A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration

Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches – like most structured RNAs – are believed to fold co-transcriptionally, subject to both ligand binding and transcription...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 3955 - 18
Main Authors Chauvier, Adrien, Dandpat, Shiba S., Romero, Rosa, Walter, Nils G.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.05.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-024-48409-8

Cover

Loading…
Abstract Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches – like most structured RNAs – are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn 2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control. Here the authors unveil an intermediate state during the folding of the manganese riboswitch from L. lactis . This transient state allows the integration of multiple cellular signals including RNA polymerase pausing and transcription factor NusA.
AbstractList Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.
Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches – like most structured RNAs – are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn 2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.
Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches – like most structured RNAs – are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn 2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control. Here the authors unveil an intermediate state during the folding of the manganese riboswitch from L. lactis . This transient state allows the integration of multiple cellular signals including RNA polymerase pausing and transcription factor NusA.
Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches – like most structured RNAs – are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.Here the authors unveil an intermediate state during the folding of the manganese riboswitch from L. lactis. This transient state allows the integration of multiple cellular signals including RNA polymerase pausing and transcription factor NusA.
Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.
Abstract Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches – like most structured RNAs – are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.
ArticleNumber 3955
Author Chauvier, Adrien
Walter, Nils G.
Dandpat, Shiba S.
Romero, Rosa
Author_xml – sequence: 1
  givenname: Adrien
  orcidid: 0000-0003-4473-6194
  surname: Chauvier
  fullname: Chauvier, Adrien
  organization: Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan
– sequence: 2
  givenname: Shiba S.
  orcidid: 0000-0003-3413-9847
  surname: Dandpat
  fullname: Dandpat, Shiba S.
  organization: Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Intel Corporation
– sequence: 3
  givenname: Rosa
  surname: Romero
  fullname: Romero, Rosa
  organization: Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan
– sequence: 4
  givenname: Nils G.
  orcidid: 0000-0002-7301-1275
  surname: Walter
  fullname: Walter, Nils G.
  email: nwalter@umich.edu
  organization: Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38729929$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v3CAURFWqJk3zB3qoLPXSi1vgYWOOUdSPSJF6ac_oGYPNymu2gNX235ddJ22VQwAJHm9mQDMvydkSFkvIa0bfMwrdhySYaGVNuahFJ6iqu2fkglPBaiY5nP13PidXKe1oGaBYJ8QLcg6d5EpxdUGG62rBZOySq-j7kH76bKZqsrP_VYVoJptyxGxTFUO_plyVakkm-kP2YcG5inZcZzwWVZ5iWMepSn48dvyS7RhPrVfkucM52av7_ZJ8__Tx282X-u7r59ub67vaiK7JNVhBB3BlSsMbJ9qBOstb6bClEgAFo9g0AqVCg63rnUU3AJiGoaHOIVyS2013CLjTh-j3GH_rgF6fLkIcNcbszWw1U3yQiCAQpFCMd4yLoRvK09AbUH3RerdpHWL4sRYb9N4Xn-YZFxvWpIE2oKRoW1Ggbx9Bd2GNxYMNBWUBK6g396i139vh7_cesiiAbgOYGFKK1mnj88m_YrqfNaP6mLzektcleX1KXneFyh9RH9SfJMFGSgW8jDb--_YTrD95acF5
CitedBy_id crossref_primary_10_1016_j_sbi_2024_102893
crossref_primary_10_3390_ijms251910495
Cites_doi 10.1073/pnas.2106564118
10.1111/j.1365-2958.2010.07126.x
10.1038/s41467-020-18283-1
10.1038/nchembio.563
10.1016/j.molcel.2019.01.016
10.1016/j.ymeth.2019.04.002
10.1146/annurev-micro-051721-043826
10.1038/nbt.3418
10.1073/pnas.1113086109
10.1016/j.cell.2018.05.017
10.1016/j.sbi.2008.04.004
10.1016/j.molcel.2020.08.010
10.1016/j.bbagrm.2020.194501
10.1016/S0092-8674(01)00582-7
10.1038/s41467-021-27827-y
10.1093/nar/gkad110
10.1038/s41589-019-0382-7
10.1101/gad.1438306
10.1016/j.molcel.2018.08.046
10.1016/j.molcel.2018.02.008
10.1038/s41467-022-29148-0
10.1073/pnas.2109026118
10.1073/pnas.1319193111
10.1016/j.chembiol.2018.04.016
10.1038/ncomms13892
10.1016/j.molcel.2015.01.035
10.1016/j.molcel.2005.02.032
10.1016/S0076-6879(10)72011-5
10.1016/j.tibs.2015.12.009
10.1101/gad.822900
10.1093/nar/gkv108
10.1073/pnas.97.13.7090
10.1126/science.1057738
10.1126/science.1225722
10.1016/j.jmb.2010.06.036
10.1073/pnas.1112211109
10.1080/14728222.2023.2230363
10.1038/s41579-020-0378-z
10.1016/j.molcel.2018.01.018
10.1093/nar/gkp452
10.1002/wrna.1350
10.1073/pnas.162373299
10.1093/nar/gkac102
10.1038/nmicrobiol.2015.7
10.1038/ncomms9976
10.1021/jacs.5b09740
10.1016/j.chembiol.2023.12.011
10.1073/pnas.0705038104
10.1016/j.molcel.2015.02.016
10.1126/science.1251871
10.1016/j.molcel.2008.12.021
10.1038/nchembio.2427
10.1038/s41467-023-38042-2
10.1146/annurev-micro-091014-104306
10.1016/j.cell.2019.11.007
10.1038/s41467-018-03375-w
10.1021/jacs.6b10429
10.1128/jb.00534-21
10.1261/rna.037390.112
10.3389/fmolb.2020.607158
10.1080/15476286.2019.1616354
10.1016/S1097-2765(03)00439-8
10.3389/fmolb.2022.945724
10.1038/s41467-018-04305-6
10.1073/pnas.2023426118
10.1073/pnas.96.17.9545
10.1016/S0076-6879(96)74029-6
10.1016/B978-0-12-801122-5.00015-5
10.1038/s41467-019-12230-5
10.1146/annurev-biochem-060815-014844
10.1038/s41564-022-01240-7
10.1016/j.tibs.2022.08.009
10.1021/acs.jpcb.8b11841
10.1016/j.molcel.2011.09.018
10.1074/jbc.272.19.12265
10.1038/nmicrobiol.2017.62
10.1371/journal.pgen.1001278
10.1016/j.molcel.2019.04.029
10.1038/s41594-023-01002-x
ContentType Journal Article
Copyright The Author(s) 2024 corrected publication 2025
2024. The Author(s).
Copyright Nature Publishing Group 2024
Copyright_xml – notice: The Author(s) 2024 corrected publication 2025
– notice: 2024. The Author(s).
– notice: Copyright Nature Publishing Group 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-024-48409-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central (ProQuest)
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 18
ExternalDocumentID oai_doaj_org_article_192d7aa34a3749128124d8df373bc39b
38729929
10_1038_s41467_024_48409_8
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Health - United States of America GM118524 & GM131922
– fundername: NIGMS NIH HHS
  grantid: R35 GM131922
– fundername: NIGMS NIH HHS
  grantid: R01 GM118524
– fundername: NIGMS NIH HHS
  grantid: T32 GM007544
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
SNYQT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c485t-3e40d3f3f37c25f46d0fe267fa60733a410a554a79aca6fbfeafd33c51ac0ffa3
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:25:19 EDT 2025
Sun Aug 24 04:12:15 EDT 2025
Sat Aug 23 13:09:34 EDT 2025
Thu Apr 03 07:00:00 EDT 2025
Tue Jul 01 05:25:45 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Sun Mar 02 01:13:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-3e40d3f3f37c25f46d0fe267fa60733a410a554a79aca6fbfeafd33c51ac0ffa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4473-6194
0000-0002-7301-1275
0000-0003-3413-9847
OpenAccessLink https://doaj.org/article/192d7aa34a3749128124d8df373bc39b
PMID 38729929
PQID 3053353331
PQPubID 546298
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_192d7aa34a3749128124d8df373bc39b
proquest_miscellaneous_3053974664
proquest_journals_3053353331
pubmed_primary_38729929
crossref_citationtrail_10_1038_s41467_024_48409_8
crossref_primary_10_1038_s41467_024_48409_8
springer_journals_10_1038_s41467_024_48409_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-10
PublicationDateYYYYMMDD 2024-05-10
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References C Zhu (48409_CR63) 2022; 13
I Gusarov (48409_CR41) 2001; 107
S-R Liu (48409_CR71) 2016; 7
JY Kang (48409_CR66) 2018; 69
H-L Sung (48409_CR15) 2019; 123
A Chauvier (48409_CR25) 2023; 30
X Guo (48409_CR44) 2018; 69
DZ Bushhouse (48409_CR67) 2023; 51
AJ Rinaldi (48409_CR53) 2016; 7
U Vogel (48409_CR38) 1997; 272
I Artsimovitch (48409_CR36) 2000; 97
EJ Strobel (48409_CR69) 2019; 15
L Cheng (48409_CR68) 2022; 50
A-SV Bédard (48409_CR4) 2020; 1863
R Landick (48409_CR27) 2021; 75
K Hollands (48409_CR8) 2012; 109
M Abdelkareem (48409_CR64) 2019; 75
C Ma (48409_CR50) 2015; 43
J-F Lemay (48409_CR52) 2011; 7
AV Sherwood (48409_CR2) 2016; 70
T Pan (48409_CR47) 1999; 96
KC Suddala (48409_CR19) 2018; 9
A Schmidt (48409_CR60) 2016; 34
A Chauvier (48409_CR5) 2024; 31
A Chauvier (48409_CR23) 2021; 118
JY Kang (48409_CR65) 2018; 173
B Hua (48409_CR24) 2020; 11
JR Widom (48409_CR21) 2018; 72
E Ellinger (48409_CR76) 2023; 27
K Hollands (48409_CR9) 2014; 111
D Lai (48409_CR70) 2013; 19
Y-H Huang (48409_CR37) 2020; 79
S Prasch (48409_CR48) 2009; 37
KC Suddala (48409_CR18) 2015; 137
S Mondal (48409_CR42) 2016; 1
IR Price (48409_CR12) 2015; 57
Y Xue (48409_CR55) 2023; 14
KS Ha (48409_CR45) 2010; 401
AV Yakhnin (48409_CR32) 2002; 99
ML Rodgers (48409_CR59) 2019; 179
S Chatterjee (48409_CR28) 2021; 118
ZF Mandell (48409_CR31) 2022; 7
E Bakkeren (48409_CR1) 2020; 18
B Zhao (48409_CR56) 2017; 13
GA Perdrizet (48409_CR29) 2012; 109
A Chauvier (48409_CR54) 2019; 162–163
B Heppell (48409_CR75) 2011; 7
K Kavita (48409_CR3) 2023; 48
I Toulokhonov (48409_CR57) 2001; 292
CE Scull (48409_CR16) 2020; 7
A Ray-Soni (48409_CR6) 2016; 85
RA Mooney (48409_CR61) 2009; 33
ST Bachas (48409_CR14) 2018; 25
J Zhou (48409_CR43) 2011; 44
C Helmling (48409_CR74) 2017; 139
A Chauvier (48409_CR22) 2021; 118
C Helmling (48409_CR62) 2018; 9
A Chauvier (48409_CR51) 2019; 16
KC Suddala (48409_CR13) 2019; 10
JK Wickiser (48409_CR17) 2005; 18
X Li (48409_CR72) 2006; 20
MH Larson (48409_CR34) 2014; 344
KL Frieda (48409_CR73) 2012; 338
M Blanco (48409_CR79) 2010; 472
R Yadav (48409_CR20) 2022; 13
M Dambach (48409_CR11) 2015; 57
AV Yakhnin (48409_CR33) 2010; 76
F Krupp (48409_CR40) 2019; 74
J Zhang (48409_CR35) 2016; 41
N Said (48409_CR39) 2017; 2
I Toulokhonov (48409_CR46) 2003; 12
OT Jayasinghe (48409_CR58) 2022; 204
R Landick (48409_CR77) 1996; 274
JE Martin (48409_CR10) 2022; 9
KC Suddala (48409_CR78) 2014; 549
A Chauvier (48409_CR7) 2017; 8
TN Wong (48409_CR30) 2007; 104
TF Mah (48409_CR49) 2000; 14
HM Al-Hashimi (48409_CR26) 2008; 18
38352525 - Res Sq. 2024 Jan 29:rs.3.rs-3849447. doi: 10.21203/rs.3.rs-3849447/v1.
40021640 - Nat Commun. 2025 Feb 28;16(1):2084. doi: 10.1038/s41467-025-56683-3.
References_xml – volume: 118
  start-page: e2106564118
  year: 2021
  ident: 48409_CR22
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2106564118
– volume: 76
  start-page: 690
  year: 2010
  ident: 48409_CR33
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2010.07126.x
– volume: 11
  year: 2020
  ident: 48409_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18283-1
– volume: 7
  start-page: 384
  year: 2011
  ident: 48409_CR75
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.563
– volume: 74
  start-page: 143
  year: 2019
  ident: 48409_CR40
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.01.016
– volume: 162–163
  start-page: 3
  year: 2019
  ident: 48409_CR54
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.04.002
– volume: 75
  start-page: 291
  year: 2021
  ident: 48409_CR27
  publication-title: Annu. Rev. Microbiol
  doi: 10.1146/annurev-micro-051721-043826
– volume: 34
  start-page: 104
  year: 2016
  ident: 48409_CR60
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3418
– volume: 109
  start-page: 3323
  year: 2012
  ident: 48409_CR29
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1113086109
– volume: 173
  start-page: 1650
  year: 2018
  ident: 48409_CR65
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.017
– volume: 18
  start-page: 321
  year: 2008
  ident: 48409_CR26
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2008.04.004
– volume: 79
  start-page: 1024
  year: 2020
  ident: 48409_CR37
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.08.010
– volume: 1863
  start-page: 194501
  year: 2020
  ident: 48409_CR4
  publication-title: Biochim. Biophys. Acta Gene Regul. Mech.
  doi: 10.1016/j.bbagrm.2020.194501
– volume: 107
  start-page: 437
  year: 2001
  ident: 48409_CR41
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00582-7
– volume: 13
  year: 2022
  ident: 48409_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27827-y
– volume: 51
  start-page: 2891
  year: 2023
  ident: 48409_CR67
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad110
– volume: 15
  start-page: 1067
  year: 2019
  ident: 48409_CR69
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0382-7
– volume: 20
  start-page: 1838
  year: 2006
  ident: 48409_CR72
  publication-title: Genes Dev.
  doi: 10.1101/gad.1438306
– volume: 72
  start-page: 541
  year: 2018
  ident: 48409_CR21
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.08.046
– volume: 69
  start-page: 816
  year: 2018
  ident: 48409_CR44
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.02.008
– volume: 13
  year: 2022
  ident: 48409_CR63
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29148-0
– volume: 118
  start-page: e2109026118
  year: 2021
  ident: 48409_CR23
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2109026118
– volume: 111
  start-page: E1999
  year: 2014
  ident: 48409_CR9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1319193111
– volume: 25
  start-page: 962
  year: 2018
  ident: 48409_CR14
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2018.04.016
– volume: 8
  year: 2017
  ident: 48409_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13892
– volume: 57
  start-page: 1099
  year: 2015
  ident: 48409_CR11
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.01.035
– volume: 18
  start-page: 49
  year: 2005
  ident: 48409_CR17
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.02.032
– volume: 472
  start-page: 153
  year: 2010
  ident: 48409_CR79
  publication-title: Meth. Enzymol.
  doi: 10.1016/S0076-6879(10)72011-5
– volume: 41
  start-page: 293
  year: 2016
  ident: 48409_CR35
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2015.12.009
– volume: 14
  start-page: 2664
  year: 2000
  ident: 48409_CR49
  publication-title: Genes Dev.
  doi: 10.1101/gad.822900
– volume: 43
  start-page: 2829
  year: 2015
  ident: 48409_CR50
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv108
– volume: 97
  start-page: 7090
  year: 2000
  ident: 48409_CR36
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.97.13.7090
– volume: 292
  start-page: 730
  year: 2001
  ident: 48409_CR57
  publication-title: Science
  doi: 10.1126/science.1057738
– volume: 338
  start-page: 397
  year: 2012
  ident: 48409_CR73
  publication-title: Science
  doi: 10.1126/science.1225722
– volume: 401
  start-page: 708
  year: 2010
  ident: 48409_CR45
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.06.036
– volume: 109
  start-page: 5376
  year: 2012
  ident: 48409_CR8
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1112211109
– volume: 27
  start-page: 433
  year: 2023
  ident: 48409_CR76
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1080/14728222.2023.2230363
– volume: 18
  start-page: 479
  year: 2020
  ident: 48409_CR1
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-0378-z
– volume: 69
  start-page: 802
  year: 2018
  ident: 48409_CR66
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.01.018
– volume: 37
  start-page: 4736
  year: 2009
  ident: 48409_CR48
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp452
– volume: 7
  start-page: 562
  year: 2016
  ident: 48409_CR71
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1350
– volume: 99
  start-page: 11067
  year: 2002
  ident: 48409_CR32
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.162373299
– volume: 50
  start-page: 12001
  year: 2022
  ident: 48409_CR68
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac102
– volume: 1
  start-page: 15007
  year: 2016
  ident: 48409_CR42
  publication-title: Nat. Microbiol
  doi: 10.1038/nmicrobiol.2015.7
– volume: 7
  year: 2016
  ident: 48409_CR53
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9976
– volume: 137
  start-page: 14075
  year: 2015
  ident: 48409_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09740
– volume: 31
  start-page: 71
  year: 2024
  ident: 48409_CR5
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2023.12.011
– volume: 104
  start-page: 17995
  year: 2007
  ident: 48409_CR30
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0705038104
– volume: 57
  start-page: 1110
  year: 2015
  ident: 48409_CR12
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.02.016
– volume: 344
  start-page: 1042
  year: 2014
  ident: 48409_CR34
  publication-title: Science
  doi: 10.1126/science.1251871
– volume: 33
  start-page: 97
  year: 2009
  ident: 48409_CR61
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.12.021
– volume: 13
  start-page: 968
  year: 2017
  ident: 48409_CR56
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2427
– volume: 14
  year: 2023
  ident: 48409_CR55
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38042-2
– volume: 70
  start-page: 361
  year: 2016
  ident: 48409_CR2
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-091014-104306
– volume: 179
  start-page: 1370
  year: 2019
  ident: 48409_CR59
  publication-title: Cell
  doi: 10.1016/j.cell.2019.11.007
– volume: 9
  year: 2018
  ident: 48409_CR62
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03375-w
– volume: 139
  start-page: 2647
  year: 2017
  ident: 48409_CR74
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10429
– volume: 204
  start-page: e0053421
  year: 2022
  ident: 48409_CR58
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.00534-21
– volume: 19
  start-page: 1461
  year: 2013
  ident: 48409_CR70
  publication-title: RNA
  doi: 10.1261/rna.037390.112
– volume: 7
  start-page: 607158
  year: 2020
  ident: 48409_CR16
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2020.607158
– volume: 16
  start-page: 1066
  year: 2019
  ident: 48409_CR51
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2019.1616354
– volume: 12
  start-page: 1125
  year: 2003
  ident: 48409_CR46
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00439-8
– volume: 9
  start-page: 945724
  year: 2022
  ident: 48409_CR10
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2022.945724
– volume: 9
  year: 2018
  ident: 48409_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04305-6
– volume: 118
  start-page: e2023426118
  year: 2021
  ident: 48409_CR28
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2023426118
– volume: 96
  start-page: 9545
  year: 1999
  ident: 48409_CR47
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.17.9545
– volume: 274
  start-page: 334
  year: 1996
  ident: 48409_CR77
  publication-title: Meth. Enzymol.
  doi: 10.1016/S0076-6879(96)74029-6
– volume: 549
  start-page: 343
  year: 2014
  ident: 48409_CR78
  publication-title: Meth. Enzymol.
  doi: 10.1016/B978-0-12-801122-5.00015-5
– volume: 10
  year: 2019
  ident: 48409_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12230-5
– volume: 85
  start-page: 319
  year: 2016
  ident: 48409_CR6
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060815-014844
– volume: 7
  start-page: 1918
  year: 2022
  ident: 48409_CR31
  publication-title: Nat. Microbiol
  doi: 10.1038/s41564-022-01240-7
– volume: 48
  start-page: 119
  year: 2023
  ident: 48409_CR3
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2022.08.009
– volume: 123
  start-page: 2005
  year: 2019
  ident: 48409_CR15
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b11841
– volume: 44
  start-page: 635
  year: 2011
  ident: 48409_CR43
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.09.018
– volume: 272
  start-page: 12265
  year: 1997
  ident: 48409_CR38
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.19.12265
– volume: 2
  start-page: 17062
  year: 2017
  ident: 48409_CR39
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2017.62
– volume: 7
  start-page: e1001278
  year: 2011
  ident: 48409_CR52
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001278
– volume: 75
  start-page: 298
  year: 2019
  ident: 48409_CR64
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.04.029
– volume: 30
  start-page: 902
  year: 2023
  ident: 48409_CR25
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-023-01002-x
– reference: 38352525 - Res Sq. 2024 Jan 29:rs.3.rs-3849447. doi: 10.21203/rs.3.rs-3849447/v1.
– reference: 40021640 - Nat Commun. 2025 Feb 28;16(1):2084. doi: 10.1038/s41467-025-56683-3.
SSID ssj0000391844
Score 2.4689918
Snippet Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing...
Abstract Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3955
SubjectTerms 631/337/2179
631/45/500
631/57/2265
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Changing environments
Conformation
DNA-directed RNA polymerase
DNA-Directed RNA Polymerases - genetics
DNA-Directed RNA Polymerases - metabolism
Environmental changes
Gene expression
Gene Expression Regulation, Bacterial
Gene regulation
Homeostasis
Humanities and Social Sciences
Lactococcus lactis - genetics
Lactococcus lactis - metabolism
Manganese
Manganese - metabolism
Manganese ions
multidisciplinary
Nucleic Acid Conformation
Nucleotide sequence
Ribonucleic acid
Riboswitch - genetics
Riboswitches
RNA
RNA polymerase
RNA, Bacterial - chemistry
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
Robustness
Science
Science (multidisciplinary)
Single Molecule Imaging
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9UwEA-6IngRv62uEsGbhu1rkqY9ySoui6AnF94t5FMfLO1u24f63zuTpl1EXdpLmzSkk0lmkkl-P0Jeg0k3Ze1KpsDWMFE3khkXSuYrp2xr2ygrPJz8-Ut9eiY-beU2L7iNeVvlMiamgdr3DtfIjzgeGoWbb95dXDJkjcLoaqbQuEluIXQZbulSW7WusSD6eSNEPitT8uZoFGlkAMPEBE5tWPOHPUqw_f_yNf-Kkybzc3KP3M1-Iz2eG_o-uRG6B-T2zCT56yHxx7QzCZiJDjvbjz920Br0ezjf_aT9kEixEBNipENv9-NEJzRRy4AB5Q4zJT080MzcQ3FnB6QseBKQ9IicnXz8-uGUZQIF5kQjJ8aDKD2PcClXyShqX8ZQ1SqaGrkajdiUBtwJo1rjTB1tDCZ6zp3cGFfGaPhjctD1XXhKqLXSyWB98NjNy9Yg7p4yXrat8hupCrJZxKhdRhdHkotznaLcvNGz6DWIXifR66Ygb9ZvLmZsjWtzv8fWWXMiLnZ60Q_fdO5mGvxVr4zhwnAlWowSVsI3HgTAreOtLcjh0rY6d9ZRX6lWQV6tydDNMHZiutDv5zww9aprUZAns06sNeENzFDAzSzI20VJrgr__w89u74uz8mdCvU0IcUekoNp2IcX4ABN9mXS8t92dgKs
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC7WFcGL-N7oKi1402iSfiUHkVVcFmE9ObC3pp86MCSaZHD331vdSUbE0ZMkl6QfpKu7uqqo9PcBPEeTrgthi1yircmZqHmurS9yV1lpGtMEXsXDyeefxNmKfbzgFwew0B3NAhz2hnaRT2rVb15dfr96iwr_ZjoyXr8eWFJ3tDY5i_FKXl-D62iZZFTU89ndTzszbTCgYfPZmf1Nf7NPCcZ_n-_5R940maPT23Br9iPJyTTxd-DAt3fhxsQseXUP3AlpdQJqIv3adMOPNc4O-eo360vS9YkkK2JEDKTvzHYYyRhN1rKBYL_9RFGPD2Rm8iHxTw8sWfAlsOg-rE4_fH5_ls-ECrllNR9z6lnhaMBL2ooHJlwRfCVk0CJyN2pWFhrdCy0bbbUIJngdHKWWl9oWIWj6AA7brvVHQIzhlnvjvItqXzQ64vBJ7XjTSFdymUG5iFHZGW08kl5sVMp601pNolcoepVEr-oMXuzafJuwNv5Z-12cnV3NiJOdXnT9FzWrnUL_1UmtKdNUsiZmDSvmaocCoMbSxmRwvMytWtaeovF8Mt60zODZrhjVLuZSdOu77VQHQzEhWAYPpzWx-xJaY8SCbmcGL5dF8qvzvw_o0f8Y0GO4WcXVnPBlj-Fw7Lf-CbpNo3madOEnaqkSpQ
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3La9ZAEB9qRfAitr6irazgTYNJ9pUc64elCPVkobdln_pBSUqSD-1_39nNQ8QqSHJJdnbZzM7uzGZ2fgPwFlW6LoQtcom6Jmei5rm2vshdZaVpTBN4FYOTz7-Iswv2-ZJf7kG1xMKkQ_sJ0jIt08vpsA8DS1MaNUrO4p4kr-_B_QjdHqV6Izbrf5WIeF4zNsfHFLS-o-pvOihB9d9lX_7hG00q5_QxPJptRXIy9e4A9nx7CA-m7JE3T8CdkFYnMCbSb003_NjiCJDv_mr7k3R9SoQVcSAG0ndmN4xkjGppWSSw3X5KQ48PZM7WQ-JpDixZMCSw6ClcnH76ujnL56QJuWU1H3PqWeFowEvaigcmXBF8JWTQIuZn1KwsNJoQWjbaahFM8Do4Si0vtS1C0PQZ7Ldd618AMYZb7o3zLk7totERa09qx5tGupLLDMqFjcrOiOIxscWVSp5tWquJ9QpZrxLrVZ3Bu7XO9YSn8U_qj3F0VsqIhZ1edP03NcuGQhvVSa0p01SyJnoGK-ZqhwygxtLGZHC0jK2aJ-igaIxBxpuWGbxZi3FqRX-Jbn23m2hwuyUEy-D5JBNrT2iNuxI0LTN4vwjJr8b__kEv_4_8FTysotwmtNgj2B_7nT9GI2g0r5PU3wJLdgCg
  priority: 102
  providerName: Springer Nature
Title A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration
URI https://link.springer.com/article/10.1038/s41467-024-48409-8
https://www.ncbi.nlm.nih.gov/pubmed/38729929
https://www.proquest.com/docview/3053353331
https://www.proquest.com/docview/3053974664
https://doaj.org/article/192d7aa34a3749128124d8df373bc39b
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96Ivgifls9lwi-ablu89nHveXWY-EOUQ_2LeQTF45W2i7e_fdO0nY98etFWlqapCGZzGRmSPIbhN6AStcFt0UuQNfklEuWa-uL3JVWmMpUgZXxcPLZOT-9oOsN29wI9RX3hA3wwAPhjsACcUJrQjURtIrrPiV10gUiiLGkMnH2BZ13w5lKczCpwHWh4ymZgsijjqY5AVRSTqNTk8ufNFEC7P-dlfnLCmlSPKsH6P5oMeLF0NKH6JavH6G7QwzJ68fILXCtEyQTbrem6b5tYRzwF3-5vcJNm8JhRTSIDreN2XU97qNymqYKqLcdgtHDBx5j9uC4pwNyJiQJyHqCLlYnn5en-Rg6IbdUsj4nnhaOBLiELVmg3BXBl1wEzWOURk3nhQZDQotKW82DCV4HR4hlc22LEDR5ig7qpvbPETaGWeaN8y4KeFHpiLgntGNVJdyciQzNJzIqO-KKx_AWlyqtbxOpBtIrIL1KpFcyQ2_3_3wdUDX-Wvo4js6-ZETETgnAJ2rkE_UvPsnQ4TS2ahTTTpF4EhluMs_Q6302CFhcNdG1b3ZDGXC6OKcZejbwxL4lRIJvAgZmht5NTPKj8j936MX_6NBLdK-M3JyQZA_RQd_u_CswkHozQ7fFRsBTrt7P0J3FYv1pDe_jk_MPHyF1yZezJC3wPKPyO9PkEUE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThA1iZ04OSBUHtWWPk6ttDfjV8pK1aYkuyr9U_xGZpxkKwT0ViWn2LGc8Xhm7Im_D-A1unSdFDaJJfqaWBRlHmvrk9hlVprKVHWe0eHkg8Niciy-TvPpGvwaz8LQb5WjTQyG2jWW9si3OB0axZunH85-xMQaRdnVkUKjV4s9f3GOS7bu_e5nHN83Wbbz5ejTJB5YBWIrynwRcy8Sx2u8pM3yWhQuqX1WyFoXRGCoRZpo9LFaVtrqoja117Xj3Oaptklda47t3oCb6HgTmlFyKld7OoS2XgoxnM1JeLnViWCJ0BHGgpZScfmH_ws0Af-Kbf_KywZ3t3MP7g5xKtvuFes-rPn5A7jVM1dePAS3zeY6AEGxdmaa7nyGo8---9PZT9a0gYSLMCg61jZm2S3YglziaKCw3dafDLxhbGAKYvQnCZaM-BVY9AiOr0W0j2F93sz9E2DG5Db3xnlHZiWpNOH8Se3yqpIuzWUE6ShGZQc0cyLVOFUhq85L1YteoehVEL0qI3i7euesx_K4svZHGp1VTcLhDg-a9kQN01phfOyk1lxoLkVFWclMuNKhALixvDIRbI5jqwbj0KlLVY7g1aoYpzXlavTcN8u-Di71ikJEsNHrxKonvMQVEYa1EbwbleSy8f9_0NOr-_ISbk-ODvbV_u7h3jO4k5HOBpTaTVhftEv_HIOvhXkRNJ7Bt-ueYr8BT69BZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaJNYjtODggVyqqlUHGg0t6Mn2WlalOSXZX-NX4dYyfZCgG9VZvT2rGS8bycsb8P4AWGdJWVJksFxpqUlRVPlXFZagsjdK1rz4twOPnzQbl7yD7O-GwDfo1nYcK2ytEnRkdtGxO-kU9oODSKF80nftgW8WVn-vbkRxoYpEKldaTT6FVk352d4vKte7O3g3P9siimH76-300HhoHUsIovU-pYZqnHnzAF96y0mXdFKbwqA5mhYnmmMN4qUSujSq-9U95SaniuTOa9ojjuFbgqKM-DjYmZWH_fCcjrFWPDOZ2MVpOORa-EQTFlYVmVVn_EwkgZ8K88968abQx901twc8hZyXavZLdhwy3uwLWexfLsLthtslARFIq0c910p3PUBPLdHc9_kqaNhFwBj6IjbaNX3ZIsQ3gcnRWO27qjgUOMDKxBJOwqwZYRywKb7sHhpYj2PmwumoV7CERrbrjT1tngYrJaBcw_oSyva2FzLhLIRzFKMyCbB4KNYxkr7LSSveglil5G0csqgVfre056XI8Le78Ls7PuGTC54x9NeyQHE5eYK1uhFGWKClaHCmXBbGVRAFQbWusEtsa5lYOj6OS5WifwfN2MJh7qNmrhmlXfB5d9ZckSeNDrxPpJaIWrI0xxE3g9Ksn54P9_oUcXP8szuI7GJT_tHew_hhtFUNkIWLsFm8t25Z5gHrbUT6PCE_h22Rb2GzW5RZs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nascent+riboswitch+helix+orchestrates+robust+transcriptional+regulation+through+signal+integration&rft.jtitle=Nature+communications&rft.au=Adrien+Chauvier&rft.au=Shiba+S.+Dandpat&rft.au=Rosa+Romero&rft.au=Nils+G.+Walter&rft.date=2024-05-10&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1038%2Fs41467-024-48409-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_192d7aa34a3749128124d8df373bc39b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon