A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration
Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches – like most structured RNAs – are believed to fold co-transcriptionally, subject to both ligand binding and transcription...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 3955 - 18 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.05.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-024-48409-8 |
Cover
Loading…
Abstract | Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches – like most structured RNAs – are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn
2+
ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative
Lactococcus lactis
riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.
Here the authors unveil an intermediate state during the folding of the manganese riboswitch from
L. lactis
. This transient state allows the integration of multiple cellular signals including RNA polymerase pausing and transcription factor NusA. |
---|---|
AbstractList | Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control. Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches – like most structured RNAs – are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn 2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control. Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches – like most structured RNAs – are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn 2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control. Here the authors unveil an intermediate state during the folding of the manganese riboswitch from L. lactis . This transient state allows the integration of multiple cellular signals including RNA polymerase pausing and transcription factor NusA. Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches – like most structured RNAs – are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.Here the authors unveil an intermediate state during the folding of the manganese riboswitch from L. lactis. This transient state allows the integration of multiple cellular signals including RNA polymerase pausing and transcription factor NusA. Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control. Abstract Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches – like most structured RNAs – are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control. |
ArticleNumber | 3955 |
Author | Chauvier, Adrien Walter, Nils G. Dandpat, Shiba S. Romero, Rosa |
Author_xml | – sequence: 1 givenname: Adrien orcidid: 0000-0003-4473-6194 surname: Chauvier fullname: Chauvier, Adrien organization: Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan – sequence: 2 givenname: Shiba S. orcidid: 0000-0003-3413-9847 surname: Dandpat fullname: Dandpat, Shiba S. organization: Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Intel Corporation – sequence: 3 givenname: Rosa surname: Romero fullname: Romero, Rosa organization: Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan – sequence: 4 givenname: Nils G. orcidid: 0000-0002-7301-1275 surname: Walter fullname: Walter, Nils G. email: nwalter@umich.edu organization: Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38729929$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1v3CAURFWqJk3zB3qoLPXSi1vgYWOOUdSPSJF6ac_oGYPNymu2gNX235ddJ22VQwAJHm9mQDMvydkSFkvIa0bfMwrdhySYaGVNuahFJ6iqu2fkglPBaiY5nP13PidXKe1oGaBYJ8QLcg6d5EpxdUGG62rBZOySq-j7kH76bKZqsrP_VYVoJptyxGxTFUO_plyVakkm-kP2YcG5inZcZzwWVZ5iWMepSn48dvyS7RhPrVfkucM52av7_ZJ8__Tx282X-u7r59ub67vaiK7JNVhBB3BlSsMbJ9qBOstb6bClEgAFo9g0AqVCg63rnUU3AJiGoaHOIVyS2013CLjTh-j3GH_rgF6fLkIcNcbszWw1U3yQiCAQpFCMd4yLoRvK09AbUH3RerdpHWL4sRYb9N4Xn-YZFxvWpIE2oKRoW1Ggbx9Bd2GNxYMNBWUBK6g396i139vh7_cesiiAbgOYGFKK1mnj88m_YrqfNaP6mLzektcleX1KXneFyh9RH9SfJMFGSgW8jDb--_YTrD95acF5 |
CitedBy_id | crossref_primary_10_1016_j_sbi_2024_102893 crossref_primary_10_3390_ijms251910495 |
Cites_doi | 10.1073/pnas.2106564118 10.1111/j.1365-2958.2010.07126.x 10.1038/s41467-020-18283-1 10.1038/nchembio.563 10.1016/j.molcel.2019.01.016 10.1016/j.ymeth.2019.04.002 10.1146/annurev-micro-051721-043826 10.1038/nbt.3418 10.1073/pnas.1113086109 10.1016/j.cell.2018.05.017 10.1016/j.sbi.2008.04.004 10.1016/j.molcel.2020.08.010 10.1016/j.bbagrm.2020.194501 10.1016/S0092-8674(01)00582-7 10.1038/s41467-021-27827-y 10.1093/nar/gkad110 10.1038/s41589-019-0382-7 10.1101/gad.1438306 10.1016/j.molcel.2018.08.046 10.1016/j.molcel.2018.02.008 10.1038/s41467-022-29148-0 10.1073/pnas.2109026118 10.1073/pnas.1319193111 10.1016/j.chembiol.2018.04.016 10.1038/ncomms13892 10.1016/j.molcel.2015.01.035 10.1016/j.molcel.2005.02.032 10.1016/S0076-6879(10)72011-5 10.1016/j.tibs.2015.12.009 10.1101/gad.822900 10.1093/nar/gkv108 10.1073/pnas.97.13.7090 10.1126/science.1057738 10.1126/science.1225722 10.1016/j.jmb.2010.06.036 10.1073/pnas.1112211109 10.1080/14728222.2023.2230363 10.1038/s41579-020-0378-z 10.1016/j.molcel.2018.01.018 10.1093/nar/gkp452 10.1002/wrna.1350 10.1073/pnas.162373299 10.1093/nar/gkac102 10.1038/nmicrobiol.2015.7 10.1038/ncomms9976 10.1021/jacs.5b09740 10.1016/j.chembiol.2023.12.011 10.1073/pnas.0705038104 10.1016/j.molcel.2015.02.016 10.1126/science.1251871 10.1016/j.molcel.2008.12.021 10.1038/nchembio.2427 10.1038/s41467-023-38042-2 10.1146/annurev-micro-091014-104306 10.1016/j.cell.2019.11.007 10.1038/s41467-018-03375-w 10.1021/jacs.6b10429 10.1128/jb.00534-21 10.1261/rna.037390.112 10.3389/fmolb.2020.607158 10.1080/15476286.2019.1616354 10.1016/S1097-2765(03)00439-8 10.3389/fmolb.2022.945724 10.1038/s41467-018-04305-6 10.1073/pnas.2023426118 10.1073/pnas.96.17.9545 10.1016/S0076-6879(96)74029-6 10.1016/B978-0-12-801122-5.00015-5 10.1038/s41467-019-12230-5 10.1146/annurev-biochem-060815-014844 10.1038/s41564-022-01240-7 10.1016/j.tibs.2022.08.009 10.1021/acs.jpcb.8b11841 10.1016/j.molcel.2011.09.018 10.1074/jbc.272.19.12265 10.1038/nmicrobiol.2017.62 10.1371/journal.pgen.1001278 10.1016/j.molcel.2019.04.029 10.1038/s41594-023-01002-x |
ContentType | Journal Article |
Copyright | The Author(s) 2024 corrected publication 2025 2024. The Author(s). Copyright Nature Publishing Group 2024 |
Copyright_xml | – notice: The Author(s) 2024 corrected publication 2025 – notice: 2024. The Author(s). – notice: Copyright Nature Publishing Group 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-024-48409-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central (ProQuest) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_192d7aa34a3749128124d8df373bc39b 38729929 10_1038_s41467_024_48409_8 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of Health - United States of America GM118524 & GM131922 – fundername: NIGMS NIH HHS grantid: R35 GM131922 – fundername: NIGMS NIH HHS grantid: R01 GM118524 – fundername: NIGMS NIH HHS grantid: T32 GM007544 |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZT PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SV3 TSG UKHRP AASML AAYXX CITATION PHGZM SNYQT CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-3e40d3f3f37c25f46d0fe267fa60733a410a554a79aca6fbfeafd33c51ac0ffa3 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:25:19 EDT 2025 Sun Aug 24 04:12:15 EDT 2025 Sat Aug 23 13:09:34 EDT 2025 Thu Apr 03 07:00:00 EDT 2025 Tue Jul 01 05:25:45 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Sun Mar 02 01:13:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-3e40d3f3f37c25f46d0fe267fa60733a410a554a79aca6fbfeafd33c51ac0ffa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4473-6194 0000-0002-7301-1275 0000-0003-3413-9847 |
OpenAccessLink | https://doaj.org/article/192d7aa34a3749128124d8df373bc39b |
PMID | 38729929 |
PQID | 3053353331 |
PQPubID | 546298 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_192d7aa34a3749128124d8df373bc39b proquest_miscellaneous_3053974664 proquest_journals_3053353331 pubmed_primary_38729929 crossref_citationtrail_10_1038_s41467_024_48409_8 crossref_primary_10_1038_s41467_024_48409_8 springer_journals_10_1038_s41467_024_48409_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-10 |
PublicationDateYYYYMMDD | 2024-05-10 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | C Zhu (48409_CR63) 2022; 13 I Gusarov (48409_CR41) 2001; 107 S-R Liu (48409_CR71) 2016; 7 JY Kang (48409_CR66) 2018; 69 H-L Sung (48409_CR15) 2019; 123 A Chauvier (48409_CR25) 2023; 30 X Guo (48409_CR44) 2018; 69 DZ Bushhouse (48409_CR67) 2023; 51 AJ Rinaldi (48409_CR53) 2016; 7 U Vogel (48409_CR38) 1997; 272 I Artsimovitch (48409_CR36) 2000; 97 EJ Strobel (48409_CR69) 2019; 15 L Cheng (48409_CR68) 2022; 50 A-SV Bédard (48409_CR4) 2020; 1863 R Landick (48409_CR27) 2021; 75 K Hollands (48409_CR8) 2012; 109 M Abdelkareem (48409_CR64) 2019; 75 C Ma (48409_CR50) 2015; 43 J-F Lemay (48409_CR52) 2011; 7 AV Sherwood (48409_CR2) 2016; 70 T Pan (48409_CR47) 1999; 96 KC Suddala (48409_CR19) 2018; 9 A Schmidt (48409_CR60) 2016; 34 A Chauvier (48409_CR5) 2024; 31 A Chauvier (48409_CR23) 2021; 118 JY Kang (48409_CR65) 2018; 173 B Hua (48409_CR24) 2020; 11 JR Widom (48409_CR21) 2018; 72 E Ellinger (48409_CR76) 2023; 27 K Hollands (48409_CR9) 2014; 111 D Lai (48409_CR70) 2013; 19 Y-H Huang (48409_CR37) 2020; 79 S Prasch (48409_CR48) 2009; 37 KC Suddala (48409_CR18) 2015; 137 S Mondal (48409_CR42) 2016; 1 IR Price (48409_CR12) 2015; 57 Y Xue (48409_CR55) 2023; 14 KS Ha (48409_CR45) 2010; 401 AV Yakhnin (48409_CR32) 2002; 99 ML Rodgers (48409_CR59) 2019; 179 S Chatterjee (48409_CR28) 2021; 118 ZF Mandell (48409_CR31) 2022; 7 E Bakkeren (48409_CR1) 2020; 18 B Zhao (48409_CR56) 2017; 13 GA Perdrizet (48409_CR29) 2012; 109 A Chauvier (48409_CR54) 2019; 162–163 B Heppell (48409_CR75) 2011; 7 K Kavita (48409_CR3) 2023; 48 I Toulokhonov (48409_CR57) 2001; 292 CE Scull (48409_CR16) 2020; 7 A Ray-Soni (48409_CR6) 2016; 85 RA Mooney (48409_CR61) 2009; 33 ST Bachas (48409_CR14) 2018; 25 J Zhou (48409_CR43) 2011; 44 C Helmling (48409_CR74) 2017; 139 A Chauvier (48409_CR22) 2021; 118 C Helmling (48409_CR62) 2018; 9 A Chauvier (48409_CR51) 2019; 16 KC Suddala (48409_CR13) 2019; 10 JK Wickiser (48409_CR17) 2005; 18 X Li (48409_CR72) 2006; 20 MH Larson (48409_CR34) 2014; 344 KL Frieda (48409_CR73) 2012; 338 M Blanco (48409_CR79) 2010; 472 R Yadav (48409_CR20) 2022; 13 M Dambach (48409_CR11) 2015; 57 AV Yakhnin (48409_CR33) 2010; 76 F Krupp (48409_CR40) 2019; 74 J Zhang (48409_CR35) 2016; 41 N Said (48409_CR39) 2017; 2 I Toulokhonov (48409_CR46) 2003; 12 OT Jayasinghe (48409_CR58) 2022; 204 R Landick (48409_CR77) 1996; 274 JE Martin (48409_CR10) 2022; 9 KC Suddala (48409_CR78) 2014; 549 A Chauvier (48409_CR7) 2017; 8 TN Wong (48409_CR30) 2007; 104 TF Mah (48409_CR49) 2000; 14 HM Al-Hashimi (48409_CR26) 2008; 18 38352525 - Res Sq. 2024 Jan 29:rs.3.rs-3849447. doi: 10.21203/rs.3.rs-3849447/v1. 40021640 - Nat Commun. 2025 Feb 28;16(1):2084. doi: 10.1038/s41467-025-56683-3. |
References_xml | – volume: 118 start-page: e2106564118 year: 2021 ident: 48409_CR22 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2106564118 – volume: 76 start-page: 690 year: 2010 ident: 48409_CR33 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2010.07126.x – volume: 11 year: 2020 ident: 48409_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18283-1 – volume: 7 start-page: 384 year: 2011 ident: 48409_CR75 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.563 – volume: 74 start-page: 143 year: 2019 ident: 48409_CR40 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.01.016 – volume: 162–163 start-page: 3 year: 2019 ident: 48409_CR54 publication-title: Methods doi: 10.1016/j.ymeth.2019.04.002 – volume: 75 start-page: 291 year: 2021 ident: 48409_CR27 publication-title: Annu. Rev. Microbiol doi: 10.1146/annurev-micro-051721-043826 – volume: 34 start-page: 104 year: 2016 ident: 48409_CR60 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3418 – volume: 109 start-page: 3323 year: 2012 ident: 48409_CR29 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1113086109 – volume: 173 start-page: 1650 year: 2018 ident: 48409_CR65 publication-title: Cell doi: 10.1016/j.cell.2018.05.017 – volume: 18 start-page: 321 year: 2008 ident: 48409_CR26 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2008.04.004 – volume: 79 start-page: 1024 year: 2020 ident: 48409_CR37 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.08.010 – volume: 1863 start-page: 194501 year: 2020 ident: 48409_CR4 publication-title: Biochim. Biophys. Acta Gene Regul. Mech. doi: 10.1016/j.bbagrm.2020.194501 – volume: 107 start-page: 437 year: 2001 ident: 48409_CR41 publication-title: Cell doi: 10.1016/S0092-8674(01)00582-7 – volume: 13 year: 2022 ident: 48409_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27827-y – volume: 51 start-page: 2891 year: 2023 ident: 48409_CR67 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad110 – volume: 15 start-page: 1067 year: 2019 ident: 48409_CR69 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-019-0382-7 – volume: 20 start-page: 1838 year: 2006 ident: 48409_CR72 publication-title: Genes Dev. doi: 10.1101/gad.1438306 – volume: 72 start-page: 541 year: 2018 ident: 48409_CR21 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.08.046 – volume: 69 start-page: 816 year: 2018 ident: 48409_CR44 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.02.008 – volume: 13 year: 2022 ident: 48409_CR63 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29148-0 – volume: 118 start-page: e2109026118 year: 2021 ident: 48409_CR23 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2109026118 – volume: 111 start-page: E1999 year: 2014 ident: 48409_CR9 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1319193111 – volume: 25 start-page: 962 year: 2018 ident: 48409_CR14 publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2018.04.016 – volume: 8 year: 2017 ident: 48409_CR7 publication-title: Nat. Commun. doi: 10.1038/ncomms13892 – volume: 57 start-page: 1099 year: 2015 ident: 48409_CR11 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.01.035 – volume: 18 start-page: 49 year: 2005 ident: 48409_CR17 publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.02.032 – volume: 472 start-page: 153 year: 2010 ident: 48409_CR79 publication-title: Meth. Enzymol. doi: 10.1016/S0076-6879(10)72011-5 – volume: 41 start-page: 293 year: 2016 ident: 48409_CR35 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2015.12.009 – volume: 14 start-page: 2664 year: 2000 ident: 48409_CR49 publication-title: Genes Dev. doi: 10.1101/gad.822900 – volume: 43 start-page: 2829 year: 2015 ident: 48409_CR50 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv108 – volume: 97 start-page: 7090 year: 2000 ident: 48409_CR36 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.13.7090 – volume: 292 start-page: 730 year: 2001 ident: 48409_CR57 publication-title: Science doi: 10.1126/science.1057738 – volume: 338 start-page: 397 year: 2012 ident: 48409_CR73 publication-title: Science doi: 10.1126/science.1225722 – volume: 401 start-page: 708 year: 2010 ident: 48409_CR45 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.06.036 – volume: 109 start-page: 5376 year: 2012 ident: 48409_CR8 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1112211109 – volume: 27 start-page: 433 year: 2023 ident: 48409_CR76 publication-title: Expert Opin. Ther. Targets doi: 10.1080/14728222.2023.2230363 – volume: 18 start-page: 479 year: 2020 ident: 48409_CR1 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-0378-z – volume: 69 start-page: 802 year: 2018 ident: 48409_CR66 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.01.018 – volume: 37 start-page: 4736 year: 2009 ident: 48409_CR48 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp452 – volume: 7 start-page: 562 year: 2016 ident: 48409_CR71 publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1350 – volume: 99 start-page: 11067 year: 2002 ident: 48409_CR32 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.162373299 – volume: 50 start-page: 12001 year: 2022 ident: 48409_CR68 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac102 – volume: 1 start-page: 15007 year: 2016 ident: 48409_CR42 publication-title: Nat. Microbiol doi: 10.1038/nmicrobiol.2015.7 – volume: 7 year: 2016 ident: 48409_CR53 publication-title: Nat. Commun. doi: 10.1038/ncomms9976 – volume: 137 start-page: 14075 year: 2015 ident: 48409_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09740 – volume: 31 start-page: 71 year: 2024 ident: 48409_CR5 publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2023.12.011 – volume: 104 start-page: 17995 year: 2007 ident: 48409_CR30 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0705038104 – volume: 57 start-page: 1110 year: 2015 ident: 48409_CR12 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.02.016 – volume: 344 start-page: 1042 year: 2014 ident: 48409_CR34 publication-title: Science doi: 10.1126/science.1251871 – volume: 33 start-page: 97 year: 2009 ident: 48409_CR61 publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.12.021 – volume: 13 start-page: 968 year: 2017 ident: 48409_CR56 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2427 – volume: 14 year: 2023 ident: 48409_CR55 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38042-2 – volume: 70 start-page: 361 year: 2016 ident: 48409_CR2 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-091014-104306 – volume: 179 start-page: 1370 year: 2019 ident: 48409_CR59 publication-title: Cell doi: 10.1016/j.cell.2019.11.007 – volume: 9 year: 2018 ident: 48409_CR62 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03375-w – volume: 139 start-page: 2647 year: 2017 ident: 48409_CR74 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10429 – volume: 204 start-page: e0053421 year: 2022 ident: 48409_CR58 publication-title: J. Bacteriol. doi: 10.1128/jb.00534-21 – volume: 19 start-page: 1461 year: 2013 ident: 48409_CR70 publication-title: RNA doi: 10.1261/rna.037390.112 – volume: 7 start-page: 607158 year: 2020 ident: 48409_CR16 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2020.607158 – volume: 16 start-page: 1066 year: 2019 ident: 48409_CR51 publication-title: RNA Biol. doi: 10.1080/15476286.2019.1616354 – volume: 12 start-page: 1125 year: 2003 ident: 48409_CR46 publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00439-8 – volume: 9 start-page: 945724 year: 2022 ident: 48409_CR10 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2022.945724 – volume: 9 year: 2018 ident: 48409_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04305-6 – volume: 118 start-page: e2023426118 year: 2021 ident: 48409_CR28 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2023426118 – volume: 96 start-page: 9545 year: 1999 ident: 48409_CR47 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.17.9545 – volume: 274 start-page: 334 year: 1996 ident: 48409_CR77 publication-title: Meth. Enzymol. doi: 10.1016/S0076-6879(96)74029-6 – volume: 549 start-page: 343 year: 2014 ident: 48409_CR78 publication-title: Meth. Enzymol. doi: 10.1016/B978-0-12-801122-5.00015-5 – volume: 10 year: 2019 ident: 48409_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12230-5 – volume: 85 start-page: 319 year: 2016 ident: 48409_CR6 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060815-014844 – volume: 7 start-page: 1918 year: 2022 ident: 48409_CR31 publication-title: Nat. Microbiol doi: 10.1038/s41564-022-01240-7 – volume: 48 start-page: 119 year: 2023 ident: 48409_CR3 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2022.08.009 – volume: 123 start-page: 2005 year: 2019 ident: 48409_CR15 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b11841 – volume: 44 start-page: 635 year: 2011 ident: 48409_CR43 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.09.018 – volume: 272 start-page: 12265 year: 1997 ident: 48409_CR38 publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.19.12265 – volume: 2 start-page: 17062 year: 2017 ident: 48409_CR39 publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.62 – volume: 7 start-page: e1001278 year: 2011 ident: 48409_CR52 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001278 – volume: 75 start-page: 298 year: 2019 ident: 48409_CR64 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.04.029 – volume: 30 start-page: 902 year: 2023 ident: 48409_CR25 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-023-01002-x – reference: 38352525 - Res Sq. 2024 Jan 29:rs.3.rs-3849447. doi: 10.21203/rs.3.rs-3849447/v1. – reference: 40021640 - Nat Commun. 2025 Feb 28;16(1):2084. doi: 10.1038/s41467-025-56683-3. |
SSID | ssj0000391844 |
Score | 2.4689918 |
Snippet | Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing... Abstract Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3955 |
SubjectTerms | 631/337/2179 631/45/500 631/57/2265 Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Changing environments Conformation DNA-directed RNA polymerase DNA-Directed RNA Polymerases - genetics DNA-Directed RNA Polymerases - metabolism Environmental changes Gene expression Gene Expression Regulation, Bacterial Gene regulation Homeostasis Humanities and Social Sciences Lactococcus lactis - genetics Lactococcus lactis - metabolism Manganese Manganese - metabolism Manganese ions multidisciplinary Nucleic Acid Conformation Nucleotide sequence Ribonucleic acid Riboswitch - genetics Riboswitches RNA RNA polymerase RNA, Bacterial - chemistry RNA, Bacterial - genetics RNA, Bacterial - metabolism Robustness Science Science (multidisciplinary) Single Molecule Imaging Transcription factors Transcription Factors - genetics Transcription Factors - metabolism Transcription, Genetic |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9UwEA-6IngRv62uEsGbhu1rkqY9ySoui6AnF94t5FMfLO1u24f63zuTpl1EXdpLmzSkk0lmkkl-P0Jeg0k3Ze1KpsDWMFE3khkXSuYrp2xr2ygrPJz8-Ut9eiY-beU2L7iNeVvlMiamgdr3DtfIjzgeGoWbb95dXDJkjcLoaqbQuEluIXQZbulSW7WusSD6eSNEPitT8uZoFGlkAMPEBE5tWPOHPUqw_f_yNf-Kkybzc3KP3M1-Iz2eG_o-uRG6B-T2zCT56yHxx7QzCZiJDjvbjz920Br0ezjf_aT9kEixEBNipENv9-NEJzRRy4AB5Q4zJT080MzcQ3FnB6QseBKQ9IicnXz8-uGUZQIF5kQjJ8aDKD2PcClXyShqX8ZQ1SqaGrkajdiUBtwJo1rjTB1tDCZ6zp3cGFfGaPhjctD1XXhKqLXSyWB98NjNy9Yg7p4yXrat8hupCrJZxKhdRhdHkotznaLcvNGz6DWIXifR66Ygb9ZvLmZsjWtzv8fWWXMiLnZ60Q_fdO5mGvxVr4zhwnAlWowSVsI3HgTAreOtLcjh0rY6d9ZRX6lWQV6tydDNMHZiutDv5zww9aprUZAns06sNeENzFDAzSzI20VJrgr__w89u74uz8mdCvU0IcUekoNp2IcX4ABN9mXS8t92dgKs priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC7WFcGL-N7oKi1402iSfiUHkVVcFmE9ObC3pp86MCSaZHD331vdSUbE0ZMkl6QfpKu7uqqo9PcBPEeTrgthi1yircmZqHmurS9yV1lpGtMEXsXDyeefxNmKfbzgFwew0B3NAhz2hnaRT2rVb15dfr96iwr_ZjoyXr8eWFJ3tDY5i_FKXl-D62iZZFTU89ndTzszbTCgYfPZmf1Nf7NPCcZ_n-_5R940maPT23Br9iPJyTTxd-DAt3fhxsQseXUP3AlpdQJqIv3adMOPNc4O-eo360vS9YkkK2JEDKTvzHYYyRhN1rKBYL_9RFGPD2Rm8iHxTw8sWfAlsOg-rE4_fH5_ls-ECrllNR9z6lnhaMBL2ooHJlwRfCVk0CJyN2pWFhrdCy0bbbUIJngdHKWWl9oWIWj6AA7brvVHQIzhlnvjvItqXzQ64vBJ7XjTSFdymUG5iFHZGW08kl5sVMp601pNolcoepVEr-oMXuzafJuwNv5Z-12cnV3NiJOdXnT9FzWrnUL_1UmtKdNUsiZmDSvmaocCoMbSxmRwvMytWtaeovF8Mt60zODZrhjVLuZSdOu77VQHQzEhWAYPpzWx-xJaY8SCbmcGL5dF8qvzvw_o0f8Y0GO4WcXVnPBlj-Fw7Lf-CbpNo3madOEnaqkSpQ priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3La9ZAEB9qRfAitr6irazgTYNJ9pUc64elCPVkobdln_pBSUqSD-1_39nNQ8QqSHJJdnbZzM7uzGZ2fgPwFlW6LoQtcom6Jmei5rm2vshdZaVpTBN4FYOTz7-Iswv2-ZJf7kG1xMKkQ_sJ0jIt08vpsA8DS1MaNUrO4p4kr-_B_QjdHqV6Izbrf5WIeF4zNsfHFLS-o-pvOihB9d9lX_7hG00q5_QxPJptRXIy9e4A9nx7CA-m7JE3T8CdkFYnMCbSb003_NjiCJDv_mr7k3R9SoQVcSAG0ndmN4xkjGppWSSw3X5KQ48PZM7WQ-JpDixZMCSw6ClcnH76ujnL56QJuWU1H3PqWeFowEvaigcmXBF8JWTQIuZn1KwsNJoQWjbaahFM8Do4Si0vtS1C0PQZ7Ldd618AMYZb7o3zLk7totERa09qx5tGupLLDMqFjcrOiOIxscWVSp5tWquJ9QpZrxLrVZ3Bu7XO9YSn8U_qj3F0VsqIhZ1edP03NcuGQhvVSa0p01SyJnoGK-ZqhwygxtLGZHC0jK2aJ-igaIxBxpuWGbxZi3FqRX-Jbn23m2hwuyUEy-D5JBNrT2iNuxI0LTN4vwjJr8b__kEv_4_8FTysotwmtNgj2B_7nT9GI2g0r5PU3wJLdgCg priority: 102 providerName: Springer Nature |
Title | A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration |
URI | https://link.springer.com/article/10.1038/s41467-024-48409-8 https://www.ncbi.nlm.nih.gov/pubmed/38729929 https://www.proquest.com/docview/3053353331 https://www.proquest.com/docview/3053974664 https://doaj.org/article/192d7aa34a3749128124d8df373bc39b |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96Ivgifls9lwi-ablu89nHveXWY-EOUQ_2LeQTF45W2i7e_fdO0nY98etFWlqapCGZzGRmSPIbhN6AStcFt0UuQNfklEuWa-uL3JVWmMpUgZXxcPLZOT-9oOsN29wI9RX3hA3wwAPhjsACcUJrQjURtIrrPiV10gUiiLGkMnH2BZ13w5lKczCpwHWh4ymZgsijjqY5AVRSTqNTk8ufNFEC7P-dlfnLCmlSPKsH6P5oMeLF0NKH6JavH6G7QwzJ68fILXCtEyQTbrem6b5tYRzwF3-5vcJNm8JhRTSIDreN2XU97qNymqYKqLcdgtHDBx5j9uC4pwNyJiQJyHqCLlYnn5en-Rg6IbdUsj4nnhaOBLiELVmg3BXBl1wEzWOURk3nhQZDQotKW82DCV4HR4hlc22LEDR5ig7qpvbPETaGWeaN8y4KeFHpiLgntGNVJdyciQzNJzIqO-KKx_AWlyqtbxOpBtIrIL1KpFcyQ2_3_3wdUDX-Wvo4js6-ZETETgnAJ2rkE_UvPsnQ4TS2ahTTTpF4EhluMs_Q6302CFhcNdG1b3ZDGXC6OKcZejbwxL4lRIJvAgZmht5NTPKj8j936MX_6NBLdK-M3JyQZA_RQd_u_CswkHozQ7fFRsBTrt7P0J3FYv1pDe_jk_MPHyF1yZezJC3wPKPyO9PkEUE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThA1iZ04OSBUHtWWPk6ttDfjV8pK1aYkuyr9U_xGZpxkKwT0ViWn2LGc8Xhm7Im_D-A1unSdFDaJJfqaWBRlHmvrk9hlVprKVHWe0eHkg8Niciy-TvPpGvwaz8LQb5WjTQyG2jWW9si3OB0axZunH85-xMQaRdnVkUKjV4s9f3GOS7bu_e5nHN83Wbbz5ejTJB5YBWIrynwRcy8Sx2u8pM3yWhQuqX1WyFoXRGCoRZpo9LFaVtrqoja117Xj3Oaptklda47t3oCb6HgTmlFyKld7OoS2XgoxnM1JeLnViWCJ0BHGgpZScfmH_ws0Af-Kbf_KywZ3t3MP7g5xKtvuFes-rPn5A7jVM1dePAS3zeY6AEGxdmaa7nyGo8---9PZT9a0gYSLMCg61jZm2S3YglziaKCw3dafDLxhbGAKYvQnCZaM-BVY9AiOr0W0j2F93sz9E2DG5Db3xnlHZiWpNOH8Se3yqpIuzWUE6ShGZQc0cyLVOFUhq85L1YteoehVEL0qI3i7euesx_K4svZHGp1VTcLhDg-a9kQN01phfOyk1lxoLkVFWclMuNKhALixvDIRbI5jqwbj0KlLVY7g1aoYpzXlavTcN8u-Di71ikJEsNHrxKonvMQVEYa1EbwbleSy8f9_0NOr-_ISbk-ODvbV_u7h3jO4k5HOBpTaTVhftEv_HIOvhXkRNJ7Bt-ueYr8BT69BZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaJNYjtODggVyqqlUHGg0t6Mn2WlalOSXZX-NX4dYyfZCgG9VZvT2rGS8bycsb8P4AWGdJWVJksFxpqUlRVPlXFZagsjdK1rz4twOPnzQbl7yD7O-GwDfo1nYcK2ytEnRkdtGxO-kU9oODSKF80nftgW8WVn-vbkRxoYpEKldaTT6FVk352d4vKte7O3g3P9siimH76-300HhoHUsIovU-pYZqnHnzAF96y0mXdFKbwqA5mhYnmmMN4qUSujSq-9U95SaniuTOa9ojjuFbgqKM-DjYmZWH_fCcjrFWPDOZ2MVpOORa-EQTFlYVmVVn_EwkgZ8K88968abQx901twc8hZyXavZLdhwy3uwLWexfLsLthtslARFIq0c910p3PUBPLdHc9_kqaNhFwBj6IjbaNX3ZIsQ3gcnRWO27qjgUOMDKxBJOwqwZYRywKb7sHhpYj2PmwumoV7CERrbrjT1tngYrJaBcw_oSyva2FzLhLIRzFKMyCbB4KNYxkr7LSSveglil5G0csqgVfre056XI8Le78Ls7PuGTC54x9NeyQHE5eYK1uhFGWKClaHCmXBbGVRAFQbWusEtsa5lYOj6OS5WifwfN2MJh7qNmrhmlXfB5d9ZckSeNDrxPpJaIWrI0xxE3g9Ksn54P9_oUcXP8szuI7GJT_tHew_hhtFUNkIWLsFm8t25Z5gHrbUT6PCE_h22Rb2GzW5RZs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nascent+riboswitch+helix+orchestrates+robust+transcriptional+regulation+through+signal+integration&rft.jtitle=Nature+communications&rft.au=Adrien+Chauvier&rft.au=Shiba+S.+Dandpat&rft.au=Rosa+Romero&rft.au=Nils+G.+Walter&rft.date=2024-05-10&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1038%2Fs41467-024-48409-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_192d7aa34a3749128124d8df373bc39b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |