Image Restoration via Simultaneous Sparse Coding: Where Structured Sparsity Meets Gaussian Scale Mixture
In image processing, sparse coding has been known to be relevant to both variational and Bayesian approaches. The regularization parameter in variational image restoration is intrinsically connected with the shape parameter of sparse coefficients’ distribution in Bayesian methods. How to set those p...
Saved in:
Published in | International journal of computer vision Vol. 114; no. 2-3; pp. 217 - 232 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In image processing, sparse coding has been known to be relevant to both variational and Bayesian approaches. The regularization parameter in variational image restoration is intrinsically connected with the shape parameter of sparse coefficients’ distribution in Bayesian methods. How to set those parameters in a principled yet spatially adaptive fashion turns out to be a challenging problem especially for the class of nonlocal image models. In this work, we propose a structured sparse coding framework to address this issue—more specifically, a nonlocal extension of Gaussian scale mixture (GSM) model is developed using simultaneous sparse coding (SSC) and its applications into image restoration are explored. It is shown that the variances of sparse coefficients (the field of scalar multipliers of Gaussians)—if treated as a latent variable—can be jointly estimated along with the unknown sparse coefficients via the method of alternating optimization. When applied to image restoration, our experimental results have shown that the proposed SSC–GSM technique can both preserve the sharpness of edges and suppress undesirable artifacts. Thanks to its capability of achieving a better spatial adaptation, SSC–GSM based image restoration often delivers reconstructed images with higher subjective/objective qualities than other competing approaches. |
---|---|
AbstractList | In image processing, sparse coding has been known to be relevant to both variational and Bayesian approaches. The regularization parameter in variational image restoration is intrinsically connected with the shape parameter of sparse coefficients’ distribution in Bayesian methods. How to set those parameters in a principled yet spatially adaptive fashion turns out to be a challenging problem especially for the class of nonlocal image models. In this work, we propose a structured sparse coding framework to address this issue—more specifically, a nonlocal extension of Gaussian scale mixture (GSM) model is developed using simultaneous sparse coding (SSC) and its applications into image restoration are explored. It is shown that the variances of sparse coefficients (the field of scalar multipliers of Gaussians)—if treated as a latent variable—can be jointly estimated along with the unknown sparse coefficients via the method of alternating optimization. When applied to image restoration, our experimental results have shown that the proposed SSC–GSM technique can both preserve the sharpness of edges and suppress undesirable artifacts. Thanks to its capability of achieving a better spatial adaptation, SSC–GSM based image restoration often delivers reconstructed images with higher subjective/objective qualities than other competing approaches. Issue Title: Special Issue: Sparse Coding In image processing, sparse coding has been known to be relevant to both variational and Bayesian approaches. The regularization parameter in variational image restoration is intrinsically connected with the shape parameter of sparse coefficients' distribution in Bayesian methods. How to set those parameters in a principled yet spatially adaptive fashion turns out to be a challenging problem especially for the class of nonlocal image models. In this work, we propose a structured sparse coding framework to address this issue--more specifically, a nonlocal extension of Gaussian scale mixture (GSM) model is developed using simultaneous sparse coding (SSC) and its applications into image restoration are explored. It is shown that the variances of sparse coefficients (the field of scalar multipliers of Gaussians)--if treated as a latent variable--can be jointly estimated along with the unknown sparse coefficients via the method of alternating optimization. When applied to image restoration, our experimental results have shown that the proposed SSC-GSM technique can both preserve the sharpness of edges and suppress undesirable artifacts. Thanks to its capability of achieving a better spatial adaptation, SSC-GSM based image restoration often delivers reconstructed images with higher subjective/objective qualities than other competing approaches. |
Author | Shi, Guangming Ma, Yi Dong, Weisheng Li, Xin |
Author_xml | – sequence: 1 givenname: Weisheng surname: Dong fullname: Dong, Weisheng email: wsdong@mail.xidian.edu.cn organization: School of Electronic Engineering, Xidian University – sequence: 2 givenname: Guangming surname: Shi fullname: Shi, Guangming organization: School of Electronic Engineering, Xidian University – sequence: 3 givenname: Yi surname: Ma fullname: Ma, Yi organization: School of Information Science and Technology, ShanghaiTech University – sequence: 4 givenname: Xin surname: Li fullname: Li, Xin organization: Lane Department of CSEE, West Virginia University |
BookMark | eNp9kU1rGzEQhkVxoHbSH9CboJdeNhmtPlburZjWCSQU4oQchaydtWXWu46kDfW_r5ztoQTS0xzmeYaZeWdk0vUdEvKZwSUDqK4iY6XiBTBZgAZdHD-QKZMVL5gAOSFTmJdQSDVnH8ksxh0AlLrkU7K92dsN0nuMqQ82-b6jL97Sld8PbbId9kOkq4MNEemir323-UafthiQrlIYXBoC1mPfpyO9Q0yRLu0Qo7cdXTnbIr3zv0_YBTlrbBvx0996Th5__nhYXBe3v5Y3i--3hRNapkLUEhqOa1nqiq8bzoW0GqQs5VxLyde8dpatnVSNVo3Q80rpGkBxp7SsNEN-Tr6Ocw-hfx7yWWbvo8O2HY8xrBJCaSEEz-iXN-iuH0KXt8sUSCV4BjNVjZQLfYwBG-N8ev1UCta3hoE5JWDGBExOwJwSMMdssjfmIfi9Dcf_OuXoxMx2Gwz_7PSu9Ack95qA |
CitedBy_id | crossref_primary_10_1109_TIP_2018_2813163 crossref_primary_10_1109_TNNLS_2022_3144630 crossref_primary_10_1109_TIP_2018_2859044 crossref_primary_10_1016_j_ins_2018_03_064 crossref_primary_10_1007_s12596_023_01549_4 crossref_primary_10_1109_TAI_2022_3170001 crossref_primary_10_1109_TIP_2020_2978645 crossref_primary_10_1109_TIP_2020_2984896 crossref_primary_10_1016_j_neucom_2017_11_004 crossref_primary_10_1109_ACCESS_2021_3049181 crossref_primary_10_1109_TIP_2019_2958309 crossref_primary_10_1371_journal_pone_0191833 crossref_primary_10_3390_rs15020443 crossref_primary_10_1051_wujns_2023281061 crossref_primary_10_1016_j_jvcir_2019_102704 crossref_primary_10_3233_JIFS_179375 crossref_primary_10_1016_j_cviu_2024_104270 crossref_primary_10_1109_ACCESS_2019_2936711 crossref_primary_10_1109_ACCESS_2019_2958697 crossref_primary_10_1016_j_sigpro_2023_109284 crossref_primary_10_1007_s10044_018_0692_5 crossref_primary_10_1049_ipr2_12456 crossref_primary_10_1007_s00371_019_01729_z crossref_primary_10_1016_j_image_2018_09_012 crossref_primary_10_1016_j_optlastec_2023_110401 crossref_primary_10_1109_TVCG_2018_2889055 crossref_primary_10_1109_TIFS_2017_2730362 crossref_primary_10_1016_j_cviu_2024_104204 crossref_primary_10_1016_j_neucom_2018_03_027 crossref_primary_10_1109_TCSVT_2019_2913411 crossref_primary_10_1137_20M1337168 crossref_primary_10_1016_j_dsp_2023_104029 crossref_primary_10_1109_TIP_2018_2862357 crossref_primary_10_1134_S1054661822010059 crossref_primary_10_1002_jnm_2824 crossref_primary_10_1016_j_apradiso_2023_111142 crossref_primary_10_1016_j_jvcir_2018_05_021 crossref_primary_10_1109_TIP_2020_2980753 crossref_primary_10_3390_sym13112114 crossref_primary_10_3390_s19051143 crossref_primary_10_3390_e24070946 crossref_primary_10_1109_TPAMI_2018_2817496 crossref_primary_10_1016_j_apm_2023_02_031 crossref_primary_10_1007_s11263_016_0921_6 crossref_primary_10_1109_JSTSP_2018_2873047 crossref_primary_10_1016_j_image_2018_05_009 crossref_primary_10_1109_TPAMI_2023_3265103 crossref_primary_10_20965_jaciii_2018_p1072 crossref_primary_10_1109_LSP_2021_3096753 crossref_primary_10_1016_j_knosys_2020_106722 crossref_primary_10_1007_s00034_016_0470_9 crossref_primary_10_1109_TMM_2016_2613824 crossref_primary_10_1007_s11042_022_12083_z crossref_primary_10_1016_j_jvcir_2020_102895 crossref_primary_10_1007_s11042_023_16636_8 crossref_primary_10_1016_j_asoc_2023_110861 crossref_primary_10_1109_TIP_2020_3021291 crossref_primary_10_1016_j_neucom_2021_02_053 crossref_primary_10_1109_TCSVT_2021_3101591 crossref_primary_10_1109_TIP_2018_2828341 crossref_primary_10_1371_journal_pone_0208503 crossref_primary_10_1109_TGRS_2023_3269224 crossref_primary_10_1109_TIP_2020_2972109 crossref_primary_10_1017_S0962492919000059 crossref_primary_10_1109_TIP_2020_3015545 crossref_primary_10_1088_1742_6596_1314_1_012209 crossref_primary_10_1007_s10851_018_0867_0 crossref_primary_10_1109_TIP_2017_2676466 crossref_primary_10_1109_JSTSP_2020_2975610 crossref_primary_10_3390_computers10100129 crossref_primary_10_1109_LSENS_2022_3150776 crossref_primary_10_1049_iet_ipr_2019_0157 crossref_primary_10_1007_s11263_021_01572_7 crossref_primary_10_1016_j_image_2017_01_003 crossref_primary_10_1155_2021_9035163 crossref_primary_10_1109_TIP_2022_3193754 crossref_primary_10_1109_TIP_2018_2845123 crossref_primary_10_1016_j_jsv_2016_01_017 crossref_primary_10_1137_23M1545859 crossref_primary_10_3390_s22020537 crossref_primary_10_1016_j_jvcir_2018_02_011 crossref_primary_10_1109_TNNLS_2021_3057439 crossref_primary_10_1117_1_JEI_27_5_053009 crossref_primary_10_1109_TIP_2020_3005515 crossref_primary_10_1007_s11859_018_1332_z crossref_primary_10_1016_j_ins_2023_04_010 crossref_primary_10_1016_j_sigpro_2022_108650 crossref_primary_10_1109_TPAMI_2020_2968521 crossref_primary_10_3390_a15060176 crossref_primary_10_1109_TIP_2018_2837865 crossref_primary_10_1016_j_sigpro_2020_107751 crossref_primary_10_1016_j_sigpro_2022_108926 crossref_primary_10_1088_1361_6420_ad9774 crossref_primary_10_1109_ACCESS_2018_2890417 crossref_primary_10_3390_s18041135 crossref_primary_10_1007_s00371_022_02491_5 crossref_primary_10_1137_16M1102884 crossref_primary_10_1016_j_sigpro_2024_109536 crossref_primary_10_1016_j_neucom_2022_04_013 crossref_primary_10_1080_13682199_2023_2173546 crossref_primary_10_1109_TIP_2020_3002452 crossref_primary_10_1088_1742_6596_1651_1_012033 crossref_primary_10_1109_TIP_2021_3078329 crossref_primary_10_3389_fphys_2022_961571 crossref_primary_10_1109_TCI_2019_2911881 crossref_primary_10_3390_math12091412 crossref_primary_10_1016_j_optlaseng_2022_107413 crossref_primary_10_1109_TCYB_2021_3084931 crossref_primary_10_1109_TIP_2020_3010082 crossref_primary_10_1049_ipr2_12563 crossref_primary_10_1088_1757_899X_261_1_012012 crossref_primary_10_1007_s00034_024_02875_z crossref_primary_10_1016_j_dsp_2016_10_008 crossref_primary_10_1016_j_image_2017_02_010 crossref_primary_10_1007_s11390_019_1927_7 crossref_primary_10_1371_journal_pone_0199141 crossref_primary_10_1109_TIP_2023_3299189 crossref_primary_10_1109_TGRS_2018_2870087 crossref_primary_10_1016_j_knosys_2021_107475 crossref_primary_10_1111_cgf_13556 crossref_primary_10_1142_S0219467822400095 crossref_primary_10_1371_journal_pone_0276373 crossref_primary_10_1016_j_neucom_2016_04_046 crossref_primary_10_1109_TPAMI_2018_2873610 crossref_primary_10_1109_LGRS_2022_3141801 crossref_primary_10_1142_S0218001418540083 crossref_primary_10_1109_ACCESS_2020_3021081 crossref_primary_10_1109_TIP_2018_2869691 crossref_primary_10_1109_ACCESS_2018_2813969 |
Cites_doi | 10.1109/TIP.2003.818640 10.1109/TIP.2011.2176954 10.1109/TIP.2009.2028250 10.1109/TIT.2011.2162174 10.1109/TIP.2011.2176743 10.1002/cpa.3160410705 10.1109/TIP.2010.2050625 10.1137/070697653 10.1007/s11263-009-0272-7 10.1007/s10915-008-9214-8 10.1109/TIP.2003.819861 10.1109/TIP.2007.901238 10.1561/2200000016 10.1109/TIP.2011.2160072 10.1016/0165-1684(86)90101-5 10.1109/TIP.2005.859376 10.1109/TSP.2007.914345 10.1007/s00041-008-9045-x 10.1109/TIP.2006.888335 10.1093/biomet/81.3.425 10.1109/TIP.2012.2197006 10.1109/83.862633 10.1109/76.499834 10.1109/TSP.2004.831016 10.1109/TSP.2006.881199 10.1109/TSP.2007.894265 10.1109/TPAMI.2008.107 10.1109/78.258085 10.1109/TSP.2009.2026004 10.1109/CVPR.2011.5995478 10.1145/1553374.1553463 10.2307/2529336 10.1109/TIP.2012.2235847 10.1109/ICCV.2011.6126278 10.1109/ICCV.2009.5459452 10.1111/j.2517-6161.1974.tb00989.x 10.1109/TIP.2012.2221729 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2015 |
Copyright_xml | – notice: Springer Science+Business Media New York 2015 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U |
DOI | 10.1007/s11263-015-0808-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1573-1405 |
EndPage | 232 |
ExternalDocumentID | 3783672231 10_1007_s11263_015_0808_y |
Genre | Feature |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c485t-4d50f3eb52873bf3345a80552598553b3dca1bc56f86f489768d0063c685781e3 |
IEDL.DBID | BENPR |
ISSN | 0920-5691 |
IngestDate | Tue Aug 05 10:03:05 EDT 2025 Fri Jul 25 23:22:30 EDT 2025 Tue Jul 01 04:30:55 EDT 2025 Thu Apr 24 22:58:30 EDT 2025 Fri Feb 21 02:35:17 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2-3 |
Keywords | Simultaneous sparse coding Gaussian scale mixture Structured sparsity Variational image restoration Alternative minimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-4d50f3eb52873bf3345a80552598553b3dca1bc56f86f489768d0063c685781e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1705643684 |
PQPubID | 1456341 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1744684443 proquest_journals_1705643684 crossref_citationtrail_10_1007_s11263_015_0808_y crossref_primary_10_1007_s11263_015_0808_y springer_journals_10_1007_s11263_015_0808_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of computer vision |
PublicationTitleAbbrev | Int J Comput Vis |
PublicationYear | 2015 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Chang, Yu, Vetterli (CR9) 2000; 9 Mairal, Sapiro, Elad (CR27) 2008; 7 Vetterli (CR38) 1986; 10 Aharon, Elad, Bruckstein (CR1) 2012; 54 CR19 Portilla, Strela, Wainwright, Simoncelli (CR32) 2003; 12 Yu, Sapiro, Mallat (CR45) 2012; 21 Box, Tiao (CR4) 2011 Donoho, Johnstone (CR17) 1994; 81 CR16 CR15 CR37 Do, Vetterli (CR13) 2005; 14 CR14 Elad, Aharon (CR18) 2012; 21 CR36 Beck, Teboulle (CR3) 2009; 18 CR31 Daubechies (CR12) 1988; 41 Katkovnik, Foi, Egiazarian, Astola (CR23) 2010; 86 CR30 Xu, Osher (CR43) 2007; 16 Yang, Wright, Huang, Ma (CR44) 2010; 19 Ramirez, Sapiro (CR33) 2012; 21 Gasso, Rakotomamonjy, Canu (CR20) 2009; 57 Lyu, Simoncelli (CR24) 2009; 31 Zhou, Chen, Paisley, Ren, Li, Xing, Dunson, Sapiro, Carin (CR47) 2012; 21 Buades, Coll, Morel (CR6) 2005; 2 CR8 Ji, Xue, Carin (CR22) 2008; 56 Boyd, Parikh, Chu, Peleato, Eckstein (CR5) 2011; 3 Andrews, Mallows (CR2) 1974; 36 CR26 Wipf, Rao (CR41) 2007; 55 CR48 CR25 CR46 Dabov, Foi, Katkovnik, Egiazarian (CR10) 2007; 16 Candes, Wakin, Boyd (CR7) 2008; 14 CR21 Marquina, Osher (CR29) 2008; 37 Wang, Bovik, Sheikh, Simoncelli (CR39) 2004; 13 Said, Pearlman (CR34) 1996; 6 Mallat (CR28) 1989; 315 Wipf, Rao (CR40) 2004; 52 Shapiro (CR35) 1993; 41 Danielyan, Katkovnik, Egiazarian (CR11) 2012; 21 Wipf, Rao, Nagarajan (CR42) 2011; 57 V Katkovnik (808_CR23) 2010; 86 M Vetterli (808_CR38) 1986; 10 808_CR26 J Portilla (808_CR32) 2003; 12 Z Wang (808_CR39) 2004; 13 808_CR48 808_CR46 808_CR25 D Donoho (808_CR17) 1994; 81 E Candes (808_CR7) 2008; 14 DP Wipf (808_CR42) 2011; 57 M Elad (808_CR18) 2012; 21 A Beck (808_CR3) 2009; 18 DF Andrews (808_CR2) 1974; 36 A Buades (808_CR6) 2005; 2 A Danielyan (808_CR11) 2012; 21 S Lyu (808_CR24) 2009; 31 S Ji (808_CR22) 2008; 56 I Daubechies (808_CR12) 1988; 41 DP Wipf (808_CR40) 2004; 52 G Yu (808_CR45) 2012; 21 K Dabov (808_CR10) 2007; 16 808_CR21 M Aharon (808_CR1) 2012; 54 JM Shapiro (808_CR35) 1993; 41 808_CR19 J Mairal (808_CR27) 2008; 7 S Boyd (808_CR5) 2011; 3 G Gasso (808_CR20) 2009; 57 GE Box (808_CR4) 2011 808_CR15 S Mallat (808_CR28) 1989; 315 808_CR37 808_CR16 M Zhou (808_CR47) 2012; 21 808_CR14 808_CR36 J Yang (808_CR44) 2010; 19 SG Chang (808_CR9) 2000; 9 808_CR8 J Xu (808_CR43) 2007; 16 I Ramirez (808_CR33) 2012; 21 DP Wipf (808_CR41) 2007; 55 MN Do (808_CR13) 2005; 14 808_CR31 A Said (808_CR34) 1996; 6 A Marquina (808_CR29) 2008; 37 808_CR30 |
References_xml | – volume: 12 start-page: 1338 year: 2003 end-page: 1351 ident: CR32 article-title: Image denoising using scale mixtures of gaussians in the wavelet domain publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2003.818640 – volume: 21 start-page: 1715 issue: 4 year: 2012 end-page: 1728 ident: CR11 article-title: Bm3d frames and variational image deblurring publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2011.2176954 – volume: 18 start-page: 2419 issue: 11 year: 2009 end-page: 2434 ident: CR3 article-title: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2009.2028250 – volume: 57 start-page: 6236 issue: 9 year: 2011 end-page: 6255 ident: CR42 article-title: Latent variable bayesian models for promoting sparsity publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2011.2162174 – ident: CR14 – volume: 21 start-page: 2481 issue: 5 year: 2012 end-page: 2499 ident: CR45 article-title: Solving inverse problems with piecewise linear estimators: from gaussian mixture models to structured sparsity publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2011.2176743 – ident: CR16 – ident: CR37 – volume: 41 start-page: 909 year: 1988 end-page: 996 ident: CR12 article-title: Orthonormal bases of compactly supported bases publication-title: Communications On Pure and Applied Mathematics doi: 10.1002/cpa.3160410705 – ident: CR30 – volume: 19 start-page: 2861 issue: 11 year: 2010 end-page: 2873 ident: CR44 article-title: Image super-resolution via sparse representation publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2010.2050625 – volume: 315 start-page: 69 year: 1989 end-page: 87 ident: CR28 article-title: Multiresolution approximations and wavelet orthonormal bases of publication-title: Transactions of the American Mathematical Society – volume: 7 start-page: 214 issue: 1 year: 2008 end-page: 241 ident: CR27 article-title: Learning multiscale sparse representation for image and video restoration publication-title: SIAM Multiscale Modeling and Simulation doi: 10.1137/070697653 – volume: 86 start-page: 1 issue: 1 year: 2010 end-page: 32 ident: CR23 article-title: From local kernel to nonlocal multiple-model image denoising publication-title: International Journal of Computer Vision doi: 10.1007/s11263-009-0272-7 – volume: 37 start-page: 367 issue: 3 year: 2008 end-page: 382 ident: CR29 article-title: Image super-resolution by tv-regularization and bregman iteration publication-title: Journal of Scientific Computing doi: 10.1007/s10915-008-9214-8 – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 ident: CR39 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2003.819861 – ident: CR8 – ident: CR25 – year: 2011 ident: CR4 publication-title: Bayesian inference in statistical analysis – volume: 16 start-page: 2080 issue: 8 year: 2007 end-page: 2095 ident: CR10 article-title: Image denoising by sparse 3-d transform-domain collaborative filtering publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2007.901238 – volume: 36 start-page: 99 issue: 1 year: 1974 end-page: 102 ident: CR2 article-title: Scale mixtures of normal distributions publication-title: Journal of the Royal Statistical Society. Series B (Methodological) – ident: CR21 – volume: 3 start-page: 1 issue: 1 year: 2011 end-page: 122 ident: CR5 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Foundations and Trends in Machine Learning doi: 10.1561/2200000016 – ident: CR46 – volume: 21 start-page: 130 issue: 1 year: 2012 end-page: 144 ident: CR47 article-title: Nonparametric bayesian dictionary learning for analysis of noisy and incomplete images publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2011.2160072 – volume: 2 start-page: 60 year: 2005 end-page: 65 ident: CR6 article-title: A non-local algorithm for image denoising publication-title: CVPR – ident: CR19 – volume: 10 start-page: 219 issue: 3 year: 1986 end-page: 244 ident: CR38 article-title: Filter banks allowing perfect reconstruction publication-title: Signal Processing doi: 10.1016/0165-1684(86)90101-5 – ident: CR48 – volume: 14 start-page: 2091 issue: 12 year: 2005 end-page: 2106 ident: CR13 article-title: The contourlet transform: An efficient directional multiresolution image representation publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2005.859376 – ident: CR15 – volume: 56 start-page: 2346 issue: 6 year: 2008 end-page: 2356 ident: CR22 article-title: Bayesian compressive sensing publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2007.914345 – volume: 14 start-page: 877 issue: 5 year: 2008 end-page: 905 ident: CR7 article-title: Enhancing sparsity by reweighted minimization publication-title: Journal of Fourier Analysis and Applications doi: 10.1007/s00041-008-9045-x – volume: 16 start-page: 534 issue: 2 year: 2007 end-page: 544 ident: CR43 article-title: Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2006.888335 – ident: CR31 – volume: 81 start-page: 425 year: 1994 end-page: 455 ident: CR17 article-title: Ideal spatial adaptation by wavelet shrinkage publication-title: Biometrika doi: 10.1093/biomet/81.3.425 – volume: 21 start-page: 3850 issue: 9 year: 2012 end-page: 3864 ident: CR33 article-title: Universal regularizers for robust sparse coding and modeling publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2012.2197006 – volume: 9 start-page: 1532 issue: 9 year: 2000 end-page: 1546 ident: CR9 article-title: Adaptive wavelet thresholding for image denoising and compression publication-title: IEEE Transactions on Image Processing doi: 10.1109/83.862633 – volume: 6 start-page: 243 year: 1996 end-page: 250 ident: CR34 article-title: A new fast and efficient image codec based on set partitioning in hierarchical trees publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/76.499834 – volume: 52 start-page: 2153 issue: 8 year: 2004 end-page: 2164 ident: CR40 article-title: Sparse bayesian learning for basis selection publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2004.831016 – volume: 21 start-page: 3850 issue: 9 year: 2012 end-page: 3864 ident: CR18 article-title: Image denoising via sparse and redundant representations over learned dictionaries publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2012.2197006 – ident: CR36 – volume: 54 start-page: 4311 issue: 11 year: 2012 end-page: 4322 ident: CR1 article-title: The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representations publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2006.881199 – volume: 55 start-page: 3704 issue: 7 year: 2007 end-page: 3716 ident: CR41 article-title: An empirical Bayesian strategy for solving the simultaneous sparse approximation problem publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2007.894265 – volume: 31 start-page: 693 issue: 4 year: 2009 end-page: 706 ident: CR24 article-title: Modeling multiscale subbands of photographic images with fields of gaussian scale mixtures publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2008.107 – ident: CR26 – volume: 41 start-page: 3445 issue: 12 year: 1993 end-page: 3462 ident: CR35 article-title: Embedded image coding using zerotrees of wavelet coefficients publication-title: EEE Transactions on Acoustics, Speech and Signal Processing doi: 10.1109/78.258085 – volume: 57 start-page: 4686 issue: 12 year: 2009 end-page: 4698 ident: CR20 article-title: Recovering sparse signals with a certain family of nonconvex penalties and DC programming publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2009.2026004 – volume: 21 start-page: 130 issue: 1 year: 2012 ident: 808_CR47 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2011.2160072 – volume: 6 start-page: 243 year: 1996 ident: 808_CR34 publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/76.499834 – volume: 55 start-page: 3704 issue: 7 year: 2007 ident: 808_CR41 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2007.894265 – ident: 808_CR14 doi: 10.1109/CVPR.2011.5995478 – volume: 12 start-page: 1338 year: 2003 ident: 808_CR32 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2003.818640 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 808_CR39 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2003.819861 – volume: 16 start-page: 2080 issue: 8 year: 2007 ident: 808_CR10 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2007.901238 – volume: 9 start-page: 1532 issue: 9 year: 2000 ident: 808_CR9 publication-title: IEEE Transactions on Image Processing doi: 10.1109/83.862633 – volume: 21 start-page: 1715 issue: 4 year: 2012 ident: 808_CR11 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2011.2176954 – ident: 808_CR25 doi: 10.1145/1553374.1553463 – ident: 808_CR21 doi: 10.2307/2529336 – ident: 808_CR37 – ident: 808_CR30 – volume: 41 start-page: 909 year: 1988 ident: 808_CR12 publication-title: Communications On Pure and Applied Mathematics doi: 10.1002/cpa.3160410705 – volume: 41 start-page: 3445 issue: 12 year: 1993 ident: 808_CR35 publication-title: EEE Transactions on Acoustics, Speech and Signal Processing doi: 10.1109/78.258085 – ident: 808_CR16 doi: 10.1109/TIP.2012.2235847 – volume: 14 start-page: 2091 issue: 12 year: 2005 ident: 808_CR13 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2005.859376 – volume: 81 start-page: 425 year: 1994 ident: 808_CR17 publication-title: Biometrika doi: 10.1093/biomet/81.3.425 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 808_CR5 publication-title: Foundations and Trends in Machine Learning doi: 10.1561/2200000016 – volume: 10 start-page: 219 issue: 3 year: 1986 ident: 808_CR38 publication-title: Signal Processing doi: 10.1016/0165-1684(86)90101-5 – ident: 808_CR46 – volume: 57 start-page: 6236 issue: 9 year: 2011 ident: 808_CR42 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2011.2162174 – ident: 808_CR48 doi: 10.1109/ICCV.2011.6126278 – volume: 21 start-page: 3850 issue: 9 year: 2012 ident: 808_CR33 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2012.2197006 – volume: 52 start-page: 2153 issue: 8 year: 2004 ident: 808_CR40 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2004.831016 – ident: 808_CR26 doi: 10.1109/ICCV.2009.5459452 – ident: 808_CR8 – volume: 21 start-page: 3850 issue: 9 year: 2012 ident: 808_CR18 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2012.2197006 – volume: 315 start-page: 69 year: 1989 ident: 808_CR28 publication-title: Transactions of the American Mathematical Society – volume: 19 start-page: 2861 issue: 11 year: 2010 ident: 808_CR44 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2010.2050625 – volume-title: Bayesian inference in statistical analysis year: 2011 ident: 808_CR4 – volume: 31 start-page: 693 issue: 4 year: 2009 ident: 808_CR24 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2008.107 – volume: 86 start-page: 1 issue: 1 year: 2010 ident: 808_CR23 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-009-0272-7 – volume: 36 start-page: 99 issue: 1 year: 1974 ident: 808_CR2 publication-title: Journal of the Royal Statistical Society. Series B (Methodological) doi: 10.1111/j.2517-6161.1974.tb00989.x – volume: 37 start-page: 367 issue: 3 year: 2008 ident: 808_CR29 publication-title: Journal of Scientific Computing doi: 10.1007/s10915-008-9214-8 – ident: 808_CR36 – volume: 2 start-page: 60 year: 2005 ident: 808_CR6 publication-title: CVPR – ident: 808_CR19 – volume: 56 start-page: 2346 issue: 6 year: 2008 ident: 808_CR22 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2007.914345 – volume: 7 start-page: 214 issue: 1 year: 2008 ident: 808_CR27 publication-title: SIAM Multiscale Modeling and Simulation doi: 10.1137/070697653 – ident: 808_CR15 doi: 10.1109/TIP.2012.2221729 – ident: 808_CR31 – volume: 18 start-page: 2419 issue: 11 year: 2009 ident: 808_CR3 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2009.2028250 – volume: 57 start-page: 4686 issue: 12 year: 2009 ident: 808_CR20 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2009.2026004 – volume: 54 start-page: 4311 issue: 11 year: 2012 ident: 808_CR1 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2006.881199 – volume: 14 start-page: 877 issue: 5 year: 2008 ident: 808_CR7 publication-title: Journal of Fourier Analysis and Applications doi: 10.1007/s00041-008-9045-x – volume: 16 start-page: 534 issue: 2 year: 2007 ident: 808_CR43 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2006.888335 – volume: 21 start-page: 2481 issue: 5 year: 2012 ident: 808_CR45 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2011.2176743 |
SSID | ssj0002823 |
Score | 2.5627885 |
Snippet | In image processing, sparse coding has been known to be relevant to both variational and Bayesian approaches. The regularization parameter in variational image... Issue Title: Special Issue: Sparse Coding In image processing, sparse coding has been known to be relevant to both variational and Bayesian approaches. The... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 217 |
SubjectTerms | Adaptation Analysis Artificial Intelligence Bayesian analysis Coding Computer Imaging Computer programming Computer Science Dictionaries Gaussian Image coding Image processing Image Processing and Computer Vision Image processing systems Image restoration Mathematical models Normal distribution Pattern Recognition Pattern Recognition and Graphics Preserves Sparsity Studies Variables Vision |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X3zxW6xOieCTUmiWj6W-jeGcwnxwDvZWmjbFgXZj3cT99971Y1NRwdcmTSCXu_v9uMsdIRex8nQYwuUF6KowzGhdP0yYa3xw9sIwLvL2bb0H1R2I-6Eclu-4syrbvQpJ5pZ69diNNTDmyKQLKEe7i3WyIYG6Yx7XoNFaml_gEEX_eOBFUvmsCmX-tMRXZ7RCmN-Cormv6eyQrRIk0lYh1V2yZtM9sl0CRlqqYwafqp4M1bd98nz3ChaCPuYNY_JTp2-jkPZHmDkYphaIPu1PgM1a2h6j37qmYI-nlvbzQrLzKW6A44DOac_aWUZvw3mGTy1hE_AmtDd6x2kHZNC5eWp33bKbghsJLWeuiKWXcGskcCRuEs6FDLUnJfAfLSU3PI5CZiKpEq0SoQGm6BgBTKQ0aDWz_JDU0nFqjwhl0nLTBCxgfSMSpkyDg-EASxXHoilZ7BCvOtYgKkuNY8eLl2BVJBklEYAkApREsHDI5fKXSVFn46_J9UpWQalyWYB1gRTW0xcOOV8Og7JgBKQ4X5gD7FcLIbhDrioZf1ritw2P_zX7hGw28juGmWh1UgP52VOALjNzll_VD_ee5Bs priority: 102 providerName: Springer Nature |
Title | Image Restoration via Simultaneous Sparse Coding: Where Structured Sparsity Meets Gaussian Scale Mixture |
URI | https://link.springer.com/article/10.1007/s11263-015-0808-y https://www.proquest.com/docview/1705643684 https://www.proquest.com/docview/1744684443 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be9nL8trVlkdlpD2Boq3rBy4XVKAtLBQhupXYUxQnjqgEbSEFwb9nJnVaQIJTpNjJSJ7XNx57BuB3omsmilB4EbpqSjO6oBGlPLANdPbSciHz9m3dC33Sl3-v1bXfcMv8scrCJuaGOhnFtEf-h8q-aCqXLg_G9wF1jaLsqm-hsQhlNMHGlKB82Lq4vJrZYgwops3kMUhSusGLvGZ-eY7XKYfJVYCoyQQv7z3THG5-yJDmjqe9DN89YmTNKYtXYMENV2HJo0fmdTPDV0WDhuLdGtyc3qG5YFd595icBexpELHegI4RRkOHUT_rjTG0dexoRE5sn6FxfnCsl1eVfXwgAjSOUJ11nZtkrBM9ZnTvEomga2HdwTNN-wH9duvf0UngWysEsTRqEshE1VLhrMKASdhUCKkiU1MKgyGjlLAiiSNuY6VTo1NpELOYhNBMrA2qOHfiJ5SGo6H7BYwrJ-weAgPXsDLl2tYFWhE0W0ki9xRPKlArljWMfd1xan9xG84rJhMnQuRESJwIXyqwM_tkPC268dXkzYJXode_LJxLSwW2Z8OoOZQOma4vzsFQ2EgpRQV2Cx6_-cVnBNe_JrgB3-q5UNE5tE0oIcPcFgKXia3Coml3qlBuHnfPe_Ts_D9rVb3M4mi_3nwF_AXtdQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxsxDLeAPYyXfYJWxrZMGi-gE83lg3TShCa20g7KAwWJt9vlLqdVgrZw7bb-U_sbsXOXlk0ab7wmuViKHf_sc2wDfMh106QpCi-arprCjC5qpQWPbAvBXloupG_f1jvRnXP57UJdLMGfkAtDzyqDTvSKOh9l9I98l8q-aCqXLvfH1xF1jaLoamihUYnFkZv9Qpet_NT9gvzdiuP217ODTlR3FYgyadQkkrlqFsJZhb6CsIUQUqWmqRT6AUYpYUWepdxmShdGF9IgXJucgDzTBqWbO4H7LsMjKRDJKTO9fTjX_Oi-VK3r0SVTusVDFNWn6vGYIqZcRWijmWj2Nw4ujNt_4rEe5trP4Eltn7LPlUA9hyU3fAFPa1uV1ZqgxKHQDiKMvYQf3StUTuzU96rxDGc_BynrD-jRYjp0o2nJ-mN0pB07GBFkfmQIBTeO9X0N2-kNEaB5dAxYz7lJyQ7TaUlZnkgEgYz1Br9p2RqcP8iRr8PKcDR0r4Bx5YTdQzPEtawsuLaxQJ2FSjLP5Z7ieQOa4ViTrK5yTs02LpNFfWbiRIKcSIgTyawB2_NPxlWJj_sWbwZeJfVtL5OFbDbg_Xwa7ykFX6rzxTXoeBsppWjATuDxnS3-R3DjfoLv4HHnrHecHHdPjl7DauwFjF7AbcIKMs-9QZNpYt96OWXw_aEvxi0G8SHR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8MBgguo1hpO0FFK2OP-oiTYh9lHWj1bQyaW9ZnDiiEmvL0sL6r_HXcZfE7ZjE3vZqO7bkO9_vfjn7DmAr1Q0Tx6i86LpqCjO6oBVnPLAtBHtpuZBF-bZuTx-dy-MLdbEEf_xbGLpW6W1iYajTUUL_yHco7YumdOlyJ6uuRZwetD-NfwZUQYoirb6cRqkiJ272G-lbvts5QFlvh2H78Nv-UVBVGAgSadQkkKlqZMJZhbxB2EwIqWLTUAo5gVFKWJEmMbeJ0pnRmTQI3SYlUE-0QU3nTuC8j2C5SayoBst7h73TszkOIJkpC9kjQVO6xX1MtXi4x0OKn3IVoMdmgtm_qLhwde9EZwvQaz-Dp5W3yj6X6vUcltxwFVYqz5VVdiHHJl8cwre9gO-dKzRV7KyoXFOIn_0axKw_oCuM8dCNpjnrj5FWO7Y_IgD9yBAYrh3rFxltp9e0APUjTWBd5yY5-xJPc3rziYsgrLHu4IaGvYTzB9n0V1AbjobuNTCunLBNdEpcy8qMaxsKtGBoMtNUNhVP69Dw2xolVc5zKr3xI1pkayZJRCiJiCQRzerwfv7JuEz4cd_gDS-rqDr7ebTQ1Dq8m3fjqaVQTLm_OAZpuJFSijp88DK-NcX_Fly7f8G38BgPRfS10ztZhydhoV90HW4Daig79wb9p4ndrBSVweVDn42_pHMnYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Restoration+via+Simultaneous+Sparse+Coding%3A+Where+Structured+Sparsity+Meets+Gaussian+Scale+Mixture&rft.jtitle=International+journal+of+computer+vision&rft.au=Dong%2C+Weisheng&rft.au=Shi%2C+Guangming&rft.au=Ma%2C+Yi&rft.au=Li%2C+Xin&rft.date=2015-09-01&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=114&rft.issue=2-3&rft.spage=217&rft.epage=232&rft_id=info:doi/10.1007%2Fs11263-015-0808-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11263_015_0808_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |