Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation

Osteoporosis is a systemic metabolic bone disease characterized by a reduction in bone mass, bone quality, and microarchitectural deterioration. An imbalance in bone remodeling that is caused by more osteoclast-mediated bone resorption than osteoblast-mediated bone formation results in such patholog...

Full description

Saved in:
Bibliographic Details
Published inLife sciences (1973) Vol. 147; pp. 46 - 58
Main Authors An, Jing, Yang, Hao, Zhang, Qian, Liu, Cuicui, Zhao, Jingjing, Zhang, Lingling, Chen, Bo
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 15.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Osteoporosis is a systemic metabolic bone disease characterized by a reduction in bone mass, bone quality, and microarchitectural deterioration. An imbalance in bone remodeling that is caused by more osteoclast-mediated bone resorption than osteoblast-mediated bone formation results in such pathologic bone disorder. Traditional Chinese medicines (TCM) have long been used to prevent and treat osteoporosis and have received extensive attentions and researches at home and abroad, because they have fewer adverse reactions and are more suitable for long-term use compared with chemically synthesized medicines. Here, we put the emphasis on osteoblasts, summarized the detailed research progress on the active compounds derived from TCM with potential anti-osteoporosis effects and their molecular mechanisms on promoting osteoblast-mediated bone formation. It could be concluded that TCM with kidney-tonifying, spleen-tonifying, and stasis-removing effects all have the potential effects on treating osteoporosis. The active ingredients derived from TCM that possess effects on promoting osteoblasts proliferation and differentiation include flavonoids, glycosides, coumarins, terpenoids (sesquiterpenoids, monoterpenoids, diterpenoids), phenolic acids, phenols and others (tetrameric stilbene, anthraquinones, diarylheptanoids). And it was confirmed that the bone formation effect induced by the above natural products was regulated by the expressions of bone specific matrix proteins (ALP, BSP, OCN, OPN, COL I), transcription factor (Runx2, Cbfa1, Osx), signal pathways (MAPK, BMP), local factors (ROS, NO), OPG/RANKL system of osteoblasts and estrogen-like biological activities. All the studies provided theoretical basis for clinical application, as well as new drug research and development on treating osteoporosis. [Display omitted]
AbstractList Osteoporosis is a systemic metabolic bone disease characterized by a reduction in bone mass, bone quality, and microarchitectural deterioration. An imbalance in bone remodeling that is caused by more osteoclast-mediated bone resorption than osteoblast-mediated bone formation results in such pathologic bone disorder. Traditional Chinese medicines (TCM) have long been used to prevent and treat osteoporosis and have received extensive attentions and researches at home and abroad, because they have fewer adverse reactions and are more suitable for long-term use compared with chemically synthesized medicines. Here, we put the emphasis on osteoblasts, summarized the detailed research progress on the active compounds derived from TCM with potential anti-osteoporosis effects and their molecular mechanisms on promoting osteoblast-mediated bone formation. It could be concluded that TCM with kidney-tonifying, spleen-tonifying, and stasis-removing effects all have the potential effects on treating osteoporosis. The active ingredients derived from TCM that possess effects on promoting osteoblasts proliferation and differentiation include flavonoids, glycosides, coumarins, terpenoids (sesquiterpenoids, monoterpenoids, diterpenoids), phenolic acids, phenols and others (tetrameric stilbene, anthraquinones, diarylheptanoids). And it was confirmed that the bone formation effect induced by the above natural products was regulated by the expressions of bone specific matrix proteins (ALP, BSP, OCN, OPN, COL I), transcription factor (Runx2, Cbfa1, Osx), signal pathways (MAPK, BMP), local factors (ROS, NO), OPG/RANKL system of osteoblasts and estrogen-like biological activities. All the studies provided theoretical basis for clinical application, as well as new drug research and development on treating osteoporosis.
Osteoporosis is a systemic metabolic bone disease characterized by a reduction in bone mass, bone quality, and microarchitectural deterioration. An imbalance in bone remodeling that is caused by more osteoclast-mediated bone resorption than osteoblast-mediated bone formation results in such pathologic bone disorder. Traditional Chinese medicines (TCM) have long been used to prevent and treat osteoporosis and have received extensive attentions and researches at home and abroad, because they have fewer adverse reactions and are more suitable for long-term use compared with chemically synthesized medicines. Here, we put the emphasis on osteoblasts, summarized the detailed research progress on the active compounds derived from TCM with potential anti-osteoporosis effects and their molecular mechanisms on promoting osteoblast-mediated bone formation. It could be concluded that TCM with kidney-tonifying, spleen-tonifying, and stasis-removing effects all have the potential effects on treating osteoporosis. The active ingredients derived from TCM that possess effects on promoting osteoblasts proliferation and differentiation include flavonoids, glycosides, coumarins, terpenoids (sesquiterpenoids, monoterpenoids, diterpenoids), phenolic acids, phenols and others (tetrameric stilbene, anthraquinones, diarylheptanoids). And it was confirmed that the bone formation effect induced by the above natural products was regulated by the expressions of bone specific matrix proteins (ALP, BSP, OCN, OPN, COL I), transcription factor (Runx2, Cbfa1, Osx), signal pathways (MAPK, BMP), local factors (ROS, NO), OPG/RANKL system of osteoblasts and estrogen-like biological activities. All the studies provided theoretical basis for clinical application, as well as new drug research and development on treating osteoporosis.Osteoporosis is a systemic metabolic bone disease characterized by a reduction in bone mass, bone quality, and microarchitectural deterioration. An imbalance in bone remodeling that is caused by more osteoclast-mediated bone resorption than osteoblast-mediated bone formation results in such pathologic bone disorder. Traditional Chinese medicines (TCM) have long been used to prevent and treat osteoporosis and have received extensive attentions and researches at home and abroad, because they have fewer adverse reactions and are more suitable for long-term use compared with chemically synthesized medicines. Here, we put the emphasis on osteoblasts, summarized the detailed research progress on the active compounds derived from TCM with potential anti-osteoporosis effects and their molecular mechanisms on promoting osteoblast-mediated bone formation. It could be concluded that TCM with kidney-tonifying, spleen-tonifying, and stasis-removing effects all have the potential effects on treating osteoporosis. The active ingredients derived from TCM that possess effects on promoting osteoblasts proliferation and differentiation include flavonoids, glycosides, coumarins, terpenoids (sesquiterpenoids, monoterpenoids, diterpenoids), phenolic acids, phenols and others (tetrameric stilbene, anthraquinones, diarylheptanoids). And it was confirmed that the bone formation effect induced by the above natural products was regulated by the expressions of bone specific matrix proteins (ALP, BSP, OCN, OPN, COL I), transcription factor (Runx2, Cbfa1, Osx), signal pathways (MAPK, BMP), local factors (ROS, NO), OPG/RANKL system of osteoblasts and estrogen-like biological activities. All the studies provided theoretical basis for clinical application, as well as new drug research and development on treating osteoporosis.
Osteoporosis is a systemic metabolic bone disease characterized by a reduction in bone mass, bone quality, and microarchitectural deterioration. An imbalance in bone remodeling that is caused by more osteoclast-mediated bone resorption than osteoblast-mediated bone formation results in such pathologic bone disorder. Traditional Chinese medicines (TCM) have long been used to prevent and treat osteoporosis and have received extensive attentions and researches at home and abroad, because they have fewer adverse reactions and are more suitable for long-term use compared with chemically synthesized medicines. Here, we put the emphasis on osteoblasts, summarized the detailed research progress on the active compounds derived from TCM with potential anti-osteoporosis effects and their molecular mechanisms on promoting osteoblast-mediated bone formation. It could be concluded that TCM with kidney-tonifying, spleen-tonifying, and stasis-removing effects all have the potential effects on treating osteoporosis. The active ingredients derived from TCM that possess effects on promoting osteoblasts proliferation and differentiation include flavonoids, glycosides, coumarins, terpenoids (sesquiterpenoids, monoterpenoids, diterpenoids), phenolic acids, phenols and others (tetrameric stilbene, anthraquinones, diarylheptanoids). And it was confirmed that the bone formation effect induced by the above natural products was regulated by the expressions of bone specific matrix proteins (ALP, BSP, OCN, OPN, COL I), transcription factor (Runx2, Cbfa1, Osx), signal pathways (MAPK, BMP), local factors (ROS, NO), OPG/RANKL system of osteoblasts and estrogen-like biological activities. All the studies provided theoretical basis for clinical application, as well as new drug research and development on treating osteoporosis. [Display omitted]
Author Liu, Cuicui
Zhao, Jingjing
Yang, Hao
Zhang, Qian
An, Jing
Chen, Bo
Zhang, Lingling
Author_xml – sequence: 1
  givenname: Jing
  surname: An
  fullname: An, Jing
  email: anjing198812@126.com
– sequence: 2
  givenname: Hao
  surname: Yang
  fullname: Yang, Hao
– sequence: 3
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
– sequence: 4
  givenname: Cuicui
  surname: Liu
  fullname: Liu, Cuicui
– sequence: 5
  givenname: Jingjing
  surname: Zhao
  fullname: Zhao, Jingjing
– sequence: 6
  givenname: Lingling
  surname: Zhang
  fullname: Zhang, Lingling
– sequence: 7
  givenname: Bo
  surname: Chen
  fullname: Chen, Bo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26796578$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vFSEUholpY29bf4Abw9LNjMAAM6Mr0_iVNHbTrgkDB8vNDFyBMdFfL-OtLly0K07I856cvM85OgkxAEIvKWkpofLNvp1dblkdW0JbwvgztKNDPzZEdvQE7Uj9ajpGxBk6z3lPCBGi756jMyb7UYp-2KFfX3VZk57xIUW7mpKxiwmXBLosEAqODsdcIB5iitnnt_j2HjA4Bxuqg8ULmHsdfF4yjmHbssTiw7djapp1Ls0C1usCFk_1_G3_oouP4RKdOj1nePHwXqC7jx9urz431zefvly9v24MH0RpmBy1Hjh0hI2TsdIRTUerDYNRWyON4QycHSR3QrOBOjeaScoJDGWWdx3tLtDr49563PcVclGLzwbmWQeIa1asdtkJMdDxSZQOtUHS8148jfayl4xxvh3w6gFdp9qFOiS_6PRT_bVQAXoETC05J3D_EErUZlrtVTWtNtOKUFW11kz_X8b48qfXkrSfH02-Oyahlv7DQ1LZeAimWkpVq7LRP5L-DcDbxR4
CitedBy_id crossref_primary_10_1039_D3BM01146A
crossref_primary_10_1002_iub_2857
crossref_primary_10_3389_fendo_2022_993253
crossref_primary_10_1155_2021_3562942
crossref_primary_10_1021_acsami_2c13557
crossref_primary_10_1111_cpr_13341
crossref_primary_10_11620_IJOB_2019_44_4_130
crossref_primary_10_3892_etm_2017_4914
crossref_primary_10_1021_acs_jmedchem_3c01748
crossref_primary_10_1016_j_matdes_2024_112816
crossref_primary_10_1016_j_cbi_2019_108750
crossref_primary_10_1016_j_toxicon_2024_108113
crossref_primary_10_1016_j_bbrep_2023_101471
crossref_primary_10_1166_jbt_2023_3279
crossref_primary_10_1039_D2TB01979E
crossref_primary_10_1016_j_ijbiomac_2020_12_189
crossref_primary_10_2174_0113894501275292231220062838
crossref_primary_10_1002_jcb_26737
crossref_primary_10_1016_j_fmre_2024_02_002
crossref_primary_10_1155_2017_6062707
crossref_primary_10_1016_j_jconrel_2023_11_049
crossref_primary_10_1002_jbm_b_34632
crossref_primary_10_3892_etm_2018_5866
crossref_primary_10_1016_j_jot_2023_02_003
crossref_primary_10_1002_ptr_5812
crossref_primary_10_3389_fcell_2021_759192
crossref_primary_10_3746_jkfn_2023_52_10_1035
crossref_primary_10_1111_1750_3841_14986
crossref_primary_10_1016_j_msec_2021_112386
crossref_primary_10_21638_spbu03_2023_303
crossref_primary_10_1248_cpb_c24_00664
crossref_primary_10_1016_j_cyto_2023_156134
crossref_primary_10_1186_s12920_023_01779_2
crossref_primary_10_1016_j_phymed_2024_155587
crossref_primary_10_1080_16078454_2020_1850973
crossref_primary_10_1002_jcp_27082
crossref_primary_10_3389_fphar_2024_1298181
crossref_primary_10_1155_2022_5982014
crossref_primary_10_1142_S0192415X22500112
crossref_primary_10_1371_journal_pone_0314150
crossref_primary_10_1016_j_bcp_2021_114676
crossref_primary_10_1155_2021_7795527
crossref_primary_10_3390_nu12071967
crossref_primary_10_3389_fcimb_2023_1091083
crossref_primary_10_3389_fnut_2022_960228
crossref_primary_10_1016_j_tox_2023_153595
crossref_primary_10_1186_s12906_019_2756_5
crossref_primary_10_3390_ph16010002
crossref_primary_10_5582_bst_2017_01216
crossref_primary_10_1016_j_jconrel_2023_11_020
crossref_primary_10_1016_j_yexcr_2024_114138
crossref_primary_10_1186_s13287_020_01754_z
crossref_primary_10_1016_j_mod_2020_103613
crossref_primary_10_1016_j_slast_2024_100122
crossref_primary_10_2139_ssrn_3989480
crossref_primary_10_1016_j_colsurfb_2022_112354
crossref_primary_10_1093_rb_rbae090
crossref_primary_10_1186_s13020_020_00368_0
crossref_primary_10_2174_1574888X14666190703143946
crossref_primary_10_1155_2018_6302748
crossref_primary_10_1016_j_mtbio_2023_100636
crossref_primary_10_1097_MD_0000000000032222
crossref_primary_10_1016_j_biomaterials_2025_123194
crossref_primary_10_3390_nu15040919
crossref_primary_10_1080_08923973_2022_2052895
crossref_primary_10_3389_fendo_2022_901545
crossref_primary_10_1248_bpb_b23_00324
crossref_primary_10_1016_j_archoralbio_2019_05_010
crossref_primary_10_3390_pharmaceutics17030323
crossref_primary_10_1016_j_compscitech_2021_109124
crossref_primary_10_1016_j_actbio_2023_12_014
crossref_primary_10_1002_bmc_4160
crossref_primary_10_1155_2021_7114139
crossref_primary_10_1016_j_jep_2017_02_033
crossref_primary_10_1186_s13020_022_00569_9
crossref_primary_10_1021_acsomega_0c06057
crossref_primary_10_1016_j_bioactmat_2022_11_018
crossref_primary_10_3389_fgene_2023_1182363
crossref_primary_10_1186_s12951_024_02814_9
crossref_primary_10_1007_s10068_018_0379_0
crossref_primary_10_1016_j_tem_2021_03_008
crossref_primary_10_1007_s00204_025_04019_x
crossref_primary_10_3389_fmolb_2025_1518873
crossref_primary_10_3389_fphar_2018_00981
crossref_primary_10_1111_jcmm_15821
crossref_primary_10_2174_1386207326666230607155913
crossref_primary_10_3389_fphar_2021_739326
crossref_primary_10_1039_D3FO02065G
crossref_primary_10_3892_mmr_2017_7648
crossref_primary_10_1007_s42535_024_01015_x
crossref_primary_10_3390_ijms242317103
crossref_primary_10_1097_BRS_0000000000004319
crossref_primary_10_1016_j_jff_2024_106531
crossref_primary_10_3390_nu9060588
crossref_primary_10_1016_j_phrs_2019_104350
crossref_primary_10_1186_s12864_022_08910_0
crossref_primary_10_1002_ptr_8267
crossref_primary_10_1016_j_ijbiomac_2021_11_030
crossref_primary_10_1016_j_jconrel_2020_11_059
crossref_primary_10_1016_j_phymed_2021_153517
crossref_primary_10_1166_jbn_2021_3160
crossref_primary_10_1186_s13018_023_03849_8
crossref_primary_10_1039_D2TB00446A
crossref_primary_10_3390_nu14153053
crossref_primary_10_3390_ijms21249579
crossref_primary_10_1016_j_phymed_2020_153225
crossref_primary_10_1142_S0192415X21500427
crossref_primary_10_1016_j_lfs_2020_118033
crossref_primary_10_1007_s13577_022_00711_7
crossref_primary_10_1016_j_nantod_2023_101839
crossref_primary_10_1016_j_psj_2020_10_053
crossref_primary_10_3390_antiox11122365
crossref_primary_10_1016_j_phrs_2020_104944
crossref_primary_10_1016_j_jchromb_2022_123170
crossref_primary_10_1002_cbin_12166
crossref_primary_10_1016_j_fbio_2025_106106
crossref_primary_10_1016_j_ijbiomac_2022_05_036
crossref_primary_10_1016_j_jconrel_2023_01_071
crossref_primary_10_1155_2020_2982480
crossref_primary_10_3389_fendo_2022_846154
crossref_primary_10_1007_s12020_021_02866_z
crossref_primary_10_1111_bcpt_13657
crossref_primary_10_1111_jcmm_15978
crossref_primary_10_1142_S2575900018300023
crossref_primary_10_32725_jab_2024_021
crossref_primary_10_3390_nu15143233
crossref_primary_10_3389_fphar_2021_682541
crossref_primary_10_3390_molecules28104197
crossref_primary_10_1002_ptr_7271
crossref_primary_10_1186_s12891_023_06136_z
crossref_primary_10_1007_s11626_023_00783_1
crossref_primary_10_3892_mmr_2017_7954
crossref_primary_10_1016_j_jot_2024_09_009
crossref_primary_10_1002_adhm_202300469
crossref_primary_10_1016_j_ejmech_2022_114813
crossref_primary_10_1080_10408398_2020_1836606
crossref_primary_10_1016_j_omtn_2018_03_004
crossref_primary_10_1002_jcla_23916
crossref_primary_10_3390_antiox13101162
crossref_primary_10_1038_srep32323
crossref_primary_10_1055_a_1861_2388
crossref_primary_10_3390_ijms21207715
crossref_primary_10_3389_fphar_2024_1450154
crossref_primary_10_1016_j_ijpharm_2020_120171
crossref_primary_10_1111_jfbc_14120
crossref_primary_10_3389_fcell_2021_588093
crossref_primary_10_1021_acsbiomaterials_3c00193
crossref_primary_10_1016_j_ejmech_2023_116068
crossref_primary_10_1038_s41598_017_02491_9
crossref_primary_10_1038_s12276_021_00621_y
crossref_primary_10_3389_fphar_2022_1043975
crossref_primary_10_1007_s12011_020_02258_w
crossref_primary_10_11620_IJOB_2019_44_3_89
crossref_primary_10_3390_plants12102055
crossref_primary_10_1016_j_cclet_2022_107986
crossref_primary_10_3892_mmr_2019_10125
crossref_primary_10_1007_s11655_025_3826_9
crossref_primary_10_3389_fphar_2022_894832
crossref_primary_10_3390_md18070373
crossref_primary_10_1016_j_fitote_2024_105831
crossref_primary_10_1016_j_cej_2022_134855
crossref_primary_10_1038_s41598_022_10629_7
crossref_primary_10_1186_s12951_021_00976_4
crossref_primary_10_1016_j_tibtech_2024_08_002
crossref_primary_10_3389_fphar_2022_1014173
crossref_primary_10_1002_jcb_30509
crossref_primary_10_1007_s00394_018_1618_0
crossref_primary_10_1002_ptr_6034
crossref_primary_10_3389_fendo_2022_839885
crossref_primary_10_1016_j_sjbs_2019_04_010
crossref_primary_10_1002_fsn3_3746
crossref_primary_10_1186_s12860_023_00471_8
crossref_primary_10_1016_j_intimp_2021_108113
crossref_primary_10_1016_j_bbrc_2019_04_030
crossref_primary_10_1016_j_fbio_2024_104800
crossref_primary_10_62347_WMLI2601
crossref_primary_10_1007_s11033_024_09596_1
crossref_primary_10_1039_D0FO00782J
crossref_primary_10_1016_j_lfs_2021_119204
crossref_primary_10_1007_s00774_024_01516_4
crossref_primary_10_3892_mmr_2022_12648
crossref_primary_10_1007_s12011_019_01867_4
crossref_primary_10_1039_D2TB02280J
crossref_primary_10_3390_md17100543
crossref_primary_10_1186_s13018_024_04653_8
crossref_primary_10_3390_ijms19030912
crossref_primary_10_1155_2021_6645193
crossref_primary_10_1016_j_ijbiomac_2024_132013
crossref_primary_10_1080_14786419_2022_2123480
crossref_primary_10_1021_acs_jmedchem_3c01884
crossref_primary_10_1016_j_apmt_2024_102433
crossref_primary_10_1038_s41374_020_0451_2
crossref_primary_10_1002_advs_202204592
crossref_primary_10_1007_s10856_019_6310_2
crossref_primary_10_1002_advs_202206533
crossref_primary_10_1007_s13770_024_00657_x
crossref_primary_10_1016_j_msec_2016_12_028
crossref_primary_10_1016_j_jfutfo_2022_08_004
crossref_primary_10_1016_j_bioactmat_2020_10_010
crossref_primary_10_1155_2022_3960834
crossref_primary_10_1016_j_bioactmat_2021_04_041
crossref_primary_10_1016_j_ceramint_2022_11_044
crossref_primary_10_1080_21655979_2022_2026729
crossref_primary_10_2174_0929867328666210921143644
crossref_primary_10_1016_j_ejphar_2022_175326
crossref_primary_10_1021_acsbiomaterials_1c01365
crossref_primary_10_1007_s11626_023_00834_7
crossref_primary_10_3892_etm_2019_8291
crossref_primary_10_3389_fphar_2024_1370900
crossref_primary_10_1016_j_jff_2018_06_004
crossref_primary_10_1016_j_jff_2022_105036
crossref_primary_10_1155_2020_9825073
crossref_primary_10_1016_j_cbi_2023_110696
crossref_primary_10_2217_epi_2019_0218
crossref_primary_10_3390_molecules27113611
crossref_primary_10_3389_fmolb_2021_679345
crossref_primary_10_1039_D0NR01625J
crossref_primary_10_1016_j_jtcme_2023_08_001
crossref_primary_10_1093_chromsci_bmaa012
crossref_primary_10_1016_j_jpba_2019_112836
crossref_primary_10_3389_fphar_2021_772944
crossref_primary_10_1080_21655979_2022_2066047
crossref_primary_10_1080_10286020_2022_2056028
crossref_primary_10_1016_j_biopha_2018_08_069
crossref_primary_10_1016_j_biopha_2017_06_059
crossref_primary_10_1021_acs_jafc_4c00582
crossref_primary_10_3892_ijmm_2018_3822
crossref_primary_10_1016_j_nano_2020_102273
crossref_primary_10_3390_ijms19092554
crossref_primary_10_3390_ijms21155332
crossref_primary_10_3390_ijms20184567
crossref_primary_10_3389_fphar_2023_1128147
crossref_primary_10_3390_molecules23123086
crossref_primary_10_1021_acscentsci_3c01414
crossref_primary_10_3390_pharmaceutics14051012
crossref_primary_10_1155_2021_8851884
crossref_primary_10_1016_j_ijbiomac_2022_10_142
crossref_primary_10_3390_coatings9050327
crossref_primary_10_1016_j_tem_2021_07_011
crossref_primary_10_4196_kjpp_2020_24_6_463
crossref_primary_10_3390_ijms22136899
crossref_primary_10_1016_j_ijbiomac_2021_01_103
crossref_primary_10_1186_s12906_020_03065_5
crossref_primary_10_1007_s10856_024_06825_8
crossref_primary_10_3390_ijms22094924
crossref_primary_10_1016_j_surfcoat_2020_125452
crossref_primary_10_3390_ijms21134661
crossref_primary_10_1016_j_jpba_2024_116112
crossref_primary_10_1016_j_jff_2022_105112
crossref_primary_10_1002_jcp_26893
crossref_primary_10_3923_ijp_2018_866_872
crossref_primary_10_1016_j_compositesa_2024_108697
crossref_primary_10_1016_j_tem_2020_11_007
crossref_primary_10_1016_j_mtbio_2024_101023
crossref_primary_10_3390_ijms21218059
crossref_primary_10_1016_j_jep_2020_113113
crossref_primary_10_1007_s11655_024_3761_1
crossref_primary_10_1155_2022_3126094
crossref_primary_10_1021_acsbiomaterials_3c01981
crossref_primary_10_1002_advs_202307269
crossref_primary_10_1016_j_chmed_2023_09_006
crossref_primary_10_3390_pharmaceutics16040485
crossref_primary_10_3390_nu12072075
crossref_primary_10_1002_jcb_30439
crossref_primary_10_1002_jcb_28121
crossref_primary_10_1021_acsami_4c06661
crossref_primary_10_2147_JIR_S346627
crossref_primary_10_1016_j_cej_2024_153597
crossref_primary_10_3390_cells11233887
crossref_primary_10_3892_etm_2018_6353
crossref_primary_10_1007_s11356_018_1778_8
crossref_primary_10_2174_1874467213666200116113945
crossref_primary_10_1016_j_matdes_2024_113253
crossref_primary_10_1002_cbf_3858
crossref_primary_10_1155_2021_6646323
crossref_primary_10_3390_nu12051383
crossref_primary_10_1016_j_msec_2019_109999
crossref_primary_10_1016_j_biotechadv_2018_03_014
crossref_primary_10_3892_mmr_2019_10613
crossref_primary_10_17352_ijsr_000012
crossref_primary_10_1538_expanim_22_0129
crossref_primary_10_3390_fermentation7030186
crossref_primary_10_3390_molecules23092306
crossref_primary_10_3892_etm_2018_6127
crossref_primary_10_3923_ijp_2024_229_240
crossref_primary_10_3892_ijmm_2017_2847
crossref_primary_10_3389_fphar_2022_849513
crossref_primary_10_3892_mmr_2017_7386
crossref_primary_10_1016_j_jconrel_2024_10_021
crossref_primary_10_2147_IJN_S485581
crossref_primary_10_1016_j_biopha_2017_11_136
crossref_primary_10_1021_acsami_4c07210
crossref_primary_10_3389_fsurg_2022_857170
crossref_primary_10_1016_j_phrs_2020_105109
crossref_primary_10_3389_fbioe_2024_1421718
crossref_primary_10_1186_s13018_023_04013_y
crossref_primary_10_1016_j_jot_2019_02_001
crossref_primary_10_1002_adfm_202407483
crossref_primary_10_1002_biof_1878
crossref_primary_10_1016_j_heliyon_2023_e18876
crossref_primary_10_1155_2022_4718438
crossref_primary_10_1038_s41598_020_67890_x
crossref_primary_10_1002_advs_202002211
crossref_primary_10_12677_ACM_2023_134951
crossref_primary_10_1007_s11517_018_1844_x
crossref_primary_10_1021_acsami_2c19026
crossref_primary_10_3389_fcell_2016_00040
crossref_primary_10_1002_jcp_27499
crossref_primary_10_3390_ijms25073582
crossref_primary_10_1016_j_mtbio_2023_100848
crossref_primary_10_1080_1061186X_2021_2013488
crossref_primary_10_1016_j_mtbio_2022_100206
crossref_primary_10_3389_fcell_2021_726549
crossref_primary_10_3390_ijms232113559
crossref_primary_10_1038_s41598_023_29070_5
crossref_primary_10_1016_j_scitotenv_2024_178331
crossref_primary_10_1016_j_drudis_2018_05_012
crossref_primary_10_1111_jcmm_17476
crossref_primary_10_3389_fphar_2020_00731
crossref_primary_10_1016_j_psj_2024_104274
crossref_primary_10_1109_ACCESS_2020_2991750
crossref_primary_10_14258_jcprm_20220310646
crossref_primary_10_3389_fphar_2023_1235854
crossref_primary_10_1016_j_ijbiomac_2025_140884
crossref_primary_10_1007_s11418_018_1237_3
crossref_primary_10_1002_JPER_17_0655
crossref_primary_10_1016_j_biomaterials_2025_123251
crossref_primary_10_1007_s12010_022_04038_9
crossref_primary_10_3390_ijms22052483
crossref_primary_10_1155_2021_7383062
crossref_primary_10_1049_nbt2_12136
crossref_primary_10_3892_mmr_2017_8021
crossref_primary_10_1155_2020_8582318
crossref_primary_10_7717_peerj_10157
crossref_primary_10_1016_j_bbrc_2022_06_042
crossref_primary_10_1111_jcmm_15064
crossref_primary_10_1016_j_cryobiol_2017_07_003
crossref_primary_10_1016_j_intimp_2020_106335
crossref_primary_10_1016_j_dcmed_2024_09_007
crossref_primary_10_1016_j_ceramint_2023_03_092
crossref_primary_10_1016_j_jconrel_2024_12_081
crossref_primary_10_3390_ijms24021691
crossref_primary_10_3892_etm_2022_11338
crossref_primary_10_3390_ijms24054534
crossref_primary_10_1016_j_smaim_2022_12_003
crossref_primary_10_1088_1748_605X_ac9943
crossref_primary_10_3389_fmed_2021_694800
crossref_primary_10_3389_frans_2025_1533486
crossref_primary_10_1038_s41597_024_03523_6
crossref_primary_10_1016_j_foodres_2023_112850
crossref_primary_10_1016_j_yexcr_2021_112864
crossref_primary_10_1016_j_carpta_2021_100068
crossref_primary_10_1002_mabi_202100078
crossref_primary_10_3389_fendo_2023_1276631
crossref_primary_10_1016_j_biopha_2022_113381
crossref_primary_10_1097_MD_0000000000031771
crossref_primary_10_1016_j_biopha_2022_113265
crossref_primary_10_1016_j_ijbiomac_2024_136085
crossref_primary_10_3389_fphar_2021_754088
crossref_primary_10_1186_s40001_022_00820_x
crossref_primary_10_1016_j_bioactmat_2024_06_016
crossref_primary_10_1016_j_heliyon_2024_e29711
crossref_primary_10_1155_2021_6704999
crossref_primary_10_1016_j_cej_2024_157687
crossref_primary_10_1007_s11427_019_1555_9
crossref_primary_10_1016_j_bioorg_2021_105511
crossref_primary_10_1155_term_2812191
crossref_primary_10_1038_s41401_020_00509_z
crossref_primary_10_1038_s41598_024_77850_4
crossref_primary_10_2174_1871530320999200817114817
crossref_primary_10_1002_vms3_913
crossref_primary_10_1016_j_gene_2023_147942
crossref_primary_10_1007_s00774_017_0889_5
crossref_primary_10_1016_j_phytochem_2022_113085
crossref_primary_10_3390_molecules25051177
crossref_primary_10_1016_j_jep_2022_115094
crossref_primary_10_1038_s41598_022_12490_0
crossref_primary_10_1166_jbt_2023_3268
crossref_primary_10_3390_jfb16030100
crossref_primary_10_1016_j_jff_2023_105826
crossref_primary_10_1016_j_apmt_2022_101530
crossref_primary_10_1002_jsfa_12031
crossref_primary_10_1002_jssc_201700688
crossref_primary_10_3389_fbioe_2023_1258030
crossref_primary_10_1123_pes_2017_0042
crossref_primary_10_3389_fphar_2021_723145
crossref_primary_10_1002_cbf_3457
crossref_primary_10_1016_j_actbio_2022_03_046
crossref_primary_10_1186_s13018_024_04529_x
crossref_primary_10_17779_KAOMP_2019_43_5_005
crossref_primary_10_1007_s00210_025_04009_x
crossref_primary_10_3389_fcell_2024_1421191
crossref_primary_10_3892_etm_2017_4128
crossref_primary_10_4103_2221_1691_331271
crossref_primary_10_3390_biom10020190
crossref_primary_10_1016_j_bcp_2024_116519
crossref_primary_10_1016_j_carbpol_2019_115658
Cites_doi 10.1016/j.intimp.2013.08.015
10.1111/j.1365-2184.2010.00700.x
10.1038/21224
10.1126/science.296.5573.1655
10.1016/S0092-8674(00)80209-3
10.1016/S1297-319X(10)70004-X
10.1016/j.phymed.2012.01.006
10.1038/35065000
10.1196/annals.1346.019
10.1016/S0092-8674(00)81569-X
10.1002/14651858.CD005467.pub2
10.1079/PNS19950017
10.1083/jcb.200610046
10.1073/pnas.96.14.8156
10.1016/S0092-8674(00)80257-3
10.1002/jbmr.21
10.1074/jbc.M211386200
10.1016/j.intimp.2008.01.027
10.1016/S0092-8674(01)00622-5
10.1242/jcs.104.4.1013
10.1128/MCB.22.17.6222-6233.2002
10.1016/j.ejphar.2011.04.047
10.1016/j.phymed.2011.03.002
10.1016/j.biocel.2014.03.005
10.1210/en.2006-1000
10.1016/j.fitote.2012.11.010
10.1359/jbmr.1999.14.7.1145
10.1016/j.ejphar.2008.04.030
10.1111/j.1749-6632.2002.tb04109.x
10.1016/j.bone.2014.12.059
10.1016/j.fct.2013.09.019
10.1016/j.bone.2014.06.016
10.3892/ijmm.2012.1079
10.1038/nature01654
10.1073/pnas.96.10.5522
10.18388/abp.2003_3629
10.1016/j.cellimm.2011.05.011
10.1007/s11914-008-0005-9
10.1016/j.ejphar.2011.12.001
10.1016/j.steroids.2012.02.019
10.1016/j.diff.2012.05.001
10.1002/jbmr.5650070902
10.1016/S0140-6736(03)14596-5
10.1359/jbmr.0707onj
10.1359/jbmr.1998.13.7.1101
10.1210/endo.142.12.8536
10.1126/science.274.5295.2100
10.1016/j.bone.2015.01.002
10.1359/jbmr.2001.16.8.1416
10.1056/NEJMoa031975
10.1016/j.ydbio.2009.01.009
10.1517/14656560802197162
10.1016/j.jsbmb.2014.08.002
10.2337/diabetes.55.02.06.db05-0963
10.1210/er.2009-0024
10.1016/j.ejphar.2012.05.045
10.1172/JCI110667
10.1080/03008200390152188
10.1016/j.phymed.2013.03.005
10.1126/science.289.5484.1508
10.1074/jbc.M212296200
10.1345/aph.1D353
10.1074/jbc.M409332200
10.1007/s00198-006-0224-9
10.1056/NEJMoa035725
10.1016/j.ecl.2012.05.002
10.1124/pr.58.4.8
10.1016/j.jbspin.2006.02.004
10.1074/jbc.M207776200
10.1016/j.intimp.2011.01.018
10.1096/fasebj.4.13.2210157
10.1016/j.bcp.2013.09.009
10.1016/j.devcel.2005.03.016
10.1172/JCI27071
10.1126/science.150.3698.893
10.1172/JCI42285
10.1089/jwh.2008.0897
10.1359/jbmr.2000.15.10.1879
10.1074/jbc.M600603200
10.1016/j.fitote.2013.05.016
10.1002/jbmr.5650090409
10.1016/j.jsbmb.2014.02.019
10.1142/S0192415X05002916
10.1016/j.ejphar.2013.05.039
10.1196/annals.1365.035
10.1126/science.270.5241.1491
10.1172/JCI200419900
10.1016/j.phymed.2009.08.007
10.1016/j.fitote.2012.08.008
10.1007/s00198-006-0172-4
10.1002/jbmr.2107
10.1016/j.bbrc.2011.01.021
10.1074/jbc.M606706200
10.1016/j.yexcr.2004.07.035
10.1016/j.jbspin.2009.02.005
10.1016/j.phymed.2012.07.010
10.1016/j.intimp.2011.04.004
10.1016/j.intimp.2011.05.011
10.1007/s00223-010-9393-9
10.1016/j.ejphar.2011.06.059
10.1016/j.cellsig.2003.08.011
10.1017/S0007114513002043
10.1016/j.phymed.2013.03.001
10.1359/jbmr.061113
10.1002/jcp.21253
10.1371/journal.pbio.0000069
10.1126/science.284.5411.143
10.1038/382448a0
10.1016/j.tem.2004.01.008
10.1016/j.jsbmb.2013.12.011
10.1016/j.phymed.2007.04.003
10.1016/j.bone.2007.04.191
10.1016/j.bone.2014.06.010
10.1196/annals.1402.081
10.1359/jbmr.2002.17.4.661
10.1016/j.ejphar.2007.10.013
10.1016/j.bbrc.2011.02.017
10.1093/oxfordjournals.jbchem.a002824
10.1016/j.fitote.2014.07.013
10.1016/j.drudis.2013.07.015
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QP
7S9
L.6
DOI 10.1016/j.lfs.2016.01.024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE
Calcium & Calcified Tissue Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1879-0631
EndPage 58
ExternalDocumentID 26796578
10_1016_j_lfs_2016_01_024
S0024320516300261
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5RE
5VS
6TJ
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
C45
CNWQP
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IH2
IHE
J1W
K-O
KOM
L7B
LCYCR
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSH
SSP
SSZ
T5K
TEORI
YZZ
~G-
.55
.GJ
29L
3O-
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACIEU
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HMG
HMT
HVGLF
HZ~
H~9
J5H
MVM
R2-
SEW
SIN
SPT
WUQ
X7M
Y6R
YYP
ZGI
ZKB
ZXP
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7QP
7S9
L.6
ID FETCH-LOGICAL-c485t-269aa84e3029bcd6f0a19dac2e9adc6cc42efd864f5a281ff9cb66bec12d43313
IEDL.DBID .~1
ISSN 0024-3205
1879-0631
IngestDate Fri Jul 11 16:33:38 EDT 2025
Tue Aug 05 10:10:30 EDT 2025
Fri Jul 11 06:27:43 EDT 2025
Mon Jul 21 06:00:56 EDT 2025
Tue Jul 01 04:29:35 EDT 2025
Thu Apr 24 23:05:11 EDT 2025
Fri Feb 23 02:25:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords BMMSCs
Traditional Chinese medicines
NO
RANKL
Vanillic acid (PubChem CID): 8468
ALP
Icariin (PubChem CID): 5,318,997
Honokiol (PubChem CID): 72,303
JNK
Molecular mechanism
OPG
cGMP
RANK
MDA
OPN
C/EBP-β
Osteoblasts
sGC
Kirenol (PubChem CID): 15,736,732
Osteoporosis
MSCs
Psoralen (PubChem CID): 6199
PI3K
BMD
EREs
COL I
Puerarin (PubChem CID): 5,281,807
BSP
Runx2
MAPKs
ERs
Osthole (PubChem CID): 10,228
Cbfa1
PKC
PKG
COL1A1
BMPs
Genistein (PubChem CID): 5,280,961
NOS
Osx
Natural products
ROS
Naringin (PubChem CID): 442,428
OCN
BMSCs
Costunolide (PubChem CID): 5,281,437
ERK
Language English
License Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-269aa84e3029bcd6f0a19dac2e9adc6cc42efd864f5a281ff9cb66bec12d43313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 26796578
PQID 1767622441
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2101355819
proquest_miscellaneous_1805507475
proquest_miscellaneous_1767622441
pubmed_primary_26796578
crossref_primary_10_1016_j_lfs_2016_01_024
crossref_citationtrail_10_1016_j_lfs_2016_01_024
elsevier_sciencedirect_doi_10_1016_j_lfs_2016_01_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-15
PublicationDateYYYYMMDD 2016-02-15
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Life sciences (1973)
PublicationTitleAlternate Life Sci
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Uihlein, Leder (bb0115) 2012; 41
Burge, Dawson-Hughes, Solomon, Wong, King, Tosteson (bb0060) 2007; 22
Wang, Goh, Li (bb0370) 2007; 148
Dimmeler, Fleming, Fisslthaler, Hermann, Busse, Zeiher (bb0610) 1999; 399
Hu, Wang, Mo, Lin, Sun (bb0045) 2008; 11
Black, Greenspan, Ensrud, Palermo, Mcgowan, Lang (bb0105) 2003; 349
Nakashima, Zhou, Kunkel, Zhang, Deng, Behringer (bb0235) 2002; 108
Cappuzzo, Delafuente (bb0080) 2004; 38
Liang, Lin, Li, Li, Gao, Gan (bb0445) 2012; 30
Tang, Hou, Zhou, Zhang, Holz, Sheu (bb0460) 2010; 25
Leboime, Confavreux, Mehsen, Paccou, David, Roux (bb0030) 2010; 77
Hu, Kim, Sarraf, Spiegelman (bb0350) 1996; 274
Raisz (bb0020) 2005; 115
Pittenger, Mackay, Beck, Jaiswal, Douglas, Mosca (bb0240) 1999; 284
Styrkarsdottir, Cazier, Kong, Rolfsson, Larsen, Bjarnadottir (bb0415) 2003; 1
Bai, Lu, Liu, Zhang, Li, Zou (bb0555) 2005; 280
Xiao, Fung, Mok, Wong, Ho, Wang (bb0335) 2014; 143
Ikeda, Utsuyama, Hirokawa (bb0290) 2001; 16
Liao, Tai, Cherng, Liu, Chang, Lin (bb0530) 2014; 111
Cheskis, Greger, Nagpal, Freedman (bb0490) 2007; 213
Hinoi, Fujimori, Wang, Hojo, Uno, Yoneda (bb0210) 2006; 281
Mathews, Bhonde, Gupta, Totey (bb0205) 2012; 84
Ghosh-Choudhury, Mandal, Choudhury (bb0435) 2007; 282
Simonet, Lacey, Dunstan, Kelley, Chang, Lüthy (bb0280) 1997; 89
Lee, Shin, Min, Kim (bb0465) 2008; 8
Piscitelli, Iolascon, Gimigliano, Muratore, Camboa, Borgia (bb0050) 2007; 18
Beral (bb0065) 2003; 362
Zanchetta, Diehl, Buttazzoni, Galich, Silveira, Bogado (bb0070) 2013; 29
Gordon, Tye, Sampaio, Underhill, Hunter, Goldberg (bb0170) 2007; 41
Sun, Li, Zhang, Zhang, Lv, Sun (bb0275) 2013; 84
Chang, Karin (bb0340) 2001; 410
Urist (bb0010) 1965; 150
Ponnapakkam, Katikaneni, Sakon, Stratford, Gensure (bb0085) 2013; 19
Aouadi, Laurent, Prot, Brustel, Binétruy, Bost (bb0355) 2006; 55
Huang, Shi, Gao, Zhang, Fan, Li (bb0575) 2015; 73
Srivastava, Bankar, Roy (bb0265) 2013; 20
Stein, Lian, Owen (bb0160) 1990; 4
Lee, Huang, Liao, Chiou (bb0375) 2011; 668
Kihara, Ichikawa, Yonezawa, Lee, Akihisa, Woo (bb0475) 2011; 406
Geoffroy, Kneissel, Fournier, Boyde, Matthias (bb0220) 2002; 22
Chair, Burr, Cauley, Dempster, Ebeling, Felsenberg (bb0095) 2007; 22
Huang, Gao, Jie, Wei, Fan, Zhang (bb0585) 2014; 66
Satue, Arriero, Monjo, Ramis (bb0270) 2013; 86
Don, Lin, Chiou (bb0380) 2012; 19
Wu, Fong, Tsai, Chen, Tsuzuki, Tang (bb0450) 2008; 588
Ducy, Desbois, Boyce, Pinero, Story, Dunstan (bb0175) 1996; 382
Ge, Xiao, Jiang, Franceschi (bb0365) 2007; 176
Lee, Choi (bb0320) 2011; 270
Sakou, Onishi, Yamamoto, Nagamine, Sampath, Dijke (bb0405) 1999; 14
K. S (bb0295) 2001; 142
Rodan, Martin (bb0090) 2000; 289
Merry, Dodds, Littlewood, Gowen (bb0180) 1993; 104
Tang, Yang, Yang, Huang, Shi, Chen (bb0455) 2011; 405
Marino, Pellegrini, Rosa, Acconcia (bb0495) 2012; 77
Maurice (bb0130) 2006; 73
Huang, Gao, Wang, Zhang, Li, Shi (bb0590) 2015; 74
Bilezikian (bb0100) 2008; 6
Li, Zeng, Cai (bb0255) 2011; 18
Cantley (bb0605) 2002; 296
Yoshitake, Rittling, Denhardt, Noda (bb0190) 1999; 96
Lacey, Timms, Tan, Kelley, Dunstan, Burgess (bb0285) 1998; 93
Buencamino, Sikon, Jain, Thacker (bb0035) 2009; 18
Ducy, Zhang, Geoffroy, Ridall, Karsenty (bb0230) 1997; 89
Zhang, Yang, Meng, Fan, Chen, He (bb0570) 2012; 689
Bremner, Beattie (bb0145) 1995; 54
Chen, Zhang, Mao, He, Zhan, Deng (bb0470) 2013; 62
Ha, Kwak, Lee, Jin, Kim, Kim (bb0560) 2004; 301
Rittling, Matsumoto, Mckee, Nanci, An, Novick (bb0185) 1998; 13
Shtutman, Zhurinsky, Simcha, Albanese, D'amico, Pestell (bb0430) 1999; 96
Franceschi, Ge, Xiao, Roca, Jiang (bb0140) 2007; 1116
Xu, Xu, Zhou, Lee, Wu, Cui (bb0385) 2014; 51
Lee, Kwak, Park, Pyo (bb0625) 2011; 11
Farley, Hall, Tanner, Wergedal (bb0150) 1994; 9
Riggs, Wahner, Seeman, Offord, Dunn, Mazess (bb0025) 1982; 70
Lee, Kim, Kim, Park, Kang, Kyung (bb0420) 2003; 278
Xu, Lawson, Kras, Ryan (bb0125) 2005
Hsieh, Sheu, Sun, Chen, Liu (bb0330) 2010; 17
Dai, Li, Quarles, Song, Pan, Zhou (bb0540) 2007; 14
Kousteni, Bellido, Plotkin, O'brien, Bodenner, Han (bb0520) 2001; 104
Karsenty (bb0005) 2003; 423
Kwak, Lee, Park, Byun, Sohn, Kim (bb0400) 2013; 17
Suh, Choi, Lee, Kim (bb0580) 2013; 89
Song, Zhao, Zhang, Li, Zhou (bb0250) 2013; 714
Wennberg, Hessle, Lundberg, Mauro, Narisawa, Lerner (bb0165) 2000; 15
Rokutanda, Fujita, Kanatani, Yoshida, Komori, Liu (bb0615) 2009; 328
Manolagas (bb0545) 2010; 31
Ishijima, Tsuji, Rittling, Yamashita, Kurosawa, Denhardt (bb0195) 2002; 17
Yoon, Yun, Kim, Jin, Woo, Jeong (bb0260) 2011; 664
Mizuno, Kuboki (bb0200) 2001; 129
Nohe, Keating, Knaus, Petersen (bb0410) 2004; 16
Melton, Chrischilles, Cooper, Lane, Riggs (bb0055) 1992; 7
Wang, Wang, Xie, Li, Sun, Sun (bb0535) 2013; 20
Finkelstein, Hayes, Hunzelman, Wyland, Lee, Neer (bb0110) 2003; 349
Prusty, Park, Davis, Farmer (bb0245) 2002; 277
Tang, Yang, Chien, Chen, Fu (bb0395) 2008; 579
Sendur, Turan, Tastaban, Serter (bb0550) 2009; 76
Baek, Oh, Lee, Lee, Kim, Kwon (bb0565) 2010; 87
Xiao, Gao, Zhang, Wong, Dai, Yao (bb0305) 2014; 144
Pinkerton, Thomas (bb0075) 2014; 142
Gutiérrez, Petiti, Sosa, Fozzatti, Paul, Masini-Repiso (bb0600) 2010; 43
Pratap, Galindo, Zaid, Vradii, Bhat, Robinson (bb0215) 2003; 63
Turner, Riggs, Spelsberg (bb0485) 1994; 15
Day, Guo, Beal, Yang (bb0425) 2005; 8
Choi (bb0315) 2011; 11
Franceschi, Xiao, Jiang, Gopalakrishnan, Yang, Reith (bb0225) 2003; 44
Migliaccio, Castoria, Domenico, Falco, Bilancio, Auricchio (bb0510) 2002; 963
Balcerzak, Hamade, Zhang, Pikula, Azzar, Radisson (bb0155) 2003; 50
Lee, Choi (bb0390) 2011; 11
Tiyasatkulkovit, Charoenphandhu, Wongdee, Thongbunchoo, Krishnamra, Malaivijitnondc (bb0325) 2012; 19
Zhai, Guo, Ge, Zhen, Ma, Zhou (bb0620) 2014; 66
Johnell, Kanis (bb0040) 2006; 17
Kim, Song, Hwang (bb0310) 2014; 98
Marcus, Majumdar (bb0135) 2001
Lee, Huang, Liao, Chiou (bb0525) 2012; 676
Feng, Xing, Zhang, Zhao, Horn, Chan (bb0440) 2003; 278
Greenblatt, Shim, Zou, Sitara, Schweitzer, Hu (bb0360) 2010; 120
Akune, Ohba, Kamekura, Yamaguchi, Chung, Kubota (bb0345) 2004; 113
Hadjidakis, Androulakis (bb0015) 2006; 1092
Liu, Liu, Xia (bb0120) 2014
Gruberemail, Gruber, Gruber, Wieser, Huber (bb0505) 2004; 15
Li, Yang, Zhu, Chen, Qi, Shi (bb0300) 2012; 83
Wright, Cavailles, Fuqua, Jordan, Katzenellenbogen, Korach (bb0480) 2006; 58
Kato, Endoh, Masuhiro, Kitamoto, Uchiyama, Sasaki (bb0500) 1995; 270
Zallone (bb0515) 2006; 1068
Wimalawansa (bb0595) 2008; 9
Wennberg (10.1016/j.lfs.2016.01.024_bb0165) 2000; 15
Suh (10.1016/j.lfs.2016.01.024_bb0580) 2013; 89
Maurice (10.1016/j.lfs.2016.01.024_bb0130) 2006; 73
Pittenger (10.1016/j.lfs.2016.01.024_bb0240) 1999; 284
Hinoi (10.1016/j.lfs.2016.01.024_bb0210) 2006; 281
Pinkerton (10.1016/j.lfs.2016.01.024_bb0075) 2014; 142
Lee (10.1016/j.lfs.2016.01.024_bb0465) 2008; 8
Melton (10.1016/j.lfs.2016.01.024_bb0055) 1992; 7
Hu (10.1016/j.lfs.2016.01.024_bb0045) 2008; 11
Riggs (10.1016/j.lfs.2016.01.024_bb0025) 1982; 70
Wang (10.1016/j.lfs.2016.01.024_bb0535) 2013; 20
Geoffroy (10.1016/j.lfs.2016.01.024_bb0220) 2002; 22
Greenblatt (10.1016/j.lfs.2016.01.024_bb0360) 2010; 120
Finkelstein (10.1016/j.lfs.2016.01.024_bb0110) 2003; 349
Beral (10.1016/j.lfs.2016.01.024_bb0065) 2003; 362
Ducy (10.1016/j.lfs.2016.01.024_bb0175) 1996; 382
Yoon (10.1016/j.lfs.2016.01.024_bb0260) 2011; 664
Raisz (10.1016/j.lfs.2016.01.024_bb0020) 2005; 115
Ishijima (10.1016/j.lfs.2016.01.024_bb0195) 2002; 17
Gruberemail (10.1016/j.lfs.2016.01.024_bb0505) 2004; 15
Liu (10.1016/j.lfs.2016.01.024_bb0120) 2014
Wu (10.1016/j.lfs.2016.01.024_bb0450) 2008; 588
Mizuno (10.1016/j.lfs.2016.01.024_bb0200) 2001; 129
Ha (10.1016/j.lfs.2016.01.024_bb0560) 2004; 301
Black (10.1016/j.lfs.2016.01.024_bb0105) 2003; 349
Huang (10.1016/j.lfs.2016.01.024_bb0575) 2015; 73
Ducy (10.1016/j.lfs.2016.01.024_bb0230) 1997; 89
Johnell (10.1016/j.lfs.2016.01.024_bb0040) 2006; 17
Song (10.1016/j.lfs.2016.01.024_bb0250) 2013; 714
Kwak (10.1016/j.lfs.2016.01.024_bb0400) 2013; 17
Ge (10.1016/j.lfs.2016.01.024_bb0365) 2007; 176
Farley (10.1016/j.lfs.2016.01.024_bb0150) 1994; 9
Burge (10.1016/j.lfs.2016.01.024_bb0060) 2007; 22
Sakou (10.1016/j.lfs.2016.01.024_bb0405) 1999; 14
Shtutman (10.1016/j.lfs.2016.01.024_bb0430) 1999; 96
Hu (10.1016/j.lfs.2016.01.024_bb0350) 1996; 274
Cheskis (10.1016/j.lfs.2016.01.024_bb0490) 2007; 213
Xiao (10.1016/j.lfs.2016.01.024_bb0305) 2014; 144
Nohe (10.1016/j.lfs.2016.01.024_bb0410) 2004; 16
Tang (10.1016/j.lfs.2016.01.024_bb0460) 2010; 25
Tang (10.1016/j.lfs.2016.01.024_bb0395) 2008; 579
Day (10.1016/j.lfs.2016.01.024_bb0425) 2005; 8
Lacey (10.1016/j.lfs.2016.01.024_bb0285) 1998; 93
Lee (10.1016/j.lfs.2016.01.024_bb0320) 2011; 270
Turner (10.1016/j.lfs.2016.01.024_bb0485) 1994; 15
Huang (10.1016/j.lfs.2016.01.024_bb0585) 2014; 66
Karsenty (10.1016/j.lfs.2016.01.024_bb0005) 2003; 423
Bremner (10.1016/j.lfs.2016.01.024_bb0145) 1995; 54
Aouadi (10.1016/j.lfs.2016.01.024_bb0355) 2006; 55
Zhang (10.1016/j.lfs.2016.01.024_bb0570) 2012; 689
Xu (10.1016/j.lfs.2016.01.024_bb0125) 2005
Xiao (10.1016/j.lfs.2016.01.024_bb0335) 2014; 143
Baek (10.1016/j.lfs.2016.01.024_bb0565) 2010; 87
Franceschi (10.1016/j.lfs.2016.01.024_bb0225) 2003; 44
Urist (10.1016/j.lfs.2016.01.024_bb0010) 1965; 150
Stein (10.1016/j.lfs.2016.01.024_bb0160) 1990; 4
Chang (10.1016/j.lfs.2016.01.024_bb0340) 2001; 410
Bilezikian (10.1016/j.lfs.2016.01.024_bb0100) 2008; 6
Yoshitake (10.1016/j.lfs.2016.01.024_bb0190) 1999; 96
Marino (10.1016/j.lfs.2016.01.024_bb0495) 2012; 77
Prusty (10.1016/j.lfs.2016.01.024_bb0245) 2002; 277
Sendur (10.1016/j.lfs.2016.01.024_bb0550) 2009; 76
Chen (10.1016/j.lfs.2016.01.024_bb0470) 2013; 62
Rodan (10.1016/j.lfs.2016.01.024_bb0090) 2000; 289
Buencamino (10.1016/j.lfs.2016.01.024_bb0035) 2009; 18
Mathews (10.1016/j.lfs.2016.01.024_bb0205) 2012; 84
Pratap (10.1016/j.lfs.2016.01.024_bb0215) 2003; 63
Wright (10.1016/j.lfs.2016.01.024_bb0480) 2006; 58
Lee (10.1016/j.lfs.2016.01.024_bb0420) 2003; 278
Chair (10.1016/j.lfs.2016.01.024_bb0095) 2007; 22
Zhai (10.1016/j.lfs.2016.01.024_bb0620) 2014; 66
Feng (10.1016/j.lfs.2016.01.024_bb0440) 2003; 278
Piscitelli (10.1016/j.lfs.2016.01.024_bb0050) 2007; 18
Srivastava (10.1016/j.lfs.2016.01.024_bb0265) 2013; 20
Hadjidakis (10.1016/j.lfs.2016.01.024_bb0015) 2006; 1092
Bai (10.1016/j.lfs.2016.01.024_bb0555) 2005; 280
Cappuzzo (10.1016/j.lfs.2016.01.024_bb0080) 2004; 38
Dimmeler (10.1016/j.lfs.2016.01.024_bb0610) 1999; 399
Akune (10.1016/j.lfs.2016.01.024_bb0345) 2004; 113
Choi (10.1016/j.lfs.2016.01.024_bb0315) 2011; 11
Gordon (10.1016/j.lfs.2016.01.024_bb0170) 2007; 41
Lee (10.1016/j.lfs.2016.01.024_bb0375) 2011; 668
Lee (10.1016/j.lfs.2016.01.024_bb0390) 2011; 11
Kato (10.1016/j.lfs.2016.01.024_bb0500) 1995; 270
Dai (10.1016/j.lfs.2016.01.024_bb0540) 2007; 14
Merry (10.1016/j.lfs.2016.01.024_bb0180) 1993; 104
K. S (10.1016/j.lfs.2016.01.024_bb0295) 2001; 142
Wimalawansa (10.1016/j.lfs.2016.01.024_bb0595) 2008; 9
Liang (10.1016/j.lfs.2016.01.024_bb0445) 2012; 30
Li (10.1016/j.lfs.2016.01.024_bb0300) 2012; 83
Leboime (10.1016/j.lfs.2016.01.024_bb0030) 2010; 77
Zanchetta (10.1016/j.lfs.2016.01.024_bb0070) 2013; 29
Tang (10.1016/j.lfs.2016.01.024_bb0455) 2011; 405
Liao (10.1016/j.lfs.2016.01.024_bb0530) 2014; 111
Rokutanda (10.1016/j.lfs.2016.01.024_bb0615) 2009; 328
Kousteni (10.1016/j.lfs.2016.01.024_bb0520) 2001; 104
Balcerzak (10.1016/j.lfs.2016.01.024_bb0155) 2003; 50
Zallone (10.1016/j.lfs.2016.01.024_bb0515) 2006; 1068
Kihara (10.1016/j.lfs.2016.01.024_bb0475) 2011; 406
Satue (10.1016/j.lfs.2016.01.024_bb0270) 2013; 86
Huang (10.1016/j.lfs.2016.01.024_bb0590) 2015; 74
Nakashima (10.1016/j.lfs.2016.01.024_bb0235) 2002; 108
Simonet (10.1016/j.lfs.2016.01.024_bb0280) 1997; 89
Ponnapakkam (10.1016/j.lfs.2016.01.024_bb0085) 2013; 19
Li (10.1016/j.lfs.2016.01.024_bb0255) 2011; 18
Ikeda (10.1016/j.lfs.2016.01.024_bb0290) 2001; 16
Xu (10.1016/j.lfs.2016.01.024_bb0385) 2014; 51
Migliaccio (10.1016/j.lfs.2016.01.024_bb0510) 2002; 963
Rittling (10.1016/j.lfs.2016.01.024_bb0185) 1998; 13
Uihlein (10.1016/j.lfs.2016.01.024_bb0115) 2012; 41
Gutiérrez (10.1016/j.lfs.2016.01.024_bb0600) 2010; 43
Wang (10.1016/j.lfs.2016.01.024_bb0370) 2007; 148
Don (10.1016/j.lfs.2016.01.024_bb0380) 2012; 19
Styrkarsdottir (10.1016/j.lfs.2016.01.024_bb0415) 2003; 1
Cantley (10.1016/j.lfs.2016.01.024_bb0605) 2002; 296
Tiyasatkulkovit (10.1016/j.lfs.2016.01.024_bb0325) 2012; 19
Lee (10.1016/j.lfs.2016.01.024_bb0525) 2012; 676
Kim (10.1016/j.lfs.2016.01.024_bb0310) 2014; 98
Hsieh (10.1016/j.lfs.2016.01.024_bb0330) 2010; 17
Lee (10.1016/j.lfs.2016.01.024_bb0625) 2011; 11
Franceschi (10.1016/j.lfs.2016.01.024_bb0140) 2007; 1116
Manolagas (10.1016/j.lfs.2016.01.024_bb0545) 2010; 31
Sun (10.1016/j.lfs.2016.01.024_bb0275) 2013; 84
Ghosh-Choudhury (10.1016/j.lfs.2016.01.024_bb0435) 2007; 282
Marcus (10.1016/j.lfs.2016.01.024_bb0135) 2001
References_xml – volume: 15
  start-page: 1879
  year: 2000
  end-page: 1888
  ident: bb0165
  article-title: Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice
  publication-title: J. Bone Miner. Res.
– volume: 44
  start-page: 109
  year: 2003
  end-page: 116
  ident: bb0225
  article-title: Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation
  publication-title: Connect. Tissue Res.
– volume: 120
  start-page: 2457
  year: 2010
  end-page: 2473
  ident: bb0360
  article-title: The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice
  publication-title: J. Clin. Investig.
– volume: 77
  start-page: 910
  year: 2012
  end-page: 917
  ident: bb0495
  article-title: Susceptibility of estrogen receptor rapid responses to xenoestrogens: physiological outcomes
  publication-title: Steroids
– volume: 96
  start-page: 5522
  year: 1999
  end-page: 5527
  ident: bb0430
  article-title: The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  start-page: 1541
  year: 2011
  end-page: 1545
  ident: bb0315
  article-title: Honokiol isolated from
  publication-title: Int. Immunopharmacol.
– volume: 963
  start-page: 185
  year: 2002
  end-page: 190
  ident: bb0510
  article-title: Src is an initial target of sex steroid hormone action
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 362
  start-page: 419
  year: 2003
  end-page: 427
  ident: bb0065
  article-title: Million women study collaborators, breast cancer and hormone-replacement therapy in the million women study
  publication-title: Lancet
– volume: 296
  start-page: 1655
  year: 2002
  end-page: 1657
  ident: bb0605
  article-title: The phosphoinositide 3-kinase pathway
  publication-title: Science
– volume: 89
  start-page: 747
  year: 1997
  end-page: 754
  ident: bb0230
  article-title: Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation
  publication-title: Cell
– volume: 11
  start-page: 1251
  year: 2011
  end-page: 1259
  ident: bb0625
  article-title: Protective effect of kobophenol A on nitric oxide-induced cell apoptosis in human osteoblast-like MG-63 cells: involvement of JNK, NF-κB and AP-1 pathways
  publication-title: Int. Immunopharmacol.
– volume: 1116
  start-page: 196
  year: 2007
  end-page: 207
  ident: bb0140
  article-title: Transcriptional regulation of osteoblasts
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 213
  start-page: 610
  year: 2007
  end-page: 617
  ident: bb0490
  article-title: Signaling by estrogens
  publication-title: J. Cell. Physiol.
– volume: 38
  start-page: 294
  year: 2004
  end-page: 302
  ident: bb0080
  article-title: Teriparatide for severe osteoporosis
  publication-title: Ann. Pharmacother.
– volume: 1068
  start-page: 173
  year: 2006
  end-page: 179
  ident: bb0515
  article-title: Direct and indirect estrogen actions on osteoblasts and osteoclasts
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 43
  start-page: 505
  year: 2010
  end-page: 514
  ident: bb0600
  article-title: 17β-Oestradiol acts as a negative modulator of insulin-induced lactotroph cell proliferation through oestrogen receptor alpha, via nitric oxide/guanylyl cyclase/cGMP
  publication-title: Cell Prolif.
– volume: 7
  start-page: 1005
  year: 1992
  end-page: 1010
  ident: bb0055
  article-title: Perspective. How many women have osteoporosis?
  publication-title: J. Bone Miner. Res.
– volume: 405
  start-page: 256
  year: 2011
  end-page: 261
  ident: bb0455
  article-title: Psoralen stimulates osteoblast differentiation through activation of BMP signaling
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 406
  start-page: 211
  year: 2011
  end-page: 217
  ident: bb0475
  article-title: Acerogenin A, a natural compound isolated from Acer nikoense Maxim, stimulates osteoblast differentiation through bone morphogenetic protein action
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 714
  start-page: 15
  year: 2013
  end-page: 22
  ident: bb0250
  article-title: Icariin induces osteoblast proliferation, differentiation and mineralization through estrogenre ceptor-mediated ERK and JNK signal activation
  publication-title: Eur. J. Pharmacol.
– volume: 274
  start-page: 2100
  year: 1996
  end-page: 2103
  ident: bb0350
  article-title: Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma
  publication-title: Science
– volume: 143
  start-page: 141
  year: 2014
  end-page: 151
  ident: bb0335
  article-title: Flavonoids from herba epimedii selectively activate estrogen receptor alpha (ERα) andstimulate ER-dependent osteoblastic functionsin UMR-106 cells
  publication-title: J. Steroid Biochem. Mol. Biol.
– volume: 76
  start-page: 514
  year: 2009
  end-page: 518
  ident: bb0550
  article-title: Antioxidant status in patients with osteoporosis: a controlled study
  publication-title: Joint Bone Spine
– volume: 176
  start-page: 709
  year: 2007
  end-page: 718
  ident: bb0365
  article-title: Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development
  publication-title: J. Cell Biol.
– volume: 115
  start-page: 3318
  year: 2005
  end-page: 3325
  ident: bb0020
  article-title: Pathogenesis of osteoporosis: concepts, conflicts, and prospects
  publication-title: J. Clin. Investig.
– volume: 51
  start-page: 1
  year: 2014
  end-page: 9
  ident: bb0385
  article-title: Salvianolic acid B promotes osteogenesis of human mesenchymalstem cells through activating ERK signaling pathway
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 89
  start-page: 33
  year: 2013
  end-page: 41
  ident: bb0580
  article-title: Protective effect of albiflorin against oxidative-stress-mediated toxicity in osteoblast-like MC3T3-E1 cells
  publication-title: Fitoterapia
– volume: 11
  start-page: 2178
  year: 2008
  end-page: 2180
  ident: bb0045
  article-title: A review on antiosteoporotic drugs
  publication-title: Chin. J. Gerontol.
– volume: 8
  start-page: 741
  year: 2008
  end-page: 747
  ident: bb0465
  article-title: Emodin accelerates osteoblast differentiation through phosphatidylinositol 3-kinase activation and bone morphogenetic protein-2 gene expression
  publication-title: Int. Immunopharmacol.
– volume: 142
  start-page: 142
  year: 2014
  end-page: 154
  ident: bb0075
  article-title: Use of SERMs for treatment in postmenopausal women
  publication-title: J. Steroid Biochem. Mol. Biol.
– volume: 84
  start-page: 185
  year: 2012
  end-page: 192
  ident: bb0205
  article-title: Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells
  publication-title: Differentiation
– volume: 150
  start-page: 893
  year: 1965
  end-page: 899
  ident: bb0010
  article-title: Bone: formation by autoinduction
  publication-title: Science
– volume: 270
  start-page: 1491
  year: 1995
  end-page: 1494
  ident: bb0500
  article-title: Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase
  publication-title: Science
– start-page: 3
  year: 2001
  end-page: 17
  ident: bb0135
  article-title: The nature of osteoporosis
  publication-title: Osteoporosis, Seconded
– start-page: 299
  year: 2005
  end-page: 306
  ident: bb0125
  article-title: The use of preventive strategies for bone loss
  publication-title: Am. J. Chin. Med.
– volume: 399
  start-page: 601
  year: 1999
  end-page: 605
  ident: bb0610
  article-title: Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation
  publication-title: Nature
– volume: 22
  start-page: 465
  year: 2007
  end-page: 475
  ident: bb0060
  article-title: Incidence and economic burden of osteoporosis related fractures in the United States, 2005–2025
  publication-title: J. Bone Miner. Res.
– volume: 1092
  start-page: 385
  year: 2006
  end-page: 396
  ident: bb0015
  article-title: Bone remodeling
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 17
  start-page: 414
  year: 2010
  end-page: 423
  ident: bb0330
  article-title: Icariin isolated from epimedium pubescens regulates osteoblasts anabolism through BMP-2, SMAD4, and Cbfa1 expression
  publication-title: Phytomedicine
– volume: 1
  year: 2003
  ident: bb0415
  article-title: Linkage of osteoporosis to chromosome 20p12 and association to BMP2
  publication-title: PLoS Biol.
– volume: 148
  start-page: 1629
  year: 2007
  end-page: 1637
  ident: bb0370
  article-title: p38 Mitogen-activated protein kinase regulates osteoblast differentiation through osterix
  publication-title: Endocrinology
– volume: 16
  start-page: 1416
  year: 2001
  end-page: 1425
  ident: bb0290
  article-title: Expression profiles of receptor activator of nuclear factor κB ligand, receptor activator of nuclear factor κB, and osteoprotegerin messenger RNA in aged and ovariectomized rat bones
  publication-title: J. Bone Miner. Res.
– volume: 55
  start-page: 281
  year: 2006
  end-page: 289
  ident: bb0355
  article-title: Inhibition of p38 MAPK increases adipogenesis from embryonic to adult stages
  publication-title: Diabetes
– volume: 77
  start-page: S107
  year: 2010
  end-page: S112
  ident: bb0030
  article-title: Osteoporosis and mortality
  publication-title: Joint Bone Spine
– volume: 349
  start-page: 1207
  year: 2003
  end-page: 1215
  ident: bb0105
  article-title: The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis
  publication-title: N. Engl. J. Med.
– volume: 282
  start-page: 4983
  year: 2007
  end-page: 4993
  ident: bb0435
  article-title: Statin-induced Ras activation integrates the phosphatidylinositol 3-kinase signal to Akt and MAPK for bone morphogenetic protein-2 expression in osteoblast differentiation
  publication-title: J. Biol. Chem.
– volume: 588
  start-page: 333
  year: 2008
  end-page: 341
  ident: bb0450
  article-title: Naringin-induced bone morphogenetic protein-2 expression via PI3K, Akt, c-Fos/c-Jun and AP-1 pathway in osteoblasts
  publication-title: Eur. J. Pharmacol.
– volume: 423
  start-page: 316
  year: 2003
  end-page: 318
  ident: bb0005
  article-title: The complexities of skeletal biology
  publication-title: Nature
– volume: 58
  start-page: 773
  year: 2006
  end-page: 781
  ident: bb0480
  article-title: International union of pharmacology. LXIV. Estrogen receptors
  publication-title: Pharmacol. Rev.
– volume: 74
  start-page: 18
  year: 2015
  end-page: 28
  ident: bb0590
  article-title: Ophiopogonin D: a new herbal agent against osteoporosis
  publication-title: Bone
– volume: 73
  start-page: 132
  year: 2015
  end-page: 144
  ident: bb0575
  article-title: Gastrodin: an ancient Chinese herbal medicine as a source for anti-osteoporosis agents via reducing reactive oxygen species
  publication-title: Bone
– volume: 277
  start-page: 46226
  year: 2002
  end-page: 46232
  ident: bb0245
  article-title: Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes
  publication-title: J. Biol. Chem.
– volume: 111
  start-page: 55
  year: 2014
  end-page: 63
  ident: bb0530
  article-title: Genistein induces oestrogen receptor-α gene expression in osteoblasts through the activation of mitogen-activated protein kinases/NF-κB/activator protein-1 and promotes cell mineralisation
  publication-title: Br. J. Nutr.
– volume: 29
  start-page: 999
  year: 2013
  end-page: 1004
  ident: bb0070
  article-title: Assessment of bone microarchitecture in postmenopausal women on long term bisphosphonate therapy with atypical fractures of the femur
  publication-title: J. Bone Miner. Res.
– volume: 87
  start-page: 226
  year: 2010
  end-page: 235
  ident: bb0565
  article-title: Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures
  publication-title: Calcif. Tissue Int.
– volume: 9
  start-page: 497
  year: 1994
  end-page: 508
  ident: bb0150
  article-title: Specific activity of skeletal alkaline phosphatase in human osteoblast-line cells regulated by phosphate, phosphate esters, and phosphate analogs and release of alkaline phosphatase activity inversely regulated by calcium
  publication-title: J. Bone Miner. Res.
– volume: 20
  start-page: 683
  year: 2013
  end-page: 690
  ident: bb0265
  article-title: Assessment of the role of flavonoids for inducing osteoblast differentiation in isolated mouse bone marrow derived mesenchymal stem cells
  publication-title: Phytomedicine
– volume: 30
  start-page: 889
  year: 2012
  end-page: 895
  ident: bb0445
  article-title: Icariin promotes bone formation via the BMP-2/Smad4 signal transduction pathway in the hFOB 1.19 human osteoblastic cell line
  publication-title: Int. J. Mol. Med.
– volume: 579
  start-page: 40
  year: 2008
  end-page: 49
  ident: bb0395
  article-title: Enhancement of bone morphogenetic protein-2 expression and bone formation by coumarin derivatives via p38 and ERK-dependent pathway in osteoblasts
  publication-title: Eur. J. Pharmacol.
– volume: 278
  start-page: 29130
  year: 2003
  end-page: 29135
  ident: bb0440
  article-title: NF-κB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 739
  year: 2005
  end-page: 750
  ident: bb0425
  article-title: Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis
  publication-title: Dev. Cell
– volume: 96
  start-page: 8156
  year: 1999
  end-page: 8160
  ident: bb0190
  article-title: Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 17
  start-page: 704
  year: 2013
  end-page: 713
  ident: bb0400
  article-title: Kobophenol A enhances proliferation of human osteoblast-like cells with activation of the p38 pathway
  publication-title: Int. Immunopharmacol.
– volume: 17
  start-page: 1726
  year: 2006
  end-page: 1733
  ident: bb0040
  article-title: An estimate of the worldwide prevalence and disability associated with osteoporotic fractures
  publication-title: Osteoporos. Int.
– volume: 89
  start-page: 309
  year: 1997
  end-page: 319
  ident: bb0280
  article-title: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density
  publication-title: Cell
– volume: 15
  start-page: 275
  year: 1994
  end-page: 300
  ident: bb0485
  article-title: Skeletal effects of estrogen
  publication-title: Endocr. Rev.
– volume: 382
  start-page: 448
  year: 1996
  end-page: 452
  ident: bb0175
  article-title: Increased bone formation in osteocalcin-deficient mice
  publication-title: Nature
– volume: 14
  start-page: 806
  year: 2007
  end-page: 814
  ident: bb0540
  article-title: Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation
  publication-title: Phytomedicine
– volume: 289
  start-page: 1508
  year: 2000
  end-page: 1514
  ident: bb0090
  article-title: Therapeutic approaches to bone diseases
  publication-title: Science
– volume: 19
  start-page: 551
  year: 2012
  end-page: 561
  ident: bb0380
  article-title: Neobavaisoflavone stimulates osteogenesis via p38-mediated up-regulation of transcription factors and osteoid genes expression in MC3T3-E1 cells
  publication-title: Phytomedicine
– volume: 25
  start-page: 1234
  year: 2010
  end-page: 1245
  ident: bb0460
  article-title: Osthole stimulates osteoblast differentiation and bone formation by activation of b-catenin-BMP signaling
  publication-title: J. Bone Miner. Res.
– volume: 86
  start-page: 1476
  year: 2013
  end-page: 1486
  ident: bb0270
  article-title: Quercitrin and taxifolin stimulate osteoblast differentiation in MC3T3-E1 cells and inhibit osteoclastogenesis in RAW 264.7 cells
  publication-title: Biochem. Pharmacol.
– volume: 15
  start-page: 73
  year: 2004
  end-page: 78
  ident: bb0505
  article-title: Anatomy of the estrogen response element
  publication-title: Trends Endocrinol. Metab.
– volume: 41
  start-page: 462
  year: 2007
  end-page: 473
  ident: bb0170
  article-title: Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro
  publication-title: Bone
– volume: 41
  start-page: 507
  year: 2012
  end-page: 525
  ident: bb0115
  article-title: Anabolic therapies for osteoporosis
  publication-title: Endocrinol. Metab. Clin. N. Am.
– volume: 18
  start-page: 873
  year: 2009
  end-page: 881
  ident: bb0035
  article-title: An observational study on the adherence to treatment guidelines of osteopenia
  publication-title: J. Women's Health
– volume: 108
  start-page: 17
  year: 2002
  end-page: 29
  ident: bb0235
  article-title: The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation
  publication-title: Cell
– volume: 689
  start-page: 31
  year: 2012
  end-page: 37
  ident: bb0570
  article-title: Protective effect of tetrahydroxystilbene glucoside against hydrogen peroxide-induced dysfunction and oxidative stress in osteoblastic MC3T3-E1 cells
  publication-title: Eur. J. Pharmacol.
– volume: 4
  start-page: 3111
  year: 1990
  end-page: 3123
  ident: bb0160
  article-title: Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation
  publication-title: FASEB J.
– volume: 17
  start-page: 661
  year: 2002
  end-page: 667
  ident: bb0195
  article-title: Resistance to unloading-induced three-dimensional bone loss in osteopontin-deficient mice
  publication-title: J. Bone Miner. Res.
– volume: 16
  start-page: 291
  year: 2004
  end-page: 299
  ident: bb0410
  article-title: Signal transduction of bone morphogenetic protein receptors
  publication-title: Cell. Signal.
– volume: 83
  start-page: 1443
  year: 2012
  end-page: 1450
  ident: bb0300
  article-title: Echinacoside promotes bone regeneration by increasing OPG/RANKL ratio in MC3T3-E1 cells
  publication-title: Fitoterapia
– volume: 13
  start-page: 1101
  year: 1998
  end-page: 1111
  ident: bb0185
  article-title: Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro
  publication-title: J. Bone Miner. Res.
– volume: 129
  start-page: 133
  year: 2001
  end-page: 138
  ident: bb0200
  article-title: Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen
  publication-title: J. Biochem.
– volume: 73
  start-page: 374
  year: 2006
  end-page: 378
  ident: bb0130
  article-title: Drug combination strategies for osteoporosis
  publication-title: Joint Bone Spine
– volume: 62
  start-page: 499
  year: 2013
  end-page: 505
  ident: bb0470
  article-title: Salidroside stimulates osteoblast differentiation through BMP signaling pathway
  publication-title: Food Chem. Toxicol.
– volume: 664
  start-page: 54
  year: 2011
  end-page: 59
  ident: bb0260
  article-title: Poncirin promotes osteoblast differentiation but inhibits adipocyte differentiation in mesenchymal stem cells
  publication-title: Eur. J. Pharmacol.
– volume: 66
  start-page: 189
  year: 2014
  end-page: 198
  ident: bb0620
  article-title: Icariin stimulates the osteogenic differentiation of rat bone marrow stromal cells via activating the PI3K–AKT–eNOS–NO–cGMP–PKG
  publication-title: Bone
– volume: 278
  start-page: 34387
  year: 2003
  end-page: 34394
  ident: bb0420
  article-title: BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression
  publication-title: J. Biol. Chem.
– volume: 70
  start-page: 716
  year: 1982
  end-page: 723
  ident: bb0025
  article-title: Changes in bone mineral density of the proximal femur and spine with aging
  publication-title: J. Clin. Investig.
– volume: 18
  start-page: 985
  year: 2011
  end-page: 989
  ident: bb0255
  article-title: Comparison of neoeriocitrin and naringin on proliferation and osteogenic differentiation in MC3T3-E1
  publication-title: Phytomedicine
– volume: 676
  start-page: 26
  year: 2012
  end-page: 33
  ident: bb0525
  article-title: Ugonin K-stimulated osteogenesis involves estrogen receptor-dependent activation of non-classical Src signaling pathway and classical pathway
  publication-title: Eur. J. Pharmacol.
– volume: 63
  start-page: 5357
  year: 2003
  end-page: 5362
  ident: bb0215
  article-title: Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts
  publication-title: Cancer Res.
– volume: 270
  start-page: 224
  year: 2011
  end-page: 229
  ident: bb0320
  article-title: Apocynin stimulates osteoblast differentiation and inhibits bone-resorbing mediators in MC3T3-E1 cells
  publication-title: Cell. Immunol.
– volume: 19
  start-page: 204
  year: 2013
  end-page: 208
  ident: bb0085
  article-title: Treating osteoporosis by targeting parathyroid hormone to bone
  publication-title: Drug Discov. Today
– volume: 84
  start-page: 174
  year: 2013
  end-page: 179
  ident: bb0275
  article-title: Protective effects of sweroside on human MG-63 cells and rat osteoblasts
  publication-title: Fitoterapia
– volume: 410
  start-page: 37
  year: 2001
  end-page: 40
  ident: bb0340
  article-title: Mammalian MAP kinase signalling cascades
  publication-title: Nature
– volume: 668
  start-page: 383
  year: 2011
  end-page: 389
  ident: bb0375
  article-title: Ugonin K promotes osteoblastic differentiation and mineralization by activation of p38 MAPK- and ERK-mediated expression of Runx2 and osterix
  publication-title: Eur. J. Pharmacol.
– volume: 284
  start-page: 143
  year: 1999
  end-page: 147
  ident: bb0240
  article-title: Multilineage potential of adult human mesenchymal stem cells
  publication-title: Science
– volume: 66
  start-page: 306
  year: 2014
  end-page: 314
  ident: bb0585
  article-title: Ginsenoside-Rb2 displays anti-osteoporosis effects through reducing oxidative damage and bone-resorbing cytokines during osteogenesis
  publication-title: Bone
– volume: 20
  start-page: 787
  year: 2013
  end-page: 796
  ident: bb0535
  article-title: Puerarin stimulates proliferation and differentiation and protects against celldeath in human osteoblastic MG-63 cells via ER-dependent MEK/ERK and PI3K/Akt activation
  publication-title: Phytomedicine
– volume: 328
  start-page: 78
  year: 2009
  end-page: 93
  ident: bb0615
  article-title: Akt regulates skeletal development through GSK3, mTOR, and FoxOs
  publication-title: Dev. Biol.
– volume: 349
  start-page: 1216
  year: 2003
  end-page: 1226
  ident: bb0110
  article-title: The effects of parathyroid hormone, alendronate, or both in men with osteoporosis
  publication-title: N. Engl. J. Med.
– volume: 104
  start-page: 1013
  year: 1993
  end-page: 1020
  ident: bb0180
  article-title: Expression of osteopontin mRNA by osteoclasts and osteoblasts in modelling adult human bone
  publication-title: J. Cell Sci.
– volume: 142
  start-page: 5050
  year: 2001
  end-page: 5055
  ident: bb0295
  article-title: The OPG/RANKL/RANK system
  publication-title: Endocrinology
– volume: 144
  start-page: 382
  year: 2014
  end-page: 391
  ident: bb0305
  article-title: Vanillic acid exerts oestrogen-like activities in osteoblast-like UMR 106 cells through MAP kinase (MEK/ERK)-mediated ER signaling pathway
  publication-title: J. Steroid Biochem. Mol. Biol.
– volume: 280
  start-page: 17497
  year: 2005
  end-page: 17506
  ident: bb0555
  article-title: Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 712
  year: 2011
  end-page: 718
  ident: bb0390
  article-title: Costunolide stimulates the function of osteoblastic MC3T3-E1 cells
  publication-title: Int. Immunopharmacol.
– volume: 281
  start-page: 18015
  year: 2006
  end-page: 18024
  ident: bb0210
  article-title: Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 6222
  year: 2002
  end-page: 6233
  ident: bb0220
  article-title: High bone resorption in adult aging transgenic mice overexpressing cbfa1/runx2 in cells of the osteoblastic lineage
  publication-title: Mol. Cell. Biol.
– volume: 93
  start-page: 165
  year: 1998
  end-page: 176
  ident: bb0285
  article-title: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation
  publication-title: Cell
– volume: 19
  start-page: 1147
  year: 2012
  end-page: 1155
  ident: bb0325
  article-title: Upregulation of osteoblastic differentiation marker mRNA expression in osteoblast-like UMR106 cells by puerarin and phytoestrogens from Pueraria mirifica
  publication-title: Phytomedicine
– volume: 113
  start-page: 846
  year: 2004
  end-page: 855
  ident: bb0345
  article-title: PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors
  publication-title: J. Clin. Investig.
– year: 2014
  ident: bb0120
  article-title: Chinese herbal medicines for treating osteoporosis
  publication-title: Cochrane Database Syst. Rev.
– volume: 18
  start-page: 211
  year: 2007
  end-page: 219
  ident: bb0050
  article-title: Incidence and costs of hip fractures compared to acute myocardial infarction in the Italian population: a 4-year survey
  publication-title: Osteoporos. Int.
– volume: 104
  start-page: 719
  year: 2001
  end-page: 730
  ident: bb0520
  article-title: Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity
  publication-title: Cell
– volume: 98
  start-page: 59
  year: 2014
  end-page: 65
  ident: bb0310
  article-title: Kirenol stimulates osteoblast differentiation through activation of the BMP and Wnt/β-catenin signaling pathways in MC3T3-E1 cells
  publication-title: Fitoterapia
– volume: 50
  start-page: 1019
  year: 2003
  end-page: 1038
  ident: bb0155
  article-title: The roles of annexins and alkaline phosphatase in mineralization process
  publication-title: Acta Biochim. Pol.
– volume: 22
  start-page: 1479
  year: 2007
  end-page: 1491
  ident: bb0095
  article-title: Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American society for bone and mineral research
  publication-title: J. Bone Miner. Res.
– volume: 14
  start-page: 1145
  year: 1999
  end-page: 1152
  ident: bb0405
  article-title: Localization of Smads, the TGF-β family intracellular signaling components during endochondral ossification
  publication-title: J. Bone Miner. Res.
– volume: 31
  start-page: 266
  year: 2010
  end-page: 300
  ident: bb0545
  article-title: From oestrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis
  publication-title: Endocr. Rev.
– volume: 301
  start-page: 119
  year: 2004
  end-page: 127
  ident: bb0560
  article-title: Reactive oxygen species mediate RANK signaling in osteoclasts
  publication-title: Exp. Cell Res.
– volume: 6
  start-page: 24
  year: 2008
  end-page: 30
  ident: bb0100
  article-title: Combination anabolic and antiresorptive therapy for osteoporosis: opening the anabolic window
  publication-title: Curr. Osteoporos. Rep.
– volume: 54
  start-page: 489
  year: 1995
  end-page: 499
  ident: bb0145
  article-title: Copper and zinc metabolism in health and disease: speciation and interactions
  publication-title: Proc. Nutr. Soc.
– volume: 9
  start-page: 3025
  year: 2008
  end-page: 3044
  ident: bb0595
  article-title: Nitric oxide: novel therapy for osteoporosis
  publication-title: Expert. Opin. Pharmacother.
– volume: 17
  start-page: 704
  year: 2013
  ident: 10.1016/j.lfs.2016.01.024_bb0400
  article-title: Kobophenol A enhances proliferation of human osteoblast-like cells with activation of the p38 pathway
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2013.08.015
– volume: 43
  start-page: 505
  year: 2010
  ident: 10.1016/j.lfs.2016.01.024_bb0600
  article-title: 17β-Oestradiol acts as a negative modulator of insulin-induced lactotroph cell proliferation through oestrogen receptor alpha, via nitric oxide/guanylyl cyclase/cGMP
  publication-title: Cell Prolif.
  doi: 10.1111/j.1365-2184.2010.00700.x
– volume: 399
  start-page: 601
  year: 1999
  ident: 10.1016/j.lfs.2016.01.024_bb0610
  article-title: Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation
  publication-title: Nature
  doi: 10.1038/21224
– volume: 296
  start-page: 1655
  year: 2002
  ident: 10.1016/j.lfs.2016.01.024_bb0605
  article-title: The phosphoinositide 3-kinase pathway
  publication-title: Science
  doi: 10.1126/science.296.5573.1655
– volume: 89
  start-page: 309
  year: 1997
  ident: 10.1016/j.lfs.2016.01.024_bb0280
  article-title: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80209-3
– volume: 77
  start-page: S107
  issue: Suppl. 2
  year: 2010
  ident: 10.1016/j.lfs.2016.01.024_bb0030
  article-title: Osteoporosis and mortality
  publication-title: Joint Bone Spine
  doi: 10.1016/S1297-319X(10)70004-X
– volume: 19
  start-page: 551
  year: 2012
  ident: 10.1016/j.lfs.2016.01.024_bb0380
  article-title: Neobavaisoflavone stimulates osteogenesis via p38-mediated up-regulation of transcription factors and osteoid genes expression in MC3T3-E1 cells
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2012.01.006
– volume: 410
  start-page: 37
  year: 2001
  ident: 10.1016/j.lfs.2016.01.024_bb0340
  article-title: Mammalian MAP kinase signalling cascades
  publication-title: Nature
  doi: 10.1038/35065000
– volume: 1068
  start-page: 173
  year: 2006
  ident: 10.1016/j.lfs.2016.01.024_bb0515
  article-title: Direct and indirect estrogen actions on osteoblasts and osteoclasts
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1346.019
– volume: 93
  start-page: 165
  year: 1998
  ident: 10.1016/j.lfs.2016.01.024_bb0285
  article-title: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81569-X
– year: 2014
  ident: 10.1016/j.lfs.2016.01.024_bb0120
  article-title: Chinese herbal medicines for treating osteoporosis
  publication-title: Cochrane Database Syst. Rev.
  doi: 10.1002/14651858.CD005467.pub2
– volume: 54
  start-page: 489
  year: 1995
  ident: 10.1016/j.lfs.2016.01.024_bb0145
  article-title: Copper and zinc metabolism in health and disease: speciation and interactions
  publication-title: Proc. Nutr. Soc.
  doi: 10.1079/PNS19950017
– volume: 11
  start-page: 2178
  year: 2008
  ident: 10.1016/j.lfs.2016.01.024_bb0045
  article-title: A review on antiosteoporotic drugs
  publication-title: Chin. J. Gerontol.
– volume: 176
  start-page: 709
  year: 2007
  ident: 10.1016/j.lfs.2016.01.024_bb0365
  article-title: Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200610046
– volume: 96
  start-page: 8156
  year: 1999
  ident: 10.1016/j.lfs.2016.01.024_bb0190
  article-title: Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.14.8156
– volume: 89
  start-page: 747
  year: 1997
  ident: 10.1016/j.lfs.2016.01.024_bb0230
  article-title: Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80257-3
– volume: 25
  start-page: 1234
  year: 2010
  ident: 10.1016/j.lfs.2016.01.024_bb0460
  article-title: Osthole stimulates osteoblast differentiation and bone formation by activation of b-catenin-BMP signaling
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.21
– volume: 278
  start-page: 34387
  year: 2003
  ident: 10.1016/j.lfs.2016.01.024_bb0420
  article-title: BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M211386200
– volume: 8
  start-page: 741
  year: 2008
  ident: 10.1016/j.lfs.2016.01.024_bb0465
  article-title: Emodin accelerates osteoblast differentiation through phosphatidylinositol 3-kinase activation and bone morphogenetic protein-2 gene expression
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2008.01.027
– volume: 108
  start-page: 17
  year: 2002
  ident: 10.1016/j.lfs.2016.01.024_bb0235
  article-title: The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00622-5
– volume: 104
  start-page: 1013
  year: 1993
  ident: 10.1016/j.lfs.2016.01.024_bb0180
  article-title: Expression of osteopontin mRNA by osteoclasts and osteoblasts in modelling adult human bone
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.104.4.1013
– volume: 22
  start-page: 6222
  year: 2002
  ident: 10.1016/j.lfs.2016.01.024_bb0220
  article-title: High bone resorption in adult aging transgenic mice overexpressing cbfa1/runx2 in cells of the osteoblastic lineage
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.17.6222-6233.2002
– volume: 664
  start-page: 54
  year: 2011
  ident: 10.1016/j.lfs.2016.01.024_bb0260
  article-title: Poncirin promotes osteoblast differentiation but inhibits adipocyte differentiation in mesenchymal stem cells
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2011.04.047
– volume: 18
  start-page: 985
  year: 2011
  ident: 10.1016/j.lfs.2016.01.024_bb0255
  article-title: Comparison of neoeriocitrin and naringin on proliferation and osteogenic differentiation in MC3T3-E1
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2011.03.002
– volume: 51
  start-page: 1
  year: 2014
  ident: 10.1016/j.lfs.2016.01.024_bb0385
  article-title: Salvianolic acid B promotes osteogenesis of human mesenchymalstem cells through activating ERK signaling pathway
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2014.03.005
– volume: 148
  start-page: 1629
  year: 2007
  ident: 10.1016/j.lfs.2016.01.024_bb0370
  article-title: p38 Mitogen-activated protein kinase regulates osteoblast differentiation through osterix
  publication-title: Endocrinology
  doi: 10.1210/en.2006-1000
– volume: 84
  start-page: 174
  year: 2013
  ident: 10.1016/j.lfs.2016.01.024_bb0275
  article-title: Protective effects of sweroside on human MG-63 cells and rat osteoblasts
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2012.11.010
– volume: 104
  start-page: 719
  year: 2001
  ident: 10.1016/j.lfs.2016.01.024_bb0520
  article-title: Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity
  publication-title: Cell
– volume: 14
  start-page: 1145
  year: 1999
  ident: 10.1016/j.lfs.2016.01.024_bb0405
  article-title: Localization of Smads, the TGF-β family intracellular signaling components during endochondral ossification
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.1999.14.7.1145
– volume: 588
  start-page: 333
  year: 2008
  ident: 10.1016/j.lfs.2016.01.024_bb0450
  article-title: Naringin-induced bone morphogenetic protein-2 expression via PI3K, Akt, c-Fos/c-Jun and AP-1 pathway in osteoblasts
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2008.04.030
– volume: 963
  start-page: 185
  year: 2002
  ident: 10.1016/j.lfs.2016.01.024_bb0510
  article-title: Src is an initial target of sex steroid hormone action
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2002.tb04109.x
– volume: 73
  start-page: 132
  year: 2015
  ident: 10.1016/j.lfs.2016.01.024_bb0575
  article-title: Gastrodin: an ancient Chinese herbal medicine as a source for anti-osteoporosis agents via reducing reactive oxygen species
  publication-title: Bone
  doi: 10.1016/j.bone.2014.12.059
– volume: 62
  start-page: 499
  year: 2013
  ident: 10.1016/j.lfs.2016.01.024_bb0470
  article-title: Salidroside stimulates osteoblast differentiation through BMP signaling pathway
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2013.09.019
– volume: 66
  start-page: 189
  year: 2014
  ident: 10.1016/j.lfs.2016.01.024_bb0620
  article-title: Icariin stimulates the osteogenic differentiation of rat bone marrow stromal cells via activating the PI3K–AKT–eNOS–NO–cGMP–PKG
  publication-title: Bone
  doi: 10.1016/j.bone.2014.06.016
– volume: 30
  start-page: 889
  year: 2012
  ident: 10.1016/j.lfs.2016.01.024_bb0445
  article-title: Icariin promotes bone formation via the BMP-2/Smad4 signal transduction pathway in the hFOB 1.19 human osteoblastic cell line
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2012.1079
– volume: 423
  start-page: 316
  year: 2003
  ident: 10.1016/j.lfs.2016.01.024_bb0005
  article-title: The complexities of skeletal biology
  publication-title: Nature
  doi: 10.1038/nature01654
– volume: 96
  start-page: 5522
  year: 1999
  ident: 10.1016/j.lfs.2016.01.024_bb0430
  article-title: The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.10.5522
– volume: 50
  start-page: 1019
  year: 2003
  ident: 10.1016/j.lfs.2016.01.024_bb0155
  article-title: The roles of annexins and alkaline phosphatase in mineralization process
  publication-title: Acta Biochim. Pol.
  doi: 10.18388/abp.2003_3629
– volume: 270
  start-page: 224
  year: 2011
  ident: 10.1016/j.lfs.2016.01.024_bb0320
  article-title: Apocynin stimulates osteoblast differentiation and inhibits bone-resorbing mediators in MC3T3-E1 cells
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2011.05.011
– start-page: 3
  year: 2001
  ident: 10.1016/j.lfs.2016.01.024_bb0135
  article-title: The nature of osteoporosis
– volume: 6
  start-page: 24
  year: 2008
  ident: 10.1016/j.lfs.2016.01.024_bb0100
  article-title: Combination anabolic and antiresorptive therapy for osteoporosis: opening the anabolic window
  publication-title: Curr. Osteoporos. Rep.
  doi: 10.1007/s11914-008-0005-9
– volume: 676
  start-page: 26
  year: 2012
  ident: 10.1016/j.lfs.2016.01.024_bb0525
  article-title: Ugonin K-stimulated osteogenesis involves estrogen receptor-dependent activation of non-classical Src signaling pathway and classical pathway
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2011.12.001
– volume: 77
  start-page: 910
  year: 2012
  ident: 10.1016/j.lfs.2016.01.024_bb0495
  article-title: Susceptibility of estrogen receptor rapid responses to xenoestrogens: physiological outcomes
  publication-title: Steroids
  doi: 10.1016/j.steroids.2012.02.019
– volume: 84
  start-page: 185
  year: 2012
  ident: 10.1016/j.lfs.2016.01.024_bb0205
  article-title: Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells
  publication-title: Differentiation
  doi: 10.1016/j.diff.2012.05.001
– volume: 7
  start-page: 1005
  year: 1992
  ident: 10.1016/j.lfs.2016.01.024_bb0055
  article-title: Perspective. How many women have osteoporosis?
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.5650070902
– volume: 362
  start-page: 419
  year: 2003
  ident: 10.1016/j.lfs.2016.01.024_bb0065
  article-title: Million women study collaborators, breast cancer and hormone-replacement therapy in the million women study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)14596-5
– volume: 22
  start-page: 1479
  year: 2007
  ident: 10.1016/j.lfs.2016.01.024_bb0095
  article-title: Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American society for bone and mineral research
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.0707onj
– volume: 13
  start-page: 1101
  year: 1998
  ident: 10.1016/j.lfs.2016.01.024_bb0185
  article-title: Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.1998.13.7.1101
– volume: 142
  start-page: 5050
  year: 2001
  ident: 10.1016/j.lfs.2016.01.024_bb0295
  article-title: The OPG/RANKL/RANK system
  publication-title: Endocrinology
  doi: 10.1210/endo.142.12.8536
– volume: 274
  start-page: 2100
  year: 1996
  ident: 10.1016/j.lfs.2016.01.024_bb0350
  article-title: Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma
  publication-title: Science
  doi: 10.1126/science.274.5295.2100
– volume: 74
  start-page: 18
  year: 2015
  ident: 10.1016/j.lfs.2016.01.024_bb0590
  article-title: Ophiopogonin D: a new herbal agent against osteoporosis
  publication-title: Bone
  doi: 10.1016/j.bone.2015.01.002
– volume: 16
  start-page: 1416
  year: 2001
  ident: 10.1016/j.lfs.2016.01.024_bb0290
  article-title: Expression profiles of receptor activator of nuclear factor κB ligand, receptor activator of nuclear factor κB, and osteoprotegerin messenger RNA in aged and ovariectomized rat bones
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2001.16.8.1416
– volume: 349
  start-page: 1207
  year: 2003
  ident: 10.1016/j.lfs.2016.01.024_bb0105
  article-title: The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa031975
– volume: 328
  start-page: 78
  year: 2009
  ident: 10.1016/j.lfs.2016.01.024_bb0615
  article-title: Akt regulates skeletal development through GSK3, mTOR, and FoxOs
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2009.01.009
– volume: 9
  start-page: 3025
  year: 2008
  ident: 10.1016/j.lfs.2016.01.024_bb0595
  article-title: Nitric oxide: novel therapy for osteoporosis
  publication-title: Expert. Opin. Pharmacother.
  doi: 10.1517/14656560802197162
– volume: 144
  start-page: 382
  year: 2014
  ident: 10.1016/j.lfs.2016.01.024_bb0305
  article-title: Vanillic acid exerts oestrogen-like activities in osteoblast-like UMR 106 cells through MAP kinase (MEK/ERK)-mediated ER signaling pathway
  publication-title: J. Steroid Biochem. Mol. Biol.
  doi: 10.1016/j.jsbmb.2014.08.002
– volume: 55
  start-page: 281
  year: 2006
  ident: 10.1016/j.lfs.2016.01.024_bb0355
  article-title: Inhibition of p38 MAPK increases adipogenesis from embryonic to adult stages
  publication-title: Diabetes
  doi: 10.2337/diabetes.55.02.06.db05-0963
– volume: 31
  start-page: 266
  year: 2010
  ident: 10.1016/j.lfs.2016.01.024_bb0545
  article-title: From oestrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2009-0024
– volume: 689
  start-page: 31
  year: 2012
  ident: 10.1016/j.lfs.2016.01.024_bb0570
  article-title: Protective effect of tetrahydroxystilbene glucoside against hydrogen peroxide-induced dysfunction and oxidative stress in osteoblastic MC3T3-E1 cells
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2012.05.045
– volume: 70
  start-page: 716
  year: 1982
  ident: 10.1016/j.lfs.2016.01.024_bb0025
  article-title: Changes in bone mineral density of the proximal femur and spine with aging
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI110667
– volume: 44
  start-page: 109
  year: 2003
  ident: 10.1016/j.lfs.2016.01.024_bb0225
  article-title: Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation
  publication-title: Connect. Tissue Res.
  doi: 10.1080/03008200390152188
– volume: 20
  start-page: 787
  year: 2013
  ident: 10.1016/j.lfs.2016.01.024_bb0535
  article-title: Puerarin stimulates proliferation and differentiation and protects against celldeath in human osteoblastic MG-63 cells via ER-dependent MEK/ERK and PI3K/Akt activation
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2013.03.005
– volume: 289
  start-page: 1508
  year: 2000
  ident: 10.1016/j.lfs.2016.01.024_bb0090
  article-title: Therapeutic approaches to bone diseases
  publication-title: Science
  doi: 10.1126/science.289.5484.1508
– volume: 278
  start-page: 29130
  year: 2003
  ident: 10.1016/j.lfs.2016.01.024_bb0440
  article-title: NF-κB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M212296200
– volume: 38
  start-page: 294
  year: 2004
  ident: 10.1016/j.lfs.2016.01.024_bb0080
  article-title: Teriparatide for severe osteoporosis
  publication-title: Ann. Pharmacother.
  doi: 10.1345/aph.1D353
– volume: 280
  start-page: 17497
  year: 2005
  ident: 10.1016/j.lfs.2016.01.024_bb0555
  article-title: Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M409332200
– volume: 18
  start-page: 211
  year: 2007
  ident: 10.1016/j.lfs.2016.01.024_bb0050
  article-title: Incidence and costs of hip fractures compared to acute myocardial infarction in the Italian population: a 4-year survey
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-006-0224-9
– volume: 349
  start-page: 1216
  year: 2003
  ident: 10.1016/j.lfs.2016.01.024_bb0110
  article-title: The effects of parathyroid hormone, alendronate, or both in men with osteoporosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa035725
– volume: 41
  start-page: 507
  year: 2012
  ident: 10.1016/j.lfs.2016.01.024_bb0115
  article-title: Anabolic therapies for osteoporosis
  publication-title: Endocrinol. Metab. Clin. N. Am.
  doi: 10.1016/j.ecl.2012.05.002
– volume: 58
  start-page: 773
  year: 2006
  ident: 10.1016/j.lfs.2016.01.024_bb0480
  article-title: International union of pharmacology. LXIV. Estrogen receptors
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.58.4.8
– volume: 73
  start-page: 374
  year: 2006
  ident: 10.1016/j.lfs.2016.01.024_bb0130
  article-title: Drug combination strategies for osteoporosis
  publication-title: Joint Bone Spine
  doi: 10.1016/j.jbspin.2006.02.004
– volume: 277
  start-page: 46226
  year: 2002
  ident: 10.1016/j.lfs.2016.01.024_bb0245
  article-title: Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M207776200
– volume: 11
  start-page: 712
  year: 2011
  ident: 10.1016/j.lfs.2016.01.024_bb0390
  article-title: Costunolide stimulates the function of osteoblastic MC3T3-E1 cells
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2011.01.018
– volume: 4
  start-page: 3111
  year: 1990
  ident: 10.1016/j.lfs.2016.01.024_bb0160
  article-title: Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation
  publication-title: FASEB J.
  doi: 10.1096/fasebj.4.13.2210157
– volume: 63
  start-page: 5357
  year: 2003
  ident: 10.1016/j.lfs.2016.01.024_bb0215
  article-title: Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts
  publication-title: Cancer Res.
– volume: 86
  start-page: 1476
  year: 2013
  ident: 10.1016/j.lfs.2016.01.024_bb0270
  article-title: Quercitrin and taxifolin stimulate osteoblast differentiation in MC3T3-E1 cells and inhibit osteoclastogenesis in RAW 264.7 cells
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2013.09.009
– volume: 8
  start-page: 739
  year: 2005
  ident: 10.1016/j.lfs.2016.01.024_bb0425
  article-title: Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2005.03.016
– volume: 115
  start-page: 3318
  year: 2005
  ident: 10.1016/j.lfs.2016.01.024_bb0020
  article-title: Pathogenesis of osteoporosis: concepts, conflicts, and prospects
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI27071
– volume: 150
  start-page: 893
  year: 1965
  ident: 10.1016/j.lfs.2016.01.024_bb0010
  article-title: Bone: formation by autoinduction
  publication-title: Science
  doi: 10.1126/science.150.3698.893
– volume: 120
  start-page: 2457
  year: 2010
  ident: 10.1016/j.lfs.2016.01.024_bb0360
  article-title: The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI42285
– volume: 18
  start-page: 873
  year: 2009
  ident: 10.1016/j.lfs.2016.01.024_bb0035
  article-title: An observational study on the adherence to treatment guidelines of osteopenia
  publication-title: J. Women's Health
  doi: 10.1089/jwh.2008.0897
– volume: 15
  start-page: 1879
  year: 2000
  ident: 10.1016/j.lfs.2016.01.024_bb0165
  article-title: Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2000.15.10.1879
– volume: 281
  start-page: 18015
  year: 2006
  ident: 10.1016/j.lfs.2016.01.024_bb0210
  article-title: Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M600603200
– volume: 89
  start-page: 33
  year: 2013
  ident: 10.1016/j.lfs.2016.01.024_bb0580
  article-title: Protective effect of albiflorin against oxidative-stress-mediated toxicity in osteoblast-like MC3T3-E1 cells
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2013.05.016
– volume: 9
  start-page: 497
  year: 1994
  ident: 10.1016/j.lfs.2016.01.024_bb0150
  article-title: Specific activity of skeletal alkaline phosphatase in human osteoblast-line cells regulated by phosphate, phosphate esters, and phosphate analogs and release of alkaline phosphatase activity inversely regulated by calcium
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.5650090409
– volume: 143
  start-page: 141
  year: 2014
  ident: 10.1016/j.lfs.2016.01.024_bb0335
  article-title: Flavonoids from herba epimedii selectively activate estrogen receptor alpha (ERα) andstimulate ER-dependent osteoblastic functionsin UMR-106 cells
  publication-title: J. Steroid Biochem. Mol. Biol.
  doi: 10.1016/j.jsbmb.2014.02.019
– start-page: 299
  year: 2005
  ident: 10.1016/j.lfs.2016.01.024_bb0125
  article-title: The use of preventive strategies for bone loss
  publication-title: Am. J. Chin. Med.
  doi: 10.1142/S0192415X05002916
– volume: 714
  start-page: 15
  year: 2013
  ident: 10.1016/j.lfs.2016.01.024_bb0250
  article-title: Icariin induces osteoblast proliferation, differentiation and mineralization through estrogenre ceptor-mediated ERK and JNK signal activation
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2013.05.039
– volume: 1092
  start-page: 385
  year: 2006
  ident: 10.1016/j.lfs.2016.01.024_bb0015
  article-title: Bone remodeling
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1365.035
– volume: 270
  start-page: 1491
  year: 1995
  ident: 10.1016/j.lfs.2016.01.024_bb0500
  article-title: Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase
  publication-title: Science
  doi: 10.1126/science.270.5241.1491
– volume: 113
  start-page: 846
  year: 2004
  ident: 10.1016/j.lfs.2016.01.024_bb0345
  article-title: PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI200419900
– volume: 17
  start-page: 414
  year: 2010
  ident: 10.1016/j.lfs.2016.01.024_bb0330
  article-title: Icariin isolated from epimedium pubescens regulates osteoblasts anabolism through BMP-2, SMAD4, and Cbfa1 expression
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2009.08.007
– volume: 83
  start-page: 1443
  year: 2012
  ident: 10.1016/j.lfs.2016.01.024_bb0300
  article-title: Echinacoside promotes bone regeneration by increasing OPG/RANKL ratio in MC3T3-E1 cells
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2012.08.008
– volume: 17
  start-page: 1726
  year: 2006
  ident: 10.1016/j.lfs.2016.01.024_bb0040
  article-title: An estimate of the worldwide prevalence and disability associated with osteoporotic fractures
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-006-0172-4
– volume: 29
  start-page: 999
  year: 2013
  ident: 10.1016/j.lfs.2016.01.024_bb0070
  article-title: Assessment of bone microarchitecture in postmenopausal women on long term bisphosphonate therapy with atypical fractures of the femur
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2107
– volume: 405
  start-page: 256
  year: 2011
  ident: 10.1016/j.lfs.2016.01.024_bb0455
  article-title: Psoralen stimulates osteoblast differentiation through activation of BMP signaling
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.01.021
– volume: 282
  start-page: 4983
  year: 2007
  ident: 10.1016/j.lfs.2016.01.024_bb0435
  article-title: Statin-induced Ras activation integrates the phosphatidylinositol 3-kinase signal to Akt and MAPK for bone morphogenetic protein-2 expression in osteoblast differentiation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M606706200
– volume: 301
  start-page: 119
  year: 2004
  ident: 10.1016/j.lfs.2016.01.024_bb0560
  article-title: Reactive oxygen species mediate RANK signaling in osteoclasts
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2004.07.035
– volume: 76
  start-page: 514
  year: 2009
  ident: 10.1016/j.lfs.2016.01.024_bb0550
  article-title: Antioxidant status in patients with osteoporosis: a controlled study
  publication-title: Joint Bone Spine
  doi: 10.1016/j.jbspin.2009.02.005
– volume: 19
  start-page: 1147
  year: 2012
  ident: 10.1016/j.lfs.2016.01.024_bb0325
  article-title: Upregulation of osteoblastic differentiation marker mRNA expression in osteoblast-like UMR106 cells by puerarin and phytoestrogens from Pueraria mirifica
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2012.07.010
– volume: 11
  start-page: 1251
  year: 2011
  ident: 10.1016/j.lfs.2016.01.024_bb0625
  article-title: Protective effect of kobophenol A on nitric oxide-induced cell apoptosis in human osteoblast-like MG-63 cells: involvement of JNK, NF-κB and AP-1 pathways
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2011.04.004
– volume: 11
  start-page: 1541
  year: 2011
  ident: 10.1016/j.lfs.2016.01.024_bb0315
  article-title: Honokiol isolated from Magnolia officinalis stimulates osteoblast function and inhibits the release of bone-resorbing mediators
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2011.05.011
– volume: 87
  start-page: 226
  year: 2010
  ident: 10.1016/j.lfs.2016.01.024_bb0565
  article-title: Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-010-9393-9
– volume: 668
  start-page: 383
  year: 2011
  ident: 10.1016/j.lfs.2016.01.024_bb0375
  article-title: Ugonin K promotes osteoblastic differentiation and mineralization by activation of p38 MAPK- and ERK-mediated expression of Runx2 and osterix
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2011.06.059
– volume: 16
  start-page: 291
  year: 2004
  ident: 10.1016/j.lfs.2016.01.024_bb0410
  article-title: Signal transduction of bone morphogenetic protein receptors
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2003.08.011
– volume: 111
  start-page: 55
  year: 2014
  ident: 10.1016/j.lfs.2016.01.024_bb0530
  article-title: Genistein induces oestrogen receptor-α gene expression in osteoblasts through the activation of mitogen-activated protein kinases/NF-κB/activator protein-1 and promotes cell mineralisation
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114513002043
– volume: 20
  start-page: 683
  year: 2013
  ident: 10.1016/j.lfs.2016.01.024_bb0265
  article-title: Assessment of the role of flavonoids for inducing osteoblast differentiation in isolated mouse bone marrow derived mesenchymal stem cells
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2013.03.001
– volume: 22
  start-page: 465
  year: 2007
  ident: 10.1016/j.lfs.2016.01.024_bb0060
  article-title: Incidence and economic burden of osteoporosis related fractures in the United States, 2005–2025
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.061113
– volume: 213
  start-page: 610
  year: 2007
  ident: 10.1016/j.lfs.2016.01.024_bb0490
  article-title: Signaling by estrogens
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.21253
– volume: 1
  year: 2003
  ident: 10.1016/j.lfs.2016.01.024_bb0415
  article-title: Linkage of osteoporosis to chromosome 20p12 and association to BMP2
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0000069
– volume: 284
  start-page: 143
  year: 1999
  ident: 10.1016/j.lfs.2016.01.024_bb0240
  article-title: Multilineage potential of adult human mesenchymal stem cells
  publication-title: Science
  doi: 10.1126/science.284.5411.143
– volume: 382
  start-page: 448
  year: 1996
  ident: 10.1016/j.lfs.2016.01.024_bb0175
  article-title: Increased bone formation in osteocalcin-deficient mice
  publication-title: Nature
  doi: 10.1038/382448a0
– volume: 15
  start-page: 73
  year: 2004
  ident: 10.1016/j.lfs.2016.01.024_bb0505
  article-title: Anatomy of the estrogen response element
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2004.01.008
– volume: 15
  start-page: 275
  year: 1994
  ident: 10.1016/j.lfs.2016.01.024_bb0485
  article-title: Skeletal effects of estrogen
  publication-title: Endocr. Rev.
– volume: 142
  start-page: 142
  year: 2014
  ident: 10.1016/j.lfs.2016.01.024_bb0075
  article-title: Use of SERMs for treatment in postmenopausal women
  publication-title: J. Steroid Biochem. Mol. Biol.
  doi: 10.1016/j.jsbmb.2013.12.011
– volume: 14
  start-page: 806
  year: 2007
  ident: 10.1016/j.lfs.2016.01.024_bb0540
  article-title: Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2007.04.003
– volume: 41
  start-page: 462
  year: 2007
  ident: 10.1016/j.lfs.2016.01.024_bb0170
  article-title: Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro
  publication-title: Bone
  doi: 10.1016/j.bone.2007.04.191
– volume: 66
  start-page: 306
  year: 2014
  ident: 10.1016/j.lfs.2016.01.024_bb0585
  article-title: Ginsenoside-Rb2 displays anti-osteoporosis effects through reducing oxidative damage and bone-resorbing cytokines during osteogenesis
  publication-title: Bone
  doi: 10.1016/j.bone.2014.06.010
– volume: 1116
  start-page: 196
  year: 2007
  ident: 10.1016/j.lfs.2016.01.024_bb0140
  article-title: Transcriptional regulation of osteoblasts
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1402.081
– volume: 17
  start-page: 661
  year: 2002
  ident: 10.1016/j.lfs.2016.01.024_bb0195
  article-title: Resistance to unloading-induced three-dimensional bone loss in osteopontin-deficient mice
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2002.17.4.661
– volume: 579
  start-page: 40
  year: 2008
  ident: 10.1016/j.lfs.2016.01.024_bb0395
  article-title: Enhancement of bone morphogenetic protein-2 expression and bone formation by coumarin derivatives via p38 and ERK-dependent pathway in osteoblasts
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2007.10.013
– volume: 406
  start-page: 211
  year: 2011
  ident: 10.1016/j.lfs.2016.01.024_bb0475
  article-title: Acerogenin A, a natural compound isolated from Acer nikoense Maxim, stimulates osteoblast differentiation through bone morphogenetic protein action
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.02.017
– volume: 129
  start-page: 133
  year: 2001
  ident: 10.1016/j.lfs.2016.01.024_bb0200
  article-title: Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a002824
– volume: 98
  start-page: 59
  year: 2014
  ident: 10.1016/j.lfs.2016.01.024_bb0310
  article-title: Kirenol stimulates osteoblast differentiation through activation of the BMP and Wnt/β-catenin signaling pathways in MC3T3-E1 cells
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2014.07.013
– volume: 19
  start-page: 204
  year: 2013
  ident: 10.1016/j.lfs.2016.01.024_bb0085
  article-title: Treating osteoporosis by targeting parathyroid hormone to bone
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2013.07.015
SSID ssj0005573
Score 2.626968
SecondaryResourceType review_article
Snippet Osteoporosis is a systemic metabolic bone disease characterized by a reduction in bone mass, bone quality, and microarchitectural deterioration. An imbalance...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 46
SubjectTerms active ingredients
adverse effects
Animals
anthraquinones
Biological Products - pharmacology
Biological Products - therapeutic use
bone density
bone formation
bone resorption
Cell Differentiation - drug effects
Cell Proliferation - drug effects
coumarins
developmental orthopedic disease
diterpenoids
flavonoids
glycosides
Humans
Medicine, Chinese Traditional
mitogen-activated protein kinase
Molecular mechanism
monoterpenoids
Natural products
nitric oxide
Oriental traditional medicine
Osteoblasts
Osteoblasts - drug effects
Osteoblasts - metabolism
Osteogenesis - drug effects
Osteoporosis
Osteoporosis - drug therapy
Osteoporosis - physiopathology
phenolic acids
phenols
research and development
sesquiterpenoids
signal transduction
Traditional Chinese medicines
transcription (genetics)
transcription factors
Title Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation
URI https://dx.doi.org/10.1016/j.lfs.2016.01.024
https://www.ncbi.nlm.nih.gov/pubmed/26796578
https://www.proquest.com/docview/1767622441
https://www.proquest.com/docview/1805507475
https://www.proquest.com/docview/2101355819
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFVIvFa-22xbkSj1ApZTYazsJN4SKtq26J5C4WX5WiyBZNcuBHvjtzCTOCg67hx4T2Xl4Hv5sz3xDyBfPMVVW5hkLYG6ixGTlIAHIKVWIYJQ3Fvc7fk_V5Er8vJbXG-R8yIXBsMrk-3uf3nnrdOckjebJfDbDHF8uxhyUClmjeLcEEqJALf_2-CzMQ6ZTZi4ybD2cbHYxXrcRGbuZ6pk7xaq5aRX27Oagi23yJoFHetZ_3w7ZCPUu2erLST7skp1kqC09SmzSx3vk39R01Bp03nO7thRgKl3Gl9MmUszzaACHN-2sPaWgODRFeVBTe3oXMDl41t61tKnxKRi-V__pe1kA37By7up9BE9tUwe6zIfcJ1cX3y_PJ1kquJA5UcpFxlVlTCnCOOeVdV7F3LDKG8dDZbxTzgkeoi-ViNLwksVYOasUaAHjHjOvxm_JZg0vek9oVGVeuMAisx4QVyy55zYYzmIonLRyRPJhqLVLbORYFONWD2FnNxqko1E6OmcapDMiX5dd5j0Vx7rGYpCffqFPGqaKdd0-D7LWYGd4eGLq0Ny3mhUK5g0AQ2xNmzJHejhRyNVtYInNkNKeVSPyrlem5d9w3NQDF_rh_z7-I3mNVxhTzuQnsrn4ex8OADIt7GFnE4fk1dmPX5PpEx2IFuk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYILouW1PI0EEiCFxl7bSZA4IKDa0nZPrdSb8RMtapMV2QqVA3-KP8hM4qzgsHtA6jWx8_DY48_2N98Q8txzDJWVecYCDDdRYrBykADklCpEMMobi_sdh1M1ORafT-TJBvk9xMIgrTL5_t6nd946XdlJrbkzn80wxpeLMYdOhapRsBBIzMr9cPED1m3tu72PYOQXnO9-OvowyVJqgcyJUi4yripjShHGOa-s8yrmhlXeOB4q451yTvAQfalElIaXLMbKWaXgfxn3GGM0hudeIVcFuAtMm_Dm11-8EpmOtbnI8POGo9SOVHYaUSKcqV4qVKyaDFeB3W7S271Fbia0St_3DbJFNkK9Ta71-SsvtslW8gwtfZnkq1_dJj-nptPyoPNeTLalgIvpktBOm0gxsKQB4N-0s_YthZ5KE62EmtrTs4DRyLP2rKVNjU9BvmD9ta9lAe3DUr1LMBI8tU0d6DIA8w45vhQz3CWbNbzoPqFRlXnhAovMeoB4seSe22A4i6Fw0soRyYem1i7Jn2MWjlM98Ny-abCORuvonGmwzoi8XlaZ99of6wqLwX76nw6sYW5aV-3ZYGsNAxtPa0wdmvNWs0LBRAXoi60pU-aoRycKuboMrOkZauizakTu9Z1p-TccdxHBZz_4v49_Sq5Pjg4P9MHedP8huYF3kNDO5COyufh-Hh4DXlvYJ934oOTLZQ_IP_rfVIs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+products+for+treatment+of+osteoporosis%3A+The+effects+and+mechanisms+on+promoting+osteoblast-mediated+bone+formation&rft.jtitle=Life+sciences+%281973%29&rft.au=An%2C+Jing&rft.au=Yang%2C+Hao&rft.au=Zhang%2C+Qian&rft.au=Liu%2C+Cuicui&rft.date=2016-02-15&rft.eissn=1879-0631&rft.volume=147&rft.spage=46&rft_id=info:doi/10.1016%2Fj.lfs.2016.01.024&rft_id=info%3Apmid%2F26796578&rft.externalDocID=26796578
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3205&client=summon