SPACEL: deep learning-based characterization of spatial transcriptome architectures

Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning t...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 7603 - 18
Main Authors Xu, Hao, Wang, Shuyan, Fang, Minghao, Luo, Songwen, Chen, Chunpeng, Wan, Siyuan, Wang, Rirui, Tang, Meifang, Xue, Tian, Li, Bin, Lin, Jun, Qu, Kun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.11.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis. Spatial transcriptomics (ST) technologies detect transcript distribution in space. Here, authors present a deep learning based method SPACEL for cell type deconvolution, spatial domain identification and 3D alignment, showcasing it as a valuable toolkit for ST data analysis
AbstractList Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis. Spatial transcriptomics (ST) technologies detect transcript distribution in space. Here, authors present a deep learning based method SPACEL for cell type deconvolution, spatial domain identification and 3D alignment, showcasing it as a valuable toolkit for ST data analysis
Abstract Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis.
Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis.
Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis.Spatial transcriptomics (ST) technologies detect transcript distribution in space. Here, authors present a deep learning based method SPACEL for cell type deconvolution, spatial domain identification and 3D alignment, showcasing it as a valuable toolkit for ST data analysis
Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis.Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis.
ArticleNumber 7603
Author Luo, Songwen
Wang, Shuyan
Fang, Minghao
Chen, Chunpeng
Xu, Hao
Tang, Meifang
Li, Bin
Wan, Siyuan
Lin, Jun
Wang, Rirui
Qu, Kun
Xue, Tian
Author_xml – sequence: 1
  givenname: Hao
  surname: Xu
  fullname: Xu, Hao
  organization: Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China
– sequence: 2
  givenname: Shuyan
  surname: Wang
  fullname: Wang, Shuyan
  organization: Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, School of Data Science, University of Science and Technology of China
– sequence: 3
  givenname: Minghao
  surname: Fang
  fullname: Fang, Minghao
  organization: Institute of Artificial Intelligence, Hefei Comprehensive National Science Center
– sequence: 4
  givenname: Songwen
  surname: Luo
  fullname: Luo, Songwen
  organization: Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China
– sequence: 5
  givenname: Chunpeng
  surname: Chen
  fullname: Chen, Chunpeng
  organization: Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China
– sequence: 6
  givenname: Siyuan
  surname: Wan
  fullname: Wan, Siyuan
  organization: Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, School of Data Science, University of Science and Technology of China
– sequence: 7
  givenname: Rirui
  surname: Wang
  fullname: Wang, Rirui
  organization: Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China
– sequence: 8
  givenname: Meifang
  surname: Tang
  fullname: Tang, Meifang
  organization: Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China
– sequence: 9
  givenname: Tian
  orcidid: 0000-0001-6187-122X
  surname: Xue
  fullname: Xue, Tian
  organization: Division of Life Sciences and Medicine, University of Science and Technology of China
– sequence: 10
  givenname: Bin
  orcidid: 0000-0003-0485-3724
  surname: Li
  fullname: Li, Bin
  email: libin@nibs.ac.cn
  organization: National Institute of Biological Sciences
– sequence: 11
  givenname: Jun
  orcidid: 0000-0001-7087-6540
  surname: Lin
  fullname: Lin, Jun
  email: linjun7@ustc.edu.cn
  organization: Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center
– sequence: 12
  givenname: Kun
  orcidid: 0000-0002-5555-8437
  surname: Qu
  fullname: Qu, Kun
  email: qukun@ustc.edu.cn
  organization: Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, School of Data Science, University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37990022$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxSNUREvpF-CAInHhEvD_ONyqVYFKK4FUOFsTe7L1KhsH2znAp8fdtIB6qC8ejX7vaWbey-pkChNW1WtK3lPC9YckqFBtQxhvBGeMNPxZdcaIoA1tGT_5rz6tLlLak_J4R7UQL6pT3nYdIYydVTc33y43V9uPtUOc6xEhTn7aNT0kdLW9hQg2Y_S_Ifsw1WGo01xKGOscYUo2-jmHA9YQ7a3PaPMSMb2qng8wJry4_8-rH5-uvm--NNuvn683l9vGCi1zI5wQ2ELfD50GWVpUtlz0BPXgrJKOg-yZwLKcGxSTveiUFR0MTImWc0f5eXW9-roAezNHf4D4ywTw5tgIcWcgZm9HNE6KsrFUrHOtUKwHyzR0trcOqFSKF693q9ccw88FUzYHnyyOI0wYlmSY7piSWkpd0LeP0H1Y4lQ2PVLFr21Vod7cU0t_QPd3vIfTF0CvgI0hpYiDsT4fz1xO60dDibkL2qxBmxK0OQZt7oZlj6QP7k-K-CpKBZ52GP-N_YTqD64puEY
CitedBy_id crossref_primary_10_1360_TB_2024_0332
crossref_primary_10_1016_j_jgg_2024_11_009
crossref_primary_10_1142_S0192415X25500144
crossref_primary_10_1093_bib_bbae302
crossref_primary_10_1016_j_semcdb_2025_01_002
crossref_primary_10_1038_s41571_024_00926_7
crossref_primary_10_1109_JSEN_2024_3407578
crossref_primary_10_1142_S2972389224300044
crossref_primary_10_1186_s12943_025_02240_x
crossref_primary_10_1093_bib_bbaf109
crossref_primary_10_1007_s44272_024_00018_8
crossref_primary_10_1038_s41592_025_02617_2
crossref_primary_10_1093_bib_bbae551
crossref_primary_10_1016_j_cell_2024_07_040
crossref_primary_10_1093_bib_bbae576
crossref_primary_10_4236_health_2024_169059
crossref_primary_10_1002_adhm_202403698
crossref_primary_10_1002_smtd_202401107
crossref_primary_10_1016_j_ncrops_2024_100025
crossref_primary_10_1002_wrna_1839
crossref_primary_10_1038_s41467_024_50308_x
crossref_primary_10_1186_s13059_024_03361_0
crossref_primary_10_34133_bmef_0084
crossref_primary_10_1016_j_cell_2024_10_011
crossref_primary_10_1093_gigascience_giae103
Cites_doi 10.1093/nar/gkab043
10.1214/aoms/1177729694
10.1186/s13059-017-1382-0
10.1038/s41586-022-05023-2
10.1038/s41467-023-35947-w
10.1016/j.cell.2021.04.048
10.1023/A:1008202821328
10.1038/s41587-020-00795-2
10.1038/s41592-022-01459-6
10.1016/j.cell.2020.06.038
10.1038/s41593-020-00787-0
10.1038/s41592-021-01264-7
10.1038/s41586-019-1506-7
10.1038/s41586-022-05060-x
10.1093/nar/gkaa740
10.1038/s41587-022-01273-7
10.1038/s41587-020-0739-1
10.1038/s41586-022-04953-1
10.1016/j.cell.2018.06.021
10.1126/sciadv.abb3446
10.1038/s41592-018-0175-z
10.1038/s41592-019-0537-1
10.1038/s41467-022-29439-6
10.1038/s41587-021-00830-w
10.1093/bioinformatics/btw777
10.1016/j.neuron.2016.10.001
10.1038/s41587-021-00935-2
10.1038/s41586-021-03705-x
10.1126/science.abb9536
10.1093/bioinformatics/btz372
10.1186/s13059-021-02362-7
10.1126/sciadv.abg3750
10.1126/science.aaf2403
10.1093/bib/bbaa414
10.1016/j.acha.2010.04.005
10.1038/s41586-021-03634-9
10.1038/s41592-021-01336-8
10.1038/s41587-021-01139-4
10.1007/BF00342633
10.1038/s41588-021-00911-1
10.1038/s41592-022-01480-9
10.1109/TIT.1983.1056714
10.1016/j.cell.2021.04.021
10.1038/s41467-022-35233-1
10.1038/s42003-020-01247-y
10.1126/science.abm1741
10.1016/j.cell.2022.04.003
10.1126/science.aat5691
10.1038/s41592-020-01023-0
10.1093/nar/gkac150
10.1038/s41592-021-01255-8
10.1016/j.cell.2021.08.003
10.1038/s41587-022-01272-8
10.1038/s41592-021-01203-6
10.7554/eLife.51480
10.1016/j.cels.2019.04.004
10.1038/s41587-021-01001-7
10.1038/s41586-021-03775-x
10.1126/science.aaw1219
10.1038/nn.3917
10.1038/s43588-023-00528-w
10.1101/2020.05.31.125658
10.1109/ICCV.2015.123
10.5281/zenodo.8419717
10.1109/TPAMI.1979.4766909
10.1111/j.2517-6161.1978.tb01643.x
10.1007/978-3-030-95470-3_9
10.48550/arXiv.1801.09847
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-023-43220-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Publicly Available Content Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 18
ExternalDocumentID oai_doaj_org_article_d549905629d7462bac28a9cbcda15663
37990022
10_1038_s41467_023_43220_3
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: the National Natural Science Foundation of China grants (81871479), the Fundamental Research Funds for the Central Universities (WK9100000001).
– fundername: the National Key R&D Program of China (2020YFA0112200 and 2022YFA1303200),the National Natural Science Foundation of China grants (T2125012 and 91940306), CAS Project for Young Scientists in Basic Research YSBR-005, Anhui Province Science and Technology Key Program (202003a07020021) and the Fundamental Research Funds for the Central Universities (YD2070002019, WK9110000141, and WK2070000158).
– fundername: the National Natural Science Foundation of China grants (32170668),
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c485t-4d44e7abbf98a548515734b0e8fdc65d3a5b24e322df625b496c49af264733d13
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:32:35 EDT 2025
Tue Aug 05 10:47:29 EDT 2025
Wed Aug 13 08:06:12 EDT 2025
Sat May 10 01:40:50 EDT 2025
Tue Jul 01 02:10:46 EDT 2025
Thu Apr 24 22:50:23 EDT 2025
Fri Feb 21 02:40:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-4d44e7abbf98a548515734b0e8fdc65d3a5b24e322df625b496c49af264733d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6187-122X
0000-0001-7087-6540
0000-0003-0485-3724
0000-0002-5555-8437
OpenAccessLink https://www.proquest.com/docview/2892156776?pq-origsite=%requestingapplication%
PMID 37990022
PQID 2892156776
PQPubID 546298
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_d549905629d7462bac28a9cbcda15663
proquest_miscellaneous_2892658558
proquest_journals_2892156776
pubmed_primary_37990022
crossref_citationtrail_10_1038_s41467_023_43220_3
crossref_primary_10_1038_s41467_023_43220_3
springer_journals_10_1038_s41467_023_43220_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-22
PublicationDateYYYYMMDD 2023-11-22
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Hao (CR42) 2021; 184
Wang (CR65) 2019; 16
Fukushima (CR70) 1975; 20
Stickels (CR16) 2021; 39
Zhang, Wang, Shivashankar, Uhler (CR38) 2022; 13
Schmidt, Weigert, Broaddus, Myers (CR67) 2018; 11
Liu (CR39) 2023; 14
McCarthy, Campbell, Lun, Wills (CR69) 2017; 33
Andersson (CR24) 2020; 3
CR79
Shah, Lubeck, Zhou, Cai (CR11) 2016; 92
CR33
CR76
CR75
Rao, Barkley, França, Yanai (CR2) 2021; 596
CR73
Lewis (CR6) 2021; 18
Yao (CR52) 2021; 184
CR72
Ståhl (CR1) 2016; 353
Maynard (CR34) 2021; 24
Wu (CR35) 2021; 53
Elosua-Bayes, Nieto, Mereu, Gut, Heyn (CR25) 2021; 49
Luecken (CR82) 2022; 19
Pedregosa (CR77) 2011; 12
Harris, Shepherd (CR53) 2015; 18
Kuppe (CR9) 2022; 608
Song, Su (CR26) 2021; 22
O’Hagan (CR59) 1978; 40
Codeluppi (CR12) 2018; 15
Storn, Price (CR48) 1997; 11
CR46
Edelsbrunner, Kirkpatrick, Seidel (CR78) 1983; 29
CR45
CR44
Hu (CR31) 2021; 18
Bergmann (CR5) 2022; 609
Hammond, Vandergheynst, Gribonval (CR74) 2011; 30
CR85
Kleshchevnikov (CR21) 2022; 40
CR40
CR81
Srivatsan (CR3) 2021; 373
Sun, Liu, Li, Wu, Wang (CR27) 2022; 50
CR80
Dong, Zhang (CR32) 2022; 13
Devlin, Chang, Lee, Toutanova (CR62) 2019; 1
Mourragui, Loog, van de Wiel, Reinders, Wessels (CR18) 2019; 35
Ji (CR36) 2020; 182
Wolf, Angerer, Theis (CR43) 2018; 19
Stuart (CR63) 2019; 177
Cable (CR22) 2022; 40
Chen (CR7) 2020; 182
Zeisel (CR84) 2018; 174
CR17
Pelka (CR8) 2021; 184
CR14
CR57
Wu (CR37) 2021; 7
CR54
La Manno (CR83) 2021; 596
Ma, Zhou (CR29) 2022; 40
Biancalani (CR20) 2021; 18
Fang (CR49) 2022; 377
Gao (CR56) 2021; 39
Zhao (CR30) 2021; 39
MacQueen (CR47) 1967; 1
Li (CR50) 2022; 19
Stein-O’Brien (CR64) 2019; 8
Abdelaal, Mourragui, Mahfouz, Reinders (CR19) 2020; 48
Hodge (CR51) 2019; 573
Baslan (CR55) 2020; 9
Lotfollahi (CR66) 2022; 40
Zeira, Land, Strzalkowski, Raphael (CR41) 2022; 19
Wang (CR58) 2018; 361
Erickson (CR10) 2022; 608
CR61
Zhang (CR13) 2021; 598
Rodriques (CR15) 2019; 363
Bannon (CR68) 2021; 18
Chen (CR4) 2022; 185
Ortiz (CR60) 2020; 6
Lopez (CR28) 2022; 40
Dong, Yuan (CR23) 2021; 22
Kullback, Leibler (CR71) 1951; 22
T Abdelaal (43220_CR19) 2020; 48
43220_CR17
43220_CR14
C Kuppe (43220_CR9) 2022; 608
F Pedregosa (43220_CR77) 2011; 12
A O’Hagan (43220_CR59) 1978; 40
X Zhang (43220_CR38) 2022; 13
R Fang (43220_CR49) 2022; 377
W-T Chen (43220_CR7) 2020; 182
Q Song (43220_CR26) 2021; 22
T Stuart (43220_CR63) 2019; 177
SM Lewis (43220_CR6) 2021; 18
J Hu (43220_CR31) 2021; 18
43220_CR61
K Dong (43220_CR32) 2022; 13
Y Ma (43220_CR29) 2022; 40
U Schmidt (43220_CR67) 2018; 11
RR Stickels (43220_CR16) 2021; 39
J MacQueen (43220_CR47) 1967; 1
R Zeira (43220_CR41) 2022; 19
J Devlin (43220_CR62) 2019; 1
K Fukushima (43220_CR70) 1975; 20
Z Yao (43220_CR52) 2021; 184
DM Cable (43220_CR22) 2022; 40
S Kullback (43220_CR71) 1951; 22
M Lotfollahi (43220_CR66) 2022; 40
SZ Wu (43220_CR35) 2021; 53
A Erickson (43220_CR10) 2022; 608
R Wu (43220_CR37) 2021; 7
43220_CR75
KR Maynard (43220_CR34) 2021; 24
43220_CR72
W Liu (43220_CR39) 2023; 14
43220_CR73
R Lopez (43220_CR28) 2022; 40
43220_CR79
DJ McCarthy (43220_CR69) 2017; 33
43220_CR76
43220_CR33
A Rao (43220_CR2) 2021; 596
S Codeluppi (43220_CR12) 2018; 15
A Andersson (43220_CR24) 2020; 3
H Edelsbrunner (43220_CR78) 1983; 29
PL Ståhl (43220_CR1) 2016; 353
KD Harris (43220_CR53) 2015; 18
SR Srivatsan (43220_CR3) 2021; 373
G La Manno (43220_CR83) 2021; 596
D Sun (43220_CR27) 2022; 50
D Bannon (43220_CR68) 2021; 18
M Elosua-Bayes (43220_CR25) 2021; 49
RD Hodge (43220_CR51) 2019; 573
43220_CR81
V Kleshchevnikov (43220_CR21) 2022; 40
FA Wolf (43220_CR43) 2018; 19
43220_CR80
43220_CR85
43220_CR40
J Wang (43220_CR65) 2019; 16
43220_CR45
43220_CR46
T Baslan (43220_CR55) 2020; 9
43220_CR44
E Zhao (43220_CR30) 2021; 39
R Storn (43220_CR48) 1997; 11
MD Luecken (43220_CR82) 2022; 19
M Zhang (43220_CR13) 2021; 598
A Chen (43220_CR4) 2022; 185
S Shah (43220_CR11) 2016; 92
B Li (43220_CR50) 2022; 19
K Pelka (43220_CR8) 2021; 184
R Dong (43220_CR23) 2021; 22
S Mourragui (43220_CR18) 2019; 35
R Gao (43220_CR56) 2021; 39
C Ortiz (43220_CR60) 2020; 6
X Wang (43220_CR58) 2018; 361
SG Rodriques (43220_CR15) 2019; 363
AL Ji (43220_CR36) 2020; 182
GL Stein-O’Brien (43220_CR64) 2019; 8
A Zeisel (43220_CR84) 2018; 174
T Biancalani (43220_CR20) 2021; 18
Y Hao (43220_CR42) 2021; 184
S Bergmann (43220_CR5) 2022; 609
43220_CR57
43220_CR54
DK Hammond (43220_CR74) 2011; 30
References_xml – volume: 49
  start-page: e50
  year: 2021
  ident: CR25
  article-title: SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab043
– ident: CR45
– volume: 22
  start-page: 79
  year: 1951
  end-page: 86
  ident: CR71
  article-title: On Information and Sufficiency
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– volume: 19
  year: 2018
  ident: CR43
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1382-0
– volume: 608
  start-page: 360
  year: 2022
  end-page: 367
  ident: CR10
  article-title: Spatially resolved clonal copy number alterations in benign and malignant tissue
  publication-title: Nature
  doi: 10.1038/s41586-022-05023-2
– volume: 1
  start-page: 4171
  year: 2019
  end-page: 4186
  ident: CR62
  article-title: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
  publication-title: Proc. naacL-HLT
– volume: 14
  year: 2023
  ident: CR39
  article-title: Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-35947-w
– volume: 184
  start-page: 3573
  year: 2021
  end-page: 3587.e29
  ident: CR42
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: CR48
  article-title: Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– ident: CR54
– ident: CR61
– volume: 39
  start-page: 599
  year: 2021
  end-page: 608
  ident: CR56
  article-title: Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-00795-2
– ident: CR80
– volume: 19
  start-page: 567
  year: 2022
  end-page: 575
  ident: CR41
  article-title: Alignment and integration of spatial transcriptomics data
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01459-6
– volume: 182
  start-page: 976
  year: 2020
  end-page: 991
  ident: CR7
  article-title: Spatial transcriptomics and in situ sequencing to study Alzheimer’s Disease
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.038
– volume: 24
  start-page: 425
  year: 2021
  end-page: 436
  ident: CR34
  article-title: Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-00787-0
– volume: 18
  start-page: 1352
  year: 2021
  end-page: 1362
  ident: CR20
  article-title: Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01264-7
– volume: 573
  start-page: 61
  year: 2019
  end-page: 68
  ident: CR51
  article-title: Conserved cell types with divergent features in human versus mouse cortex
  publication-title: Nature
  doi: 10.1038/s41586-019-1506-7
– volume: 608
  start-page: 766
  year: 2022
  end-page: 777
  ident: CR9
  article-title: Spatial multi-omic map of human myocardial infarction
  publication-title: Nature
  doi: 10.1038/s41586-022-05060-x
– volume: 48
  start-page: e107
  year: 2020
  end-page: e107
  ident: CR19
  article-title: SpaGE: spatial gene enhancement using scRNA-seq
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa740
– ident: CR46
– volume: 40
  start-page: 1349
  year: 2022
  end-page: 1359
  ident: CR29
  article-title: Spatially informed cell-type deconvolution for spatial transcriptomics
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01273-7
– volume: 39
  start-page: 313
  year: 2021
  end-page: 319
  ident: CR16
  article-title: Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0739-1
– volume: 1
  start-page: 281
  year: 1967
  end-page: 298
  ident: CR47
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proc. Fifth Berkeley Symp. Math. Stat. Probab.
– volume: 609
  start-page: 136
  year: 2022
  end-page: 143
  ident: CR5
  article-title: Spatial profiling of early primate gastrulation in utero
  publication-title: Nature
  doi: 10.1038/s41586-022-04953-1
– ident: CR75
– volume: 174
  start-page: 999
  year: 2018
  end-page: 1014
  ident: CR84
  article-title: Molecular Architecture of the Mouse Nervous System
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.021
– volume: 6
  start-page: eabb3446
  year: 2020
  ident: CR60
  article-title: Molecular atlas of the adult mouse brain
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb3446
– volume: 15
  start-page: 932
  year: 2018
  end-page: 935
  ident: CR12
  article-title: Spatial organization of the somatosensory cortex revealed by osmFISH
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0175-z
– volume: 182
  start-page: 497
  year: 2020
  end-page: 514
  ident: CR36
  article-title: Multimodal analysis of composition and spatial architecture in human squamous
  publication-title: Cell Carcinoma Cell
– volume: 16
  start-page: 875
  year: 2019
  end-page: 878
  ident: CR65
  article-title: Data denoising with transfer learning in single-cell transcriptomics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0537-1
– volume: 13
  year: 2022
  ident: CR32
  article-title: Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29439-6
– volume: 40
  start-page: 517
  year: 2022
  end-page: 526
  ident: CR22
  article-title: Robust decomposition of cell type mixtures in spatial transcriptomics
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00830-w
– ident: CR57
– volume: 33
  start-page: 1179
  year: 2017
  end-page: 1186
  ident: CR69
  article-title: Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw777
– volume: 92
  start-page: 342
  year: 2016
  end-page: 357
  ident: CR11
  article-title: In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.10.001
– volume: 177
  start-page: 1888
  year: 2019
  end-page: 1902
  ident: CR63
  article-title: Comprehensive Integration of Single-
  publication-title: Cell Data Cell
– ident: CR85
– volume: 39
  start-page: 1375
  year: 2021
  end-page: 1384
  ident: CR30
  article-title: Spatial transcriptomics at subspot resolution with BayesSpace
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00935-2
– ident: CR81
– volume: 598
  start-page: 137
  year: 2021
  end-page: 143
  ident: CR13
  article-title: Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH
  publication-title: Nature
  doi: 10.1038/s41586-021-03705-x
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR77
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 373
  start-page: 111
  year: 2021
  end-page: 117
  ident: CR3
  article-title: Embryo-scale, single-cell spatial transcriptomics
  publication-title: Science
  doi: 10.1126/science.abb9536
– volume: 35
  start-page: i510
  year: 2019
  end-page: i519
  ident: CR18
  article-title: PRECISE: a domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz372
– ident: CR72
– ident: CR14
– volume: 22
  year: 2021
  ident: CR23
  article-title: SpatialDWLS: accurate deconvolution of spatial transcriptomic data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02362-7
– volume: 7
  start-page: eabg3750
  year: 2021
  ident: CR37
  article-title: Comprehensive analysis of spatial architecture in primary liver cancer
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abg3750
– volume: 353
  start-page: 78
  year: 2016
  end-page: 82
  ident: CR1
  article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
  publication-title: Science
  doi: 10.1126/science.aaf2403
– volume: 40
  start-page: 1
  year: 1978
  end-page: 24
  ident: CR59
  article-title: Curve fitting and optimal design for prediction
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– ident: CR33
– volume: 22
  start-page: bbaa414
  year: 2021
  ident: CR26
  article-title: DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa414
– volume: 30
  start-page: 129
  year: 2011
  end-page: 150
  ident: CR74
  article-title: Wavelets on graphs via spectral graph theory
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2010.04.005
– ident: CR79
– volume: 596
  start-page: 211
  year: 2021
  end-page: 220
  ident: CR2
  article-title: Exploring tissue architecture using spatial transcriptomics
  publication-title: Nature
  doi: 10.1038/s41586-021-03634-9
– volume: 19
  start-page: 41
  year: 2022
  end-page: 50
  ident: CR82
  article-title: Benchmarking atlas-level data integration in single-cell genomics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01336-8
– ident: CR40
– volume: 40
  start-page: 661
  year: 2022
  end-page: 671
  ident: CR21
  article-title: Cell2location maps fine-grained cell types in spatial transcriptomics
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01139-4
– volume: 20
  start-page: 121
  year: 1975
  end-page: 136
  ident: CR70
  article-title: Cognitron: A self-organizing multilayered neural network
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00342633
– volume: 53
  start-page: 1334
  year: 2021
  end-page: 1347
  ident: CR35
  article-title: A single-cell and spatially resolved atlas of human breast cancers
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00911-1
– volume: 19
  start-page: 662
  year: 2022
  end-page: 670
  ident: CR50
  article-title: Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01480-9
– volume: 29
  start-page: 551
  year: 1983
  end-page: 559
  ident: CR78
  article-title: On the shape of a set of points in the plane
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1983.1056714
– volume: 184
  start-page: 3222
  year: 2021
  end-page: 3241.e26
  ident: CR52
  article-title: A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.021
– ident: CR44
– volume: 13
  year: 2022
  ident: CR38
  article-title: Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer’s disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35233-1
– ident: CR73
– volume: 3
  start-page: 565
  year: 2020
  ident: CR24
  article-title: Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-01247-y
– volume: 11
  start-page: 265
  year: 2018
  end-page: 273
  ident: CR67
  article-title: Cell Detection with Star-convex Polygons
  publication-title: Med. Image Comput. Computer Assist. Intervention–MICCAI 2018: 21st Int. Conf., Granada, Spain,
– volume: 377
  start-page: 56
  year: 2022
  end-page: 62
  ident: CR49
  article-title: Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH
  publication-title: Science
  doi: 10.1126/science.abm1741
– volume: 185
  start-page: 1777
  year: 2022
  end-page: 1792
  ident: CR4
  article-title: Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays
  publication-title: Cell
  doi: 10.1016/j.cell.2022.04.003
– volume: 361
  start-page: eaat5691
  year: 2018
  ident: CR58
  article-title: Three-dimensional intact-tissue sequencing of single-cell transcriptional states
  publication-title: Science
  doi: 10.1126/science.aat5691
– volume: 18
  start-page: 43
  year: 2021
  end-page: 45
  ident: CR68
  article-title: DeepCell Kiosk: scaling deep learning–enabled cellular image analysis with Kubernetes
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01023-0
– volume: 50
  start-page: e42
  year: 2022
  end-page: e42
  ident: CR27
  article-title: STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac150
– ident: CR17
– volume: 18
  start-page: 1342
  year: 2021
  end-page: 1351
  ident: CR31
  article-title: SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01255-8
– volume: 184
  start-page: 4734
  year: 2021
  end-page: 4752
  ident: CR8
  article-title: Spatially organized multicellular immune hubs in human colorectal cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2021.08.003
– volume: 40
  start-page: 1360
  year: 2022
  end-page: 1369
  ident: CR28
  article-title: DestVI identifies continuums of cell types in spatial transcriptomics data
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01272-8
– ident: CR76
– volume: 18
  start-page: 997
  year: 2021
  end-page: 1012
  ident: CR6
  article-title: Spatial omics and multiplexed imaging to explore cancer biology
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01203-6
– volume: 9
  start-page: e51480
  year: 2020
  ident: CR55
  article-title: Novel insights into breast cancer copy number genetic heterogeneity revealed by single-cell genome sequencing
  publication-title: eLife
  doi: 10.7554/eLife.51480
– volume: 8
  start-page: 395
  year: 2019
  end-page: 411
  ident: CR64
  article-title: Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2019.04.004
– volume: 40
  start-page: 121
  year: 2022
  end-page: 130
  ident: CR66
  article-title: Mapping single-cell data to reference atlases by transfer learning
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01001-7
– volume: 596
  start-page: 92
  year: 2021
  end-page: 96
  ident: CR83
  article-title: Molecular architecture of the developing mouse brain
  publication-title: Nature
  doi: 10.1038/s41586-021-03775-x
– volume: 363
  start-page: 1463
  year: 2019
  end-page: 1467
  ident: CR15
  article-title: Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 18
  start-page: 170
  year: 2015
  end-page: 181
  ident: CR53
  article-title: The neocortical circuit: themes and variations
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3917
– volume: 185
  start-page: 1777
  year: 2022
  ident: 43220_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2022.04.003
– volume: 182
  start-page: 976
  year: 2020
  ident: 43220_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.038
– volume: 608
  start-page: 766
  year: 2022
  ident: 43220_CR9
  publication-title: Nature
  doi: 10.1038/s41586-022-05060-x
– volume: 9
  start-page: e51480
  year: 2020
  ident: 43220_CR55
  publication-title: eLife
  doi: 10.7554/eLife.51480
– ident: 43220_CR46
– ident: 43220_CR75
– ident: 43220_CR17
– volume: 174
  start-page: 999
  year: 2018
  ident: 43220_CR84
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.021
– volume: 18
  start-page: 1352
  year: 2021
  ident: 43220_CR20
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01264-7
– ident: 43220_CR61
– volume: 40
  start-page: 661
  year: 2022
  ident: 43220_CR21
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01139-4
– volume: 184
  start-page: 3573
  year: 2021
  ident: 43220_CR42
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 92
  start-page: 342
  year: 2016
  ident: 43220_CR11
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.10.001
– ident: 43220_CR40
  doi: 10.1038/s43588-023-00528-w
– volume: 184
  start-page: 4734
  year: 2021
  ident: 43220_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2021.08.003
– ident: 43220_CR33
  doi: 10.1101/2020.05.31.125658
– volume: 1
  start-page: 4171
  year: 2019
  ident: 43220_CR62
  publication-title: Proc. naacL-HLT
– volume: 353
  start-page: 78
  year: 2016
  ident: 43220_CR1
  publication-title: Science
  doi: 10.1126/science.aaf2403
– ident: 43220_CR80
– ident: 43220_CR72
  doi: 10.1109/ICCV.2015.123
– volume: 22
  start-page: 79
  year: 1951
  ident: 43220_CR71
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– volume: 19
  start-page: 41
  year: 2022
  ident: 43220_CR82
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01336-8
– volume: 39
  start-page: 1375
  year: 2021
  ident: 43220_CR30
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00935-2
– volume: 609
  start-page: 136
  year: 2022
  ident: 43220_CR5
  publication-title: Nature
  doi: 10.1038/s41586-022-04953-1
– ident: 43220_CR85
  doi: 10.5281/zenodo.8419717
– volume: 598
  start-page: 137
  year: 2021
  ident: 43220_CR13
  publication-title: Nature
  doi: 10.1038/s41586-021-03705-x
– volume: 596
  start-page: 92
  year: 2021
  ident: 43220_CR83
  publication-title: Nature
  doi: 10.1038/s41586-021-03775-x
– volume: 182
  start-page: 497
  year: 2020
  ident: 43220_CR36
  publication-title: Cell Carcinoma Cell
– volume: 35
  start-page: i510
  year: 2019
  ident: 43220_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz372
– volume: 177
  start-page: 1888
  year: 2019
  ident: 43220_CR63
  publication-title: Cell Data Cell
– volume: 12
  start-page: 2825
  year: 2011
  ident: 43220_CR77
  publication-title: J. Mach. Learn. Res.
– volume: 13
  year: 2022
  ident: 43220_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35233-1
– ident: 43220_CR76
  doi: 10.1109/TPAMI.1979.4766909
– volume: 40
  start-page: 1349
  year: 2022
  ident: 43220_CR29
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01273-7
– volume: 19
  start-page: 567
  year: 2022
  ident: 43220_CR41
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01459-6
– ident: 43220_CR57
– volume: 608
  start-page: 360
  year: 2022
  ident: 43220_CR10
  publication-title: Nature
  doi: 10.1038/s41586-022-05023-2
– volume: 24
  start-page: 425
  year: 2021
  ident: 43220_CR34
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-00787-0
– volume: 30
  start-page: 129
  year: 2011
  ident: 43220_CR74
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2010.04.005
– volume: 29
  start-page: 551
  year: 1983
  ident: 43220_CR78
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1983.1056714
– volume: 50
  start-page: e42
  year: 2022
  ident: 43220_CR27
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac150
– ident: 43220_CR73
– volume: 40
  start-page: 1
  year: 1978
  ident: 43220_CR59
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1978.tb01643.x
– volume: 22
  start-page: bbaa414
  year: 2021
  ident: 43220_CR26
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa414
– volume: 11
  start-page: 341
  year: 1997
  ident: 43220_CR48
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 8
  start-page: 395
  year: 2019
  ident: 43220_CR64
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2019.04.004
– ident: 43220_CR54
– volume: 18
  start-page: 43
  year: 2021
  ident: 43220_CR68
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01023-0
– volume: 19
  start-page: 662
  year: 2022
  ident: 43220_CR50
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01480-9
– volume: 53
  start-page: 1334
  year: 2021
  ident: 43220_CR35
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00911-1
– volume: 20
  start-page: 121
  year: 1975
  ident: 43220_CR70
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00342633
– ident: 43220_CR81
  doi: 10.1007/978-3-030-95470-3_9
– volume: 373
  start-page: 111
  year: 2021
  ident: 43220_CR3
  publication-title: Science
  doi: 10.1126/science.abb9536
– volume: 18
  start-page: 170
  year: 2015
  ident: 43220_CR53
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3917
– volume: 16
  start-page: 875
  year: 2019
  ident: 43220_CR65
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0537-1
– volume: 49
  start-page: e50
  year: 2021
  ident: 43220_CR25
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab043
– volume: 40
  start-page: 1360
  year: 2022
  ident: 43220_CR28
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01272-8
– ident: 43220_CR79
  doi: 10.48550/arXiv.1801.09847
– volume: 596
  start-page: 211
  year: 2021
  ident: 43220_CR2
  publication-title: Nature
  doi: 10.1038/s41586-021-03634-9
– volume: 33
  start-page: 1179
  year: 2017
  ident: 43220_CR69
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw777
– ident: 43220_CR44
– volume: 184
  start-page: 3222
  year: 2021
  ident: 43220_CR52
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.021
– volume: 3
  start-page: 565
  year: 2020
  ident: 43220_CR24
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-01247-y
– volume: 11
  start-page: 265
  year: 2018
  ident: 43220_CR67
  publication-title: Med. Image Comput. Computer Assist. Intervention–MICCAI 2018: 21st Int. Conf., Granada, Spain,
– volume: 1
  start-page: 281
  year: 1967
  ident: 43220_CR47
  publication-title: Proc. Fifth Berkeley Symp. Math. Stat. Probab.
– volume: 39
  start-page: 599
  year: 2021
  ident: 43220_CR56
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-00795-2
– volume: 573
  start-page: 61
  year: 2019
  ident: 43220_CR51
  publication-title: Nature
  doi: 10.1038/s41586-019-1506-7
– volume: 40
  start-page: 517
  year: 2022
  ident: 43220_CR22
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00830-w
– volume: 377
  start-page: 56
  year: 2022
  ident: 43220_CR49
  publication-title: Science
  doi: 10.1126/science.abm1741
– ident: 43220_CR45
– volume: 361
  start-page: eaat5691
  year: 2018
  ident: 43220_CR58
  publication-title: Science
  doi: 10.1126/science.aat5691
– volume: 40
  start-page: 121
  year: 2022
  ident: 43220_CR66
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01001-7
– ident: 43220_CR14
– volume: 15
  start-page: 932
  year: 2018
  ident: 43220_CR12
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0175-z
– volume: 18
  start-page: 1342
  year: 2021
  ident: 43220_CR31
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01255-8
– volume: 6
  start-page: eabb3446
  year: 2020
  ident: 43220_CR60
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb3446
– volume: 14
  year: 2023
  ident: 43220_CR39
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-35947-w
– volume: 39
  start-page: 313
  year: 2021
  ident: 43220_CR16
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0739-1
– volume: 13
  year: 2022
  ident: 43220_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29439-6
– volume: 7
  start-page: eabg3750
  year: 2021
  ident: 43220_CR37
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abg3750
– volume: 22
  year: 2021
  ident: 43220_CR23
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02362-7
– volume: 19
  year: 2018
  ident: 43220_CR43
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1382-0
– volume: 363
  start-page: 1463
  year: 2019
  ident: 43220_CR15
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 48
  start-page: e107
  year: 2020
  ident: 43220_CR19
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa740
– volume: 18
  start-page: 997
  year: 2021
  ident: 43220_CR6
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01203-6
SSID ssj0000391844
Score 2.5604255
Snippet Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates,...
Abstract Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7603
SubjectTerms 38
631/114
631/114/1314
631/114/2397
631/1647/48
631/61/514
Algorithms
Alignment
Artificial neural networks
Coordinates
Data analysis
Data processing
Deconvolution
Deep Learning
Gene expression
Gene Expression Profiling
Humanities and Social Sciences
Information processing
Machine learning
Models, Statistical
multidisciplinary
Probabilistic models
Science
Science (multidisciplinary)
Spatial analysis
Spatial discrimination learning
Spatial distribution
Toolkits
Transcriptome - genetics
Transcriptomes
Transcriptomics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED4hpEm8TLABCwOUSbxtFk1sxwlvrKKqJkBIXaW-Wf65l9FUtDzsv-dsp6FoY3vZa-I48fl833c5-w7gDEFJWF2UBKHFEuT_lijuKHF145U3FS9N-N9xc1uNp-zbjM82Sn2FPWEpPXAS3LkNDkxA6cYKVpVambJWjdHGquB6xDyfiHkbzlS0wbRB14V1p2QGtD5fsmgTEKIIQyVG4_MCiWLC_j-xzN8ipBF4RrvwtmOM-WX60j3YcvN38CbVkPz1HiaTu8vh1fVFbp1b5F0RiB8koJPNTZ-OOZ22zFufL8MeauxwFVAq2oz23uWbAYXlPkxHV9-HY9JVSiCG1XxFmGXMCaW1b2qFPgiSFEGZHrjaW5S3pYrrkjkct_Xo8GjWVIY1yiMbEpTagh7A9ryduw-QF0oVzoS9E44z0XCthHJqwAfe-YpVJoNiLTVpujTioZrFTxnD2bSWSdISJS2jpCXN4HP_zCIl0fhr669hMvqWIQF2vIBqITu1kP9SiwyO11Mpu1W5lOhcIsOphKgy-NTfxvUUgiRq7trH1AZZGed1BodJBfovoQLfiaQngy9rnXju_PUBHf2PAX2EnVDpPhyDLMtj2F49PLoT5EMrfRpV_wmawAJ1
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLdgCIkL4pvCQEXiBtFem6RJuaAxbZoQIKQx6d2ifO4yXh_r24H_HjvN60DArm2aJo5j_2wnNsBrVEoquKZlqFoCQ_wfmJWRs6j7ZJPvZOvJ3_H5S3d8Kj4u5bI43MZyrHIrE7OgDoMnH_keGgaonTqluvfrH4yqRlF0tZTQuAm3KHUZHelSSzX7WCj7uRai3JVZcL03iiwZUFExgayMIugPfZTT9v8La_4VJ83q5-ge3C24sd6fFvo-3IirB3B7qiT58yGcnHzdPzj89K4OMa7rUgrijJGOCrWfkzJPdy7rIdUjnaTGDjekq7LkGL7H-vewwvgITo8Ovx0cs1IvgXmh5YaJIERU1rnUa4uWCEIVxYVbRJ0CUj1wK10rIs47JDR7nOg7L3qbEBMpzkPDH8POaljFp1A31jbR0wmKKIXqpbPKRruQixRTJzpfQbOlmvElmTjVtDg3OajNtZkobZDSJlPa8ArezN-sp1Qa17b-QIsxt6Q02PnBcHFmyq4ygaxbgnB9UKJrnfWttr13PliyS7GT3e1SmrI3R3PFSRW8ml_jrqJQiV3F4XJqg9hMSl3Bk4kF5pFwhf9E6FPB2y1PXHX-_wk9u34sz-EOVbKna45tuws7m4vL-ALxzsa9zEz9C_KT-js
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9UwEB6VIiQuiLIGWhQkbmDxEq_hVp5aVQgQUqnUm-W1l_JS9b0e-PfMOAsgWqRek7ETj8eeb-xZAN6gUtLRNy1D1RIZ4v_InEycJdNll4OSbaDzji9f1dGJ-HQqT7egnWJhitN-SWlZtunJO-z9WpQljRqGCZRB3DvuwF1K3U5SvVTL-VyFMp4bIcb4mAU31zT9SweVVP3X4ct_7kaLyjl8CA9GrFjvD3-3A1tp9QjuDdUjfz6G4-Nv-8uDzx_qmNJFPZZ_OGOkl2Id5kTMQ5xl3ed6Td7T2OGG9FPZLfofqf7zKmH9BE4OD74vj9hYI4EFYeSGiShE0s773BmH1gfCE82FXySTI3I6cid9KxKOO2Y0dbzoVBCdy4iDNOex4U9he9Wv0nOoG-eaFMhrIkmhO-mddskt5CKnrIQKFTQT12wYE4hTHYtzWy6yubEDpy1y2hZOW17B27nNxZA-47_UH2kyZkpKfV0e9JdndhQFG8miJdjWRS1U611ojeuCD9GRLYqd7E5Tacf1uLZoViK2UVqrCl7Pr3El0fWIW6X-aqBBPCalqeDZIALzn3CN30S4U8G7SSZ-d37zgF7cjvwl3Kdq9hTq2La7sL25vEp7iHk2_lUR8l8ePffX
  priority: 102
  providerName: Springer Nature
Title SPACEL: deep learning-based characterization of spatial transcriptome architectures
URI https://link.springer.com/article/10.1038/s41467-023-43220-3
https://www.ncbi.nlm.nih.gov/pubmed/37990022
https://www.proquest.com/docview/2892156776
https://www.proquest.com/docview/2892658558
https://doaj.org/article/d549905629d7462bac28a9cbcda15663
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9tAEB5y0JKXkN5KU6NC31q1lnZXuyqE4Bi7wTQh1DX4bdlLeUmt1Hag-fedXR1NqdMXCaTdQZqd45s9ZgDeoVPiVqdZgq7FJoj_baKYI4kTRalKk7PM-PmO84v8bEYnczbfgrbcUcPA1cbQzteTmi2vP_76eXeCCn9cHxkXn1Y0qDt6n4SifKJd2YZd9EzcK-p5A_eDZSYFBjS0OTuzuesePCYcTXQ_y_5yVSGj_yYY-s8SavBM4wPYbyBlPKhl4AlsucVTeFQXmbx7BtPp5WA4-vo5ts7dxE2ViKvEuy8bmy5fc30cM67KeOU3WSPBtXdjwahUP1x8f8Vh9Rxm49H34VnSlFJIDBVsnVBLqeNK67IQCoMURDGcUN13orQ4IJYopjPqkAW2xIhI0yI3tFAlwiVOiE3JC9hZVAv3CuJUqdQZv7nCMcoLphVXTvVZv3RlTnMTQdpyTZomz7gvd3Etw3o3EbJmukSmy8B0SSJ43_W5qbNs_Lf1qR-MrqXPkB0eVMsr2SictD7w9eiusJzmmVYmE6ow2ljlQ1YkctQOpWylTmL0iRAo5zyP4G33GhXOr6Kohatu6zYI2xgTEbysRaD7klZyIvjQysQf4g__0OGDhF7Dnq9v7w8_ZtkR7KyXt-4NoqC17sE2n3O8ivGXHuwOBpPpBO-no4vLb_h0mA97YX6hF1TgNw6rA-s
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgSDBCawmfsQOEkKltNrSbYXUVtqb61d6gc3SbIX6p_iNjPMqCOit16x34oxn5pvx2DMArxCUpLc5JQgtnqD_74kRgZGgyspUrhDUxf2Ovf1icsQ_z8RsBX4Od2HiscrBJraG2tcu7pGvY2CA6FRIWXxYfCexa1TMrg4tNDqx2A3nPzBka97vfML1fU3p9tbh5oT0XQWI40osCfecB2msrUpl0F9HQJeM2yyoyuPcPDPCUh5Q0H2FwYHlZeF4aSr0HCRjPmdI9xpcR-DNokbJmRz3dGK1dcV5fzcnY2q94a0lQmAkHCmiyfsD_9o2Af_ybf_Ky7Zwt30Hbvd-arrRCdZdWAnze3Cj61x5fh8ODr5sbG5N36U-hEXat544IRETferGItDdHc-0rtImntxGgsuIja2lqr-F9Pc0RvMAjq6Ekw9hdV7Pw2NIc2Py4OKJjSC4LIU10gSTiawKVcELl0A-cE27vnh57KHxVbdJdKZ0x2mNnNYtpzVL4M34n0VXuuPS0R_jYowjY9nt9kF9eqJ7LdY-RtPRZSy95AW1xlFlSmedNzEORiJrw1Lq3hY0-kJyE3g5_oxaHFMzZh7qs24M-oJCqAQedSIwzoRJfCe6Wgm8HWTigvj_P-jJ5XN5ATcnh3tTPd3Z330Kt2gU0TwnlK7B6vL0LDxDX2tpn7cCnsLxVWvULxtONqE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gRuPF4HsUdEz0pJ3d6cf0DIkxCGxAkJAgyd6afnLRnZVZYvhr_jqr5wVG5cZ1tremp7qqvqqu7iqANwhK0pmMEoQWR9D_d0QLz4gvyqCDzQW1cb_jy0G-c8w_T8V0CX71d2HiscreJjaG2lU27pGPMDBAdMqlzEehOxZxuDX5OP9BYgepmGnt22m0IrLnL35i-FZ_2N3CtX5L6WT76-YO6ToMEMsLsSDcce6lNiaUhUbfHcFdMm7GvggO5-mYFoZyj0LvAgYKhpe55aUO6EVIxlzGkO4tuC2ZyKKOyakc9ndi5fWC8-6ezpgVo5o3VglBknCkiObvDyxsWgb8y8_9K0fbQN9kBe53Pmu60QrZA1jys4dwp-1iefEIjo4ONza399dT5_087dpQnJKIjy61Q0Ho9r5nWoW0jqe4keAi4mRjtarvPr2a0qgfw_GNcPIJLM-qmX8GaaZ15m08veEFl6UwWmqvx2IcfMh5bhPIeq4p2xUyj_00vqkmoc4K1XJaIadVw2nFEng3_GfelvG4dvSnuBjDyFiCu3lQnZ2qTqOVi5F1dB9LJ3lOjba00KU11ukYEyOR1X4pVWcXanUpxQm8Hn5GjY5pGj3z1Xk7Bv1CIYoEnrYiMMyESXwnul0JvO9l4pL4_z_o-fVzeQV3UZfU_u7B3gu4R6OEZhmhdBWWF2fnfg3droV52ch3Cic3rVC_AcElOtc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SPACEL%3A+deep+learning-based+characterization+of+spatial+transcriptome+architectures&rft.jtitle=Nature+communications&rft.au=Xu%2C+Hao&rft.au=Wang%2C+Shuyan&rft.au=Fang%2C+Minghao&rft.au=Luo%2C+Songwen&rft.date=2023-11-22&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=7603&rft_id=info:doi/10.1038%2Fs41467-023-43220-3&rft_id=info%3Apmid%2F37990022&rft.externalDocID=37990022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon