Computer-aided diagnosis of keratoconus through VAE-augmented images using deep learning
Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to review demographic and clinical ophthalmic examinations in order to make an accurate diagnosis. This study aims to develop and evaluate the accuracy of de...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 20586 - 15 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.11.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to review demographic and clinical ophthalmic examinations in order to make an accurate diagnosis. This study aims to develop and evaluate the accuracy of deep convolutional neural network (CNN) models for the detection of keratoconus (KCN) using corneal topographic maps. We retrospectively collected 1758 corneal images (978 normal and 780 keratoconus) from 1010 subjects of the KCN group with clinically evident keratoconus and the normal group with regular astigmatism. To expand the dataset, we developed a model using Variational Auto Encoder (VAE) to generate and augment images, resulting in a dataset of 4000 samples. Four deep learning models were used to extract and identify deep corneal features of original and synthesized images. We demonstrated that the utilization of synthesized images during training process increased classification performance. The overall average accuracy of the deep learning models ranged from 99% for VGG16 to 95% for EfficientNet-B0. All CNN models exhibited sensitivity and specificity above 0.94, with the VGG16 model achieving an AUC of 0.99. The customized CNN model achieved satisfactory results with an accuracy and AUC of 0.97 at a much faster processing speed compared to other models. In conclusion, the DL models showed high accuracy in screening for keratoconus based on corneal topography images. This is a development toward the potential clinical implementation of a more enhanced computer-aided diagnosis (CAD) system for KCN detection, which would aid ophthalmologists in validating the clinical decision and carrying out prompt and precise KCN treatment. |
---|---|
AbstractList | Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to review demographic and clinical ophthalmic examinations in order to make an accurate diagnosis. This study aims to develop and evaluate the accuracy of deep convolutional neural network (CNN) models for the detection of keratoconus (KCN) using corneal topographic maps. We retrospectively collected 1758 corneal images (978 normal and 780 keratoconus) from 1010 subjects of the KCN group with clinically evident keratoconus and the normal group with regular astigmatism. To expand the dataset, we developed a model using Variational Auto Encoder (VAE) to generate and augment images, resulting in a dataset of 4000 samples. Four deep learning models were used to extract and identify deep corneal features of original and synthesized images. We demonstrated that the utilization of synthesized images during training process increased classification performance. The overall average accuracy of the deep learning models ranged from 99% for VGG16 to 95% for EfficientNet-B0. All CNN models exhibited sensitivity and specificity above 0.94, with the VGG16 model achieving an AUC of 0.99. The customized CNN model achieved satisfactory results with an accuracy and AUC of 0.97 at a much faster processing speed compared to other models. In conclusion, the DL models showed high accuracy in screening for keratoconus based on corneal topography images. This is a development toward the potential clinical implementation of a more enhanced computer-aided diagnosis (CAD) system for KCN detection, which would aid ophthalmologists in validating the clinical decision and carrying out prompt and precise KCN treatment.Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to review demographic and clinical ophthalmic examinations in order to make an accurate diagnosis. This study aims to develop and evaluate the accuracy of deep convolutional neural network (CNN) models for the detection of keratoconus (KCN) using corneal topographic maps. We retrospectively collected 1758 corneal images (978 normal and 780 keratoconus) from 1010 subjects of the KCN group with clinically evident keratoconus and the normal group with regular astigmatism. To expand the dataset, we developed a model using Variational Auto Encoder (VAE) to generate and augment images, resulting in a dataset of 4000 samples. Four deep learning models were used to extract and identify deep corneal features of original and synthesized images. We demonstrated that the utilization of synthesized images during training process increased classification performance. The overall average accuracy of the deep learning models ranged from 99% for VGG16 to 95% for EfficientNet-B0. All CNN models exhibited sensitivity and specificity above 0.94, with the VGG16 model achieving an AUC of 0.99. The customized CNN model achieved satisfactory results with an accuracy and AUC of 0.97 at a much faster processing speed compared to other models. In conclusion, the DL models showed high accuracy in screening for keratoconus based on corneal topography images. This is a development toward the potential clinical implementation of a more enhanced computer-aided diagnosis (CAD) system for KCN detection, which would aid ophthalmologists in validating the clinical decision and carrying out prompt and precise KCN treatment. Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to review demographic and clinical ophthalmic examinations in order to make an accurate diagnosis. This study aims to develop and evaluate the accuracy of deep convolutional neural network (CNN) models for the detection of keratoconus (KCN) using corneal topographic maps. We retrospectively collected 1758 corneal images (978 normal and 780 keratoconus) from 1010 subjects of the KCN group with clinically evident keratoconus and the normal group with regular astigmatism. To expand the dataset, we developed a model using Variational Auto Encoder (VAE) to generate and augment images, resulting in a dataset of 4000 samples. Four deep learning models were used to extract and identify deep corneal features of original and synthesized images. We demonstrated that the utilization of synthesized images during training process increased classification performance. The overall average accuracy of the deep learning models ranged from 99% for VGG16 to 95% for EfficientNet-B0. All CNN models exhibited sensitivity and specificity above 0.94, with the VGG16 model achieving an AUC of 0.99. The customized CNN model achieved satisfactory results with an accuracy and AUC of 0.97 at a much faster processing speed compared to other models. In conclusion, the DL models showed high accuracy in screening for keratoconus based on corneal topography images. This is a development toward the potential clinical implementation of a more enhanced computer-aided diagnosis (CAD) system for KCN detection, which would aid ophthalmologists in validating the clinical decision and carrying out prompt and precise KCN treatment. Abstract Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to review demographic and clinical ophthalmic examinations in order to make an accurate diagnosis. This study aims to develop and evaluate the accuracy of deep convolutional neural network (CNN) models for the detection of keratoconus (KCN) using corneal topographic maps. We retrospectively collected 1758 corneal images (978 normal and 780 keratoconus) from 1010 subjects of the KCN group with clinically evident keratoconus and the normal group with regular astigmatism. To expand the dataset, we developed a model using Variational Auto Encoder (VAE) to generate and augment images, resulting in a dataset of 4000 samples. Four deep learning models were used to extract and identify deep corneal features of original and synthesized images. We demonstrated that the utilization of synthesized images during training process increased classification performance. The overall average accuracy of the deep learning models ranged from 99% for VGG16 to 95% for EfficientNet-B0. All CNN models exhibited sensitivity and specificity above 0.94, with the VGG16 model achieving an AUC of 0.99. The customized CNN model achieved satisfactory results with an accuracy and AUC of 0.97 at a much faster processing speed compared to other models. In conclusion, the DL models showed high accuracy in screening for keratoconus based on corneal topography images. This is a development toward the potential clinical implementation of a more enhanced computer-aided diagnosis (CAD) system for KCN detection, which would aid ophthalmologists in validating the clinical decision and carrying out prompt and precise KCN treatment. |
ArticleNumber | 20586 |
Author | Firouzi, Reza Agharezaei, Zhila Zarei-Ghanavati, Siamak Eslami, Saeid Bakhshali, Mohamad Amin Akbarzadeh, Reyhaneh Golabpour, Amin Agharezaei, Laleh Hassanzadeh, Samira Bahaadinbeigy, Kambiz Sedaghat, Mohammad Reza |
Author_xml | – sequence: 1 givenname: Zhila surname: Agharezaei fullname: Agharezaei, Zhila organization: Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Medical Informatics Research Center, Institute for Future Studies in Health, Kerman University of Medical Sciences – sequence: 2 givenname: Reza surname: Firouzi fullname: Firouzi, Reza organization: Department of Computer Engineering, Ferdowsi University of Mashhad – sequence: 3 givenname: Samira surname: Hassanzadeh fullname: Hassanzadeh, Samira organization: School of Paramedical Sciences and Rehabilitation, Mashhad University of Medical Sciences – sequence: 4 givenname: Siamak surname: Zarei-Ghanavati fullname: Zarei-Ghanavati, Siamak organization: Eye Research Center, Mashhad University of Medical Sciences – sequence: 5 givenname: Kambiz surname: Bahaadinbeigy fullname: Bahaadinbeigy, Kambiz organization: Medical Informatics Research Center, Institute for Future Studies in Health, Kerman University of Medical Sciences – sequence: 6 givenname: Amin surname: Golabpour fullname: Golabpour, Amin organization: School of Medicine, Shahroud University of Medical Sciences – sequence: 7 givenname: Reyhaneh surname: Akbarzadeh fullname: Akbarzadeh, Reyhaneh organization: Department of Optometry, School of Paramedical Sciences, Mashhad University of Medical Sciences – sequence: 8 givenname: Laleh surname: Agharezaei fullname: Agharezaei, Laleh organization: Modeling in Health Research Center, Institute for Future Studies in Health, Kerman University of Medical Sciences – sequence: 9 givenname: Mohamad Amin surname: Bakhshali fullname: Bakhshali, Mohamad Amin organization: Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences – sequence: 10 givenname: Mohammad Reza surname: Sedaghat fullname: Sedaghat, Mohammad Reza organization: Eye Research Center, Mashhad University of Medical Sciences – sequence: 11 givenname: Saeid surname: Eslami fullname: Eslami, Saeid email: s.eslami.h@gmail.com organization: Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37996439$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vFSEYhYmpsbX2D7gwk7hxM8rnAMvmprZNmrhR444wwztTrjNwBWbhv5d2WjVdlA285DknB85rdBRiAITeEvyRYKY-ZU6EVi2mrOWdxqwVL9AJxVy0lFF69N_5GJ3lvMd1Cao50a_QMZNad5zpE_RjF5fDWiC11jtwjfN2CjH73MSx-QnJljjEsOam3Ka4TrfN9_OL1q7TAqFU3C92gtys2YepcQCHZgabQp3eoJejnTOcPeyn6Nvni6-7q_bmy-X17vymHbgSpSU9MMc4AeI0k93QA9eyk2K0tCcCRmBiVIpi7EbJiALe214L6JTt1SCZZqfoevN10e7NIdVE6beJ1pv7i5gmY1PxwwxGO8uo6Dl2WHGtVI8ZV5hIDG4YpXTV68PmdUjx1wq5mMXnAebZBohrNlRpplhHqazo-yfoPq4p1JfeUVQR3HFaqXcP1Nov4P7Ge_z_CqgNGFLMOcFoBl9s8TGUZP1sCDZ3bZutbVPbNvdtG1Gl9In00f1ZEdtEucJhgvQv9jOqP9Ztuqc |
CitedBy_id | crossref_primary_10_1097_ICU_0000000000001090 crossref_primary_10_2478_ijanmc_2024_0037 crossref_primary_10_1016_j_rineng_2025_104158 crossref_primary_10_3389_fopht_2024_1497848 crossref_primary_10_1371_journal_pone_0297268 crossref_primary_10_1016_j_bspc_2025_107664 |
Cites_doi | 10.1016/j.ajo.2013.03.034 10.1016/j.joco.2019.01.013 10.1364/BOE.10.000622 10.1016/j.cmpb.2021.106086 10.1097/ICO.0000000000002420 10.1167/tvst.9.2.30 10.1097/ICO.0000000000000834 10.1186/s40662-022-00277-3 10.1007/s00521-021-05826-w 10.1186/s40662-020-00213-3 10.1155/2019/8162567 10.1007/s12559-021-09880-3 10.1038/nature14539 10.1136/bmjopen-2019-031313 10.1109/ACCESS.2020.3034828 10.1038/eye.2015.63 10.1016/j.media.2019.101552 10.1167/tvst.9.2.53 10.1016/j.ophtha.2012.06.005 10.1001/archophthalmol.2011.7 10.1097/ICO.0000000000001194 10.1002/jbio.201900126 10.1136/bjophthalmol-2018-313173 10.3390/diagnostics9020038 10.1016/j.compbiomed.2019.04.024 10.3390/biom12121888 10.1016/j.preteyeres.2018.05.002 10.1186/s40662-020-00183-6 10.1167/tvst.10.14.16 10.1167/tvst.10.7.21 10.1016/j.ajo.2020.06.005 10.1038/sj.eye.6700652 10.1111/opo.12369 10.1162/neco_a_00990 10.1016/j.ajo.2020.02.017 10.21123/bsj.2019.16.4(Suppl.).1022 10.1609/aaai.v33i01.33015885 10.1109/ICCV.2019.00140 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. corrected publication 2023 2023. The Author(s). The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023. corrected publication 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.1038/s41598-023-46903-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_9da325b40d084988b03480170edcf77d 37996439 10_1038_s41598_023_46903_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Mashhad University of Medical Sciences grantid: 981511 funderid: http://dx.doi.org/10.13039/501100004748 – fundername: Mashhad University of Medical Sciences grantid: 981511 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-1be3d341e1d9376cbe497675fa2b15efe35f88200df7318e4bab95e68ab8c7393 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:09:42 EDT 2025 Fri Jul 11 05:43:10 EDT 2025 Wed Aug 13 01:45:26 EDT 2025 Thu Apr 03 07:05:21 EDT 2025 Thu Apr 24 23:07:24 EDT 2025 Tue Jul 01 03:57:56 EDT 2025 Fri Feb 21 02:39:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-1be3d341e1d9376cbe497675fa2b15efe35f88200df7318e4bab95e68ab8c7393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/9da325b40d084988b03480170edcf77d |
PMID | 37996439 |
PQID | 2892810642 |
PQPubID | 2041939 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9da325b40d084988b03480170edcf77d proquest_miscellaneous_2893836227 proquest_journals_2892810642 pubmed_primary_37996439 crossref_citationtrail_10_1038_s41598_023_46903_5 crossref_primary_10_1038_s41598_023_46903_5 springer_journals_10_1038_s41598_023_46903_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-23 |
PublicationDateYYYYMMDD | 2023-11-23 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Al-Timemy, Ghaeb, Mosa, Escudero (CR23) 2022; 14 Goodfellow (CR26) 2014; 27 Goodfellow, Bengio, Courville (CR18) 2016 CR39 Hidalgo (CR34) 2016; 35 Tong, Lu, Yu, Shen (CR9) 2020; 7 Rawat, Wang (CR17) 2017; 29 Galvis (CR6) 2015; 29 Zéboulon, Debellemanière, Bouvet, Gatinel (CR22) 2020; 219 Kelly, Williams, Coster (CR2) 2011; 129 Issarti (CR14) 2019; 109 Kim, Rajaraman, Antani (CR49) 2019; 9 Al-Timemy (CR40) 2021; 10 Asperti, Trentin (CR44) 2020; 8 LeCun, Bengio, Hinton (CR15) 2015; 521 CR7 Lavric, Valentin (CR21) 2019 Velázquez-Blázquez, Bolarín, Cavas-Martínez, Alió (CR35) 2020; 9 CR48 CR47 CR46 Kuo (CR20) 2020; 9 CR45 Georgiou, Funnell, Cassels-Brown, O'conor (CR4) 2004; 18 Cemgil, Ghaisas, Dvijotham, Gowal, Kohli (CR25) 2020; 33 CR43 CR42 Shi (CR38) 2020; 7 Chandapura (CR36) 2019; 12 Ting (CR50) 2019; 103 Smadja (CR12) 2013; 156 Abdelmotaal, Abdou, Omar, El-Sebaity, Abdelazeem (CR31) 2021; 10 Dos Santos (CR16) 2019; 10 You, Kim, Ryu, Yoo (CR8) 2022; 9 CR55 CR54 Jameel (CR28) 2022; 12 CR53 CR52 CR51 Kugelman (CR29) 2021; 33 Hidalgo (CR13) 2017; 36 Kojima (CR32) 2020; 215 Kamiya (CR19) 2019; 9 Sharif, Bak-Nielsen, Hjortdal, Karamichos (CR1) 2018; 67 Rozema (CR41) 2017; 37 Rafati (CR5) 2019; 31 Arbelaez, Versaci, Vestri, Barboni, Savini (CR11) 2012; 119 Mosa, Ghaeb, Ali (CR37) 2019; 16 CR24 Yoo, Choi, Kim, Ryu, Kim (CR30) 2021; 205 Yi, Walia, Babyn (CR27) 2019; 58 Maeda, Klyce, Smolek (CR33) 1995; 36 Buzzonetti, Bohringer, Liskova, Lang, Valente (CR3) 2020; 39 Smolek, Klyce (CR10) 1997; 38 I Issarti (46903_CR14) 2019; 109 K Kamiya (46903_CR19) 2019; 9 IR Hidalgo (46903_CR13) 2017; 36 SK Jameel (46903_CR28) 2022; 12 MK Smolek (46903_CR10) 1997; 38 W Rawat (46903_CR17) 2017; 29 N Maeda (46903_CR33) 1995; 36 46903_CR48 A Asperti (46903_CR44) 2020; 8 46903_CR42 46903_CR43 A You (46903_CR8) 2022; 9 H Abdelmotaal (46903_CR31) 2021; 10 Y LeCun (46903_CR15) 2015; 521 46903_CR46 I Kim (46903_CR49) 2019; 9 46903_CR47 MC Arbelaez (46903_CR11) 2012; 119 46903_CR45 P Zéboulon (46903_CR22) 2020; 219 A Lavric (46903_CR21) 2019 VA Dos Santos (46903_CR16) 2019; 10 TK Yoo (46903_CR30) 2021; 205 AH Al-Timemy (46903_CR40) 2021; 10 46903_CR7 JS Velázquez-Blázquez (46903_CR35) 2020; 9 X Yi (46903_CR27) 2019; 58 46903_CR53 R Sharif (46903_CR1) 2018; 67 46903_CR54 46903_CR51 46903_CR52 46903_CR55 R Chandapura (46903_CR36) 2019; 12 ZM Mosa (46903_CR37) 2019; 16 AH Al-Timemy (46903_CR23) 2022; 14 JJ Rozema (46903_CR41) 2017; 37 T Cemgil (46903_CR25) 2020; 33 J Kugelman (46903_CR29) 2021; 33 B-I Kuo (46903_CR20) 2020; 9 D Smadja (46903_CR12) 2013; 156 S Rafati (46903_CR5) 2019; 31 Y Tong (46903_CR9) 2020; 7 46903_CR24 L Buzzonetti (46903_CR3) 2020; 39 DSW Ting (46903_CR50) 2019; 103 I Goodfellow (46903_CR26) 2014; 27 T Kojima (46903_CR32) 2020; 215 T Georgiou (46903_CR4) 2004; 18 C Shi (46903_CR38) 2020; 7 46903_CR39 V Galvis (46903_CR6) 2015; 29 T-L Kelly (46903_CR2) 2011; 129 IR Hidalgo (46903_CR34) 2016; 35 I Goodfellow (46903_CR18) 2016 38129562 - Sci Rep. 2023 Dec 21;13(1):22914 |
References_xml | – ident: CR45 – volume: 156 start-page: 237 year: 2013 end-page: 246.e231 ident: CR12 article-title: Detection of subclinical keratoconus using an automated decision tree classification publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2013.03.034 – volume: 31 start-page: 268 year: 2019 end-page: 274 ident: CR5 article-title: Demographic profile, clinical, and topographic characteristics of keratoconus patients attending at a tertiary eye center publication-title: J. Curr. Ophthalmol. doi: 10.1016/j.joco.2019.01.013 – volume: 10 start-page: 622 year: 2019 end-page: 641 ident: CR16 article-title: CorneaNet: Fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning publication-title: Biomed. Opt. Express doi: 10.1364/BOE.10.000622 – volume: 205 start-page: 106086 year: 2021 ident: CR30 article-title: Adopting low-shot deep learning for the detection of conjunctival melanoma using ocular surface images publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2021.106086 – ident: CR39 – ident: CR51 – volume: 39 start-page: 1592 year: 2020 end-page: 1598 ident: CR3 article-title: Keratoconus in children: A literature review publication-title: Cornea doi: 10.1097/ICO.0000000000002420 – volume: 9 start-page: 30 year: 2020 end-page: 30 ident: CR35 article-title: EMKLAS: A new automatic scoring system for early and mild keratoconus detection publication-title: Transl. Vis. Sci. Technol. doi: 10.1167/tvst.9.2.30 – volume: 35 start-page: 827 year: 2016 end-page: 832 ident: CR34 article-title: Evaluation of a machine-learning classifier for keratoconus detection based on Scheimpflug tomography publication-title: Cornea doi: 10.1097/ICO.0000000000000834 – ident: CR54 – volume: 9 start-page: 1 year: 2022 end-page: 19 ident: CR8 article-title: Application of generative adversarial networks (GAN) for ophthalmology image domains: A survey publication-title: Eye Vis. doi: 10.1186/s40662-022-00277-3 – volume: 33 start-page: 7393 year: 2021 end-page: 7408 ident: CR29 article-title: Data augmentation for patch-based OCT chorio-retinal segmentation using generative adversarial networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05826-w – volume: 7 start-page: 1 year: 2020 end-page: 12 ident: CR38 article-title: Machine learning helps improve diagnostic ability of subclinical keratoconus using Scheimpflug and OCT imaging modalities publication-title: Eye Vis. doi: 10.1186/s40662-020-00213-3 – ident: CR42 – year: 2019 ident: CR21 article-title: KeratoDetect: Keratoconus detection algorithm using convolutional neural networks publication-title: Comput. Intell. Neurosci. doi: 10.1155/2019/8162567 – volume: 14 start-page: 1627 year: 2022 end-page: 1642 ident: CR23 article-title: Deep transfer learning for improved detection of keratoconus using corneal topographic maps publication-title: Cogn. Comput. doi: 10.1007/s12559-021-09880-3 – ident: CR46 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR15 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 9 start-page: e031313 year: 2019 ident: CR19 article-title: Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: A diagnostic accuracy study publication-title: BMJ Open doi: 10.1136/bmjopen-2019-031313 – volume: 8 start-page: 199440 year: 2020 end-page: 199448 ident: CR44 article-title: Balancing reconstruction error and Kullback-Leibler divergence in variational autoencoders publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3034828 – volume: 29 start-page: 843 year: 2015 end-page: 859 ident: CR6 article-title: Keratoconus: An inflammatory disorder? publication-title: Eye doi: 10.1038/eye.2015.63 – volume: 58 start-page: 101552 year: 2019 ident: CR27 article-title: Generative adversarial network in medical imaging: A review publication-title: Med. Image Analy. doi: 10.1016/j.media.2019.101552 – volume: 9 start-page: 53 year: 2020 end-page: 53 ident: CR20 article-title: Keratoconus screening based on deep learning approach of corneal topography publication-title: Transl. Vis. Sci. Technol. doi: 10.1167/tvst.9.2.53 – ident: CR43 – volume: 119 start-page: 2231 year: 2012 end-page: 2238 ident: CR11 article-title: Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data publication-title: Ophthalmology doi: 10.1016/j.ophtha.2012.06.005 – ident: CR47 – volume: 129 start-page: 691 year: 2011 end-page: 697 ident: CR2 article-title: Corneal transplantation for keratoconus: A registry study publication-title: Arch. Ophthalmol. doi: 10.1001/archophthalmol.2011.7 – ident: CR53 – volume: 38 start-page: 2290 year: 1997 end-page: 2299 ident: CR10 article-title: Current keratoconus detection methods compared with a neural network approach publication-title: Investig. Ophthalmol. Vis. Sci. – year: 2016 ident: CR18 publication-title: Deep Learning – volume: 36 start-page: 689 year: 2017 end-page: 695 ident: CR13 article-title: Validation of an objective keratoconus detection system implemented in a Scheimpflug tomographer and comparison with other methods publication-title: Cornea doi: 10.1097/ICO.0000000000001194 – volume: 12 start-page: e201900126 year: 2019 ident: CR36 article-title: Bowman’s topography for improved detection of early Ectasia publication-title: J. Biophotonics doi: 10.1002/jbio.201900126 – volume: 103 start-page: 167 year: 2019 end-page: 175 ident: CR50 article-title: Artificial intelligence and deep learning in ophthalmology publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2018-313173 – volume: 9 start-page: 38 year: 2019 ident: CR49 article-title: Visual interpretation of convolutional neural network predictions in classifying medical image modalities publication-title: Diagnostics doi: 10.3390/diagnostics9020038 – volume: 109 start-page: 33 year: 2019 end-page: 42 ident: CR14 article-title: Computer aided diagnosis for suspect keratoconus detection publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.04.024 – volume: 12 start-page: 1888 year: 2022 ident: CR28 article-title: Exploiting the generative adversarial network approach to create a synthetic topography corneal image publication-title: Biomolecules doi: 10.3390/biom12121888 – ident: CR48 – volume: 67 start-page: 150 year: 2018 end-page: 167 ident: CR1 article-title: Pathogenesis of Keratoconus: The intriguing therapeutic potential of Prolactin-inducible protein publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2018.05.002 – volume: 7 start-page: 1 year: 2020 end-page: 15 ident: CR9 article-title: Application of machine learning in ophthalmic imaging modalities publication-title: Eye Vis. doi: 10.1186/s40662-020-00183-6 – volume: 10 start-page: 16 year: 2021 end-page: 16 ident: CR40 article-title: A hybrid deep learning construct for detecting keratoconus from corneal maps publication-title: Transl. Vis. Sci. Technol. doi: 10.1167/tvst.10.14.16 – volume: 36 start-page: 1327 year: 1995 end-page: 1335 ident: CR33 article-title: Neural network classification of corneal topography. Preliminary demonstration publication-title: Investig. Ophthalmol. Vis. Sci. – ident: CR52 – volume: 10 start-page: 21 year: 2021 end-page: 21 ident: CR31 article-title: Pix2pix conditional generative adversarial networks for scheimpflug camera color-coded corneal tomography image generation publication-title: Transl. Vis. Sci. Technol. doi: 10.1167/tvst.10.7.21 – volume: 219 start-page: 33 year: 2020 end-page: 39 ident: CR22 article-title: Corneal topography raw data classification using a convolutional neural network publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2020.06.005 – volume: 33 start-page: 15077 year: 2020 end-page: 15087 ident: CR25 article-title: The autoencoding variational autoencoder publication-title: Adv. Neural Inf. Process. Syst. – volume: 18 start-page: 379 year: 2004 end-page: 383 ident: CR4 article-title: Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asians and white patients publication-title: Eye doi: 10.1038/sj.eye.6700652 – ident: CR55 – ident: CR7 – volume: 27 start-page: 1 year: 2014 end-page: 9 ident: CR26 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – volume: 37 start-page: 358 year: 2017 end-page: 365 ident: CR41 article-title: SyntEyes KTC: Higher order statistical eye model for developing keratoconus publication-title: Ophthalmic Physiol. Opt. doi: 10.1111/opo.12369 – volume: 29 start-page: 2352 year: 2017 end-page: 2449 ident: CR17 article-title: Deep convolutional neural networks for image classification: A comprehensive review publication-title: Neural Comput. doi: 10.1162/neco_a_00990 – ident: CR24 – volume: 215 start-page: 127 year: 2020 end-page: 134 ident: CR32 article-title: Keratoconus screening using values derived from auto-keratometer measurements: A multicenter study publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2020.02.017 – volume: 16 start-page: 1022 year: 2019 end-page: 1029 ident: CR37 article-title: Detecting keratoconus by using SVM and decision tree classifiers with the aid of image processing publication-title: Baghdad Sci. J. doi: 10.21123/bsj.2019.16.4(Suppl.).1022 – ident: 46903_CR43 – volume-title: Deep Learning year: 2016 ident: 46903_CR18 – volume: 7 start-page: 1 year: 2020 ident: 46903_CR38 publication-title: Eye Vis. doi: 10.1186/s40662-020-00213-3 – volume: 119 start-page: 2231 year: 2012 ident: 46903_CR11 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2012.06.005 – year: 2019 ident: 46903_CR21 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2019/8162567 – ident: 46903_CR47 – volume: 35 start-page: 827 year: 2016 ident: 46903_CR34 publication-title: Cornea doi: 10.1097/ICO.0000000000000834 – volume: 10 start-page: 21 year: 2021 ident: 46903_CR31 publication-title: Transl. Vis. Sci. Technol. doi: 10.1167/tvst.10.7.21 – volume: 8 start-page: 199440 year: 2020 ident: 46903_CR44 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3034828 – volume: 219 start-page: 33 year: 2020 ident: 46903_CR22 publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2020.06.005 – volume: 31 start-page: 268 year: 2019 ident: 46903_CR5 publication-title: J. Curr. Ophthalmol. doi: 10.1016/j.joco.2019.01.013 – volume: 67 start-page: 150 year: 2018 ident: 46903_CR1 publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2018.05.002 – volume: 9 start-page: e031313 year: 2019 ident: 46903_CR19 publication-title: BMJ Open doi: 10.1136/bmjopen-2019-031313 – volume: 7 start-page: 1 year: 2020 ident: 46903_CR9 publication-title: Eye Vis. doi: 10.1186/s40662-020-00183-6 – volume: 103 start-page: 167 year: 2019 ident: 46903_CR50 publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2018-313173 – volume: 37 start-page: 358 year: 2017 ident: 46903_CR41 publication-title: Ophthalmic Physiol. Opt. doi: 10.1111/opo.12369 – ident: 46903_CR48 – volume: 9 start-page: 38 year: 2019 ident: 46903_CR49 publication-title: Diagnostics doi: 10.3390/diagnostics9020038 – volume: 109 start-page: 33 year: 2019 ident: 46903_CR14 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.04.024 – ident: 46903_CR55 – ident: 46903_CR7 – volume: 9 start-page: 30 year: 2020 ident: 46903_CR35 publication-title: Transl. Vis. Sci. Technol. doi: 10.1167/tvst.9.2.30 – volume: 205 start-page: 106086 year: 2021 ident: 46903_CR30 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2021.106086 – ident: 46903_CR51 – ident: 46903_CR24 doi: 10.1609/aaai.v33i01.33015885 – volume: 10 start-page: 16 year: 2021 ident: 46903_CR40 publication-title: Transl. Vis. Sci. Technol. doi: 10.1167/tvst.10.14.16 – volume: 29 start-page: 2352 year: 2017 ident: 46903_CR17 publication-title: Neural Comput. doi: 10.1162/neco_a_00990 – ident: 46903_CR45 – volume: 36 start-page: 1327 year: 1995 ident: 46903_CR33 publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 27 start-page: 1 year: 2014 ident: 46903_CR26 publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 53 year: 2020 ident: 46903_CR20 publication-title: Transl. Vis. Sci. Technol. doi: 10.1167/tvst.9.2.53 – volume: 12 start-page: e201900126 year: 2019 ident: 46903_CR36 publication-title: J. Biophotonics doi: 10.1002/jbio.201900126 – volume: 29 start-page: 843 year: 2015 ident: 46903_CR6 publication-title: Eye doi: 10.1038/eye.2015.63 – volume: 36 start-page: 689 year: 2017 ident: 46903_CR13 publication-title: Cornea doi: 10.1097/ICO.0000000000001194 – ident: 46903_CR54 – volume: 33 start-page: 7393 year: 2021 ident: 46903_CR29 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05826-w – volume: 521 start-page: 436 year: 2015 ident: 46903_CR15 publication-title: Nature doi: 10.1038/nature14539 – volume: 18 start-page: 379 year: 2004 ident: 46903_CR4 publication-title: Eye doi: 10.1038/sj.eye.6700652 – ident: 46903_CR39 – volume: 33 start-page: 15077 year: 2020 ident: 46903_CR25 publication-title: Adv. Neural Inf. Process. Syst. – volume: 156 start-page: 237 year: 2013 ident: 46903_CR12 publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2013.03.034 – ident: 46903_CR42 – volume: 39 start-page: 1592 year: 2020 ident: 46903_CR3 publication-title: Cornea doi: 10.1097/ICO.0000000000002420 – volume: 9 start-page: 1 year: 2022 ident: 46903_CR8 publication-title: Eye Vis. doi: 10.1186/s40662-022-00277-3 – ident: 46903_CR46 – ident: 46903_CR52 doi: 10.1109/ICCV.2019.00140 – volume: 16 start-page: 1022 year: 2019 ident: 46903_CR37 publication-title: Baghdad Sci. J. doi: 10.21123/bsj.2019.16.4(Suppl.).1022 – ident: 46903_CR53 – volume: 58 start-page: 101552 year: 2019 ident: 46903_CR27 publication-title: Med. Image Analy. doi: 10.1016/j.media.2019.101552 – volume: 215 start-page: 127 year: 2020 ident: 46903_CR32 publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2020.02.017 – volume: 12 start-page: 1888 year: 2022 ident: 46903_CR28 publication-title: Biomolecules doi: 10.3390/biom12121888 – volume: 129 start-page: 691 year: 2011 ident: 46903_CR2 publication-title: Arch. Ophthalmol. doi: 10.1001/archophthalmol.2011.7 – volume: 38 start-page: 2290 year: 1997 ident: 46903_CR10 publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 14 start-page: 1627 year: 2022 ident: 46903_CR23 publication-title: Cogn. Comput. doi: 10.1007/s12559-021-09880-3 – volume: 10 start-page: 622 year: 2019 ident: 46903_CR16 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.10.000622 – reference: 38129562 - Sci Rep. 2023 Dec 21;13(1):22914 |
SSID | ssj0000529419 |
Score | 2.4660857 |
Snippet | Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to review... Abstract Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20586 |
SubjectTerms | 631/114/2164 692/700/1421 Accuracy Computers Cornea Deep Learning Diagnosis Humanities and Social Sciences Humans Keratoconus Keratoconus - diagnostic imaging Medical personnel multidisciplinary Neural networks Neural Networks, Computer Retrospective Studies Science Science (multidisciplinary) Topographic mapping |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgCIkL4ptAQUbiBlYTf8T2CRXUqkKCE0V7s-zYXlXAZml2D_x7ZhInFQJ6ixIncsZj-43Hfo-Q117yGKIXzAIYggAlJrjS4MsZYqAsANIKPI386XN7di4_rtSqLLgNZVvlPCaOA3XsO1wjP4LAgJsG4fK77U-GqlGYXS0SGjfJLaQuwy1deqWXNRbMYsnGlrMytTBHA8xXeKaMC4ZxoWDqj_lopO3_F9b8K086Tj-n98jdghvp8dTQ98mNtHlAbk9Kkr8ektWszsCQ8jHSOO2guxhon-k3JE7uIfDdD7To8tCvxyfM79cjJWekFz9gWBkoboJf05jSlhY1ifUjcn568uXDGSuiCayTRu1YE5KIMDWlJgLyaLuQpEXClux5aFTKSagMqLquY9bQn5MMPliVWuOD6ZAe7zE52PSb9JRQQCeBZ55EHWspPUAH0yltjeqy8dG3FWlm07muMIqjsMV3N2a2hXGTuR2Y243mdqoib5Z3thOfxrWl32OLLCWRC3u80V-uXelazoKrcRXAz2ojrTGhFsiJo-sUu6x1rMjh3J6udNDBXblTRV4tj6FrYb7Eb1K_H8tA_N5yrivyZPKDpSZCW2QysxV5OzvG1cf__0PPrq_Lc3IH5ezxrCMXh-Rgd7lPLwD07MLL0bN_AyPF-8I priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2VIiQuiG8CBRmJGxgSO47tA0IFtaqQyolFe7Ps2F5VlE3Z7Ertv-84cRYhFk7cosSO4vFM5o1svwfwytbMO2851QiGsEDxAa8k-nLEGihyhLQ8nUY-_dKczOrPczHfg0nuKBuw31naJT2p2er87eXPqw8Y8O_HI-PqXY9JKB0UY5ymYo9TcQNuYmaSKVBPM9wfub6Zriudz87s7vpbfhpo_Hdhzz_WTYd0dHwX7mQcSQ7Hib8He2F5H26NypJXD2A-qTXQRAHpiR931J31pIvkeyJS7rAQ3vQk6_SQb4dH1G4WA0WnJ2c_8DfTk7QpfkF8CBckq0ssHsLs-OjrpxOaRRRoWyuxppUL3GOqCpVHJNK0LtQ6EbhEy1wlQgxcRETZZemjxPgOtbNOi9Ao61Sb6PIewf6yW4YnQBCtOBZZ4KUv69oilFCtkFqJNirrbVNANZnOtJlhPAldnJthpZsrM5rboLnNYG4jCni97XMx8mv8s_XHNCPblokbe7jRrRYmh5rR6HpMOPS7UtVaKVfyxJEjy-DbKKUv4GCaTzP5m8G6k6kqVWMFvNw-xlBL6yd2GbrN0Abr-YYxWcDj0Q-2X8KlTsxmuoA3k2P8evnfB_T0fwzoGdxmyYOrijJ-APvr1SY8R6i0di8G_78Gus4Lsg priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBgozEDSISPxL7WFatKiQ4UbQ3y47tVQXdVM3ugX_PjPNAiILELUrGkWOPPd_EM98AvHGSBx-cKA2CIXRQQsSrFnU5oQ-UBEJaQdnInz43Z-fy41qtD4DPuTA5aD9TWuZteo4Oez-goaFkMC5KcuhEqW7BbaJuJ61eNavlvwqdXMnaTPkxldA3NP3NBmWq_pvw5R9no9nknN6HexNWZMdj7x7AQdw-hDtj9cgfj2A9V2QoieYxsDBGzV0MrE_sG5El9-js7gc21eJhX49PSrffZBrOwC4ucSsZGAW-b1iI8YpNFSQ2j-H89OTL6qycCiWUndRqV9Y-ioDmKNYB0UbT-SgNkbQkx32tYopCJUTSVRVSi2s4Su-8UbHRzuuOKPGewOG238ZnwBCReJ54FFWopHQIF3SnWqNVl7QLrimgnofOdhOLOBWz-G7zabbQdhxui8Nt83BbVcDbpc3VyKHxT-kPNCOLJPFf5xv99cZO-mANqhdXHnWr0tJo7StBPDhtFUOX2jYUcDTPp50W5WDRt-S6Jo-rgNfLY1xOdEbitrHfZxn02RvO2wKejnqw9ES0htjLTAHvZsX49fK_f9Dz_xN_AXeppD3lO3JxBIe76318icBn519lTf8Jpev5mA priority: 102 providerName: Springer Nature |
Title | Computer-aided diagnosis of keratoconus through VAE-augmented images using deep learning |
URI | https://link.springer.com/article/10.1038/s41598-023-46903-5 https://www.ncbi.nlm.nih.gov/pubmed/37996439 https://www.proquest.com/docview/2892810642 https://www.proquest.com/docview/2893836227 https://doaj.org/article/9da325b40d084988b03480170edcf77d |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BIiQuiDeBpTISN4g28SO2j92qq1WlXSFgUW-WHdvVCmhXtD3w75lJ0rKI14VLEjmOZY_HmW9kzzcAr7zkMUQvSotgCB2UmPBJoy5n9IGyQEgrKBr57Lw5vZCzuZpfS_VFZ8J6euBecEcWG-IqYCuVkdaYUAliPNFVim3WOtLfF23eNWeqZ_XmVtZ2iJKphDlao6WiaDIuSvIIRal-skQdYf_vUOYvO6Sd4Tm5B3cHxMjGfU_vw420fAC3-xyS3x7CfJeXoSSyx8hif3bucs1WmX0iyuQVurzbNRsy8rCP42npt4uOjDOyyy_4Q1kzOv6-YDGlKzbkkVg8gouT6YfJaTmkSyhbadSmrEMSEY1SqiNijqYNSVqiasmeh1qlnITKiKerKmaNKznJ4INVqTE-mJaI8R7DwXK1TE-BIS4JPPMkUOpSegQNplXaGtVm46NvCqh3onPtwCVOKS0-u25PWxjXi9uhuF0nbqcKeL3_5qpn0vhr7WOakX1NYsHuClA33KAb7l-6UcDhbj7dsDTXDj1Mbmryuwp4uX-Ni4p2SvwyrbZdHfTcG851AU96Pdj3RGhLHGa2gDc7xfjR-J8H9Ox_DOg53KF09xQLycUhHGy-btMLBEWbMIKbeq5HcGs8nr2f4f14ev72HZZOmsmoWxt4PZPmO0xtCW4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrRBcEN8EChgJThA1seONc0Coha22tF0h1KK9uXbsrCrazdLsCvVP8RuZyVeFgN56ixInSsbP4zcZ-w3Aa5NwZ50RYYZkCAMU5_EoRSwXGAMVAimtoN3IB5Ph-Cj5PJXTNfjV7YWhZZWdT6wdtStz-ke-iYEBVzHR5Q-LHyFVjaLsaldCo4HFnr_4iSFb9X73E_bvG853Rocfx2FbVSDMEyWXYWy9cOi7fexwah7m1icZKZoUhttY-sILWSDtjCJXpAh4n1hjM-mHyliVk34cPvcGrCcCQ5kBrG-PJl--9n91KG-WxFm7OycSarPCGZJ2sXERUiQqQvnHDFgXCvgXu_0rM1tPeDt34U7LVNlWA617sObn9-FmU7vy4gFMu3oQIYlMOuaaNXsnFSsL9p2kmksMtVcVaysBsW9bo9CsZrUIqGMnZ-jIKkbL7mfMeb9gbf2K2UM4uhaDPoLBvJz7J8CQD1lecC8iFyWJQbKicplmSuaFMs4MA4g70-m81TCnUhqnus6lC6Ubc2s0t67NrWUAb_t7Fo2Cx5Wtt6lH-pakvl2fKM9nuh3MOkNwc2kR2ZFKMqVsJEiFJ428y4s0dQFsdP2pW5dQ6UsAB_Cqv4yDmTI0Zu7LVd1GKKQUPA3gcYOD_k1EmpF2WhbAuw4Ylw___wc9vfpdXsKt8eHBvt7fnew9g9uccBrHIRcbMFier_xzpFxL-6LFOYPj6x5avwFEXjpm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIhAXxDeBAkaCE0Sb2PHaOSBUaFcthYoDRXszdmyvKmCzNLtC_Wv8OmbysRUCeuttteuNkvGb8ZuM_QbgmS24d96KtEQyhAmKD_hJIZYj5kBRIKUVdBr5w-F476h4N5XTDfg1nIWhbZVDTGwDta8rekc-wsSA65zo8ij22yI-7kxeL36k1EGKKq1DO40OIgfh9Cemb82r_R2c6-ecT3Y_vd1L-w4DaVVouUxzF4THOB5yj8v0uHKhKEndJFruchliEDIiBc0yHxWCPxTOulKGsbZOV6Qlh9e9BJeVkDn5mJqq9fsdqqAVedmf08mEHjW4VtJ5Ni5SyklFKv9YC9uWAf_iuX_VaNulb3IDrveclW13ILsJG2F-C650XSxPb8N06AyRktykZ77bvXfcsDqyryTaXGPSvWpY3xOIfd7eTe1q1sqBenb8HUNaw2gD_oz5EBas72QxuwNHF2LOu7A5r-fhPjBkRo5HHkTms6KwSFt0JVWpZRW19XacQD6YzlS9mjk11fhm2qq60KYzt0Fzm9bcRibwYv2fRaflce7oNzQj65Gkw91-UZ_MTO_WpkSYc-kQ45kuSq1dJkiPR2XBV1Epn8DWMJ-mDw6NOYNyAk_XP6NbU63GzkO9ascIjeSCqwTudThY34lQJamolQm8HIBxdvH_P9CD8-_lCVxFhzLv9w8PHsI1TjDN85SLLdhcnqzCI-ReS_e4BTmDLxftVb8Bn6Q9Ng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+diagnosis+of+keratoconus+through+VAE-augmented+images+using+deep+learning&rft.jtitle=Scientific+reports&rft.au=Zhila+Agharezaei&rft.au=Reza+Firouzi&rft.au=Samira+Hassanzadeh&rft.au=Siamak+Zarei-Ghanavati&rft.date=2023-11-23&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1038%2Fs41598-023-46903-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9da325b40d084988b03480170edcf77d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |