Image Restoration via Simultaneous Sparse Coding: Where Structured Sparsity Meets Gaussian Scale Mixture

In image processing, sparse coding has been known to be relevant to both variational and Bayesian approaches. The regularization parameter in variational image restoration is intrinsically connected with the shape parameter of sparse coefficients’ distribution in Bayesian methods. How to set those p...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 114; no. 2-3; pp. 217 - 232
Main Authors Dong, Weisheng, Shi, Guangming, Ma, Yi, Li, Xin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In image processing, sparse coding has been known to be relevant to both variational and Bayesian approaches. The regularization parameter in variational image restoration is intrinsically connected with the shape parameter of sparse coefficients’ distribution in Bayesian methods. How to set those parameters in a principled yet spatially adaptive fashion turns out to be a challenging problem especially for the class of nonlocal image models. In this work, we propose a structured sparse coding framework to address this issue—more specifically, a nonlocal extension of Gaussian scale mixture (GSM) model is developed using simultaneous sparse coding (SSC) and its applications into image restoration are explored. It is shown that the variances of sparse coefficients (the field of scalar multipliers of Gaussians)—if treated as a latent variable—can be jointly estimated along with the unknown sparse coefficients via the method of alternating optimization. When applied to image restoration, our experimental results have shown that the proposed SSC–GSM technique can both preserve the sharpness of edges and suppress undesirable artifacts. Thanks to its capability of achieving a better spatial adaptation, SSC–GSM based image restoration often delivers reconstructed images with higher subjective/objective qualities than other competing approaches.
AbstractList In image processing, sparse coding has been known to be relevant to both variational and Bayesian approaches. The regularization parameter in variational image restoration is intrinsically connected with the shape parameter of sparse coefficients’ distribution in Bayesian methods. How to set those parameters in a principled yet spatially adaptive fashion turns out to be a challenging problem especially for the class of nonlocal image models. In this work, we propose a structured sparse coding framework to address this issue—more specifically, a nonlocal extension of Gaussian scale mixture (GSM) model is developed using simultaneous sparse coding (SSC) and its applications into image restoration are explored. It is shown that the variances of sparse coefficients (the field of scalar multipliers of Gaussians)—if treated as a latent variable—can be jointly estimated along with the unknown sparse coefficients via the method of alternating optimization. When applied to image restoration, our experimental results have shown that the proposed SSC–GSM technique can both preserve the sharpness of edges and suppress undesirable artifacts. Thanks to its capability of achieving a better spatial adaptation, SSC–GSM based image restoration often delivers reconstructed images with higher subjective/objective qualities than other competing approaches.
Issue Title: Special Issue: Sparse Coding In image processing, sparse coding has been known to be relevant to both variational and Bayesian approaches. The regularization parameter in variational image restoration is intrinsically connected with the shape parameter of sparse coefficients' distribution in Bayesian methods. How to set those parameters in a principled yet spatially adaptive fashion turns out to be a challenging problem especially for the class of nonlocal image models. In this work, we propose a structured sparse coding framework to address this issue--more specifically, a nonlocal extension of Gaussian scale mixture (GSM) model is developed using simultaneous sparse coding (SSC) and its applications into image restoration are explored. It is shown that the variances of sparse coefficients (the field of scalar multipliers of Gaussians)--if treated as a latent variable--can be jointly estimated along with the unknown sparse coefficients via the method of alternating optimization. When applied to image restoration, our experimental results have shown that the proposed SSC-GSM technique can both preserve the sharpness of edges and suppress undesirable artifacts. Thanks to its capability of achieving a better spatial adaptation, SSC-GSM based image restoration often delivers reconstructed images with higher subjective/objective qualities than other competing approaches.
Author Shi, Guangming
Ma, Yi
Dong, Weisheng
Li, Xin
Author_xml – sequence: 1
  givenname: Weisheng
  surname: Dong
  fullname: Dong, Weisheng
  email: wsdong@mail.xidian.edu.cn
  organization: School of Electronic Engineering, Xidian University
– sequence: 2
  givenname: Guangming
  surname: Shi
  fullname: Shi, Guangming
  organization: School of Electronic Engineering, Xidian University
– sequence: 3
  givenname: Yi
  surname: Ma
  fullname: Ma, Yi
  organization: School of Information Science and Technology, ShanghaiTech University
– sequence: 4
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: Lane Department of CSEE, West Virginia University
BookMark eNp9kU1rGzEQhkVxoHbSH9CboJdeNhmtPlburZjWCSQU4oQchaydtWXWu46kDfW_r5ztoQTS0xzmeYaZeWdk0vUdEvKZwSUDqK4iY6XiBTBZgAZdHD-QKZMVL5gAOSFTmJdQSDVnH8ksxh0AlLrkU7K92dsN0nuMqQ82-b6jL97Sld8PbbId9kOkq4MNEemir323-UafthiQrlIYXBoC1mPfpyO9Q0yRLu0Qo7cdXTnbIr3zv0_YBTlrbBvx0996Th5__nhYXBe3v5Y3i--3hRNapkLUEhqOa1nqiq8bzoW0GqQs5VxLyde8dpatnVSNVo3Q80rpGkBxp7SsNEN-Tr6Ocw-hfx7yWWbvo8O2HY8xrBJCaSEEz-iXN-iuH0KXt8sUSCV4BjNVjZQLfYwBG-N8ev1UCta3hoE5JWDGBExOwJwSMMdssjfmIfi9Dcf_OuXoxMx2Gwz_7PSu9Ack95qA
CitedBy_id crossref_primary_10_1109_TIP_2018_2813163
crossref_primary_10_1109_TNNLS_2022_3144630
crossref_primary_10_1109_TIP_2018_2859044
crossref_primary_10_1016_j_ins_2018_03_064
crossref_primary_10_1007_s12596_023_01549_4
crossref_primary_10_1109_TAI_2022_3170001
crossref_primary_10_1109_TIP_2020_2978645
crossref_primary_10_1109_TIP_2020_2984896
crossref_primary_10_1016_j_neucom_2017_11_004
crossref_primary_10_1109_ACCESS_2021_3049181
crossref_primary_10_1109_TIP_2019_2958309
crossref_primary_10_1371_journal_pone_0191833
crossref_primary_10_3390_rs15020443
crossref_primary_10_1051_wujns_2023281061
crossref_primary_10_1016_j_jvcir_2019_102704
crossref_primary_10_3233_JIFS_179375
crossref_primary_10_1016_j_cviu_2024_104270
crossref_primary_10_1109_ACCESS_2019_2936711
crossref_primary_10_1109_ACCESS_2019_2958697
crossref_primary_10_1016_j_sigpro_2023_109284
crossref_primary_10_1007_s10044_018_0692_5
crossref_primary_10_1049_ipr2_12456
crossref_primary_10_1007_s00371_019_01729_z
crossref_primary_10_1016_j_image_2018_09_012
crossref_primary_10_1016_j_optlastec_2023_110401
crossref_primary_10_1109_TVCG_2018_2889055
crossref_primary_10_1109_TIFS_2017_2730362
crossref_primary_10_1016_j_cviu_2024_104204
crossref_primary_10_1016_j_neucom_2018_03_027
crossref_primary_10_1109_TCSVT_2019_2913411
crossref_primary_10_1137_20M1337168
crossref_primary_10_1016_j_dsp_2023_104029
crossref_primary_10_1109_TIP_2018_2862357
crossref_primary_10_1134_S1054661822010059
crossref_primary_10_1002_jnm_2824
crossref_primary_10_1016_j_apradiso_2023_111142
crossref_primary_10_1016_j_jvcir_2018_05_021
crossref_primary_10_1109_TIP_2020_2980753
crossref_primary_10_3390_sym13112114
crossref_primary_10_3390_s19051143
crossref_primary_10_3390_e24070946
crossref_primary_10_1109_TPAMI_2018_2817496
crossref_primary_10_1016_j_apm_2023_02_031
crossref_primary_10_1007_s11263_016_0921_6
crossref_primary_10_1109_JSTSP_2018_2873047
crossref_primary_10_1016_j_image_2018_05_009
crossref_primary_10_1109_TPAMI_2023_3265103
crossref_primary_10_20965_jaciii_2018_p1072
crossref_primary_10_1109_LSP_2021_3096753
crossref_primary_10_1016_j_knosys_2020_106722
crossref_primary_10_1007_s00034_016_0470_9
crossref_primary_10_1109_TMM_2016_2613824
crossref_primary_10_1007_s11042_022_12083_z
crossref_primary_10_1016_j_jvcir_2020_102895
crossref_primary_10_1007_s11042_023_16636_8
crossref_primary_10_1016_j_asoc_2023_110861
crossref_primary_10_1109_TIP_2020_3021291
crossref_primary_10_1016_j_neucom_2021_02_053
crossref_primary_10_1109_TCSVT_2021_3101591
crossref_primary_10_1109_TIP_2018_2828341
crossref_primary_10_1371_journal_pone_0208503
crossref_primary_10_1109_TGRS_2023_3269224
crossref_primary_10_1109_TIP_2020_2972109
crossref_primary_10_1017_S0962492919000059
crossref_primary_10_1109_TIP_2020_3015545
crossref_primary_10_1088_1742_6596_1314_1_012209
crossref_primary_10_1007_s10851_018_0867_0
crossref_primary_10_1109_TIP_2017_2676466
crossref_primary_10_1109_JSTSP_2020_2975610
crossref_primary_10_3390_computers10100129
crossref_primary_10_1109_LSENS_2022_3150776
crossref_primary_10_1049_iet_ipr_2019_0157
crossref_primary_10_1007_s11263_021_01572_7
crossref_primary_10_1016_j_image_2017_01_003
crossref_primary_10_1155_2021_9035163
crossref_primary_10_1109_TIP_2022_3193754
crossref_primary_10_1109_TIP_2018_2845123
crossref_primary_10_1016_j_jsv_2016_01_017
crossref_primary_10_1137_23M1545859
crossref_primary_10_3390_s22020537
crossref_primary_10_1016_j_jvcir_2018_02_011
crossref_primary_10_1109_TNNLS_2021_3057439
crossref_primary_10_1117_1_JEI_27_5_053009
crossref_primary_10_1109_TIP_2020_3005515
crossref_primary_10_1007_s11859_018_1332_z
crossref_primary_10_1016_j_ins_2023_04_010
crossref_primary_10_1016_j_sigpro_2022_108650
crossref_primary_10_1109_TPAMI_2020_2968521
crossref_primary_10_3390_a15060176
crossref_primary_10_1109_TIP_2018_2837865
crossref_primary_10_1016_j_sigpro_2020_107751
crossref_primary_10_1016_j_sigpro_2022_108926
crossref_primary_10_1088_1361_6420_ad9774
crossref_primary_10_1109_ACCESS_2018_2890417
crossref_primary_10_3390_s18041135
crossref_primary_10_1007_s00371_022_02491_5
crossref_primary_10_1137_16M1102884
crossref_primary_10_1016_j_sigpro_2024_109536
crossref_primary_10_1016_j_neucom_2022_04_013
crossref_primary_10_1080_13682199_2023_2173546
crossref_primary_10_1109_TIP_2020_3002452
crossref_primary_10_1088_1742_6596_1651_1_012033
crossref_primary_10_1109_TIP_2021_3078329
crossref_primary_10_3389_fphys_2022_961571
crossref_primary_10_1109_TCI_2019_2911881
crossref_primary_10_3390_math12091412
crossref_primary_10_1016_j_optlaseng_2022_107413
crossref_primary_10_1109_TCYB_2021_3084931
crossref_primary_10_1109_TIP_2020_3010082
crossref_primary_10_1049_ipr2_12563
crossref_primary_10_1088_1757_899X_261_1_012012
crossref_primary_10_1007_s00034_024_02875_z
crossref_primary_10_1016_j_dsp_2016_10_008
crossref_primary_10_1016_j_image_2017_02_010
crossref_primary_10_1007_s11390_019_1927_7
crossref_primary_10_1371_journal_pone_0199141
crossref_primary_10_1109_TIP_2023_3299189
crossref_primary_10_1109_TGRS_2018_2870087
crossref_primary_10_1016_j_knosys_2021_107475
crossref_primary_10_1111_cgf_13556
crossref_primary_10_1142_S0219467822400095
crossref_primary_10_1371_journal_pone_0276373
crossref_primary_10_1016_j_neucom_2016_04_046
crossref_primary_10_1109_TPAMI_2018_2873610
crossref_primary_10_1109_LGRS_2022_3141801
crossref_primary_10_1142_S0218001418540083
crossref_primary_10_1109_ACCESS_2020_3021081
crossref_primary_10_1109_TIP_2018_2869691
crossref_primary_10_1109_ACCESS_2018_2813969
Cites_doi 10.1109/TIP.2003.818640
10.1109/TIP.2011.2176954
10.1109/TIP.2009.2028250
10.1109/TIT.2011.2162174
10.1109/TIP.2011.2176743
10.1002/cpa.3160410705
10.1109/TIP.2010.2050625
10.1137/070697653
10.1007/s11263-009-0272-7
10.1007/s10915-008-9214-8
10.1109/TIP.2003.819861
10.1109/TIP.2007.901238
10.1561/2200000016
10.1109/TIP.2011.2160072
10.1016/0165-1684(86)90101-5
10.1109/TIP.2005.859376
10.1109/TSP.2007.914345
10.1007/s00041-008-9045-x
10.1109/TIP.2006.888335
10.1093/biomet/81.3.425
10.1109/TIP.2012.2197006
10.1109/83.862633
10.1109/76.499834
10.1109/TSP.2004.831016
10.1109/TSP.2006.881199
10.1109/TSP.2007.894265
10.1109/TPAMI.2008.107
10.1109/78.258085
10.1109/TSP.2009.2026004
10.1109/CVPR.2011.5995478
10.1145/1553374.1553463
10.2307/2529336
10.1109/TIP.2012.2235847
10.1109/ICCV.2011.6126278
10.1109/ICCV.2009.5459452
10.1111/j.2517-6161.1974.tb00989.x
10.1109/TIP.2012.2221729
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Copyright_xml – notice: Springer Science+Business Media New York 2015
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-015-0808-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 232
ExternalDocumentID 3783672231
10_1007_s11263_015_0808_y
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c485t-4d50f3eb52873bf3345a80552598553b3dca1bc56f86f489768d0063c685781e3
IEDL.DBID BENPR
ISSN 0920-5691
IngestDate Tue Aug 05 10:03:05 EDT 2025
Fri Jul 25 23:22:30 EDT 2025
Tue Jul 01 04:30:55 EDT 2025
Thu Apr 24 22:58:30 EDT 2025
Fri Feb 21 02:35:17 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2-3
Keywords Simultaneous sparse coding
Gaussian scale mixture
Structured sparsity
Variational image restoration
Alternative minimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-4d50f3eb52873bf3345a80552598553b3dca1bc56f86f489768d0063c685781e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1705643684
PQPubID 1456341
PageCount 16
ParticipantIDs proquest_miscellaneous_1744684443
proquest_journals_1705643684
crossref_citationtrail_10_1007_s11263_015_0808_y
crossref_primary_10_1007_s11263_015_0808_y
springer_journals_10_1007_s11263_015_0808_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2015
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chang, Yu, Vetterli (CR9) 2000; 9
Mairal, Sapiro, Elad (CR27) 2008; 7
Vetterli (CR38) 1986; 10
Aharon, Elad, Bruckstein (CR1) 2012; 54
CR19
Portilla, Strela, Wainwright, Simoncelli (CR32) 2003; 12
Yu, Sapiro, Mallat (CR45) 2012; 21
Box, Tiao (CR4) 2011
Donoho, Johnstone (CR17) 1994; 81
CR16
CR15
CR37
Do, Vetterli (CR13) 2005; 14
CR14
Elad, Aharon (CR18) 2012; 21
CR36
Beck, Teboulle (CR3) 2009; 18
CR31
Daubechies (CR12) 1988; 41
Katkovnik, Foi, Egiazarian, Astola (CR23) 2010; 86
CR30
Xu, Osher (CR43) 2007; 16
Yang, Wright, Huang, Ma (CR44) 2010; 19
Ramirez, Sapiro (CR33) 2012; 21
Gasso, Rakotomamonjy, Canu (CR20) 2009; 57
Lyu, Simoncelli (CR24) 2009; 31
Zhou, Chen, Paisley, Ren, Li, Xing, Dunson, Sapiro, Carin (CR47) 2012; 21
Buades, Coll, Morel (CR6) 2005; 2
CR8
Ji, Xue, Carin (CR22) 2008; 56
Boyd, Parikh, Chu, Peleato, Eckstein (CR5) 2011; 3
Andrews, Mallows (CR2) 1974; 36
CR26
Wipf, Rao (CR41) 2007; 55
CR48
CR25
CR46
Dabov, Foi, Katkovnik, Egiazarian (CR10) 2007; 16
Candes, Wakin, Boyd (CR7) 2008; 14
CR21
Marquina, Osher (CR29) 2008; 37
Wang, Bovik, Sheikh, Simoncelli (CR39) 2004; 13
Said, Pearlman (CR34) 1996; 6
Mallat (CR28) 1989; 315
Wipf, Rao (CR40) 2004; 52
Shapiro (CR35) 1993; 41
Danielyan, Katkovnik, Egiazarian (CR11) 2012; 21
Wipf, Rao, Nagarajan (CR42) 2011; 57
V Katkovnik (808_CR23) 2010; 86
M Vetterli (808_CR38) 1986; 10
808_CR26
J Portilla (808_CR32) 2003; 12
Z Wang (808_CR39) 2004; 13
808_CR48
808_CR46
808_CR25
D Donoho (808_CR17) 1994; 81
E Candes (808_CR7) 2008; 14
DP Wipf (808_CR42) 2011; 57
M Elad (808_CR18) 2012; 21
A Beck (808_CR3) 2009; 18
DF Andrews (808_CR2) 1974; 36
A Buades (808_CR6) 2005; 2
A Danielyan (808_CR11) 2012; 21
S Lyu (808_CR24) 2009; 31
S Ji (808_CR22) 2008; 56
I Daubechies (808_CR12) 1988; 41
DP Wipf (808_CR40) 2004; 52
G Yu (808_CR45) 2012; 21
K Dabov (808_CR10) 2007; 16
808_CR21
M Aharon (808_CR1) 2012; 54
JM Shapiro (808_CR35) 1993; 41
808_CR19
J Mairal (808_CR27) 2008; 7
S Boyd (808_CR5) 2011; 3
G Gasso (808_CR20) 2009; 57
GE Box (808_CR4) 2011
808_CR15
S Mallat (808_CR28) 1989; 315
808_CR37
808_CR16
M Zhou (808_CR47) 2012; 21
808_CR14
808_CR36
J Yang (808_CR44) 2010; 19
SG Chang (808_CR9) 2000; 9
808_CR8
J Xu (808_CR43) 2007; 16
I Ramirez (808_CR33) 2012; 21
DP Wipf (808_CR41) 2007; 55
MN Do (808_CR13) 2005; 14
808_CR31
A Said (808_CR34) 1996; 6
A Marquina (808_CR29) 2008; 37
808_CR30
References_xml – volume: 12
  start-page: 1338
  year: 2003
  end-page: 1351
  ident: CR32
  article-title: Image denoising using scale mixtures of gaussians in the wavelet domain
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.818640
– volume: 21
  start-page: 1715
  issue: 4
  year: 2012
  end-page: 1728
  ident: CR11
  article-title: Bm3d frames and variational image deblurring
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2176954
– volume: 18
  start-page: 2419
  issue: 11
  year: 2009
  end-page: 2434
  ident: CR3
  article-title: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2009.2028250
– volume: 57
  start-page: 6236
  issue: 9
  year: 2011
  end-page: 6255
  ident: CR42
  article-title: Latent variable bayesian models for promoting sparsity
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2011.2162174
– ident: CR14
– volume: 21
  start-page: 2481
  issue: 5
  year: 2012
  end-page: 2499
  ident: CR45
  article-title: Solving inverse problems with piecewise linear estimators: from gaussian mixture models to structured sparsity
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2176743
– ident: CR16
– ident: CR37
– volume: 41
  start-page: 909
  year: 1988
  end-page: 996
  ident: CR12
  article-title: Orthonormal bases of compactly supported bases
  publication-title: Communications On Pure and Applied Mathematics
  doi: 10.1002/cpa.3160410705
– ident: CR30
– volume: 19
  start-page: 2861
  issue: 11
  year: 2010
  end-page: 2873
  ident: CR44
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2010.2050625
– volume: 315
  start-page: 69
  year: 1989
  end-page: 87
  ident: CR28
  article-title: Multiresolution approximations and wavelet orthonormal bases of
  publication-title: Transactions of the American Mathematical Society
– volume: 7
  start-page: 214
  issue: 1
  year: 2008
  end-page: 241
  ident: CR27
  article-title: Learning multiscale sparse representation for image and video restoration
  publication-title: SIAM Multiscale Modeling and Simulation
  doi: 10.1137/070697653
– volume: 86
  start-page: 1
  issue: 1
  year: 2010
  end-page: 32
  ident: CR23
  article-title: From local kernel to nonlocal multiple-model image denoising
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-009-0272-7
– volume: 37
  start-page: 367
  issue: 3
  year: 2008
  end-page: 382
  ident: CR29
  article-title: Image super-resolution by tv-regularization and bregman iteration
  publication-title: Journal of Scientific Computing
  doi: 10.1007/s10915-008-9214-8
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  ident: CR39
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– ident: CR8
– ident: CR25
– year: 2011
  ident: CR4
  publication-title: Bayesian inference in statistical analysis
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  end-page: 2095
  ident: CR10
  article-title: Image denoising by sparse 3-d transform-domain collaborative filtering
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2007.901238
– volume: 36
  start-page: 99
  issue: 1
  year: 1974
  end-page: 102
  ident: CR2
  article-title: Scale mixtures of normal distributions
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– ident: CR21
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  ident: CR5
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000016
– ident: CR46
– volume: 21
  start-page: 130
  issue: 1
  year: 2012
  end-page: 144
  ident: CR47
  article-title: Nonparametric bayesian dictionary learning for analysis of noisy and incomplete images
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2160072
– volume: 2
  start-page: 60
  year: 2005
  end-page: 65
  ident: CR6
  article-title: A non-local algorithm for image denoising
  publication-title: CVPR
– ident: CR19
– volume: 10
  start-page: 219
  issue: 3
  year: 1986
  end-page: 244
  ident: CR38
  article-title: Filter banks allowing perfect reconstruction
  publication-title: Signal Processing
  doi: 10.1016/0165-1684(86)90101-5
– ident: CR48
– volume: 14
  start-page: 2091
  issue: 12
  year: 2005
  end-page: 2106
  ident: CR13
  article-title: The contourlet transform: An efficient directional multiresolution image representation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2005.859376
– ident: CR15
– volume: 56
  start-page: 2346
  issue: 6
  year: 2008
  end-page: 2356
  ident: CR22
  article-title: Bayesian compressive sensing
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2007.914345
– volume: 14
  start-page: 877
  issue: 5
  year: 2008
  end-page: 905
  ident: CR7
  article-title: Enhancing sparsity by reweighted minimization
  publication-title: Journal of Fourier Analysis and Applications
  doi: 10.1007/s00041-008-9045-x
– volume: 16
  start-page: 534
  issue: 2
  year: 2007
  end-page: 544
  ident: CR43
  article-title: Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2006.888335
– ident: CR31
– volume: 81
  start-page: 425
  year: 1994
  end-page: 455
  ident: CR17
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
  doi: 10.1093/biomet/81.3.425
– volume: 21
  start-page: 3850
  issue: 9
  year: 2012
  end-page: 3864
  ident: CR33
  article-title: Universal regularizers for robust sparse coding and modeling
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2197006
– volume: 9
  start-page: 1532
  issue: 9
  year: 2000
  end-page: 1546
  ident: CR9
  article-title: Adaptive wavelet thresholding for image denoising and compression
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.862633
– volume: 6
  start-page: 243
  year: 1996
  end-page: 250
  ident: CR34
  article-title: A new fast and efficient image codec based on set partitioning in hierarchical trees
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/76.499834
– volume: 52
  start-page: 2153
  issue: 8
  year: 2004
  end-page: 2164
  ident: CR40
  article-title: Sparse bayesian learning for basis selection
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2004.831016
– volume: 21
  start-page: 3850
  issue: 9
  year: 2012
  end-page: 3864
  ident: CR18
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2197006
– ident: CR36
– volume: 54
  start-page: 4311
  issue: 11
  year: 2012
  end-page: 4322
  ident: CR1
  article-title: The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representations
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2006.881199
– volume: 55
  start-page: 3704
  issue: 7
  year: 2007
  end-page: 3716
  ident: CR41
  article-title: An empirical Bayesian strategy for solving the simultaneous sparse approximation problem
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2007.894265
– volume: 31
  start-page: 693
  issue: 4
  year: 2009
  end-page: 706
  ident: CR24
  article-title: Modeling multiscale subbands of photographic images with fields of gaussian scale mixtures
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2008.107
– ident: CR26
– volume: 41
  start-page: 3445
  issue: 12
  year: 1993
  end-page: 3462
  ident: CR35
  article-title: Embedded image coding using zerotrees of wavelet coefficients
  publication-title: EEE Transactions on Acoustics, Speech and Signal Processing
  doi: 10.1109/78.258085
– volume: 57
  start-page: 4686
  issue: 12
  year: 2009
  end-page: 4698
  ident: CR20
  article-title: Recovering sparse signals with a certain family of nonconvex penalties and DC programming
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2009.2026004
– volume: 21
  start-page: 130
  issue: 1
  year: 2012
  ident: 808_CR47
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2160072
– volume: 6
  start-page: 243
  year: 1996
  ident: 808_CR34
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/76.499834
– volume: 55
  start-page: 3704
  issue: 7
  year: 2007
  ident: 808_CR41
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2007.894265
– ident: 808_CR14
  doi: 10.1109/CVPR.2011.5995478
– volume: 12
  start-page: 1338
  year: 2003
  ident: 808_CR32
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.818640
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 808_CR39
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  ident: 808_CR10
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2007.901238
– volume: 9
  start-page: 1532
  issue: 9
  year: 2000
  ident: 808_CR9
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.862633
– volume: 21
  start-page: 1715
  issue: 4
  year: 2012
  ident: 808_CR11
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2176954
– ident: 808_CR25
  doi: 10.1145/1553374.1553463
– ident: 808_CR21
  doi: 10.2307/2529336
– ident: 808_CR37
– ident: 808_CR30
– volume: 41
  start-page: 909
  year: 1988
  ident: 808_CR12
  publication-title: Communications On Pure and Applied Mathematics
  doi: 10.1002/cpa.3160410705
– volume: 41
  start-page: 3445
  issue: 12
  year: 1993
  ident: 808_CR35
  publication-title: EEE Transactions on Acoustics, Speech and Signal Processing
  doi: 10.1109/78.258085
– ident: 808_CR16
  doi: 10.1109/TIP.2012.2235847
– volume: 14
  start-page: 2091
  issue: 12
  year: 2005
  ident: 808_CR13
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2005.859376
– volume: 81
  start-page: 425
  year: 1994
  ident: 808_CR17
  publication-title: Biometrika
  doi: 10.1093/biomet/81.3.425
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 808_CR5
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000016
– volume: 10
  start-page: 219
  issue: 3
  year: 1986
  ident: 808_CR38
  publication-title: Signal Processing
  doi: 10.1016/0165-1684(86)90101-5
– ident: 808_CR46
– volume: 57
  start-page: 6236
  issue: 9
  year: 2011
  ident: 808_CR42
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2011.2162174
– ident: 808_CR48
  doi: 10.1109/ICCV.2011.6126278
– volume: 21
  start-page: 3850
  issue: 9
  year: 2012
  ident: 808_CR33
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2197006
– volume: 52
  start-page: 2153
  issue: 8
  year: 2004
  ident: 808_CR40
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2004.831016
– ident: 808_CR26
  doi: 10.1109/ICCV.2009.5459452
– ident: 808_CR8
– volume: 21
  start-page: 3850
  issue: 9
  year: 2012
  ident: 808_CR18
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2197006
– volume: 315
  start-page: 69
  year: 1989
  ident: 808_CR28
  publication-title: Transactions of the American Mathematical Society
– volume: 19
  start-page: 2861
  issue: 11
  year: 2010
  ident: 808_CR44
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2010.2050625
– volume-title: Bayesian inference in statistical analysis
  year: 2011
  ident: 808_CR4
– volume: 31
  start-page: 693
  issue: 4
  year: 2009
  ident: 808_CR24
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2008.107
– volume: 86
  start-page: 1
  issue: 1
  year: 2010
  ident: 808_CR23
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-009-0272-7
– volume: 36
  start-page: 99
  issue: 1
  year: 1974
  ident: 808_CR2
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
  doi: 10.1111/j.2517-6161.1974.tb00989.x
– volume: 37
  start-page: 367
  issue: 3
  year: 2008
  ident: 808_CR29
  publication-title: Journal of Scientific Computing
  doi: 10.1007/s10915-008-9214-8
– ident: 808_CR36
– volume: 2
  start-page: 60
  year: 2005
  ident: 808_CR6
  publication-title: CVPR
– ident: 808_CR19
– volume: 56
  start-page: 2346
  issue: 6
  year: 2008
  ident: 808_CR22
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2007.914345
– volume: 7
  start-page: 214
  issue: 1
  year: 2008
  ident: 808_CR27
  publication-title: SIAM Multiscale Modeling and Simulation
  doi: 10.1137/070697653
– ident: 808_CR15
  doi: 10.1109/TIP.2012.2221729
– ident: 808_CR31
– volume: 18
  start-page: 2419
  issue: 11
  year: 2009
  ident: 808_CR3
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2009.2028250
– volume: 57
  start-page: 4686
  issue: 12
  year: 2009
  ident: 808_CR20
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2009.2026004
– volume: 54
  start-page: 4311
  issue: 11
  year: 2012
  ident: 808_CR1
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2006.881199
– volume: 14
  start-page: 877
  issue: 5
  year: 2008
  ident: 808_CR7
  publication-title: Journal of Fourier Analysis and Applications
  doi: 10.1007/s00041-008-9045-x
– volume: 16
  start-page: 534
  issue: 2
  year: 2007
  ident: 808_CR43
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2006.888335
– volume: 21
  start-page: 2481
  issue: 5
  year: 2012
  ident: 808_CR45
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2176743
SSID ssj0002823
Score 2.5627885
Snippet In image processing, sparse coding has been known to be relevant to both variational and Bayesian approaches. The regularization parameter in variational image...
Issue Title: Special Issue: Sparse Coding In image processing, sparse coding has been known to be relevant to both variational and Bayesian approaches. The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 217
SubjectTerms Adaptation
Analysis
Artificial Intelligence
Bayesian analysis
Coding
Computer Imaging
Computer programming
Computer Science
Dictionaries
Gaussian
Image coding
Image processing
Image Processing and Computer Vision
Image processing systems
Image restoration
Mathematical models
Normal distribution
Pattern Recognition
Pattern Recognition and Graphics
Preserves
Sparsity
Studies
Variables
Vision
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X3zxW6xOieCTUmiWj6W-jeGcwnxwDvZWmjbFgXZj3cT99971Y1NRwdcmTSCXu_v9uMsdIRex8nQYwuUF6KowzGhdP0yYa3xw9sIwLvL2bb0H1R2I-6Eclu-4syrbvQpJ5pZ69diNNTDmyKQLKEe7i3WyIYG6Yx7XoNFaml_gEEX_eOBFUvmsCmX-tMRXZ7RCmN-Cormv6eyQrRIk0lYh1V2yZtM9sl0CRlqqYwafqp4M1bd98nz3ChaCPuYNY_JTp2-jkPZHmDkYphaIPu1PgM1a2h6j37qmYI-nlvbzQrLzKW6A44DOac_aWUZvw3mGTy1hE_AmtDd6x2kHZNC5eWp33bKbghsJLWeuiKWXcGskcCRuEs6FDLUnJfAfLSU3PI5CZiKpEq0SoQGm6BgBTKQ0aDWz_JDU0nFqjwhl0nLTBCxgfSMSpkyDg-EASxXHoilZ7BCvOtYgKkuNY8eLl2BVJBklEYAkApREsHDI5fKXSVFn46_J9UpWQalyWYB1gRTW0xcOOV8Og7JgBKQ4X5gD7FcLIbhDrioZf1ritw2P_zX7hGw28juGmWh1UgP52VOALjNzll_VD_ee5Bs
  priority: 102
  providerName: Springer Nature
Title Image Restoration via Simultaneous Sparse Coding: Where Structured Sparsity Meets Gaussian Scale Mixture
URI https://link.springer.com/article/10.1007/s11263-015-0808-y
https://www.proquest.com/docview/1705643684
https://www.proquest.com/docview/1744684443
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be9nL8trVlkdlpD2Boq3rBy4XVKAtLBQhupXYUxQnjqgEbSEFwb9nJnVaQIJTpNjJSJ7XNx57BuB3omsmilB4EbpqSjO6oBGlPLANdPbSciHz9m3dC33Sl3-v1bXfcMv8scrCJuaGOhnFtEf-h8q-aCqXLg_G9wF1jaLsqm-hsQhlNMHGlKB82Lq4vJrZYgwops3kMUhSusGLvGZ-eY7XKYfJVYCoyQQv7z3THG5-yJDmjqe9DN89YmTNKYtXYMENV2HJo0fmdTPDV0WDhuLdGtyc3qG5YFd595icBexpELHegI4RRkOHUT_rjTG0dexoRE5sn6FxfnCsl1eVfXwgAjSOUJ11nZtkrBM9ZnTvEomga2HdwTNN-wH9duvf0UngWysEsTRqEshE1VLhrMKASdhUCKkiU1MKgyGjlLAiiSNuY6VTo1NpELOYhNBMrA2qOHfiJ5SGo6H7BYwrJ-weAgPXsDLl2tYFWhE0W0ki9xRPKlArljWMfd1xan9xG84rJhMnQuRESJwIXyqwM_tkPC268dXkzYJXode_LJxLSwW2Z8OoOZQOma4vzsFQ2EgpRQV2Cx6_-cVnBNe_JrgB3-q5UNE5tE0oIcPcFgKXia3Coml3qlBuHnfPe_Ts_D9rVb3M4mi_3nwF_AXtdQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxsxDLeAPYyXfYJWxrZMGi-gE83lg3TShCa20g7KAwWJt9vlLqdVgrZw7bb-U_sbsXOXlk0ab7wmuViKHf_sc2wDfMh106QpCi-arprCjC5qpQWPbAvBXloupG_f1jvRnXP57UJdLMGfkAtDzyqDTvSKOh9l9I98l8q-aCqXLvfH1xF1jaLoamihUYnFkZv9Qpet_NT9gvzdiuP217ODTlR3FYgyadQkkrlqFsJZhb6CsIUQUqWmqRT6AUYpYUWepdxmShdGF9IgXJucgDzTBqWbO4H7LsMjKRDJKTO9fTjX_Oi-VK3r0SVTusVDFNWn6vGYIqZcRWijmWj2Nw4ujNt_4rEe5trP4Eltn7LPlUA9hyU3fAFPa1uV1ZqgxKHQDiKMvYQf3StUTuzU96rxDGc_BynrD-jRYjp0o2nJ-mN0pB07GBFkfmQIBTeO9X0N2-kNEaB5dAxYz7lJyQ7TaUlZnkgEgYz1Br9p2RqcP8iRr8PKcDR0r4Bx5YTdQzPEtawsuLaxQJ2FSjLP5Z7ieQOa4ViTrK5yTs02LpNFfWbiRIKcSIgTyawB2_NPxlWJj_sWbwZeJfVtL5OFbDbg_Xwa7ykFX6rzxTXoeBsppWjATuDxnS3-R3DjfoLv4HHnrHecHHdPjl7DauwFjF7AbcIKMs-9QZNpYt96OWXw_aEvxi0G8SHR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8MBgguo1hpO0FFK2OP-oiTYh9lHWj1bQyaW9ZnDiiEmvL0sL6r_HXcZfE7ZjE3vZqO7bkO9_vfjn7DmAr1Q0Tx6i86LpqCjO6oBVnPLAtBHtpuZBF-bZuTx-dy-MLdbEEf_xbGLpW6W1iYajTUUL_yHco7YumdOlyJ6uuRZwetD-NfwZUQYoirb6cRqkiJ272G-lbvts5QFlvh2H78Nv-UVBVGAgSadQkkKlqZMJZhbxB2EwIqWLTUAo5gVFKWJEmMbeJ0pnRmTQI3SYlUE-0QU3nTuC8j2C5SayoBst7h73TszkOIJkpC9kjQVO6xX1MtXi4x0OKn3IVoMdmgtm_qLhwde9EZwvQaz-Dp5W3yj6X6vUcltxwFVYqz5VVdiHHJl8cwre9gO-dKzRV7KyoXFOIn_0axKw_oCuM8dCNpjnrj5FWO7Y_IgD9yBAYrh3rFxltp9e0APUjTWBd5yY5-xJPc3rziYsgrLHu4IaGvYTzB9n0V1AbjobuNTCunLBNdEpcy8qMaxsKtGBoMtNUNhVP69Dw2xolVc5zKr3xI1pkayZJRCiJiCQRzerwfv7JuEz4cd_gDS-rqDr7ebTQ1Dq8m3fjqaVQTLm_OAZpuJFSijp88DK-NcX_Fly7f8G38BgPRfS10ztZhydhoV90HW4Daig79wb9p4ndrBSVweVDn42_pHMnYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Restoration+via+Simultaneous+Sparse+Coding%3A+Where+Structured+Sparsity+Meets+Gaussian+Scale+Mixture&rft.jtitle=International+journal+of+computer+vision&rft.au=Dong%2C+Weisheng&rft.au=Shi%2C+Guangming&rft.au=Ma%2C+Yi&rft.au=Li%2C+Xin&rft.date=2015-09-01&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=114&rft.issue=2-3&rft.spage=217&rft.epage=232&rft_id=info:doi/10.1007%2Fs11263-015-0808-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11263_015_0808_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon