SPACEL: deep learning-based characterization of spatial transcriptome architectures
Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning t...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 7603 - 18 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.11.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis.
Spatial transcriptomics (ST) technologies detect transcript distribution in space. Here, authors present a deep learning based method SPACEL for cell type deconvolution, spatial domain identification and 3D alignment, showcasing it as a valuable toolkit for ST data analysis |
---|---|
AbstractList | Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis.
Spatial transcriptomics (ST) technologies detect transcript distribution in space. Here, authors present a deep learning based method SPACEL for cell type deconvolution, spatial domain identification and 3D alignment, showcasing it as a valuable toolkit for ST data analysis Abstract Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis. Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis. Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis.Spatial transcriptomics (ST) technologies detect transcript distribution in space. Here, authors present a deep learning based method SPACEL for cell type deconvolution, spatial domain identification and 3D alignment, showcasing it as a valuable toolkit for ST data analysis Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis.Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis. |
ArticleNumber | 7603 |
Author | Luo, Songwen Wang, Shuyan Fang, Minghao Chen, Chunpeng Xu, Hao Tang, Meifang Li, Bin Wan, Siyuan Lin, Jun Wang, Rirui Qu, Kun Xue, Tian |
Author_xml | – sequence: 1 givenname: Hao surname: Xu fullname: Xu, Hao organization: Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China – sequence: 2 givenname: Shuyan surname: Wang fullname: Wang, Shuyan organization: Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, School of Data Science, University of Science and Technology of China – sequence: 3 givenname: Minghao surname: Fang fullname: Fang, Minghao organization: Institute of Artificial Intelligence, Hefei Comprehensive National Science Center – sequence: 4 givenname: Songwen surname: Luo fullname: Luo, Songwen organization: Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China – sequence: 5 givenname: Chunpeng surname: Chen fullname: Chen, Chunpeng organization: Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China – sequence: 6 givenname: Siyuan surname: Wan fullname: Wan, Siyuan organization: Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, School of Data Science, University of Science and Technology of China – sequence: 7 givenname: Rirui surname: Wang fullname: Wang, Rirui organization: Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China – sequence: 8 givenname: Meifang surname: Tang fullname: Tang, Meifang organization: Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China – sequence: 9 givenname: Tian orcidid: 0000-0001-6187-122X surname: Xue fullname: Xue, Tian organization: Division of Life Sciences and Medicine, University of Science and Technology of China – sequence: 10 givenname: Bin orcidid: 0000-0003-0485-3724 surname: Li fullname: Li, Bin email: libin@nibs.ac.cn organization: National Institute of Biological Sciences – sequence: 11 givenname: Jun orcidid: 0000-0001-7087-6540 surname: Lin fullname: Lin, Jun email: linjun7@ustc.edu.cn organization: Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center – sequence: 12 givenname: Kun orcidid: 0000-0002-5555-8437 surname: Qu fullname: Qu, Kun email: qukun@ustc.edu.cn organization: Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, School of Data Science, University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37990022$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxSNUREvpF-CAInHhEvD_ONyqVYFKK4FUOFsTe7L1KhsH2znAp8fdtIB6qC8ejX7vaWbey-pkChNW1WtK3lPC9YckqFBtQxhvBGeMNPxZdcaIoA1tGT_5rz6tLlLak_J4R7UQL6pT3nYdIYydVTc33y43V9uPtUOc6xEhTn7aNT0kdLW9hQg2Y_S_Ifsw1WGo01xKGOscYUo2-jmHA9YQ7a3PaPMSMb2qng8wJry4_8-rH5-uvm--NNuvn683l9vGCi1zI5wQ2ELfD50GWVpUtlz0BPXgrJKOg-yZwLKcGxSTveiUFR0MTImWc0f5eXW9-roAezNHf4D4ywTw5tgIcWcgZm9HNE6KsrFUrHOtUKwHyzR0trcOqFSKF693q9ccw88FUzYHnyyOI0wYlmSY7piSWkpd0LeP0H1Y4lQ2PVLFr21Vod7cU0t_QPd3vIfTF0CvgI0hpYiDsT4fz1xO60dDibkL2qxBmxK0OQZt7oZlj6QP7k-K-CpKBZ52GP-N_YTqD64puEY |
CitedBy_id | crossref_primary_10_1360_TB_2024_0332 crossref_primary_10_1016_j_jgg_2024_11_009 crossref_primary_10_1142_S0192415X25500144 crossref_primary_10_1093_bib_bbae302 crossref_primary_10_1016_j_semcdb_2025_01_002 crossref_primary_10_1038_s41571_024_00926_7 crossref_primary_10_1109_JSEN_2024_3407578 crossref_primary_10_1142_S2972389224300044 crossref_primary_10_1186_s12943_025_02240_x crossref_primary_10_1093_bib_bbaf109 crossref_primary_10_1007_s44272_024_00018_8 crossref_primary_10_1038_s41592_025_02617_2 crossref_primary_10_1093_bib_bbae551 crossref_primary_10_1016_j_cell_2024_07_040 crossref_primary_10_1093_bib_bbae576 crossref_primary_10_4236_health_2024_169059 crossref_primary_10_1002_adhm_202403698 crossref_primary_10_1002_smtd_202401107 crossref_primary_10_1016_j_ncrops_2024_100025 crossref_primary_10_1002_wrna_1839 crossref_primary_10_1038_s41467_024_50308_x crossref_primary_10_1186_s13059_024_03361_0 crossref_primary_10_34133_bmef_0084 crossref_primary_10_1016_j_cell_2024_10_011 crossref_primary_10_1093_gigascience_giae103 |
Cites_doi | 10.1093/nar/gkab043 10.1214/aoms/1177729694 10.1186/s13059-017-1382-0 10.1038/s41586-022-05023-2 10.1038/s41467-023-35947-w 10.1016/j.cell.2021.04.048 10.1023/A:1008202821328 10.1038/s41587-020-00795-2 10.1038/s41592-022-01459-6 10.1016/j.cell.2020.06.038 10.1038/s41593-020-00787-0 10.1038/s41592-021-01264-7 10.1038/s41586-019-1506-7 10.1038/s41586-022-05060-x 10.1093/nar/gkaa740 10.1038/s41587-022-01273-7 10.1038/s41587-020-0739-1 10.1038/s41586-022-04953-1 10.1016/j.cell.2018.06.021 10.1126/sciadv.abb3446 10.1038/s41592-018-0175-z 10.1038/s41592-019-0537-1 10.1038/s41467-022-29439-6 10.1038/s41587-021-00830-w 10.1093/bioinformatics/btw777 10.1016/j.neuron.2016.10.001 10.1038/s41587-021-00935-2 10.1038/s41586-021-03705-x 10.1126/science.abb9536 10.1093/bioinformatics/btz372 10.1186/s13059-021-02362-7 10.1126/sciadv.abg3750 10.1126/science.aaf2403 10.1093/bib/bbaa414 10.1016/j.acha.2010.04.005 10.1038/s41586-021-03634-9 10.1038/s41592-021-01336-8 10.1038/s41587-021-01139-4 10.1007/BF00342633 10.1038/s41588-021-00911-1 10.1038/s41592-022-01480-9 10.1109/TIT.1983.1056714 10.1016/j.cell.2021.04.021 10.1038/s41467-022-35233-1 10.1038/s42003-020-01247-y 10.1126/science.abm1741 10.1016/j.cell.2022.04.003 10.1126/science.aat5691 10.1038/s41592-020-01023-0 10.1093/nar/gkac150 10.1038/s41592-021-01255-8 10.1016/j.cell.2021.08.003 10.1038/s41587-022-01272-8 10.1038/s41592-021-01203-6 10.7554/eLife.51480 10.1016/j.cels.2019.04.004 10.1038/s41587-021-01001-7 10.1038/s41586-021-03775-x 10.1126/science.aaw1219 10.1038/nn.3917 10.1038/s43588-023-00528-w 10.1101/2020.05.31.125658 10.1109/ICCV.2015.123 10.5281/zenodo.8419717 10.1109/TPAMI.1979.4766909 10.1111/j.2517-6161.1978.tb01643.x 10.1007/978-3-030-95470-3_9 10.48550/arXiv.1801.09847 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-023-43220-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_d549905629d7462bac28a9cbcda15663 37990022 10_1038_s41467_023_43220_3 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China grants (81871479), the Fundamental Research Funds for the Central Universities (WK9100000001). – fundername: the National Key R&D Program of China (2020YFA0112200 and 2022YFA1303200),the National Natural Science Foundation of China grants (T2125012 and 91940306), CAS Project for Young Scientists in Basic Research YSBR-005, Anhui Province Science and Technology Key Program (202003a07020021) and the Fundamental Research Funds for the Central Universities (YD2070002019, WK9110000141, and WK2070000158). – fundername: the National Natural Science Foundation of China grants (32170668), |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-4d44e7abbf98a548515734b0e8fdc65d3a5b24e322df625b496c49af264733d13 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:32:35 EDT 2025 Tue Aug 05 10:47:29 EDT 2025 Wed Aug 13 08:06:12 EDT 2025 Sat May 10 01:40:50 EDT 2025 Tue Jul 01 02:10:46 EDT 2025 Thu Apr 24 22:50:23 EDT 2025 Fri Feb 21 02:40:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-4d44e7abbf98a548515734b0e8fdc65d3a5b24e322df625b496c49af264733d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6187-122X 0000-0001-7087-6540 0000-0003-0485-3724 0000-0002-5555-8437 |
OpenAccessLink | https://www.proquest.com/docview/2892156776?pq-origsite=%requestingapplication% |
PMID | 37990022 |
PQID | 2892156776 |
PQPubID | 546298 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d549905629d7462bac28a9cbcda15663 proquest_miscellaneous_2892658558 proquest_journals_2892156776 pubmed_primary_37990022 crossref_citationtrail_10_1038_s41467_023_43220_3 crossref_primary_10_1038_s41467_023_43220_3 springer_journals_10_1038_s41467_023_43220_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-22 |
PublicationDateYYYYMMDD | 2023-11-22 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Hao (CR42) 2021; 184 Wang (CR65) 2019; 16 Fukushima (CR70) 1975; 20 Stickels (CR16) 2021; 39 Zhang, Wang, Shivashankar, Uhler (CR38) 2022; 13 Schmidt, Weigert, Broaddus, Myers (CR67) 2018; 11 Liu (CR39) 2023; 14 McCarthy, Campbell, Lun, Wills (CR69) 2017; 33 Andersson (CR24) 2020; 3 CR79 Shah, Lubeck, Zhou, Cai (CR11) 2016; 92 CR33 CR76 CR75 Rao, Barkley, França, Yanai (CR2) 2021; 596 CR73 Lewis (CR6) 2021; 18 Yao (CR52) 2021; 184 CR72 Ståhl (CR1) 2016; 353 Maynard (CR34) 2021; 24 Wu (CR35) 2021; 53 Elosua-Bayes, Nieto, Mereu, Gut, Heyn (CR25) 2021; 49 Luecken (CR82) 2022; 19 Pedregosa (CR77) 2011; 12 Harris, Shepherd (CR53) 2015; 18 Kuppe (CR9) 2022; 608 Song, Su (CR26) 2021; 22 O’Hagan (CR59) 1978; 40 Codeluppi (CR12) 2018; 15 Storn, Price (CR48) 1997; 11 CR46 Edelsbrunner, Kirkpatrick, Seidel (CR78) 1983; 29 CR45 CR44 Hu (CR31) 2021; 18 Bergmann (CR5) 2022; 609 Hammond, Vandergheynst, Gribonval (CR74) 2011; 30 CR85 Kleshchevnikov (CR21) 2022; 40 CR40 CR81 Srivatsan (CR3) 2021; 373 Sun, Liu, Li, Wu, Wang (CR27) 2022; 50 CR80 Dong, Zhang (CR32) 2022; 13 Devlin, Chang, Lee, Toutanova (CR62) 2019; 1 Mourragui, Loog, van de Wiel, Reinders, Wessels (CR18) 2019; 35 Ji (CR36) 2020; 182 Wolf, Angerer, Theis (CR43) 2018; 19 Stuart (CR63) 2019; 177 Cable (CR22) 2022; 40 Chen (CR7) 2020; 182 Zeisel (CR84) 2018; 174 CR17 Pelka (CR8) 2021; 184 CR14 CR57 Wu (CR37) 2021; 7 CR54 La Manno (CR83) 2021; 596 Ma, Zhou (CR29) 2022; 40 Biancalani (CR20) 2021; 18 Fang (CR49) 2022; 377 Gao (CR56) 2021; 39 Zhao (CR30) 2021; 39 MacQueen (CR47) 1967; 1 Li (CR50) 2022; 19 Stein-O’Brien (CR64) 2019; 8 Abdelaal, Mourragui, Mahfouz, Reinders (CR19) 2020; 48 Hodge (CR51) 2019; 573 Baslan (CR55) 2020; 9 Lotfollahi (CR66) 2022; 40 Zeira, Land, Strzalkowski, Raphael (CR41) 2022; 19 Wang (CR58) 2018; 361 Erickson (CR10) 2022; 608 CR61 Zhang (CR13) 2021; 598 Rodriques (CR15) 2019; 363 Bannon (CR68) 2021; 18 Chen (CR4) 2022; 185 Ortiz (CR60) 2020; 6 Lopez (CR28) 2022; 40 Dong, Yuan (CR23) 2021; 22 Kullback, Leibler (CR71) 1951; 22 T Abdelaal (43220_CR19) 2020; 48 43220_CR17 43220_CR14 C Kuppe (43220_CR9) 2022; 608 F Pedregosa (43220_CR77) 2011; 12 A O’Hagan (43220_CR59) 1978; 40 X Zhang (43220_CR38) 2022; 13 R Fang (43220_CR49) 2022; 377 W-T Chen (43220_CR7) 2020; 182 Q Song (43220_CR26) 2021; 22 T Stuart (43220_CR63) 2019; 177 SM Lewis (43220_CR6) 2021; 18 J Hu (43220_CR31) 2021; 18 43220_CR61 K Dong (43220_CR32) 2022; 13 Y Ma (43220_CR29) 2022; 40 U Schmidt (43220_CR67) 2018; 11 RR Stickels (43220_CR16) 2021; 39 J MacQueen (43220_CR47) 1967; 1 R Zeira (43220_CR41) 2022; 19 J Devlin (43220_CR62) 2019; 1 K Fukushima (43220_CR70) 1975; 20 Z Yao (43220_CR52) 2021; 184 DM Cable (43220_CR22) 2022; 40 S Kullback (43220_CR71) 1951; 22 M Lotfollahi (43220_CR66) 2022; 40 SZ Wu (43220_CR35) 2021; 53 A Erickson (43220_CR10) 2022; 608 R Wu (43220_CR37) 2021; 7 43220_CR75 KR Maynard (43220_CR34) 2021; 24 43220_CR72 W Liu (43220_CR39) 2023; 14 43220_CR73 R Lopez (43220_CR28) 2022; 40 43220_CR79 DJ McCarthy (43220_CR69) 2017; 33 43220_CR76 43220_CR33 A Rao (43220_CR2) 2021; 596 S Codeluppi (43220_CR12) 2018; 15 A Andersson (43220_CR24) 2020; 3 H Edelsbrunner (43220_CR78) 1983; 29 PL Ståhl (43220_CR1) 2016; 353 KD Harris (43220_CR53) 2015; 18 SR Srivatsan (43220_CR3) 2021; 373 G La Manno (43220_CR83) 2021; 596 D Sun (43220_CR27) 2022; 50 D Bannon (43220_CR68) 2021; 18 M Elosua-Bayes (43220_CR25) 2021; 49 RD Hodge (43220_CR51) 2019; 573 43220_CR81 V Kleshchevnikov (43220_CR21) 2022; 40 FA Wolf (43220_CR43) 2018; 19 43220_CR80 43220_CR85 43220_CR40 J Wang (43220_CR65) 2019; 16 43220_CR45 43220_CR46 T Baslan (43220_CR55) 2020; 9 43220_CR44 E Zhao (43220_CR30) 2021; 39 R Storn (43220_CR48) 1997; 11 MD Luecken (43220_CR82) 2022; 19 M Zhang (43220_CR13) 2021; 598 A Chen (43220_CR4) 2022; 185 S Shah (43220_CR11) 2016; 92 B Li (43220_CR50) 2022; 19 K Pelka (43220_CR8) 2021; 184 R Dong (43220_CR23) 2021; 22 S Mourragui (43220_CR18) 2019; 35 R Gao (43220_CR56) 2021; 39 C Ortiz (43220_CR60) 2020; 6 X Wang (43220_CR58) 2018; 361 SG Rodriques (43220_CR15) 2019; 363 AL Ji (43220_CR36) 2020; 182 GL Stein-O’Brien (43220_CR64) 2019; 8 A Zeisel (43220_CR84) 2018; 174 T Biancalani (43220_CR20) 2021; 18 Y Hao (43220_CR42) 2021; 184 S Bergmann (43220_CR5) 2022; 609 43220_CR57 43220_CR54 DK Hammond (43220_CR74) 2011; 30 |
References_xml | – volume: 49 start-page: e50 year: 2021 ident: CR25 article-title: SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab043 – ident: CR45 – volume: 22 start-page: 79 year: 1951 end-page: 86 ident: CR71 article-title: On Information and Sufficiency publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729694 – volume: 19 year: 2018 ident: CR43 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 – volume: 608 start-page: 360 year: 2022 end-page: 367 ident: CR10 article-title: Spatially resolved clonal copy number alterations in benign and malignant tissue publication-title: Nature doi: 10.1038/s41586-022-05023-2 – volume: 1 start-page: 4171 year: 2019 end-page: 4186 ident: CR62 article-title: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding publication-title: Proc. naacL-HLT – volume: 14 year: 2023 ident: CR39 article-title: Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST publication-title: Nat. Commun. doi: 10.1038/s41467-023-35947-w – volume: 184 start-page: 3573 year: 2021 end-page: 3587.e29 ident: CR42 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: CR48 article-title: Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – ident: CR54 – ident: CR61 – volume: 39 start-page: 599 year: 2021 end-page: 608 ident: CR56 article-title: Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-00795-2 – ident: CR80 – volume: 19 start-page: 567 year: 2022 end-page: 575 ident: CR41 article-title: Alignment and integration of spatial transcriptomics data publication-title: Nat. Methods doi: 10.1038/s41592-022-01459-6 – volume: 182 start-page: 976 year: 2020 end-page: 991 ident: CR7 article-title: Spatial transcriptomics and in situ sequencing to study Alzheimer’s Disease publication-title: Cell doi: 10.1016/j.cell.2020.06.038 – volume: 24 start-page: 425 year: 2021 end-page: 436 ident: CR34 article-title: Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex publication-title: Nat. Neurosci. doi: 10.1038/s41593-020-00787-0 – volume: 18 start-page: 1352 year: 2021 end-page: 1362 ident: CR20 article-title: Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram publication-title: Nat. Methods doi: 10.1038/s41592-021-01264-7 – volume: 573 start-page: 61 year: 2019 end-page: 68 ident: CR51 article-title: Conserved cell types with divergent features in human versus mouse cortex publication-title: Nature doi: 10.1038/s41586-019-1506-7 – volume: 608 start-page: 766 year: 2022 end-page: 777 ident: CR9 article-title: Spatial multi-omic map of human myocardial infarction publication-title: Nature doi: 10.1038/s41586-022-05060-x – volume: 48 start-page: e107 year: 2020 end-page: e107 ident: CR19 article-title: SpaGE: spatial gene enhancement using scRNA-seq publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa740 – ident: CR46 – volume: 40 start-page: 1349 year: 2022 end-page: 1359 ident: CR29 article-title: Spatially informed cell-type deconvolution for spatial transcriptomics publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01273-7 – volume: 39 start-page: 313 year: 2021 end-page: 319 ident: CR16 article-title: Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0739-1 – volume: 1 start-page: 281 year: 1967 end-page: 298 ident: CR47 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proc. Fifth Berkeley Symp. Math. Stat. Probab. – volume: 609 start-page: 136 year: 2022 end-page: 143 ident: CR5 article-title: Spatial profiling of early primate gastrulation in utero publication-title: Nature doi: 10.1038/s41586-022-04953-1 – ident: CR75 – volume: 174 start-page: 999 year: 2018 end-page: 1014 ident: CR84 article-title: Molecular Architecture of the Mouse Nervous System publication-title: Cell doi: 10.1016/j.cell.2018.06.021 – volume: 6 start-page: eabb3446 year: 2020 ident: CR60 article-title: Molecular atlas of the adult mouse brain publication-title: Sci. Adv. doi: 10.1126/sciadv.abb3446 – volume: 15 start-page: 932 year: 2018 end-page: 935 ident: CR12 article-title: Spatial organization of the somatosensory cortex revealed by osmFISH publication-title: Nat. Methods doi: 10.1038/s41592-018-0175-z – volume: 182 start-page: 497 year: 2020 end-page: 514 ident: CR36 article-title: Multimodal analysis of composition and spatial architecture in human squamous publication-title: Cell Carcinoma Cell – volume: 16 start-page: 875 year: 2019 end-page: 878 ident: CR65 article-title: Data denoising with transfer learning in single-cell transcriptomics publication-title: Nat. Methods doi: 10.1038/s41592-019-0537-1 – volume: 13 year: 2022 ident: CR32 article-title: Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder publication-title: Nat. Commun. doi: 10.1038/s41467-022-29439-6 – volume: 40 start-page: 517 year: 2022 end-page: 526 ident: CR22 article-title: Robust decomposition of cell type mixtures in spatial transcriptomics publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00830-w – ident: CR57 – volume: 33 start-page: 1179 year: 2017 end-page: 1186 ident: CR69 article-title: Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw777 – volume: 92 start-page: 342 year: 2016 end-page: 357 ident: CR11 article-title: In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus publication-title: Neuron doi: 10.1016/j.neuron.2016.10.001 – volume: 177 start-page: 1888 year: 2019 end-page: 1902 ident: CR63 article-title: Comprehensive Integration of Single- publication-title: Cell Data Cell – ident: CR85 – volume: 39 start-page: 1375 year: 2021 end-page: 1384 ident: CR30 article-title: Spatial transcriptomics at subspot resolution with BayesSpace publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00935-2 – ident: CR81 – volume: 598 start-page: 137 year: 2021 end-page: 143 ident: CR13 article-title: Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH publication-title: Nature doi: 10.1038/s41586-021-03705-x – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR77 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 373 start-page: 111 year: 2021 end-page: 117 ident: CR3 article-title: Embryo-scale, single-cell spatial transcriptomics publication-title: Science doi: 10.1126/science.abb9536 – volume: 35 start-page: i510 year: 2019 end-page: i519 ident: CR18 article-title: PRECISE: a domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz372 – ident: CR72 – ident: CR14 – volume: 22 year: 2021 ident: CR23 article-title: SpatialDWLS: accurate deconvolution of spatial transcriptomic data publication-title: Genome Biol. doi: 10.1186/s13059-021-02362-7 – volume: 7 start-page: eabg3750 year: 2021 ident: CR37 article-title: Comprehensive analysis of spatial architecture in primary liver cancer publication-title: Sci. Adv. doi: 10.1126/sciadv.abg3750 – volume: 353 start-page: 78 year: 2016 end-page: 82 ident: CR1 article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics publication-title: Science doi: 10.1126/science.aaf2403 – volume: 40 start-page: 1 year: 1978 end-page: 24 ident: CR59 article-title: Curve fitting and optimal design for prediction publication-title: J. R. Stat. Soc. Ser. B Methodol. – ident: CR33 – volume: 22 start-page: bbaa414 year: 2021 ident: CR26 article-title: DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence publication-title: Brief. Bioinform. doi: 10.1093/bib/bbaa414 – volume: 30 start-page: 129 year: 2011 end-page: 150 ident: CR74 article-title: Wavelets on graphs via spectral graph theory publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2010.04.005 – ident: CR79 – volume: 596 start-page: 211 year: 2021 end-page: 220 ident: CR2 article-title: Exploring tissue architecture using spatial transcriptomics publication-title: Nature doi: 10.1038/s41586-021-03634-9 – volume: 19 start-page: 41 year: 2022 end-page: 50 ident: CR82 article-title: Benchmarking atlas-level data integration in single-cell genomics publication-title: Nat. Methods doi: 10.1038/s41592-021-01336-8 – ident: CR40 – volume: 40 start-page: 661 year: 2022 end-page: 671 ident: CR21 article-title: Cell2location maps fine-grained cell types in spatial transcriptomics publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01139-4 – volume: 20 start-page: 121 year: 1975 end-page: 136 ident: CR70 article-title: Cognitron: A self-organizing multilayered neural network publication-title: Biol. Cybern. doi: 10.1007/BF00342633 – volume: 53 start-page: 1334 year: 2021 end-page: 1347 ident: CR35 article-title: A single-cell and spatially resolved atlas of human breast cancers publication-title: Nat. Genet. doi: 10.1038/s41588-021-00911-1 – volume: 19 start-page: 662 year: 2022 end-page: 670 ident: CR50 article-title: Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution publication-title: Nat. Methods doi: 10.1038/s41592-022-01480-9 – volume: 29 start-page: 551 year: 1983 end-page: 559 ident: CR78 article-title: On the shape of a set of points in the plane publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1983.1056714 – volume: 184 start-page: 3222 year: 2021 end-page: 3241.e26 ident: CR52 article-title: A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation publication-title: Cell doi: 10.1016/j.cell.2021.04.021 – ident: CR44 – volume: 13 year: 2022 ident: CR38 article-title: Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer’s disease publication-title: Nat. Commun. doi: 10.1038/s41467-022-35233-1 – ident: CR73 – volume: 3 start-page: 565 year: 2020 ident: CR24 article-title: Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography publication-title: Commun. Biol. doi: 10.1038/s42003-020-01247-y – volume: 11 start-page: 265 year: 2018 end-page: 273 ident: CR67 article-title: Cell Detection with Star-convex Polygons publication-title: Med. Image Comput. Computer Assist. Intervention–MICCAI 2018: 21st Int. Conf., Granada, Spain, – volume: 377 start-page: 56 year: 2022 end-page: 62 ident: CR49 article-title: Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH publication-title: Science doi: 10.1126/science.abm1741 – volume: 185 start-page: 1777 year: 2022 end-page: 1792 ident: CR4 article-title: Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays publication-title: Cell doi: 10.1016/j.cell.2022.04.003 – volume: 361 start-page: eaat5691 year: 2018 ident: CR58 article-title: Three-dimensional intact-tissue sequencing of single-cell transcriptional states publication-title: Science doi: 10.1126/science.aat5691 – volume: 18 start-page: 43 year: 2021 end-page: 45 ident: CR68 article-title: DeepCell Kiosk: scaling deep learning–enabled cellular image analysis with Kubernetes publication-title: Nat. Methods doi: 10.1038/s41592-020-01023-0 – volume: 50 start-page: e42 year: 2022 end-page: e42 ident: CR27 article-title: STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac150 – ident: CR17 – volume: 18 start-page: 1342 year: 2021 end-page: 1351 ident: CR31 article-title: SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network publication-title: Nat. Methods doi: 10.1038/s41592-021-01255-8 – volume: 184 start-page: 4734 year: 2021 end-page: 4752 ident: CR8 article-title: Spatially organized multicellular immune hubs in human colorectal cancer publication-title: Cell doi: 10.1016/j.cell.2021.08.003 – volume: 40 start-page: 1360 year: 2022 end-page: 1369 ident: CR28 article-title: DestVI identifies continuums of cell types in spatial transcriptomics data publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01272-8 – ident: CR76 – volume: 18 start-page: 997 year: 2021 end-page: 1012 ident: CR6 article-title: Spatial omics and multiplexed imaging to explore cancer biology publication-title: Nat. Methods doi: 10.1038/s41592-021-01203-6 – volume: 9 start-page: e51480 year: 2020 ident: CR55 article-title: Novel insights into breast cancer copy number genetic heterogeneity revealed by single-cell genome sequencing publication-title: eLife doi: 10.7554/eLife.51480 – volume: 8 start-page: 395 year: 2019 end-page: 411 ident: CR64 article-title: Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species publication-title: Cell Syst. doi: 10.1016/j.cels.2019.04.004 – volume: 40 start-page: 121 year: 2022 end-page: 130 ident: CR66 article-title: Mapping single-cell data to reference atlases by transfer learning publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01001-7 – volume: 596 start-page: 92 year: 2021 end-page: 96 ident: CR83 article-title: Molecular architecture of the developing mouse brain publication-title: Nature doi: 10.1038/s41586-021-03775-x – volume: 363 start-page: 1463 year: 2019 end-page: 1467 ident: CR15 article-title: Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution publication-title: Science doi: 10.1126/science.aaw1219 – volume: 18 start-page: 170 year: 2015 end-page: 181 ident: CR53 article-title: The neocortical circuit: themes and variations publication-title: Nat. Neurosci. doi: 10.1038/nn.3917 – volume: 185 start-page: 1777 year: 2022 ident: 43220_CR4 publication-title: Cell doi: 10.1016/j.cell.2022.04.003 – volume: 182 start-page: 976 year: 2020 ident: 43220_CR7 publication-title: Cell doi: 10.1016/j.cell.2020.06.038 – volume: 608 start-page: 766 year: 2022 ident: 43220_CR9 publication-title: Nature doi: 10.1038/s41586-022-05060-x – volume: 9 start-page: e51480 year: 2020 ident: 43220_CR55 publication-title: eLife doi: 10.7554/eLife.51480 – ident: 43220_CR46 – ident: 43220_CR75 – ident: 43220_CR17 – volume: 174 start-page: 999 year: 2018 ident: 43220_CR84 publication-title: Cell doi: 10.1016/j.cell.2018.06.021 – volume: 18 start-page: 1352 year: 2021 ident: 43220_CR20 publication-title: Nat. Methods doi: 10.1038/s41592-021-01264-7 – ident: 43220_CR61 – volume: 40 start-page: 661 year: 2022 ident: 43220_CR21 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01139-4 – volume: 184 start-page: 3573 year: 2021 ident: 43220_CR42 publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 92 start-page: 342 year: 2016 ident: 43220_CR11 publication-title: Neuron doi: 10.1016/j.neuron.2016.10.001 – ident: 43220_CR40 doi: 10.1038/s43588-023-00528-w – volume: 184 start-page: 4734 year: 2021 ident: 43220_CR8 publication-title: Cell doi: 10.1016/j.cell.2021.08.003 – ident: 43220_CR33 doi: 10.1101/2020.05.31.125658 – volume: 1 start-page: 4171 year: 2019 ident: 43220_CR62 publication-title: Proc. naacL-HLT – volume: 353 start-page: 78 year: 2016 ident: 43220_CR1 publication-title: Science doi: 10.1126/science.aaf2403 – ident: 43220_CR80 – ident: 43220_CR72 doi: 10.1109/ICCV.2015.123 – volume: 22 start-page: 79 year: 1951 ident: 43220_CR71 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729694 – volume: 19 start-page: 41 year: 2022 ident: 43220_CR82 publication-title: Nat. Methods doi: 10.1038/s41592-021-01336-8 – volume: 39 start-page: 1375 year: 2021 ident: 43220_CR30 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00935-2 – volume: 609 start-page: 136 year: 2022 ident: 43220_CR5 publication-title: Nature doi: 10.1038/s41586-022-04953-1 – ident: 43220_CR85 doi: 10.5281/zenodo.8419717 – volume: 598 start-page: 137 year: 2021 ident: 43220_CR13 publication-title: Nature doi: 10.1038/s41586-021-03705-x – volume: 596 start-page: 92 year: 2021 ident: 43220_CR83 publication-title: Nature doi: 10.1038/s41586-021-03775-x – volume: 182 start-page: 497 year: 2020 ident: 43220_CR36 publication-title: Cell Carcinoma Cell – volume: 35 start-page: i510 year: 2019 ident: 43220_CR18 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz372 – volume: 177 start-page: 1888 year: 2019 ident: 43220_CR63 publication-title: Cell Data Cell – volume: 12 start-page: 2825 year: 2011 ident: 43220_CR77 publication-title: J. Mach. Learn. Res. – volume: 13 year: 2022 ident: 43220_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-022-35233-1 – ident: 43220_CR76 doi: 10.1109/TPAMI.1979.4766909 – volume: 40 start-page: 1349 year: 2022 ident: 43220_CR29 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01273-7 – volume: 19 start-page: 567 year: 2022 ident: 43220_CR41 publication-title: Nat. Methods doi: 10.1038/s41592-022-01459-6 – ident: 43220_CR57 – volume: 608 start-page: 360 year: 2022 ident: 43220_CR10 publication-title: Nature doi: 10.1038/s41586-022-05023-2 – volume: 24 start-page: 425 year: 2021 ident: 43220_CR34 publication-title: Nat. Neurosci. doi: 10.1038/s41593-020-00787-0 – volume: 30 start-page: 129 year: 2011 ident: 43220_CR74 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2010.04.005 – volume: 29 start-page: 551 year: 1983 ident: 43220_CR78 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1983.1056714 – volume: 50 start-page: e42 year: 2022 ident: 43220_CR27 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac150 – ident: 43220_CR73 – volume: 40 start-page: 1 year: 1978 ident: 43220_CR59 publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1978.tb01643.x – volume: 22 start-page: bbaa414 year: 2021 ident: 43220_CR26 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbaa414 – volume: 11 start-page: 341 year: 1997 ident: 43220_CR48 publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 8 start-page: 395 year: 2019 ident: 43220_CR64 publication-title: Cell Syst. doi: 10.1016/j.cels.2019.04.004 – ident: 43220_CR54 – volume: 18 start-page: 43 year: 2021 ident: 43220_CR68 publication-title: Nat. Methods doi: 10.1038/s41592-020-01023-0 – volume: 19 start-page: 662 year: 2022 ident: 43220_CR50 publication-title: Nat. Methods doi: 10.1038/s41592-022-01480-9 – volume: 53 start-page: 1334 year: 2021 ident: 43220_CR35 publication-title: Nat. Genet. doi: 10.1038/s41588-021-00911-1 – volume: 20 start-page: 121 year: 1975 ident: 43220_CR70 publication-title: Biol. Cybern. doi: 10.1007/BF00342633 – ident: 43220_CR81 doi: 10.1007/978-3-030-95470-3_9 – volume: 373 start-page: 111 year: 2021 ident: 43220_CR3 publication-title: Science doi: 10.1126/science.abb9536 – volume: 18 start-page: 170 year: 2015 ident: 43220_CR53 publication-title: Nat. Neurosci. doi: 10.1038/nn.3917 – volume: 16 start-page: 875 year: 2019 ident: 43220_CR65 publication-title: Nat. Methods doi: 10.1038/s41592-019-0537-1 – volume: 49 start-page: e50 year: 2021 ident: 43220_CR25 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab043 – volume: 40 start-page: 1360 year: 2022 ident: 43220_CR28 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01272-8 – ident: 43220_CR79 doi: 10.48550/arXiv.1801.09847 – volume: 596 start-page: 211 year: 2021 ident: 43220_CR2 publication-title: Nature doi: 10.1038/s41586-021-03634-9 – volume: 33 start-page: 1179 year: 2017 ident: 43220_CR69 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw777 – ident: 43220_CR44 – volume: 184 start-page: 3222 year: 2021 ident: 43220_CR52 publication-title: Cell doi: 10.1016/j.cell.2021.04.021 – volume: 3 start-page: 565 year: 2020 ident: 43220_CR24 publication-title: Commun. Biol. doi: 10.1038/s42003-020-01247-y – volume: 11 start-page: 265 year: 2018 ident: 43220_CR67 publication-title: Med. Image Comput. Computer Assist. Intervention–MICCAI 2018: 21st Int. Conf., Granada, Spain, – volume: 1 start-page: 281 year: 1967 ident: 43220_CR47 publication-title: Proc. Fifth Berkeley Symp. Math. Stat. Probab. – volume: 39 start-page: 599 year: 2021 ident: 43220_CR56 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-00795-2 – volume: 573 start-page: 61 year: 2019 ident: 43220_CR51 publication-title: Nature doi: 10.1038/s41586-019-1506-7 – volume: 40 start-page: 517 year: 2022 ident: 43220_CR22 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00830-w – volume: 377 start-page: 56 year: 2022 ident: 43220_CR49 publication-title: Science doi: 10.1126/science.abm1741 – ident: 43220_CR45 – volume: 361 start-page: eaat5691 year: 2018 ident: 43220_CR58 publication-title: Science doi: 10.1126/science.aat5691 – volume: 40 start-page: 121 year: 2022 ident: 43220_CR66 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01001-7 – ident: 43220_CR14 – volume: 15 start-page: 932 year: 2018 ident: 43220_CR12 publication-title: Nat. Methods doi: 10.1038/s41592-018-0175-z – volume: 18 start-page: 1342 year: 2021 ident: 43220_CR31 publication-title: Nat. Methods doi: 10.1038/s41592-021-01255-8 – volume: 6 start-page: eabb3446 year: 2020 ident: 43220_CR60 publication-title: Sci. Adv. doi: 10.1126/sciadv.abb3446 – volume: 14 year: 2023 ident: 43220_CR39 publication-title: Nat. Commun. doi: 10.1038/s41467-023-35947-w – volume: 39 start-page: 313 year: 2021 ident: 43220_CR16 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0739-1 – volume: 13 year: 2022 ident: 43220_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29439-6 – volume: 7 start-page: eabg3750 year: 2021 ident: 43220_CR37 publication-title: Sci. Adv. doi: 10.1126/sciadv.abg3750 – volume: 22 year: 2021 ident: 43220_CR23 publication-title: Genome Biol. doi: 10.1186/s13059-021-02362-7 – volume: 19 year: 2018 ident: 43220_CR43 publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 – volume: 363 start-page: 1463 year: 2019 ident: 43220_CR15 publication-title: Science doi: 10.1126/science.aaw1219 – volume: 48 start-page: e107 year: 2020 ident: 43220_CR19 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa740 – volume: 18 start-page: 997 year: 2021 ident: 43220_CR6 publication-title: Nat. Methods doi: 10.1038/s41592-021-01203-6 |
SSID | ssj0000391844 |
Score | 2.5604255 |
Snippet | Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates,... Abstract Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7603 |
SubjectTerms | 38 631/114 631/114/1314 631/114/2397 631/1647/48 631/61/514 Algorithms Alignment Artificial neural networks Coordinates Data analysis Data processing Deconvolution Deep Learning Gene expression Gene Expression Profiling Humanities and Social Sciences Information processing Machine learning Models, Statistical multidisciplinary Probabilistic models Science Science (multidisciplinary) Spatial analysis Spatial discrimination learning Spatial distribution Toolkits Transcriptome - genetics Transcriptomes Transcriptomics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED4hpEm8TLABCwOUSbxtFk1sxwlvrKKqJkBIXaW-Wf65l9FUtDzsv-dsp6FoY3vZa-I48fl833c5-w7gDEFJWF2UBKHFEuT_lijuKHF145U3FS9N-N9xc1uNp-zbjM82Sn2FPWEpPXAS3LkNDkxA6cYKVpVambJWjdHGquB6xDyfiHkbzlS0wbRB14V1p2QGtD5fsmgTEKIIQyVG4_MCiWLC_j-xzN8ipBF4RrvwtmOM-WX60j3YcvN38CbVkPz1HiaTu8vh1fVFbp1b5F0RiB8koJPNTZ-OOZ22zFufL8MeauxwFVAq2oz23uWbAYXlPkxHV9-HY9JVSiCG1XxFmGXMCaW1b2qFPgiSFEGZHrjaW5S3pYrrkjkct_Xo8GjWVIY1yiMbEpTagh7A9ryduw-QF0oVzoS9E44z0XCthHJqwAfe-YpVJoNiLTVpujTioZrFTxnD2bSWSdISJS2jpCXN4HP_zCIl0fhr669hMvqWIQF2vIBqITu1kP9SiwyO11Mpu1W5lOhcIsOphKgy-NTfxvUUgiRq7trH1AZZGed1BodJBfovoQLfiaQngy9rnXju_PUBHf2PAX2EnVDpPhyDLMtj2F49PLoT5EMrfRpV_wmawAJ1 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLdgCIkL4pvCQEXiBtFem6RJuaAxbZoQIKQx6d2ifO4yXh_r24H_HjvN60DArm2aJo5j_2wnNsBrVEoquKZlqFoCQ_wfmJWRs6j7ZJPvZOvJ3_H5S3d8Kj4u5bI43MZyrHIrE7OgDoMnH_keGgaonTqluvfrH4yqRlF0tZTQuAm3KHUZHelSSzX7WCj7uRai3JVZcL03iiwZUFExgayMIugPfZTT9v8La_4VJ83q5-ge3C24sd6fFvo-3IirB3B7qiT58yGcnHzdPzj89K4OMa7rUgrijJGOCrWfkzJPdy7rIdUjnaTGDjekq7LkGL7H-vewwvgITo8Ovx0cs1IvgXmh5YaJIERU1rnUa4uWCEIVxYVbRJ0CUj1wK10rIs47JDR7nOg7L3qbEBMpzkPDH8POaljFp1A31jbR0wmKKIXqpbPKRruQixRTJzpfQbOlmvElmTjVtDg3OajNtZkobZDSJlPa8ArezN-sp1Qa17b-QIsxt6Q02PnBcHFmyq4ygaxbgnB9UKJrnfWttr13PliyS7GT3e1SmrI3R3PFSRW8ml_jrqJQiV3F4XJqg9hMSl3Bk4kF5pFwhf9E6FPB2y1PXHX-_wk9u34sz-EOVbKna45tuws7m4vL-ALxzsa9zEz9C_KT-js priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9UwEB6VIiQuiLIGWhQkbmDxEq_hVp5aVQgQUqnUm-W1l_JS9b0e-PfMOAsgWqRek7ETj8eeb-xZAN6gUtLRNy1D1RIZ4v_InEycJdNll4OSbaDzji9f1dGJ-HQqT7egnWJhitN-SWlZtunJO-z9WpQljRqGCZRB3DvuwF1K3U5SvVTL-VyFMp4bIcb4mAU31zT9SweVVP3X4ct_7kaLyjl8CA9GrFjvD3-3A1tp9QjuDdUjfz6G4-Nv-8uDzx_qmNJFPZZ_OGOkl2Id5kTMQ5xl3ed6Td7T2OGG9FPZLfofqf7zKmH9BE4OD74vj9hYI4EFYeSGiShE0s773BmH1gfCE82FXySTI3I6cid9KxKOO2Y0dbzoVBCdy4iDNOex4U9he9Wv0nOoG-eaFMhrIkmhO-mddskt5CKnrIQKFTQT12wYE4hTHYtzWy6yubEDpy1y2hZOW17B27nNxZA-47_UH2kyZkpKfV0e9JdndhQFG8miJdjWRS1U611ojeuCD9GRLYqd7E5Tacf1uLZoViK2UVqrCl7Pr3El0fWIW6X-aqBBPCalqeDZIALzn3CN30S4U8G7SSZ-d37zgF7cjvwl3Kdq9hTq2La7sL25vEp7iHk2_lUR8l8ePffX priority: 102 providerName: Springer Nature |
Title | SPACEL: deep learning-based characterization of spatial transcriptome architectures |
URI | https://link.springer.com/article/10.1038/s41467-023-43220-3 https://www.ncbi.nlm.nih.gov/pubmed/37990022 https://www.proquest.com/docview/2892156776 https://www.proquest.com/docview/2892658558 https://doaj.org/article/d549905629d7462bac28a9cbcda15663 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9tAEB5y0JKXkN5KU6NC31q1lnZXuyqE4Bi7wTQh1DX4bdlLeUmt1Hag-fedXR1NqdMXCaTdQZqd45s9ZgDeoVPiVqdZgq7FJoj_baKYI4kTRalKk7PM-PmO84v8bEYnczbfgrbcUcPA1cbQzteTmi2vP_76eXeCCn9cHxkXn1Y0qDt6n4SifKJd2YZd9EzcK-p5A_eDZSYFBjS0OTuzuesePCYcTXQ_y_5yVSGj_yYY-s8SavBM4wPYbyBlPKhl4AlsucVTeFQXmbx7BtPp5WA4-vo5ts7dxE2ViKvEuy8bmy5fc30cM67KeOU3WSPBtXdjwahUP1x8f8Vh9Rxm49H34VnSlFJIDBVsnVBLqeNK67IQCoMURDGcUN13orQ4IJYopjPqkAW2xIhI0yI3tFAlwiVOiE3JC9hZVAv3CuJUqdQZv7nCMcoLphVXTvVZv3RlTnMTQdpyTZomz7gvd3Etw3o3EbJmukSmy8B0SSJ43_W5qbNs_Lf1qR-MrqXPkB0eVMsr2SictD7w9eiusJzmmVYmE6ow2ljlQ1YkctQOpWylTmL0iRAo5zyP4G33GhXOr6Kohatu6zYI2xgTEbysRaD7klZyIvjQysQf4g__0OGDhF7Dnq9v7w8_ZtkR7KyXt-4NoqC17sE2n3O8ivGXHuwOBpPpBO-no4vLb_h0mA97YX6hF1TgNw6rA-s |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgSDBCawmfsQOEkKltNrSbYXUVtqb61d6gc3SbIX6p_iNjPMqCOit16x34oxn5pvx2DMArxCUpLc5JQgtnqD_74kRgZGgyspUrhDUxf2Ovf1icsQ_z8RsBX4Od2HiscrBJraG2tcu7pGvY2CA6FRIWXxYfCexa1TMrg4tNDqx2A3nPzBka97vfML1fU3p9tbh5oT0XQWI40osCfecB2msrUpl0F9HQJeM2yyoyuPcPDPCUh5Q0H2FwYHlZeF4aSr0HCRjPmdI9xpcR-DNokbJmRz3dGK1dcV5fzcnY2q94a0lQmAkHCmiyfsD_9o2Af_ybf_Ky7Zwt30Hbvd-arrRCdZdWAnze3Cj61x5fh8ODr5sbG5N36U-hEXat544IRETferGItDdHc-0rtImntxGgsuIja2lqr-F9Pc0RvMAjq6Ekw9hdV7Pw2NIc2Py4OKJjSC4LIU10gSTiawKVcELl0A-cE27vnh57KHxVbdJdKZ0x2mNnNYtpzVL4M34n0VXuuPS0R_jYowjY9nt9kF9eqJ7LdY-RtPRZSy95AW1xlFlSmedNzEORiJrw1Lq3hY0-kJyE3g5_oxaHFMzZh7qs24M-oJCqAQedSIwzoRJfCe6Wgm8HWTigvj_P-jJ5XN5ATcnh3tTPd3Z330Kt2gU0TwnlK7B6vL0LDxDX2tpn7cCnsLxVWvULxtONqE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gRuPF4HsUdEz0pJ3d6cf0DIkxCGxAkJAgyd6afnLRnZVZYvhr_jqr5wVG5cZ1tremp7qqvqqu7iqANwhK0pmMEoQWR9D_d0QLz4gvyqCDzQW1cb_jy0G-c8w_T8V0CX71d2HiscreJjaG2lU27pGPMDBAdMqlzEehOxZxuDX5OP9BYgepmGnt22m0IrLnL35i-FZ_2N3CtX5L6WT76-YO6ToMEMsLsSDcce6lNiaUhUbfHcFdMm7GvggO5-mYFoZyj0LvAgYKhpe55aUO6EVIxlzGkO4tuC2ZyKKOyakc9ndi5fWC8-6ezpgVo5o3VglBknCkiObvDyxsWgb8y8_9K0fbQN9kBe53Pmu60QrZA1jys4dwp-1iefEIjo4ONza399dT5_087dpQnJKIjy61Q0Ho9r5nWoW0jqe4keAi4mRjtarvPr2a0qgfw_GNcPIJLM-qmX8GaaZ15m08veEFl6UwWmqvx2IcfMh5bhPIeq4p2xUyj_00vqkmoc4K1XJaIadVw2nFEng3_GfelvG4dvSnuBjDyFiCu3lQnZ2qTqOVi5F1dB9LJ3lOjba00KU11ukYEyOR1X4pVWcXanUpxQm8Hn5GjY5pGj3z1Xk7Bv1CIYoEnrYiMMyESXwnul0JvO9l4pL4_z_o-fVzeQV3UZfU_u7B3gu4R6OEZhmhdBWWF2fnfg3droV52ch3Cic3rVC_AcElOtc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SPACEL%3A+deep+learning-based+characterization+of+spatial+transcriptome+architectures&rft.jtitle=Nature+communications&rft.au=Xu%2C+Hao&rft.au=Wang%2C+Shuyan&rft.au=Fang%2C+Minghao&rft.au=Luo%2C+Songwen&rft.date=2023-11-22&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=7603&rft_id=info:doi/10.1038%2Fs41467-023-43220-3&rft_id=info%3Apmid%2F37990022&rft.externalDocID=37990022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |