Next-generation MRI scanner designed for ultra-high-resolution human brain imaging at 7 Tesla
To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we develope...
Saved in:
Published in | Nature methods Vol. 20; no. 12; pp. 2048 - 2057 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.12.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m
−1
, 900 T m
−1
s
−1
) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35–0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging.
A combination of hardware developments has increased the achievable spatial resolution in 7 Tesla human neuroimaging to about 0.4 mm. |
---|---|
AbstractList | To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m
−1
, 900 T m
−1
s
−1
) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35–0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging.
A combination of hardware developments has increased the achievable spatial resolution in 7 Tesla human neuroimaging to about 0.4 mm. To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m , 900 T m s ) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35-0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging. To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m −1 , 900 T m −1 s −1 ) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35–0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging. To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m−1, 900 T m−1s−1) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35–0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging.A combination of hardware developments has increased the achievable spatial resolution in 7 Tesla human neuroimaging to about 0.4 mm. To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m-1, 900 T m-1s-1) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35-0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging.To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m-1, 900 T m-1s-1) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35-0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging. |
Author | Vu, An T. Stirnberg, Rüdiger Liao, Congyu Stockmann, Jason Gunamony, Shajan Mareyam, Azma Feinberg, David A. Park, Suhyung Cao, Xiaozhi Huber, Laurentius Potthast, Andreas Dietz, Peter Ma, Samantha Liu, Chunlei Rummert, Elmar Davids, Mathias Polimeni, Jonathan R. Beckett, Alexander J. S. Ahn, Sinyeob Gonzalez-Insua, Ignacio Yacoub, Essa Bell, Paul Koehler, Michael Wald, Lawrence L. Gruber, Bernhard Stocker, Stefan Setsompop, Kawin |
Author_xml | – sequence: 1 givenname: David A. orcidid: 0009-0002-5016-9165 surname: Feinberg fullname: Feinberg, David A. email: David.feinberg@berkeley.edu organization: Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Advanced MRI Technologies – sequence: 2 givenname: Alexander J. S. orcidid: 0000-0002-7123-9559 surname: Beckett fullname: Beckett, Alexander J. S. organization: Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Advanced MRI Technologies – sequence: 3 givenname: An T. surname: Vu fullname: Vu, An T. organization: Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco Veteran Affairs Health Care System – sequence: 4 givenname: Jason surname: Stockmann fullname: Stockmann, Jason organization: A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard-MIT Health Sciences and Technology, MIT – sequence: 5 givenname: Laurentius surname: Huber fullname: Huber, Laurentius organization: Faculty of Psychology and Neuroscience, Maastricht University – sequence: 6 givenname: Samantha orcidid: 0000-0003-3127-455X surname: Ma fullname: Ma, Samantha organization: Siemens Medical Solutions – sequence: 7 givenname: Sinyeob surname: Ahn fullname: Ahn, Sinyeob organization: Siemens Medical Solutions – sequence: 8 givenname: Kawin surname: Setsompop fullname: Setsompop, Kawin organization: Radiological Sciences Laboratory, Stanford University – sequence: 9 givenname: Xiaozhi surname: Cao fullname: Cao, Xiaozhi organization: Radiological Sciences Laboratory, Stanford University – sequence: 10 givenname: Suhyung surname: Park fullname: Park, Suhyung organization: Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Department of Computer Engineering, Chonnam National University, Department of ICT Convergence System Engineering, Chonnam National University – sequence: 11 givenname: Chunlei surname: Liu fullname: Liu, Chunlei organization: Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley – sequence: 12 givenname: Lawrence L. surname: Wald fullname: Wald, Lawrence L. organization: A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard-MIT Health Sciences and Technology, MIT – sequence: 13 givenname: Jonathan R. surname: Polimeni fullname: Polimeni, Jonathan R. organization: A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard-MIT Health Sciences and Technology, MIT – sequence: 14 givenname: Azma surname: Mareyam fullname: Mareyam, Azma organization: A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard-MIT Health Sciences and Technology, MIT – sequence: 15 givenname: Bernhard orcidid: 0000-0003-4901-5732 surname: Gruber fullname: Gruber, Bernhard organization: A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard-MIT Health Sciences and Technology, MIT, BARNLabs – sequence: 16 givenname: Rüdiger orcidid: 0000-0001-7021-1063 surname: Stirnberg fullname: Stirnberg, Rüdiger organization: German Center for Neurodegenerative Diseases (DZNE) – sequence: 17 givenname: Congyu surname: Liao fullname: Liao, Congyu organization: Radiological Sciences Laboratory, Stanford University – sequence: 18 givenname: Essa surname: Yacoub fullname: Yacoub, Essa organization: Center for Magnetic Resonance Research, University of Minnesota – sequence: 19 givenname: Mathias surname: Davids fullname: Davids, Mathias organization: A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard-MIT Health Sciences and Technology, MIT, Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University – sequence: 20 givenname: Paul surname: Bell fullname: Bell, Paul organization: Siemens Medical Solutions – sequence: 21 givenname: Elmar surname: Rummert fullname: Rummert, Elmar organization: Siemens Healthcare GmbH – sequence: 22 givenname: Michael surname: Koehler fullname: Koehler, Michael organization: Siemens Healthcare GmbH – sequence: 23 givenname: Andreas surname: Potthast fullname: Potthast, Andreas organization: Siemens Healthcare GmbH – sequence: 24 givenname: Ignacio surname: Gonzalez-Insua fullname: Gonzalez-Insua, Ignacio organization: Siemens Healthcare GmbH – sequence: 25 givenname: Stefan surname: Stocker fullname: Stocker, Stefan organization: Siemens Healthcare GmbH – sequence: 26 givenname: Shajan surname: Gunamony fullname: Gunamony, Shajan organization: Imaging Centre of Excellence, University of Glasgow, MR CoilTech Limited – sequence: 27 givenname: Peter surname: Dietz fullname: Dietz, Peter organization: Siemens Healthcare GmbH |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38012321$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUlrHDEQhYVxiLf8AR-CIBdfOtHWWo7BeAMngeAcjVCrSz0yPWpH6obk31ue8WDwwYeiCvG9ovTeEdpPUwKETin5SgnX34qgrWENYbwWkbpRe-iQtqIOlLT7u5kYeoCOSnkghHPB2o_ogGtCGWf0EN3_hH9zM0CC7OY4Jfzj9w0u3qX6gHsocUjQ4zBlvIxzds0qDqsmQ5nGZYOvlrVLuMsuJhzXbohpwG7GCt9BGd0J-hDcWODTSz9Gfy4v7s6vm9tfVzfn328bL3Q7N5z2wrRd0NprLzxhnVRaedkHHQgExomSIJnQkknug3GtolLxQE1HgxSOH6Oz7d7HPP1doMx2HYuHcXQJpqVYpo1QrDWcVvTLG_RhWnKq1z1ThmotjazU5xdq6dbQ28dcP5f_251xFdBbwOeplAzB-jhvHKwuxdFSYp8zstuMbM3IbjKyqkrZG-lu-7sivhWVCqcB8uvZ76ieAHtpoc8 |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2024_120553 crossref_primary_10_1016_j_aiopen_2025_02_001 crossref_primary_10_1098_rstb_2023_0085 crossref_primary_10_1162_imag_a_00308 crossref_primary_10_1063_5_0210709 crossref_primary_10_1162_imag_a_00427 crossref_primary_10_1002_mrm_30365 crossref_primary_10_1038_s42003_025_07866_7 crossref_primary_10_3390_biomedicines12081681 crossref_primary_10_1109_TMAG_2024_3432915 crossref_primary_10_1371_journal_pbio_3002884 crossref_primary_10_1002_mrm_30327 crossref_primary_10_5674_jjppp_2410si crossref_primary_10_1093_psyrad_kkae013 crossref_primary_10_1093_psyrad_kkae027 crossref_primary_10_1111_joim_20059 crossref_primary_10_3390_bioengineering11121228 crossref_primary_10_1016_j_arr_2024_102230 crossref_primary_10_1109_MPULS_2024_3405768 crossref_primary_10_1088_1361_6668_ad7d3f crossref_primary_10_1093_nsr_nwae228 crossref_primary_10_1016_j_snb_2025_137304 crossref_primary_10_1016_j_jpra_2024_08_002 crossref_primary_10_1002_mrm_30050 crossref_primary_10_1007_s10334_023_01138_3 crossref_primary_10_1002_mrm_30471 crossref_primary_10_1002_mrm_30450 crossref_primary_10_1038_s41467_024_54167_4 crossref_primary_10_1038_s41386_024_01900_8 crossref_primary_10_1002_mrm_30157 crossref_primary_10_1016_j_cryogenics_2024_103949 crossref_primary_10_1002_mrm_30335 crossref_primary_10_1038_s41592_024_02489_y crossref_primary_10_1002_mrm_30216 crossref_primary_10_1016_j_tins_2024_12_010 crossref_primary_10_1007_s12021_024_09686_2 crossref_primary_10_1088_1361_6668_ad4c12 crossref_primary_10_1038_s41386_024_01980_6 crossref_primary_10_1162_imag_a_00393 crossref_primary_10_1021_jacsau_4c00009 crossref_primary_10_53941_hm_2025_100003 crossref_primary_10_7498_aps_74_20241759 crossref_primary_10_1016_j_tins_2024_09_011 crossref_primary_10_1162_imag_a_00399 crossref_primary_10_3390_dj12030082 crossref_primary_10_1038_s41592_024_02472_7 crossref_primary_10_3390_s24072250 crossref_primary_10_1016_j_zemedi_2024_12_002 |
Cites_doi | 10.1002/mrm.22028 10.1016/j.pneurobio.2020.101835 10.1007/s10334-016-0543-6 10.1002/mrm.28486 10.1371/journal.pone.0032536 10.1016/j.cub.2015.12.038 10.1038/s41593-019-0487-z 10.1016/j.neuroimage.2010.01.108 10.1073/pnas.0804110105 10.1002/mrm.28131 10.1002/mrm.29668 10.1016/j.neuroimage.2013.05.078 10.1016/j.neuroimage.2011.09.015 10.1016/j.neuroimage.2014.11.046 10.1002/mrm.26315 10.1002/mrm.20713 10.1002/mrm.24751 10.1002/mrm.29391 10.1002/nbm.4281 10.1002/mrm.20900 10.1002/mrm.1910380509 10.1371/journal.pone.0028716 10.1152/jn.1997.77.5.2780 10.1002/mrm.27189 10.1016/j.neuroimage.2015.08.004 10.1002/mrm.10433 10.1016/j.neuroimage.2018.05.010 10.1016/j.neuron.2017.11.005 10.1148/radiology.156.3.4023236 10.1002/mrm.1910160203 10.1002/mrm.1910380414 10.1093/cercor/1.1.1 10.1002/(SICI)1522-2594(199907)42:1<87::AID-MRM13>3.0.CO;2-O 10.1016/j.neuroimage.2011.12.028 10.1016/j.neuroimage.2013.05.074 10.1038/s41467-021-25431-8 10.1038/s41598-017-05493-9 10.1073/pnas.200033797 10.1126/science.1215280 10.1002/mrm.23097 10.1016/j.neuroimage.2007.05.020 10.1109/TMI.2020.3023329 10.1002/mrm.22927 10.1002/mrm.26954 10.1002/mrm.25628 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1016/S0896-6273(01)00477-9 10.1016/j.neuroimage.2017.03.033 10.1016/j.neuroimage.2017.01.081 10.1002/mrm.29194 10.1038/nn.4361 10.1002/hbm.20936 10.1038/nature18933 10.1016/0730-725X(93)90209-V 10.1016/j.neuroimage.2016.11.039 10.1016/j.neuroimage.2017.02.020 10.1002/mrm.21073 10.1148/radiology.161.2.3763926 10.1002/mrm.25839 10.1002/mrm.28087 10.1148/radiology.190.3.8115646 10.1002/mrm.27909 10.1002/mrm.10519 10.1002/mrm.22423 10.1016/j.neuroimage.2010.05.005 10.1002/mrm.1156 10.1016/j.neuroimage.2021.118530 10.1002/cmr.b.20040 10.1002/mrm.27382 10.3389/fphy.2021.701330 10.1002/mrm.28589 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7SS 7TK 7U9 7X2 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. L6V LK8 M0K M0S M1P M2P M7N M7P M7S P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U RC3 7X8 |
DOI | 10.1038/s41592-023-02068-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1548-7105 |
EndPage | 2057 |
ExternalDocumentID | 38012321 10_1038_s41592_023_02068_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) grantid: 2021R1C1C1013603 funderid: https://doi.org/10.13039/501100003725 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH) grantid: R01-MH111444; R44-MH129278; U01-EB025162; R01-MH111444; R44-MH129278; R01-MH111444; R44-MH129278; R01-MH111444; R44-MH129278 funderid: https://doi.org/10.13039/100000025 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB) grantid: U01-EB025162; U01-EB025162; U01-EB025162; P41-EB030006; U01-EB025162; U01-EB025162; U01-EB025162; U01-EB025162; U01-EB025162; P41-EB030006; U01-EB025162; P41-EB030006; U01-EB025162; P41-EB030006; U01-EB025162; P41-EB030006; U01-EB025162; U01-EB025162; U01-EB025162; P41-EB030006; U01-EB025162 funderid: https://doi.org/10.13039/100000070 – fundername: NIBIB NIH HHS grantid: R01 EB028670 – fundername: NIMH NIH HHS grantid: R01 MH111444 – fundername: NIBIB NIH HHS grantid: U01 EB025162 – fundername: NIMH NIH HHS grantid: R44 MH129278 – fundername: NINDS NIH HHS grantid: U24 NS129949 – fundername: NIBIB NIH HHS grantid: P41 EB030006 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 7X2 7X7 7XC 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI C6C CCPQU CS3 D1I D1J D1K DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX F5P FEDTE FSGXE FYUFA FZEXT GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ITC K6- KB. L6V LK5 LK8 M0K M1P M2P M7P M7R M7S NNMJJ O9- ODYON P2P P62 PATMY PCBAR PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ATHPR CITATION NFIDA PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QO 7SS 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c485t-31d495bf88c8c4c02b6787c6df8f0ef23076e62486263cf9a571673f19b1f64a3 |
IEDL.DBID | C6C |
ISSN | 1548-7091 1548-7105 |
IngestDate | Thu Jul 10 23:26:42 EDT 2025 Sat Aug 23 12:45:44 EDT 2025 Mon Jul 21 05:59:04 EDT 2025 Tue Jul 01 00:44:38 EDT 2025 Thu Apr 24 22:52:31 EDT 2025 Fri Feb 21 02:37:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | 2023. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-31d495bf88c8c4c02b6787c6df8f0ef23076e62486263cf9a571673f19b1f64a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3127-455X 0009-0002-5016-9165 0000-0003-4901-5732 0000-0002-7123-9559 0000-0001-7021-1063 |
OpenAccessLink | https://www.nature.com/articles/s41592-023-02068-7 |
PMID | 38012321 |
PQID | 2899188696 |
PQPubID | 28015 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2894725931 proquest_journals_2899188696 pubmed_primary_38012321 crossref_citationtrail_10_1038_s41592_023_02068_7 crossref_primary_10_1038_s41592_023_02068_7 springer_journals_10_1038_s41592_023_02068_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | Techniques for life scientists and chemists |
PublicationTitle | Nature methods |
PublicationTitleAbbrev | Nat Methods |
PublicationTitleAlternate | Nat Methods |
PublicationYear | 2023 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Huang (CR24) 2021; 243 Feinberg, Vu, Beckett (CR32) 2018; 164 Vaughan (CR55) 2006; 56 Olman (CR12) 2012; 7 Poser, Koopmans, Witzel, Wald, Barth (CR33) 2010; 51 Poser, Versluis, Hoogduin, Norris (CR40) 2006; 55 Hendriks (CR84) 2020; 33 Cao (CR48) 2022; 88 Vaughan (CR26) 2001; 46 CR38 Kellman, McVeigh (CR76) 2005; 54 CR36 CR35 Robson, Gore, Constable (CR81) 1997; 38 Huber (CR1) 2021; 207 CR31 Weiger (CR62) 2018; 79 CR75 Fischl, Dale (CR17) 2000; 97 CR74 CR73 CR72 McNab (CR22) 2013; 80 Wu (CR69) 2018; 80 CR71 Wiggins (CR25) 2009; 62 Yacoub (CR47) 2003; 49 Feinberg (CR2) 1985; 156 Davids (CR27) 2023; 90 Turner (CR61) 1993; 11 Davids, Guérin, vom Endt, Schad, Wald (CR65) 2019; 81 Uecker (CR79) 2014; 71 Stirnberg, Stocker (CR34) 2021; 85 Lu, Golay, Pekar, Van Zijl (CR43) 2003; 50 Huber (CR14) 2017; 96 CR6 Jenkinson, Beckmann, Behrens, Woolrich, Smith (CR87) 2012; 62 Gulban (CR21) 2018; 178 Vu (CR46) 2015; 122 Tan (CR30) 2020; 83 Polimeni, Fischl, Greve, Wald (CR10) 2010; 52 CR45 Glasser (CR49) 2016; 19 CR44 CR85 CR80 Kundu, Inati, Evans, Luh, Bandettini (CR41) 2012; 60 Chung, Kim, Breton, Axel (CR78) 2010; 64 Schluppeck, Sanchez-Panchuelo, Francis (CR3) 2018; 164 Glasser (CR18) 2016; 536 He (CR57) 2020; 84 Vizioli (CR59) 2021; 12 Setsompop (CR20) 2013; 80 Pruessmann, Weiger, Scheidegger, Boesiger (CR51) 1999; 42 Roemer, Edelstein, Hayes, Souza, Mueller (CR77) 1990; 16 CR54 Felleman, Van Essen (CR53) 1991; 1 Zimmermann (CR7) 2011; 6 Cheng, Waggoner, Tanaka (CR9) 2001; 32 Posse (CR39) 1999; 42 Setsompop (CR83) 2012; 67 Kundu (CR42) 2017; 154 Kok, Bains, van Mourik, Norris, de Lange (CR15) 2016; 26 Foo (CR23) 2020; 83 Feinberg, Hale, Watts, Kaufman, Mark (CR50) 1986; 161 Lemdiasov, Ludwig (CR63) 2005; 26B Davids, Guerin, Klein, Wald (CR28) 2021; 40 CR29 Tao (CR67) 2017; 77 Menon, Ogawa, Strupp, Ugurbil (CR8) 1997; 77 Huber (CR13) 2015; 107 Atkinson, Brant-Zawadzki, Gillan, Purdy, Laub (CR88) 1994; 190 Polimeni (CR86) 2016; 75 Tse (CR56) 2016; 29 Davids, Guerin, Malzacher, Schad, Wald (CR64) 2017; 7 CR68 Huber (CR37) 2018; 164 Koopmans, Barth, Norris (CR11) 2010; 31 CR66 Hoge, Polimeni (CR82) 2016; 76 Eichfelder, Gebhardt (CR70) 2011; 66 Wedeen (CR19) 2012; 335 Finn, Huber, Jangraw, Molfese, Bandettini (CR16) 2019; 22 CR60 Sodickson, Manning (CR52) 1997; 38 Yacoub, Harel, Ugurbil (CR4) 2008; 105 Yacoub, Shmuel, Logothetis, Ugurbil (CR5) 2007; 37 Le Ster (CR58) 2022; 88 S Tao (2068_CR67) 2017; 77 D Atkinson (2068_CR88) 1994; 190 J Zimmermann (2068_CR7) 2011; 6 ES Finn (2068_CR16) 2019; 22 M Davids (2068_CR27) 2023; 90 L Huber (2068_CR13) 2015; 107 RS Menon (2068_CR8) 1997; 77 JA McNab (2068_CR22) 2013; 80 MF Glasser (2068_CR18) 2016; 536 DK Sodickson (2068_CR52) 1997; 38 MF Glasser (2068_CR49) 2016; 19 2068_CR80 JR Polimeni (2068_CR10) 2010; 52 M Weiger (2068_CR62) 2018; 79 H Lu (2068_CR43) 2003; 50 SY Huang (2068_CR24) 2021; 243 2068_CR85 2068_CR44 T Vaughan (2068_CR55) 2006; 56 2068_CR45 M Davids (2068_CR28) 2021; 40 R Turner (2068_CR61) 1993; 11 DA Feinberg (2068_CR2) 1985; 156 D Schluppeck (2068_CR3) 2018; 164 L Huber (2068_CR14) 2017; 96 PB Roemer (2068_CR77) 1990; 16 WS Hoge (2068_CR82) 2016; 76 M Jenkinson (2068_CR87) 2012; 62 K Setsompop (2068_CR20) 2013; 80 B Fischl (2068_CR17) 2000; 97 DA Feinberg (2068_CR50) 1986; 161 M Davids (2068_CR64) 2017; 7 E Yacoub (2068_CR5) 2007; 37 TKF Foo (2068_CR23) 2020; 83 JT Vaughan (2068_CR26) 2001; 46 X Cao (2068_CR48) 2022; 88 2068_CR54 RA Lemdiasov (2068_CR63) 2005; 26B P Kok (2068_CR15) 2016; 26 K Setsompop (2068_CR83) 2012; 67 K Cheng (2068_CR9) 2001; 32 DH Tse (2068_CR56) 2016; 29 2068_CR68 BA Poser (2068_CR33) 2010; 51 MD Robson (2068_CR81) 1997; 38 C Le Ster (2068_CR58) 2022; 88 L Vizioli (2068_CR59) 2021; 12 2068_CR29 AT Vu (2068_CR46) 2015; 122 PJ Koopmans (2068_CR11) 2010; 31 S Posse (2068_CR39) 1999; 42 M Davids (2068_CR65) 2019; 81 AD Hendriks (2068_CR84) 2020; 33 DJ Felleman (2068_CR53) 1991; 1 R Stirnberg (2068_CR34) 2021; 85 2068_CR60 M Uecker (2068_CR79) 2014; 71 ET Tan (2068_CR30) 2020; 83 X Wu (2068_CR69) 2018; 80 S Chung (2068_CR78) 2010; 64 G Eichfelder (2068_CR70) 2011; 66 GC Wiggins (2068_CR25) 2009; 62 X He (2068_CR57) 2020; 84 L Huber (2068_CR1) 2021; 207 2068_CR66 BA Poser (2068_CR40) 2006; 55 2068_CR35 2068_CR36 2068_CR38 JR Polimeni (2068_CR86) 2016; 75 2068_CR6 P Kundu (2068_CR42) 2017; 154 DA Feinberg (2068_CR32) 2018; 164 OF Gulban (2068_CR21) 2018; 178 L Huber (2068_CR37) 2018; 164 E Yacoub (2068_CR4) 2008; 105 P Kundu (2068_CR41) 2012; 60 KP Pruessmann (2068_CR51) 1999; 42 E Yacoub (2068_CR47) 2003; 49 CA Olman (2068_CR12) 2012; 7 2068_CR71 2068_CR72 P Kellman (2068_CR76) 2005; 54 VJ Wedeen (2068_CR19) 2012; 335 2068_CR73 2068_CR74 2068_CR31 2068_CR75 |
References_xml | – volume: 62 start-page: 754 year: 2009 end-page: 762 ident: CR25 article-title: 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22028 – ident: CR45 – volume: 207 start-page: 101835 year: 2021 ident: CR1 article-title: Layer-dependent functional connectivity methods publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2020.101835 – volume: 29 start-page: 333 year: 2016 end-page: 345 ident: CR56 article-title: Volumetric imaging with homogenised excitation and static field at 9.4 T publication-title: MAGMA doi: 10.1007/s10334-016-0543-6 – volume: 85 start-page: 1540 year: 2021 end-page: 1551 ident: CR34 article-title: Segmented K-space blipped-controlled aliasing in parallel imaging for high spatiotemporal resolution EPI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28486 – ident: CR68 – ident: CR74 – volume: 7 start-page: e32536 year: 2012 ident: CR12 article-title: Layer-specific fMRI reflects different neuronal computations at different depths in human V1 publication-title: PLoS ONE doi: 10.1371/journal.pone.0032536 – volume: 26 start-page: 371 year: 2016 end-page: 376 ident: CR15 article-title: Selective activation of the deep layers of the human primary visual cortex by top-down feedback publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.12.038 – volume: 22 start-page: 1687 year: 2019 end-page: 1695 ident: CR16 article-title: Layer-dependent activity in human prefrontal cortex during working memory publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0487-z – volume: 51 start-page: 261 year: 2010 end-page: 266 ident: CR33 article-title: Three dimensional echo-planar imaging at 7 Tesla publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.108 – volume: 105 start-page: 10607 year: 2008 end-page: 10612 ident: CR4 article-title: High-field fMRI unveils orientation columns in humans publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0804110105 – volume: 84 start-page: 289 year: 2020 end-page: 303 ident: CR57 article-title: First in‐vivo human imaging at 10.5T: imaging the body at 447 MHz publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28131 – volume: 90 start-page: 784 year: 2023 end-page: 801 ident: CR27 article-title: Peripheral nerve stimulation informed design of a high-performance asymmetric head gradient coil publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29668 – volume: 80 start-page: 220 year: 2013 end-page: 233 ident: CR20 article-title: Pushing the limits of in vivo diffusion MRI for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.078 – ident: CR35 – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: CR87 article-title: FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 107 start-page: 23 year: 2015 end-page: 33 ident: CR13 article-title: Cortical lamina-dependent blood volume changes in human brain at 7 T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.11.046 – ident: CR29 – ident: CR54 – volume: 77 start-page: 2250 year: 2017 end-page: 2262 ident: CR67 article-title: Gradient pre-emphasis to counteract first-order concomitant fields on asymmetric MRI gradient systems publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26315 – volume: 54 start-page: 1439 year: 2005 end-page: 1447 ident: CR76 article-title: Image reconstruction in SNR units: a general method for SNR measurement publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20713 – ident: CR80 – volume: 71 start-page: 990 year: 2014 end-page: 1001 ident: CR79 article-title: ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24751 – volume: 88 start-page: 2131 year: 2022 end-page: 2138 ident: CR58 article-title: Magnetic field strength dependent SNR gain at the center of a spherical phantom and up to 11.7T publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29391 – volume: 33 start-page: e4281 year: 2020 ident: CR84 article-title: Pushing functional MRI spatial and temporal resolution further: high-density receive arrays combined with shot-selective 2D CAIPIRINHA for 3D echo-planar imaging at 7 T publication-title: NMR Biomed. doi: 10.1002/nbm.4281 – volume: 55 start-page: 1227 year: 2006 end-page: 1235 ident: CR40 article-title: BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: parallel-acquired inhomogeneity-desensitized fMRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20900 – ident: CR71 – volume: 38 start-page: 733 year: 1997 end-page: 740 ident: CR81 article-title: Measurement of the point spread function in MRI using constant time imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910380509 – volume: 6 start-page: e28716 year: 2011 ident: CR7 article-title: Mapping the organization of axis of motion selective features in human area MT using high-field fMRI publication-title: PLoS ONE doi: 10.1371/journal.pone.0028716 – volume: 77 start-page: 2780 year: 1997 end-page: 2787 ident: CR8 article-title: Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging publication-title: J. Neurophysiol. doi: 10.1152/jn.1997.77.5.2780 – volume: 80 start-page: 1857 year: 2018 end-page: 1870 ident: CR69 article-title: High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27189 – volume: 122 start-page: 318 year: 2015 end-page: 331 ident: CR46 article-title: High resolution whole brain diffusion imaging at 7T for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.08.004 – ident: CR75 – volume: 49 start-page: 655 year: 2003 end-page: 664 ident: CR47 article-title: Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10433 – volume: 178 start-page: 104 year: 2018 end-page: 118 ident: CR21 article-title: Cortical fibers orientation mapping using in-vivo whole brain 7 T diffusion MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.05.010 – volume: 96 start-page: 1253 year: 2017 end-page: 1263.e7 ident: CR14 article-title: High-resolution CBV-fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1 publication-title: Neuron doi: 10.1016/j.neuron.2017.11.005 – volume: 156 start-page: 743 year: 1985 end-page: 747 ident: CR2 article-title: Inner volume MR imaging: technical concepts and their application publication-title: Radiology doi: 10.1148/radiology.156.3.4023236 – volume: 16 start-page: 192 year: 1990 end-page: 225 ident: CR77 article-title: The NMR phased array publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910160203 – volume: 38 start-page: 591 year: 1997 end-page: 603 ident: CR52 article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910380414 – volume: 1 start-page: 1 year: 1991 end-page: 47 ident: CR53 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cereb. Cortex. doi: 10.1093/cercor/1.1.1 – ident: CR60 – ident: CR36 – ident: CR85 – volume: 42 start-page: 87 year: 1999 end-page: 97 ident: CR39 article-title: Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199907)42:1<87::AID-MRM13>3.0.CO;2-O – volume: 60 start-page: 1759 year: 2012 end-page: 1770 ident: CR41 article-title: Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.028 – volume: 80 start-page: 234 year: 2013 end-page: 245 ident: CR22 article-title: The Human Connectome Project and beyond: initial applications of 300 mT/m gradients publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.074 – volume: 12 year: 2021 ident: CR59 article-title: Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging publication-title: Nat. Commun. doi: 10.1038/s41467-021-25431-8 – volume: 7 year: 2017 ident: CR64 article-title: Predicting magnetostimulation thresholds in the peripheral nervous system using realistic body models publication-title: Sci. Rep. doi: 10.1038/s41598-017-05493-9 – volume: 97 start-page: 11050 year: 2000 end-page: 11055 ident: CR17 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.200033797 – volume: 335 start-page: 1628 year: 2012 end-page: 1634 ident: CR19 article-title: The geometric structure of the brain fiber pathways publication-title: Science doi: 10.1126/science.1215280 – volume: 67 start-page: 1210 year: 2012 end-page: 1224 ident: CR83 article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23097 – volume: 37 start-page: 1161 year: 2007 end-page: 1177 ident: CR5 article-title: Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.05.020 – volume: 40 start-page: 129 year: 2021 end-page: 142 ident: CR28 article-title: Optimization of MRI gradient coils with explicit peripheral nerve stimulation constraints publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3023329 – ident: CR66 – ident: CR72 – volume: 66 start-page: 1468 year: 2011 end-page: 1476 ident: CR70 article-title: Local specific absorption rate control for parallel transmission by virtual observation points publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22927 – volume: 79 start-page: 3256 year: 2018 end-page: 3266 ident: CR62 article-title: A high-performance gradient insert for rapid and short-T imaging at full duty cycle publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26954 – volume: 75 start-page: 665 year: 2016 end-page: 679 ident: CR86 article-title: Reducing sensitivity losses due to respiration and motion in accelerated echo planar imaging by reordering the autocalibration data acquisition publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25628 – volume: 42 start-page: 952 year: 1999 end-page: 962 ident: CR51 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – volume: 32 start-page: 359 year: 2001 end-page: 374 ident: CR9 article-title: Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging publication-title: Neuron doi: 10.1016/S0896-6273(01)00477-9 – volume: 154 start-page: 59 year: 2017 end-page: 80 ident: CR42 article-title: Multi-echo fMRI: a review of applications in fMRI denoising and analysis of BOLD signals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.033 – volume: 164 start-page: 10 year: 2018 end-page: 17 ident: CR3 article-title: Exploring structure and function of sensory cortex with 7T MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.01.081 – volume: 88 start-page: 133 year: 2022 end-page: 150 ident: CR48 article-title: Optimized multi-axis spiral projection MR fingerprinting with subspace reconstruction for rapid whole-brain high-isotropic-resolution quantitative imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29194 – volume: 19 start-page: 1175 year: 2016 end-page: 1187 ident: CR49 article-title: The Human Connectome Project’s neuroimaging approach publication-title: Nat. Neurosci. doi: 10.1038/nn.4361 – volume: 31 start-page: 1297 year: 2010 end-page: 1304 ident: CR11 article-title: Layer-specific BOLD activation in human V1 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20936 – volume: 536 start-page: 171 year: 2016 end-page: 178 ident: CR18 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – ident: CR6 – volume: 11 start-page: 903 year: 1993 end-page: 920 ident: CR61 article-title: Gradient coil design: a review of methods publication-title: Magn. Reson. Imaging doi: 10.1016/0730-725X(93)90209-V – volume: 164 start-page: 131 year: 2018 end-page: 143 ident: CR37 article-title: Techniques for blood volume fMRI with VASO: from low-resolution mapping towards sub-millimeter layer-dependent applications publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.039 – volume: 164 start-page: 155 year: 2018 end-page: 163 ident: CR32 article-title: Pushing the limits of ultra-high resolution human brain imaging with SMS-EPI demonstrated for columnar level fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.02.020 – volume: 56 start-page: 1274 year: 2006 end-page: 1282 ident: CR55 article-title: 9.4T human MRI: preliminary results publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21073 – volume: 161 start-page: 527 year: 1986 end-page: 531 ident: CR50 article-title: Halving MR imaging time by conjugation: demonstration at 3.5 kG publication-title: Radiology doi: 10.1148/radiology.161.2.3763926 – ident: CR44 – volume: 76 start-page: 32 year: 2016 end-page: 44 ident: CR82 article-title: Dual-polarity GRAPPA for simultaneous reconstruction and ghost correction of echo planar imaging data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25839 – ident: CR73 – volume: 83 start-page: 2356 year: 2020 end-page: 2369 ident: CR23 article-title: Highly efficient head-only magnetic field insert gradient coil for achieving simultaneous high gradient amplitude and slew rate at 3.0T (MAGNUS) for brain microstructure imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28087 – volume: 190 start-page: 890 year: 1994 end-page: 894 ident: CR88 article-title: Improved MR angiography: magnetization transfer suppression with variable flip angle excitation and increased resolution publication-title: Radiology doi: 10.1148/radiology.190.3.8115646 – volume: 83 start-page: 352 year: 2020 end-page: 366 ident: CR30 article-title: Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27909 – ident: CR38 – volume: 50 start-page: 263 year: 2003 end-page: 274 ident: CR43 article-title: Functional magnetic resonance imaging based on changes in vascular space occupancy publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10519 – ident: CR31 – volume: 64 start-page: 439 year: 2010 end-page: 446 ident: CR78 article-title: Rapid B1+ mapping using a preconditioning RF pulse with TurboFLASH readout publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22423 – volume: 52 start-page: 1334 year: 2010 end-page: 1346 ident: CR10 article-title: Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.005 – volume: 46 start-page: 24 year: 2001 end-page: 30 ident: CR26 article-title: 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1156 – volume: 243 start-page: 118530 year: 2021 ident: CR24 article-title: Connectome 2.0: developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118530 – volume: 26B start-page: 67 year: 2005 end-page: 80 ident: CR63 article-title: A stream function method for gradient coil design publication-title: Concepts Magn. Reson. Part B doi: 10.1002/cmr.b.20040 – volume: 81 start-page: 686 year: 2019 end-page: 701 ident: CR65 article-title: Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27382 – volume: 40 start-page: 129 year: 2021 ident: 2068_CR28 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3023329 – ident: 2068_CR72 – ident: 2068_CR6 – volume: 31 start-page: 1297 year: 2010 ident: 2068_CR11 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20936 – volume: 90 start-page: 784 year: 2023 ident: 2068_CR27 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29668 – volume: 19 start-page: 1175 year: 2016 ident: 2068_CR49 publication-title: Nat. Neurosci. doi: 10.1038/nn.4361 – volume: 11 start-page: 903 year: 1993 ident: 2068_CR61 publication-title: Magn. Reson. Imaging doi: 10.1016/0730-725X(93)90209-V – volume: 26 start-page: 371 year: 2016 ident: 2068_CR15 publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.12.038 – volume: 49 start-page: 655 year: 2003 ident: 2068_CR47 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10433 – volume: 51 start-page: 261 year: 2010 ident: 2068_CR33 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.108 – volume: 54 start-page: 1439 year: 2005 ident: 2068_CR76 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20713 – volume: 76 start-page: 32 year: 2016 ident: 2068_CR82 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25839 – volume: 1 start-page: 1 year: 1991 ident: 2068_CR53 publication-title: Cereb. Cortex. doi: 10.1093/cercor/1.1.1 – ident: 2068_CR74 doi: 10.3389/fphy.2021.701330 – ident: 2068_CR38 – volume: 83 start-page: 2356 year: 2020 ident: 2068_CR23 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28087 – volume: 122 start-page: 318 year: 2015 ident: 2068_CR46 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.08.004 – volume: 67 start-page: 1210 year: 2012 ident: 2068_CR83 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23097 – volume: 16 start-page: 192 year: 1990 ident: 2068_CR77 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910160203 – volume: 156 start-page: 743 year: 1985 ident: 2068_CR2 publication-title: Radiology doi: 10.1148/radiology.156.3.4023236 – volume: 33 start-page: e4281 year: 2020 ident: 2068_CR84 publication-title: NMR Biomed. doi: 10.1002/nbm.4281 – volume: 62 start-page: 754 year: 2009 ident: 2068_CR25 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22028 – volume: 190 start-page: 890 year: 1994 ident: 2068_CR88 publication-title: Radiology doi: 10.1148/radiology.190.3.8115646 – volume: 6 start-page: e28716 year: 2011 ident: 2068_CR7 publication-title: PLoS ONE doi: 10.1371/journal.pone.0028716 – volume: 38 start-page: 733 year: 1997 ident: 2068_CR81 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910380509 – volume: 85 start-page: 1540 year: 2021 ident: 2068_CR34 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28486 – volume: 32 start-page: 359 year: 2001 ident: 2068_CR9 publication-title: Neuron doi: 10.1016/S0896-6273(01)00477-9 – volume: 154 start-page: 59 year: 2017 ident: 2068_CR42 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.033 – ident: 2068_CR73 – volume: 178 start-page: 104 year: 2018 ident: 2068_CR21 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.05.010 – ident: 2068_CR29 – volume: 12 year: 2021 ident: 2068_CR59 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25431-8 – volume: 42 start-page: 87 year: 1999 ident: 2068_CR39 publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199907)42:1<87::AID-MRM13>3.0.CO;2-O – volume: 107 start-page: 23 year: 2015 ident: 2068_CR13 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.11.046 – volume: 22 start-page: 1687 year: 2019 ident: 2068_CR16 publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0487-z – volume: 161 start-page: 527 year: 1986 ident: 2068_CR50 publication-title: Radiology doi: 10.1148/radiology.161.2.3763926 – volume: 80 start-page: 234 year: 2013 ident: 2068_CR22 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.074 – volume: 7 start-page: e32536 year: 2012 ident: 2068_CR12 publication-title: PLoS ONE doi: 10.1371/journal.pone.0032536 – ident: 2068_CR35 – volume: 38 start-page: 591 year: 1997 ident: 2068_CR52 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910380414 – volume: 243 start-page: 118530 year: 2021 ident: 2068_CR24 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118530 – volume: 50 start-page: 263 year: 2003 ident: 2068_CR43 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10519 – volume: 536 start-page: 171 year: 2016 ident: 2068_CR18 publication-title: Nature doi: 10.1038/nature18933 – volume: 80 start-page: 1857 year: 2018 ident: 2068_CR69 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27189 – volume: 97 start-page: 11050 year: 2000 ident: 2068_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.200033797 – ident: 2068_CR66 – ident: 2068_CR31 – volume: 75 start-page: 665 year: 2016 ident: 2068_CR86 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25628 – volume: 46 start-page: 24 year: 2001 ident: 2068_CR26 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1156 – volume: 83 start-page: 352 year: 2020 ident: 2068_CR30 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27909 – volume: 105 start-page: 10607 year: 2008 ident: 2068_CR4 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0804110105 – ident: 2068_CR45 – ident: 2068_CR68 – volume: 7 year: 2017 ident: 2068_CR64 publication-title: Sci. Rep. doi: 10.1038/s41598-017-05493-9 – volume: 80 start-page: 220 year: 2013 ident: 2068_CR20 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.078 – volume: 164 start-page: 131 year: 2018 ident: 2068_CR37 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.039 – volume: 77 start-page: 2250 year: 2017 ident: 2068_CR67 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26315 – volume: 335 start-page: 1628 year: 2012 ident: 2068_CR19 publication-title: Science doi: 10.1126/science.1215280 – ident: 2068_CR80 – volume: 164 start-page: 155 year: 2018 ident: 2068_CR32 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.02.020 – volume: 64 start-page: 439 year: 2010 ident: 2068_CR78 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22423 – volume: 42 start-page: 952 year: 1999 ident: 2068_CR51 publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – volume: 84 start-page: 289 year: 2020 ident: 2068_CR57 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28131 – volume: 71 start-page: 990 year: 2014 ident: 2068_CR79 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24751 – volume: 88 start-page: 2131 year: 2022 ident: 2068_CR58 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29391 – ident: 2068_CR75 – volume: 60 start-page: 1759 year: 2012 ident: 2068_CR41 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.028 – ident: 2068_CR44 – ident: 2068_CR71 – volume: 164 start-page: 10 year: 2018 ident: 2068_CR3 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.01.081 – volume: 96 start-page: 1253 year: 2017 ident: 2068_CR14 publication-title: Neuron doi: 10.1016/j.neuron.2017.11.005 – volume: 77 start-page: 2780 year: 1997 ident: 2068_CR8 publication-title: J. Neurophysiol. doi: 10.1152/jn.1997.77.5.2780 – ident: 2068_CR36 doi: 10.1002/mrm.28589 – volume: 52 start-page: 1334 year: 2010 ident: 2068_CR10 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.005 – volume: 29 start-page: 333 year: 2016 ident: 2068_CR56 publication-title: MAGMA doi: 10.1007/s10334-016-0543-6 – volume: 56 start-page: 1274 year: 2006 ident: 2068_CR55 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21073 – ident: 2068_CR60 – volume: 79 start-page: 3256 year: 2018 ident: 2068_CR62 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26954 – ident: 2068_CR85 – volume: 207 start-page: 101835 year: 2021 ident: 2068_CR1 publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2020.101835 – volume: 26B start-page: 67 year: 2005 ident: 2068_CR63 publication-title: Concepts Magn. Reson. Part B doi: 10.1002/cmr.b.20040 – volume: 62 start-page: 782 year: 2012 ident: 2068_CR87 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 88 start-page: 133 year: 2022 ident: 2068_CR48 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29194 – volume: 66 start-page: 1468 year: 2011 ident: 2068_CR70 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22927 – volume: 37 start-page: 1161 year: 2007 ident: 2068_CR5 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.05.020 – ident: 2068_CR54 – volume: 81 start-page: 686 year: 2019 ident: 2068_CR65 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27382 – volume: 55 start-page: 1227 year: 2006 ident: 2068_CR40 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20900 |
SSID | ssj0033425 |
Score | 2.6617088 |
Snippet | To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2048 |
SubjectTerms | 631/1647/245/1627 631/1647/245/1628 631/378 Angular resolution Arrays Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Brain Brain - diagnostic imaging Brain - pathology Cerebral cortex Coils (windings) Cooling Design Diffusion layers Hardware Head High resolution Humans Image resolution Life Sciences Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Neuroimaging Neurosciences Noise reduction Proteomics Scanners Signal to noise ratio Spatial discrimination Spatial resolution Structure-function relationships |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-ELyIb-uLCN402N1kk-xJRBQV2oMo9CJLNpuIUNvabg_-e2eyaUVEr5vsbpiZzCMzmY-QU5uptEyxzX5iMiacM0ynZcWkMzo3IhNVAO3rdOXds3joZb144DaJZZUznRgUdTW0eEZ-gYFBorXM5eXogyFqFGZXI4TGIlnG1mUo1ao3D7g4FwF0Fb1ypsAwxkszba4vJmC4sO4yxSxmW8L4T8P0y9v8lSkNBuh2naxFz5FeNazeIAtusElWGizJzy3y0sUY9jV0kUZi087jPZ0A4eABrUKdhqsouKh02q_HhmGfYgaxdhQ9GsD6aImIEfTtPWAXUVNTRZ8cSM02eb69ebq-YxE7gVmhsxpUawWhT-m1ttoK205LsErKyspr33Yey7-lk6nAgIZbn5sMAifFfZKXiZfC8B2yNBgO3B6hyuTcCpXa0hhhfGo46Hcw_aCyde6FaJFkRrjCxsbiiG_RL0KCm-uiIXYBxC4CsQvVImfzd0ZNW41_Zx_O-FHELTYpvgWiRU7mw7A5MONhBm44DXNg4VnOkxbZbfg4_x3XwZ2EkfMZY78__vda9v9fywFZRUD6puDlkCzV46k7ArelLo-DbH4B1erl6g priority: 102 providerName: ProQuest |
Title | Next-generation MRI scanner designed for ultra-high-resolution human brain imaging at 7 Tesla |
URI | https://link.springer.com/article/10.1038/s41592-023-02068-7 https://www.ncbi.nlm.nih.gov/pubmed/38012321 https://www.proquest.com/docview/2899188696 https://www.proquest.com/docview/2894725931 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD54QdiXxes6qw4RfNPgNEmT9NEZHC_gsIjCvEhJ00QEHRen87D_3pO0nUW8gC8tNGkbTpJz4Zx8H8CBTRUrWIDZT0xKhXOGalaUVDqjMyNSUUbSvquRPL8Vl-N0vACsPQsTi_YjpGVU02112PEUDU2ok2Qh69iTmqpFWA7Q7SHgGshBq305F5FoNXjiVKExbA7K9Lj-4BtvjdE7D_NddjQaneEq_Gy8RXJSj28NFtxkHVZq_sh_G3A3CnHrfUSODgImV9cXZIrCwgekjLUZriTolpLZY_ViaMAmphhfN8uNRII-UgSWCPLwFPmKiKmIIjcOV8om3A5PbwbntOFLoFbotEJ1WmK4U3itrbbC9liBlkhZWXrte86Hkm_pJBMhiOHWZybFYElxn2RF4qUwfAuWJs8Ttw1EmYxboZgtjBHGM8NRp6O5RzWtMy9EB5JWcLltwMQDp8VjHpPaXOe1sHMUdh6FnasOHM7f-VtDaXzZe7edj7zZVtM8RIeJ1jKTHdifN-OGCFkOM3HPs9gHB55mPOnAr3oe57_jOrqQ2HLUTuz_j38-lt_f674DPwIpfV30sgtL1cvM7aHrUhVdWFRjhVc9POvC8smw3x_hvX86-nPdjev4FUP-6F8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQviG8KA4wET2CtsR3HeUAIAaVlax9QJ-0FGcexEdJox5oK7Z_ib-TOSTqhib3tNXYc6-58H7nz_QBe-LwQlaA2-5nLuQrBcSOqmuvgTOlUruoE2jed6fGB-nyYH27Bn_4uDJVV9joxKep66ekf-S4FBpkxutRvj39xQo2i7GoPodGKxV44_Y0h2-rN5APy96UQo4_z92PeoQpwr0zeoNKpMSioojHeeOWHokJ9XXhdRxOHIVJhtA5aKHL1pY-lyzGkKGTMyiqLWjmJ616Bq0qiJaeb6aNPveaXUiWQV4oCeIGGuLukM5Rmd4WGkuo8BWVNhxrH_zWE57zbc5nZZPBGt-Bm56myd61o3YatsLgD11rsytO78HVGMfP31LWamMumXyZshYzCB6xOdSGhZugSs_VRc-I49UXmGNt3os4SOCCrCKGC_fiZsJKYa1jB5gGl9B4cXApV78P2YrkID4EVrpReFcJXzikXhZNoT9DVQBNhyqjUALKecNZ3jcwJT-PIpoS6NLYltkVi20RsWwzg1ead47aNx4Wzd3p-2O5Ir-yZAA7g-WYYDyNlWNwiLNdpDm48L2U2gActHzefkya5rzjyumfs2eL_38uji_fyDK6P59N9uz-Z7T2GG4IELBXb7MB2c7IOT9BlaqqnSU4ZfLvsg_EXOLUhxw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN90bGAkeIKoje3YzgNCg61aGaumaZP2gjLHsRHSaLc1Fdq_xl_HnZN0QhN722vsONZ9-O5y5_sBvHWZ5iWnNvupzRLpvU0ML6tEeWtyKzNZRdC-vYnaOZJfj7PjFfjT3YWhssruTIwHdTVz9I98QIFBaozK1SC0ZRH7W6NPZ-cJIUhRprWD02hEZNdf_sbwbf5xvIW8fsf5aPvwy07SIgwkTpqsxgOowgChDMY446Qb8hLPbu1UFUwY-kBF0sorLsntFy7kNsPwQouQ5mUalLQC170Dq5qioh6sft6e7B90dkAIGSFfKSZINJrl9srOUJjBHM0mVX1yyqEOFY7_axav-brX8rTR_I0ewoPWb2WbjaA9ghU_fQx3GyTLyyfwfUIR9I_Yw5pYzfYOxmyObMMHrIpVIr5i6CCzxWl9YRPqkpxgpN8KPotQgawkvAr281dETmK2ZpodepTZp3B0K3R9Br3pbOpfANM2F05q7kprpQ3cCrQu6HigwTB5kLIPaUe4wrVtzQld47SI6XVhiobYBRK7iMQudB_eL985a5p63Dh7veNH0Sr4vLgSxz68WQ6jalK-xU79bBHn4MazXKR9eN7wcfk5YaIziyMfOsZeLf7_vazdvJfXcA-Vovg2nuy-hPuc5CtW3qxDr75Y-A30n-ryVSuoDE5uWzf-AuGAJ1k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Next-generation+MRI+scanner+designed+for+ultra-high-resolution+human+brain+imaging+at+7+Tesla&rft.jtitle=Nature+methods&rft.au=Feinberg%2C+David+A.&rft.au=Beckett%2C+Alexander+J.+S.&rft.au=Vu%2C+An+T.&rft.au=Stockmann%2C+Jason&rft.date=2023-12-01&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=20&rft.issue=12&rft.spage=2048&rft.epage=2057&rft_id=info:doi/10.1038%2Fs41592-023-02068-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41592_023_02068_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon |