Directed crystalline symmetry transformation of blue-phase liquid crystals by reverse electrostriction
Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transit...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 7038 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.08.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials.
Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications but face fabrication limitations for large monocrystalline structures. The authors report a method to rapidly form large-area monocrystalline BPLCs with various symmetries and tunable properties through an application of electric fields and temperature control. |
---|---|
AbstractList | Abstract Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials. Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials.Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications but face fabrication limitations for large monocrystalline structures. The authors report a method to rapidly form large-area monocrystalline BPLCs with various symmetries and tunable properties through an application of electric fields and temperature control. Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials. Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials.Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials. Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials. Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications but face fabrication limitations for large monocrystalline structures. The authors report a method to rapidly form large-area monocrystalline BPLCs with various symmetries and tunable properties through an application of electric fields and temperature control. |
ArticleNumber | 7038 |
Author | Chen, Po-Chang Khoo, Iam Choon Zeng, Wen-Xin Wang, Chun-Ta Guo, Duan-Yi Feng, Ting-Mao Wu, Liang-Ying Jau, Hung-Chang Chang, Li-Min Guo, Wen-Ming Chen, Chun-Wei Bunning, Timothy J. Lin, Tsung-Hsien |
Author_xml | – sequence: 1 givenname: Tsung-Hsien orcidid: 0000-0003-0101-5637 surname: Lin fullname: Lin, Tsung-Hsien email: jameslin@mail.nsysu.edu.tw organization: Department of Photonics, National Sun Yat-sen University – sequence: 2 givenname: Duan-Yi surname: Guo fullname: Guo, Duan-Yi organization: Department of Photonics, National Sun Yat-sen University – sequence: 3 givenname: Chun-Wei orcidid: 0000-0002-2020-5332 surname: Chen fullname: Chen, Chun-Wei organization: Edward L. Ginzton Laboratory, Stanford University – sequence: 4 givenname: Ting-Mao orcidid: 0000-0002-1228-0017 surname: Feng fullname: Feng, Ting-Mao organization: Department of Photonics, National Sun Yat-sen University – sequence: 5 givenname: Wen-Xin surname: Zeng fullname: Zeng, Wen-Xin organization: Department of Photonics, National Sun Yat-sen University – sequence: 6 givenname: Po-Chang surname: Chen fullname: Chen, Po-Chang organization: Department of Photonics, National Sun Yat-sen University – sequence: 7 givenname: Liang-Ying surname: Wu fullname: Wu, Liang-Ying organization: Department of Photonics, National Sun Yat-sen University – sequence: 8 givenname: Wen-Ming surname: Guo fullname: Guo, Wen-Ming organization: Department of Photonics, National Sun Yat-sen University – sequence: 9 givenname: Li-Min surname: Chang fullname: Chang, Li-Min organization: Department of Photonics, National Sun Yat-sen University – sequence: 10 givenname: Hung-Chang surname: Jau fullname: Jau, Hung-Chang organization: Department of Photonics, National Sun Yat-sen University – sequence: 11 givenname: Chun-Ta surname: Wang fullname: Wang, Chun-Ta organization: Department of Photonics, National Sun Yat-sen University – sequence: 12 givenname: Timothy J. surname: Bunning fullname: Bunning, Timothy J. organization: Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base – sequence: 13 givenname: Iam Choon orcidid: 0000-0002-2374-9589 surname: Khoo fullname: Khoo, Iam Choon email: ick1@psu.edu organization: Department of Electrical Engineering, The Pennsylvania State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39147846$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u3SAQhVGVqknTvEAXlaVuunELHmzDskr_IkXqJnuE8ZByhc0N4Ep--3Cvk7TKImwYwXeOZua8JSdzmJGQ94x-ZhTEl8QZ7_qaNrxuGaei5q_IWUM5q1nfwMl_9Sm5SGlHywHJBOdvyGkpeC94d0bsNxfRZBwrE9eUtfduxiqt04Q5rlWOek42xElnF-Yq2GrwC9b7Pzph5d3d4p6EqRrWKuJfjOULfTGNIeXozEH5jry2BcGLh_uc3Pz4fnP5q77-_fPq8ut1bbhoc921rNVC9pz3WvcohRYwdpoZYYUcTCuZllKP0jAYBi1xwLZjaKgYKLSUwzm52mzHoHdqH92k46qCdur4EOKt0jE741GZxnBqwYKRmgPYQRrTdBJ6YTizY1e8Pm1e-xjuFkxZTS4Z9F7PGJakgEpoJQgpC_rxGboLS5zLoEcKKDTQF-rDA7UME45P7T2GUQCxAaZsLkW0yrh8XHyJwXnFqDpEr7boVYleHaNXh8GbZ9JH9xdFsIlSgedbjP_afkF1D8mUwXE |
CitedBy_id | crossref_primary_10_1002_adom_202402581 crossref_primary_10_1002_lpor_202401635 crossref_primary_10_1007_s12034_024_03388_w crossref_primary_10_1002_adom_202402844 |
Cites_doi | 10.1080/21680396.2018.1509387 10.1364/OE.24.010458 10.1002/adom.201800409 10.1038/srep44575 10.1364/OE.17.005265 10.1038/s41427-020-0225-8 10.1038/nmat3330 10.1126/sciadv.aay5986 10.1080/02678290903057390 10.1103/PhysRevLett.105.233909 10.1051/jphys:0198100420105300 10.1038/s41467-021-23631-w 10.1126/sciadv.adh9393 10.1364/OME.4.000960 10.1038/35013024 10.1103/RevModPhys.61.385 10.1038/35003523 10.1073/pnas.1711207114 10.1038/s41586-020-2718-6 10.1364/BOE.8.001712 10.1002/smsc.202100007 10.1038/am.2012.38 10.1002/adma.200502287 10.1039/C9TC04380B 10.1038/nmat1155 10.1039/b921576j 10.1038/s41598-020-67083-6 10.1126/science.289.5479.604 10.1038/s41467-021-21564-y 10.1002/1616-3028(200104)11:2<95::AID-ADFM95>3.0.CO;2-O 10.1103/PhysRevA.88.043837 10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J 10.1038/35104529 10.1038/nature03932 10.1021/acs.chemrev.1c00761 10.1039/c0sm00979b 10.1103/PhysRevE.105.044707 10.1073/pnas.2021304118 10.1364/OE.26.028818 10.1038/s41467-017-00822-y 10.1051/jphys:0198900500190299100 10.1038/nature02575 10.1051/jphys:01986004701013900 10.1103/PhysRevE.94.042703 10.1039/C9TC02938A 10.1038/s43246-021-00146-x 10.1364/OE.19.025441 10.1002/adfm.201000134 10.1038/s41563-019-0512-3 10.1021/cm202632m 10.1039/D2SM00244B 10.1038/28343 10.1103/PhysRevB.56.7313 10.1038/ncomms15854 10.1038/nmat802 10.1103/PhysRevE.87.042506 10.1063/1.3318288 10.5281/zenodo.12792108 10.1063/1.1842855 10.3389/frsfm.2022.1011618 10.1063/1.2822844 10.5281/zenodo.12792301 10.1063/1.4803922 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-024-51408-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_c2c40f3f3c9a433fb9cc269378c41fd6 39147846 10_1038_s41467_024_51408_4 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-6515a897447aa7e98a83d6a1c8f89bc591a99ad9c13bba9ebe561ec08b035043 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:04:54 EDT 2025 Tue Aug 05 10:22:15 EDT 2025 Wed Aug 13 04:55:06 EDT 2025 Mon Jul 21 05:40:54 EDT 2025 Tue Jul 01 02:37:28 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Fri Feb 21 02:37:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-6515a897447aa7e98a83d6a1c8f89bc591a99ad9c13bba9ebe561ec08b035043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1228-0017 0000-0003-0101-5637 0000-0002-2374-9589 0000-0002-2020-5332 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-51408-4 |
PMID | 39147846 |
PQID | 3093303237 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c2c40f3f3c9a433fb9cc269378c41fd6 proquest_miscellaneous_3093593899 proquest_journals_3093303237 pubmed_primary_39147846 crossref_citationtrail_10_1038_s41467_024_51408_4 crossref_primary_10_1038_s41467_024_51408_4 springer_journals_10_1038_s41467_024_51408_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-15 |
PublicationDateYYYYMMDD | 2024-08-15 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wright, Mermin (CR11) 1989; 61 Qi (CR5) 2004; 429 Campbell, Sharp, Harrison, Denning, Turberfield (CR3) 2000; 404 CR36 Blanco (CR32) 2000; 405 Zhou (CR34) 2012; 4 Oton, Netter, Nakano, D.-Katayama, Inoue (CR19) 2017; 7 Pierański, Cladis, Garel, Barbet-Massin (CR38) 1986; 47 Bisoyi, Li (CR27) 2022; 122 Khanikaev, Steel (CR42) 2009; 17 Yang (CR22) 2019; 7 Liu (CR58) 2016; 24 Yoshida (CR16) 2014; 4 Castles (CR30) 2012; 11 Vlasov, Bo, Sturm, Norris (CR9) 2001; 414 Rey (CR12) 2010; 6 Hosein, Lee, Liddell (CR43) 2010; 20 He (CR10) 2020; 585 King (CR6) 2006; 18 Bagchi, Emeršič, Martínez-González, de Pablo, Nealey (CR28) 2023; 9 Anderson, Giapis (CR39) 1997; 56 Manda (CR24) 2020; 12 Coles, Pivnenko (CR29) 2005; 436 Tiribocchi, Gonnella, Marenduzzo, Orlandini (CR53) 2011; 7 CR41 CR40 Lowe, Abbott (CR15) 2012; 24 Yannopapas (CR45) 2013; 88 Liu (CR56) 2021; 12 Li (CR54) 2017; 114 Cho, Takahashi, Fukuda, Yoshida, Ozaki (CR37) 2021; 2 Chen, Wang, Yu, Lin (CR14) 2011; 19 Lin (CR1) 1998; 394 Fukuda, Žumer (CR49) 2013; 87 Guo (CR47) 2020; 19 CR13 Chen (CR35) 2017; 8 Hu (CR31) 2021; 12 Ozin, Yang (CR8) 2001; 11 CR50 Liu (CR59) 2018; 26 Aoki (CR4) 2003; 2 Yamashita, Fukuda (CR57) 2022; 105 Deubel (CR33) 2004; 3 Lee, Chang, Lee (CR17) 2017; 8 Chen, Khoo (CR61) 2021; 118 Martínez-González (CR18) 2017; 8 Wang (CR20) 2018; 6 Xia, Gates, Yin, Lu (CR7) 2000; 12 Otón (CR25) 2020; 10 Heppke, Jérôme, Kitzerow, Pieranski (CR46) 1989; 50 Zhang (CR48) 2022; 18 Noda, Tomoda, Yamamoto, Chutinan (CR2) 2000; 289 Yang (CR23) 2019; 7 Yoshida (CR60) 2016; 94 Jin (CR55) 2020; 6 CR63 Pieranski, Dubois-Violette, Rothen, Strzelecki (CR51) 1981; 42 CR62 Alexander, Yeomans (CR52) 2009; 36 Kontogeorgos (CR44) 2010; 105 Yang, Wang, Yang, Li (CR26) 2021; 1 Khoo (CR21) 2018; 6 SY Lin (51408_CR1) 1998; 394 A Tiribocchi (51408_CR53) 2011; 7 A Yamashita (51408_CR57) 2022; 105 M Qi (51408_CR5) 2004; 429 J-i Fukuda (51408_CR49) 2013; 87 CM Anderson (51408_CR39) 1997; 56 AD Rey (51408_CR12) 2010; 6 Y Liu (51408_CR58) 2016; 24 51408_CR13 GA Ozin (51408_CR8) 2001; 11 H Yoshida (51408_CR16) 2014; 4 51408_CR50 X Li (51408_CR54) 2017; 114 P Pierański (51408_CR38) 1986; 47 H Yoshida (51408_CR60) 2016; 94 YA Vlasov (51408_CR9) 2001; 414 A Blanco (51408_CR32) 2000; 405 JA Martínez-González (51408_CR18) 2017; 8 J Yang (51408_CR23) 2019; 7 K Bagchi (51408_CR28) 2023; 9 F Castles (51408_CR30) 2012; 11 S Noda (51408_CR2) 2000; 289 GP Alexander (51408_CR52) 2009; 36 HK Bisoyi (51408_CR27) 2022; 122 A Kontogeorgos (51408_CR44) 2010; 105 Y Zhang (51408_CR48) 2022; 18 J Yang (51408_CR22) 2019; 7 C-W Chen (51408_CR35) 2017; 8 V Yannopapas (51408_CR45) 2013; 88 51408_CR63 AB Khanikaev (51408_CR42) 2009; 17 51408_CR62 ID Hosein (51408_CR43) 2010; 20 G Heppke (51408_CR46) 1989; 50 HM Jin (51408_CR55) 2020; 6 R Manda (51408_CR24) 2020; 12 K Aoki (51408_CR4) 2003; 2 M Campbell (51408_CR3) 2000; 404 M Deubel (51408_CR33) 2004; 3 IC Khoo (51408_CR21) 2018; 6 M-J Lee (51408_CR17) 2017; 8 51408_CR36 E Otón (51408_CR25) 2020; 10 J Zhou (51408_CR34) 2012; 4 M Wang (51408_CR20) 2018; 6 Y Liu (51408_CR59) 2018; 26 HJ Coles (51408_CR29) 2005; 436 DC Wright (51408_CR11) 1989; 61 AM Lowe (51408_CR15) 2012; 24 J Liu (51408_CR56) 2021; 12 Y-H Chen (51408_CR14) 2011; 19 C-W Chen (51408_CR61) 2021; 118 Y Xia (51408_CR7) 2000; 12 S Cho (51408_CR37) 2021; 2 P Pieranski (51408_CR51) 1981; 42 E Oton (51408_CR19) 2017; 7 51408_CR41 D-Y Guo (51408_CR47) 2020; 19 JS King (51408_CR6) 2006; 18 W Hu (51408_CR31) 2021; 12 51408_CR40 M He (51408_CR10) 2020; 585 Y Yang (51408_CR26) 2021; 1 |
References_xml | – volume: 6 start-page: 53 year: 2018 end-page: 77 ident: CR21 article-title: Cholesteric and blue-phase liquid photonic crystals for nonlinear optics and ultrafast laser pulse modulations publication-title: Liq. Cryst. Rev. doi: 10.1080/21680396.2018.1509387 – volume: 24 start-page: 10458 year: 2016 end-page: 10465 ident: CR58 article-title: Ultrafast pulse compression, stretching-and-recompression using cholesteric liquid crystals publication-title: Opt. Express doi: 10.1364/OE.24.010458 – volume: 6 start-page: 1800409 year: 2018 ident: CR20 article-title: Bias-polarity dependent bidirectional modulation of photonic bandgap in a nanoengineered 3D blue phase polymer scaffold for tunable laser application publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201800409 – volume: 7 year: 2017 ident: CR19 article-title: Monodomain blue phase liquid crystal layers for phase modulation publication-title: Sci. Rep. doi: 10.1038/srep44575 – volume: 17 start-page: 5265 year: 2009 end-page: 5272 ident: CR42 article-title: Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional devices publication-title: Opt. Express doi: 10.1364/OE.17.005265 – volume: 12 year: 2020 ident: CR24 article-title: Electrically tunable photonic band gap structure in monodomain blue-phase liquid crystals publication-title: NPG Asia Mater. doi: 10.1038/s41427-020-0225-8 – volume: 11 start-page: 599 year: 2012 end-page: 603 ident: CR30 article-title: Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications publication-title: Nat. Mater. doi: 10.1038/nmat3330 – volume: 6 start-page: eaay5986 year: 2020 ident: CR55 article-title: Soft crystal martensites: an in situ resonant soft x-ray scattering study of a liquid crystal martensitic transformation publication-title: Sci. Adv. doi: 10.1126/sciadv.aay5986 – volume: 36 start-page: 1215 year: 2009 end-page: 1227 ident: CR52 article-title: Numerical results for the blue phases publication-title: Liq. Cryst. doi: 10.1080/02678290903057390 – volume: 105 start-page: 233909 year: 2010 ident: CR44 article-title: Inducing symmetry breaking in nanostructures: anisotropic stretch-tuning photonic crystals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.233909 – volume: 42 start-page: 53 year: 1981 end-page: 60 ident: CR51 article-title: Geometry of Kossel lines in colloidal crystals publication-title: J. Phys. Fr. doi: 10.1051/jphys:0198100420105300 – volume: 12 year: 2021 ident: CR56 article-title: Diffusionless transformation of soft cubic superstructure from amorphous to simple cubic and body-centered cubic phases publication-title: Nat. Commun. doi: 10.1038/s41467-021-23631-w – volume: 9 start-page: eadh9393 year: 2023 ident: CR28 article-title: Functional soft materials from blue phase liquid crystals publication-title: Sci. Adv. doi: 10.1126/sciadv.adh9393 – volume: 4 start-page: 960 year: 2014 end-page: 968 ident: CR16 article-title: Secondary electro-optic effect in liquid crystalline cholesteric blue phases publication-title: Opt. Mater. Express doi: 10.1364/OME.4.000960 – volume: 405 start-page: 437 year: 2000 end-page: 440 ident: CR32 article-title: Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres publication-title: Nature doi: 10.1038/35013024 – volume: 61 start-page: 385 year: 1989 ident: CR11 article-title: Crystalline liquids: the blue phases publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.61.385 – volume: 404 start-page: 53 year: 2000 end-page: 56 ident: CR3 article-title: Fabrication of photonic crystals for the visible spectrum by holographic lithography publication-title: Nature doi: 10.1038/35003523 – volume: 114 start-page: 10011 year: 2017 end-page: 10016 ident: CR54 article-title: Mesoscale martensitic transformation in single crystals of topological defects publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1711207114 – volume: 585 start-page: 524 year: 2020 end-page: 529 ident: CR10 article-title: Colloidal diamond publication-title: Nature doi: 10.1038/s41586-020-2718-6 – volume: 8 start-page: 1712 year: 2017 end-page: 1720 ident: CR17 article-title: Label-free protein sensing by employing blue phase liquid crystal publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.001712 – volume: 1 start-page: 2100007 year: 2021 ident: CR26 article-title: 3D chiral photonic nanostructures based on blue-phase liquid crystals publication-title: Small Sci. doi: 10.1002/smsc.202100007 – volume: 4 start-page: e21 year: 2012 ident: CR34 article-title: Large-area crack-free single-crystal photonic crystals via combined effects of polymerization-assisted assembly and flexible substrate publication-title: NPG Asia Mater. doi: 10.1038/am.2012.38 – volume: 18 start-page: 1561 year: 2006 end-page: 1565 ident: CR6 article-title: Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition publication-title: Adv. Mater. doi: 10.1002/adma.200502287 – volume: 7 start-page: 13352 year: 2019 end-page: 13366 ident: CR22 article-title: Liquid crystalline blue phase materials with three-dimensional nanostructures publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC04380B – ident: CR50 – volume: 3 start-page: 444 year: 2004 end-page: 447 ident: CR33 article-title: Direct laser writing of three-dimensional photonic-crystal templates for telecommunications publication-title: Nat. Mater. doi: 10.1038/nmat1155 – volume: 6 start-page: 3402 year: 2010 end-page: 3429 ident: CR12 article-title: Liquid crystal models of biological materials and processes publication-title: Soft Matter doi: 10.1039/b921576j – volume: 10 year: 2020 ident: CR25 article-title: Orientation control of ideal blue phase photonic crystals publication-title: Sci. Rep. doi: 10.1038/s41598-020-67083-6 – volume: 289 start-page: 604 year: 2000 end-page: 606 ident: CR2 article-title: Full three-dimensional photonic bandgap crystals at near-infrared wavelengths publication-title: Science doi: 10.1126/science.289.5479.604 – volume: 12 year: 2021 ident: CR31 article-title: Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly publication-title: Nat. Commun. doi: 10.1038/s41467-021-21564-y – ident: CR36 – volume: 11 start-page: 95 year: 2001 end-page: 104 ident: CR8 article-title: The race for the photonic chip: colloidal crystal assembly in silicon wafers publication-title: Adv. Funct. Mater. doi: 10.1002/1616-3028(200104)11:2<95::AID-ADFM95>3.0.CO;2-O – volume: 88 start-page: 043837 year: 2013 ident: CR45 article-title: One-way photonic band gaps and optical isolation with three-dimensional photonic crystals of low symmetry publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.043837 – volume: 12 start-page: 693 year: 2000 end-page: 713 ident: CR7 article-title: Monodispersed colloidal spheres: old materials with new applications publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J – volume: 414 start-page: 289 year: 2001 end-page: 293 ident: CR9 article-title: On-chip natural assembly of silicon photonic bandgap crystals publication-title: Nature doi: 10.1038/35104529 – volume: 436 start-page: 997 year: 2005 end-page: 1000 ident: CR29 article-title: Liquid crystal ‘blue phases’ with a wide temperature range publication-title: Nature doi: 10.1038/nature03932 – volume: 122 start-page: 4887 year: 2022 end-page: 4926 ident: CR27 article-title: Liquid crystals: versatile self-organized smart soft materials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00761 – volume: 7 start-page: 3295 year: 2011 end-page: 3306 ident: CR53 article-title: Switching dynamics in cholesteric blue phases publication-title: Soft Matter doi: 10.1039/c0sm00979b – volume: 105 start-page: 044707 year: 2022 ident: CR57 article-title: Structure of twin boundaries of cholesteric blue phase I publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.105.044707 – volume: 118 start-page: e2021304118 year: 2021 ident: CR61 article-title: Optical vector field rotation and switching with near-unity transmission by fully developed chiral photonic crystals publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2021304118 – volume: 26 start-page: 28818 year: 2018 end-page: 28826 ident: CR59 article-title: Ultrafast switching of optical singularity eigenstates with compact integrable liquid crystal structures publication-title: Opt. Express doi: 10.1364/OE.26.028818 – volume: 8 year: 2017 ident: CR35 article-title: Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases publication-title: Nat. Commun. doi: 10.1038/s41467-017-00822-y – volume: 50 start-page: 2991 year: 1989 end-page: 2998 ident: CR46 article-title: Electrostriction of the cholesteric blue phases BPI and BPII in mixtures with positive dielectric anisotropy publication-title: J. Phys. Fr. doi: 10.1051/jphys:0198900500190299100 – volume: 429 start-page: 538 year: 2004 end-page: 542 ident: CR5 article-title: A three-dimensional optical photonic crystal with designed point defects publication-title: Nature doi: 10.1038/nature02575 – volume: 47 start-page: 139 year: 1986 end-page: 143 ident: CR38 article-title: Orientation of crystals of blue phases by electric fields publication-title: J. Phys. Fr. doi: 10.1051/jphys:01986004701013900 – volume: 94 start-page: 042703 year: 2016 ident: CR60 article-title: Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.042703 – volume: 7 start-page: 9460 year: 2019 end-page: 9466 ident: CR23 article-title: Fabrication and photonic applications of large-domain blue phase films publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC02938A – volume: 2 start-page: 39 year: 2021 ident: CR37 article-title: Directed self-assembly of soft 3D photonic crystals for holograms with omnidirectional circular-polarization selectivity publication-title: Commun. Mater. doi: 10.1038/s43246-021-00146-x – volume: 19 start-page: 25441 year: 2011 end-page: 25446 ident: CR14 article-title: Polarization independent Fabry-Pérot filter based on polymer-stabilized blue phase liquid crystals with fast response time publication-title: Opt. Express doi: 10.1364/OE.19.025441 – volume: 20 start-page: 3085 year: 2010 end-page: 3091 ident: CR43 article-title: Dimer-based three-dimensional photonic crystals publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000134 – ident: CR40 – ident: CR63 – volume: 19 start-page: 94 year: 2020 end-page: 101 ident: CR47 article-title: Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction publication-title: Nat. Mater. doi: 10.1038/s41563-019-0512-3 – volume: 24 start-page: 746 year: 2012 end-page: 758 ident: CR15 article-title: Liquid crystalline materials for biological applications publication-title: Chem. Mater. doi: 10.1021/cm202632m – volume: 18 start-page: 3328 year: 2022 end-page: 3334 ident: CR48 article-title: Three-dimensional lattice deformation of blue phase liquid crystals under electrostriction publication-title: Soft Matter doi: 10.1039/D2SM00244B – volume: 394 start-page: 251 year: 1998 end-page: 253 ident: CR1 article-title: A three-dimensional photonic crystal operating at infrared wavelengths publication-title: Nature doi: 10.1038/28343 – volume: 56 start-page: 7313 year: 1997 ident: CR39 article-title: Symmetry reduction in group 4mm photonic crystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.56.7313 – ident: CR13 – volume: 8 year: 2017 ident: CR18 article-title: Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals publication-title: Nat. Commun. doi: 10.1038/ncomms15854 – ident: CR41 – ident: CR62 – volume: 2 start-page: 117 year: 2003 end-page: 121 ident: CR4 article-title: Microassembly of semiconductor three-dimensional photonic crystals publication-title: Nat. Mater. doi: 10.1038/nmat802 – volume: 87 start-page: 042506 year: 2013 ident: CR49 article-title: Field-induced dynamics and structures in a cholesteric-blue-phase cell publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.042506 – volume: 1 start-page: 2100007 year: 2021 ident: 51408_CR26 publication-title: Small Sci. doi: 10.1002/smsc.202100007 – volume: 94 start-page: 042703 year: 2016 ident: 51408_CR60 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.042703 – volume: 4 start-page: 960 year: 2014 ident: 51408_CR16 publication-title: Opt. Mater. Express doi: 10.1364/OME.4.000960 – volume: 11 start-page: 95 year: 2001 ident: 51408_CR8 publication-title: Adv. Funct. Mater. doi: 10.1002/1616-3028(200104)11:2<95::AID-ADFM95>3.0.CO;2-O – volume: 122 start-page: 4887 year: 2022 ident: 51408_CR27 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00761 – volume: 9 start-page: eadh9393 year: 2023 ident: 51408_CR28 publication-title: Sci. Adv. doi: 10.1126/sciadv.adh9393 – volume: 7 start-page: 13352 year: 2019 ident: 51408_CR22 publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC04380B – volume: 7 start-page: 3295 year: 2011 ident: 51408_CR53 publication-title: Soft Matter doi: 10.1039/c0sm00979b – volume: 20 start-page: 3085 year: 2010 ident: 51408_CR43 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000134 – volume: 12 year: 2021 ident: 51408_CR56 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23631-w – volume: 24 start-page: 746 year: 2012 ident: 51408_CR15 publication-title: Chem. Mater. doi: 10.1021/cm202632m – volume: 11 start-page: 599 year: 2012 ident: 51408_CR30 publication-title: Nat. Mater. doi: 10.1038/nmat3330 – volume: 19 start-page: 25441 year: 2011 ident: 51408_CR14 publication-title: Opt. Express doi: 10.1364/OE.19.025441 – volume: 6 start-page: 53 year: 2018 ident: 51408_CR21 publication-title: Liq. Cryst. Rev. doi: 10.1080/21680396.2018.1509387 – volume: 42 start-page: 53 year: 1981 ident: 51408_CR51 publication-title: J. Phys. Fr. doi: 10.1051/jphys:0198100420105300 – volume: 6 start-page: 3402 year: 2010 ident: 51408_CR12 publication-title: Soft Matter doi: 10.1039/b921576j – ident: 51408_CR13 doi: 10.1063/1.3318288 – volume: 8 year: 2017 ident: 51408_CR35 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00822-y – volume: 26 start-page: 28818 year: 2018 ident: 51408_CR59 publication-title: Opt. Express doi: 10.1364/OE.26.028818 – ident: 51408_CR62 doi: 10.5281/zenodo.12792108 – volume: 6 start-page: 1800409 year: 2018 ident: 51408_CR20 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201800409 – volume: 105 start-page: 233909 year: 2010 ident: 51408_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.233909 – volume: 585 start-page: 524 year: 2020 ident: 51408_CR10 publication-title: Nature doi: 10.1038/s41586-020-2718-6 – volume: 436 start-page: 997 year: 2005 ident: 51408_CR29 publication-title: Nature doi: 10.1038/nature03932 – volume: 4 start-page: e21 year: 2012 ident: 51408_CR34 publication-title: NPG Asia Mater. doi: 10.1038/am.2012.38 – ident: 51408_CR40 doi: 10.1063/1.1842855 – ident: 51408_CR50 doi: 10.3389/frsfm.2022.1011618 – volume: 56 start-page: 7313 year: 1997 ident: 51408_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.56.7313 – volume: 24 start-page: 10458 year: 2016 ident: 51408_CR58 publication-title: Opt. Express doi: 10.1364/OE.24.010458 – volume: 7 year: 2017 ident: 51408_CR19 publication-title: Sci. Rep. doi: 10.1038/srep44575 – volume: 36 start-page: 1215 year: 2009 ident: 51408_CR52 publication-title: Liq. Cryst. doi: 10.1080/02678290903057390 – volume: 289 start-page: 604 year: 2000 ident: 51408_CR2 publication-title: Science doi: 10.1126/science.289.5479.604 – volume: 8 year: 2017 ident: 51408_CR18 publication-title: Nat. Commun. doi: 10.1038/ncomms15854 – volume: 118 start-page: e2021304118 year: 2021 ident: 51408_CR61 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2021304118 – volume: 19 start-page: 94 year: 2020 ident: 51408_CR47 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0512-3 – volume: 2 start-page: 117 year: 2003 ident: 51408_CR4 publication-title: Nat. Mater. doi: 10.1038/nmat802 – volume: 10 year: 2020 ident: 51408_CR25 publication-title: Sci. Rep. doi: 10.1038/s41598-020-67083-6 – volume: 47 start-page: 139 year: 1986 ident: 51408_CR38 publication-title: J. Phys. Fr. doi: 10.1051/jphys:01986004701013900 – volume: 7 start-page: 9460 year: 2019 ident: 51408_CR23 publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC02938A – ident: 51408_CR41 doi: 10.1063/1.2822844 – volume: 114 start-page: 10011 year: 2017 ident: 51408_CR54 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1711207114 – volume: 405 start-page: 437 year: 2000 ident: 51408_CR32 publication-title: Nature doi: 10.1038/35013024 – volume: 6 start-page: eaay5986 year: 2020 ident: 51408_CR55 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay5986 – volume: 429 start-page: 538 year: 2004 ident: 51408_CR5 publication-title: Nature doi: 10.1038/nature02575 – volume: 17 start-page: 5265 year: 2009 ident: 51408_CR42 publication-title: Opt. Express doi: 10.1364/OE.17.005265 – volume: 105 start-page: 044707 year: 2022 ident: 51408_CR57 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.105.044707 – volume: 18 start-page: 3328 year: 2022 ident: 51408_CR48 publication-title: Soft Matter doi: 10.1039/D2SM00244B – volume: 12 start-page: 693 year: 2000 ident: 51408_CR7 publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J – volume: 414 start-page: 289 year: 2001 ident: 51408_CR9 publication-title: Nature doi: 10.1038/35104529 – volume: 12 year: 2021 ident: 51408_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21564-y – ident: 51408_CR63 doi: 10.5281/zenodo.12792301 – volume: 88 start-page: 043837 year: 2013 ident: 51408_CR45 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.043837 – volume: 2 start-page: 39 year: 2021 ident: 51408_CR37 publication-title: Commun. Mater. doi: 10.1038/s43246-021-00146-x – volume: 8 start-page: 1712 year: 2017 ident: 51408_CR17 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.001712 – volume: 12 year: 2020 ident: 51408_CR24 publication-title: NPG Asia Mater. doi: 10.1038/s41427-020-0225-8 – volume: 87 start-page: 042506 year: 2013 ident: 51408_CR49 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.042506 – volume: 3 start-page: 444 year: 2004 ident: 51408_CR33 publication-title: Nat. Mater. doi: 10.1038/nmat1155 – volume: 61 start-page: 385 year: 1989 ident: 51408_CR11 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.61.385 – volume: 404 start-page: 53 year: 2000 ident: 51408_CR3 publication-title: Nature doi: 10.1038/35003523 – volume: 394 start-page: 251 year: 1998 ident: 51408_CR1 publication-title: Nature doi: 10.1038/28343 – volume: 18 start-page: 1561 year: 2006 ident: 51408_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.200502287 – volume: 50 start-page: 2991 year: 1989 ident: 51408_CR46 publication-title: J. Phys. Fr. doi: 10.1051/jphys:0198900500190299100 – ident: 51408_CR36 doi: 10.1063/1.4803922 |
SSID | ssj0000391844 |
Score | 2.503344 |
Snippet | Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To... Abstract Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7038 |
SubjectTerms | 639/301/1019/1022 639/301/923/919 639/624/399/1022 Crystal growth Crystal lattices Crystal structure Crystallization Crystals Cubic lattice Electric fields Electrostriction Fabrication Field strength High temperature Humanities and Social Sciences Lattice parameters Liquid crystals multidisciplinary Optical properties Photonic crystals Science Science (multidisciplinary) Self-assembly Single crystals Temperature control |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hSkhcEN8ECjISN4iaxE5iH1tEVXHgVKTeLHtsi0rbbNnNHvLvGdvZsIivC9fYjpzxjN9zJnkD8LauXY-ya0uLMc3Yu6Y0tnEx8KoucE6xmT6Q_dxdfBGfrtqrg1Jf8ZuwLA-cDXeCDYoq8MBRGcF5sAqx6QhUJYo6uCS2TZh3cJhKezBXdHQR818yFZcnW5H2BIKkkjhCJUvxExIlwf7fscxfMqQJeM4fwP2ZMbLTPNOHcMcPj-BuriE5PYaQNy3vGG4monpRY9uz7XRz48fNxMYDYroe2Dowu9r58vYroRdbXX_bXS8Dt8xOLCo6bahpLo8Tq3qkPx-ewOX5x8sPF-VcPKFEIduxjCXOjaTTguiN6b2SRnLXmRplkMpiq2qjlHEKa26tUbSWxKQ8VtLGXKPgT-FoWA_-ObBgOwLSINCRRZ2whiC_IpoTOoPBuKqAem9HjbOweKxvsdIpwc2lzrbXZHudbK9FAe-WMbdZVuOvvc_i8iw9oyR2ukCOomdH0f9ylAKO94ur5zjdap5e6PCG9wW8WZopwmLaxAx-vct9WhV1CAt4lp1imQm5meiJwhXwfu8lP27-5wd68T8e6CXca6I7R33e9hiOxs3OvyKGNNrXKRi-A3o_DHc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t20BRmJG0RNYiexTwgQS8WBU5F6s_yESttkm2QP---ZcbwpCOg1tiNnHp4vHvsbQt6UpWutaOrcWEwztq7KtakcOl7RBMbAN-MB2W_N2Xf-9aK-SBtuYzpWuV8T40Lteot75Kcs_nqzirXvN9c5Vo3C7GoqoXGX3Csh0uCRLrH6suyxIPu54DzdlSmYOB15XBkgMOWAFAqR8z_iUaTt_xfW_CtPGsPP6hF5mHAj_TAr-jG547sn5P5cSXL3lIR56fKO2mEHgA-Ztj0dd1dXfhp2dPoNnvYd7QM1663PNz8hhtH15fX2chk4UrOjyOs0QFMqkoO1PeL9h2fkfPX5_NNZnkoo5JaLesqx0LkW8M_AW61bL4UWzDW6tCIIaWwtSy2ldtKWzBgtQaOAp7wthMGMI2fPyUHXd_6Q0GAaCKeBWwcSddxoCPwFgJ3QaBu0KzJS7uWobKIXxyoXaxXT3EyoWfYKZK-i7BXPyNtlzGYm17i190dUz9ITibHjg374oZKfKVtZXgQWmJWaMxaMtLZqAIMJy8vgmoyc7JWrkreO6sa2MvJ6aQY_w-SJ7ny_nfvUEtkIM_JiNoplJmBmvAUgl5F3eyu5efn_P-jo9rkckwcVGiry79Yn5GAatv4lIKDJvIpm_gszqwNj priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcKsozfSAjcYOIJHYS-7ggqmoPXChSb5afUGmblGz2kH_fsfMAREHiGo8jZzzj-eKxvwF4k-e2NrwqU21CmrG2Rap0YYPjZZWnFH0zHpD9XF18Zeur8moPivkuTDy0Hykt4zI9nw57v2XRpTGipBjiM56yB3AQqNrRtg9Wq_WX9bKzEjjPOWPTDZmM8ns6_xaFIln_fQjzj-xoDDrnj-FwQotkNY7vCPZc8wQejvUjh6fgxwXLWWK6AWFe4Nd2ZDvc3Li-G0j_CyhtG9J6ojc7l95-x8hFNtc_dtdLxy3RAwlsTh02TaVxQkWPeOvhGVyef7r8eJFOhRNSw3jZp6G8ueL4p8BqpWonuOLUVio33HOhTSlyJYSywuRUayVwHhFFOZNxHfKMjD6H_aZt3EsgXlcYRD0zFjVqmVYY7jOEOL5SxiubJZDPepRmIhUPtS02Mia3KZej7iXqXkbdS5bA26XP7Uip8U_pD2F6FslAhx0ftN03OZmHNIVhmaeeGqEYpV4LY4oKkRc3LPe2SuB0nlw5-ehW0riZQwtaJ_B6aUbvCikT1bh2N8qUInAQJvBiNIplJGhmrEb4lsC72Up-vvzvH3T8f-In8KgIhhtYeMtT2O-7nTtDHNTrV5Ph3wEpiwKY priority: 102 providerName: Springer Nature |
Title | Directed crystalline symmetry transformation of blue-phase liquid crystals by reverse electrostriction |
URI | https://link.springer.com/article/10.1038/s41467-024-51408-4 https://www.ncbi.nlm.nih.gov/pubmed/39147846 https://www.proquest.com/docview/3093303237 https://www.proquest.com/docview/3093593899 https://doaj.org/article/c2c40f3f3c9a433fb9cc269378c41fd6 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_uA8EX8dvquVTwTattk7bJg8jecuux4CF6B_sWkjTRg732rrsL9r93kn6ouIovLaRJ2k5mMr90mvkBvEySstAszyKlXZixKNNIqrR0hhfnlhC0Tf-D7Fl-ekEXy2y5BwPdUS_A9c6lneOTumhWb77ftO_R4N91W8bZ2zX15o7eJkL3H7OI7sMheqbCMRp87OG-n5kJxwWNCzSnMU0irED6fTS7u_nNV_mU_rtw6B8xVO-a5nfhTo8pw2mnBPdgz1T34VbHMtk-ANtNa6YMddMiGHRZuE24bq-uzKZpw80v0LWuwtqGarU10fU39G_h6vJmezk2XIeqDV3OpwYv9QQ6jvfD7414COfzk_PZadTTK0SasmwTORJ0yXA9QQspC8OZZKTMZaKZZVzpjCeSc1lynRClJMfRRqxldMyUi0ZS8ggOqroyTyC0KkdXa6kuUbolVRJBQYxAyOZSW1nGASSDHIXuU487BoyV8CFwwkQne4GyF172ggbwamxz3SXe-GftYzc8Y02XNNsX1M1X0dug0KmmsSWWaC4pIVZxrdMc8RnTNLFlHsDRMLhiUERB_CcfkpIigBfjZbRBF1iRlam3XZ2Mu0yFATzulGJ8ElQ5WiDIC-D1oCU_O__7Cz39j5s9g9up01aXoDc7goNNszXPESJt1AT2i2WBRzb_MIHD6XTxZYHn45OzT5-xdJbPJv7jw8Tbxw8IbRFR |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThA1iZ3EOSDEa9nS0tMi9Wb5CZW2m-1uVig_iv_I2HkUBPTWa-JEyfibmS-eeD6A52lqSs2LPFbalxlLk8VSZcY7XlI4StE3ww-yR8X0K_t8nB9vwc9hL4z_rXKIiSFQm1r7NfI9Gj69aUbLN8uz2KtG-erqIKHRweLAtj_wk239ev8Dzu-LLJt8nL2fxr2qQKwZz5vYa39LjjSalVKWtuKSU1PIVHPHK6XzKpVVJU2lU6qUrPAlkWJYnXDli3CM4m2vwFVGMZH7jemTT-OSjm-2zhnrt-YklO-tWQhEmAdjJCYJj9kf6S-oBPyL2v5Vlg3ZbnILbvY0lbztcHUbtuziDlzrhCvbu-C6SGkN0asW-aVv7G3Juj09tc2qJc1vbLhekNoRNd_YePkdUyaZn5xtTsYL10S1xLeRWuGpXpPHS4mE7Rb3YHYZtr0P24t6YR8AcarA7O2YNmhRw5REnpEgt3KF1E6aJIJ0sKPQfTdzL6oxF6GqTrnobC_Q9iLYXrAIXo7XLLteHheOfuenZxzp-3CHA_Xqm-jdWuhMs8RRR3UlERJOVVpnBVI-rlnqTBHB7jC5og8Oa3EO5QiejafRrX2tRi5svenG5JVvfhjBTgeK8UkQZqxE3hjBqwEl5zf__ws9vPhZnsL16ezLoTjcPzp4BDcyD1rf-jffhe1mtbGPkXw16kmAPAFxyS72C--GP9E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEM8SWsBIcIJok9hJnANClHbVUrSqUJF6s_yESttkuw9V-Wn8O8Z5FQT01mvsRM54Hp899nwAr-PY5Jpnaai0TzPmJgmlSow3vChzlKJtNgdkp9nBN_b5ND3dgJ_9XRh_rLL3iY2jNpX2e-Rj2iy9aULzseuORRzvTT7ML0LPIOUzrT2dRqsiR7a-xOXb8v3hHs71mySZ7J98Ogg7hoFQM56uQs8DLjlCapZLmduCS05NJmPNHS-UTotYFoU0hY6pUrLAH0a4YXXElU_IMYqfvQWbuV8UjWBzd396_HXY4PGl1zlj3UWdiPLxkjVuCaNiiDAl4iH7Ixg2nAH_Arp_JWmb2De5D_c60Eo-tlr2ADZs-RButzSW9SNwrd-0huhFjWjTl_m2ZFmfn9vVoiar37BxVZLKETVb23D-AwMomZ1drM-GF5dE1cQXlVpgU8fQ44lFmssXj-HkJqT7BEZlVdqnQJzKMJY7pg1K1DAlEXVEiLRcJrWTJgog7uUodFfb3FNszESTY6dctLIXKHvRyF6wAN4O78zbyh7X9t710zP09FW5mwfV4rvojFzoRLPIUUd1IRmlThVaJxkCQK5Z7EwWwE4_uaJzFUtxpdgBvBqa0ch95kaWtlq3fdLCl0IMYKtVimEkqGYsRxQZwLteS64-_v8fenb9WF7CHTQv8eVwerQNdxOvs74OcLoDo9VibZ8jElupF53OExA3bGW_ACwsRWM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directed+crystalline+symmetry+transformation+of+blue-phase+liquid+crystals+by+reverse+electrostriction&rft.jtitle=Nature+communications&rft.au=Lin%2C+Tsung-Hsien&rft.au=Guo%2C+Duan-Yi&rft.au=Chen%2C+Chun-Wei&rft.au=Feng%2C+Ting-Mao&rft.date=2024-08-15&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=7038&rft_id=info:doi/10.1038%2Fs41467-024-51408-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |