVpnBVI-rlnqTBHB7jC5og8Oa3EO5QiejafRrX2tRi5svenG5JVvfhjBTgeK8UkQZqxE3hjBqwEl5zf__ws9vPhZnsL16ezLoTjcPzp4BDcyD1rf-jffhe1mtbGPkXw16kmAPAFxyS72C--GP9E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEM8SWsBIcIJok9hJnANClHbVUrSqUJF6s_yESttkuw9V-Wn8O8Z5FQT01mvsRM54Hp899nwAr-PY5Jpnaai0TzPmJgmlSow3vChzlKJtNgdkp9nBN_b5ND3dgJ_9XRh_rLL3iY2jNpX2e-Rj2iy9aULzseuORRzvTT7ML0LPIOUzrT2dRqsiR7a-xOXb8v3hHs71mySZ7J98Ogg7hoFQM56uQs8DLjlCapZLmduCS05NJmPNHS-UTotYFoU0hY6pUrLAH0a4YXXElU_IMYqfvQWbuV8UjWBzd396_HXY4PGl1zlj3UWdiPLxkjVuCaNiiDAl4iH7Ixg2nAH_Arp_JWmb2De5D_c60Eo-tlr2ADZs-RButzSW9SNwrd-0huhFjWjTl_m2ZFmfn9vVoiar37BxVZLKETVb23D-AwMomZ1drM-GF5dE1cQXlVpgU8fQ44lFmssXj-HkJqT7BEZlVdqnQJzKMJY7pg1K1DAlEXVEiLRcJrWTJgog7uUodFfb3FNszESTY6dctLIXKHvRyF6wAN4O78zbyh7X9t710zP09FW5mwfV4rvojFzoRLPIUUd1IRmlThVaJxkCQK5Z7EwWwE4_uaJzFUtxpdgBvBqa0ch95kaWtlq3fdLCl0IMYKtVimEkqGYsRxQZwLteS64-_v8fenb9WF7CHTQv8eVwerQNdxOvs74OcLoDo9VibZ8jElupF53OExA3bGW_ACwsRWM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directed+crystalline+symmetry+transformation+of+blue-phase+liquid+crystals+by+reverse+electrostriction&rft.jtitle=Nature+communications&rft.au=Lin%2C+Tsung-Hsien&rft.au=Guo%2C+Duan-Yi&rft.au=Chen%2C+Chun-Wei&rft.au=Feng%2C+Ting-Mao&rft.date=2024-08-15&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=7038&rft_id=info:doi/10.1038%2Fs41467-024-51408-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon