Computer-aided diagnosis of keratoconus through VAE-augmented images using deep learning

Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to review demographic and clinical ophthalmic examinations in order to make an accurate diagnosis. This study aims to develop and evaluate the accuracy of de...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 20586 - 15
Main Authors Agharezaei, Zhila, Firouzi, Reza, Hassanzadeh, Samira, Zarei-Ghanavati, Siamak, Bahaadinbeigy, Kambiz, Golabpour, Amin, Akbarzadeh, Reyhaneh, Agharezaei, Laleh, Bakhshali, Mohamad Amin, Sedaghat, Mohammad Reza, Eslami, Saeid
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.11.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to review demographic and clinical ophthalmic examinations in order to make an accurate diagnosis. This study aims to develop and evaluate the accuracy of deep convolutional neural network (CNN) models for the detection of keratoconus (KCN) using corneal topographic maps. We retrospectively collected 1758 corneal images (978 normal and 780 keratoconus) from 1010 subjects of the KCN group with clinically evident keratoconus and the normal group with regular astigmatism. To expand the dataset, we developed a model using Variational Auto Encoder (VAE) to generate and augment images, resulting in a dataset of 4000 samples. Four deep learning models were used to extract and identify deep corneal features of original and synthesized images. We demonstrated that the utilization of synthesized images during training process increased classification performance. The overall average accuracy of the deep learning models ranged from 99% for VGG16 to 95% for EfficientNet-B0. All CNN models exhibited sensitivity and specificity above 0.94, with the VGG16 model achieving an AUC of 0.99. The customized CNN model achieved satisfactory results with an accuracy and AUC of 0.97 at a much faster processing speed compared to other models. In conclusion, the DL models showed high accuracy in screening for keratoconus based on corneal topography images. This is a development toward the potential clinical implementation of a more enhanced computer-aided diagnosis (CAD) system for KCN detection, which would aid ophthalmologists in validating the clinical decision and carrying out prompt and precise KCN treatment.
AbstractList Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to review demographic and clinical ophthalmic examinations in order to make an accurate diagnosis. This study aims to develop and evaluate the accuracy of deep convolutional neural network (CNN) models for the detection of keratoconus (KCN) using corneal topographic maps. We retrospectively collected 1758 corneal images (978 normal and 780 keratoconus) from 1010 subjects of the KCN group with clinically evident keratoconus and the normal group with regular astigmatism. To expand the dataset, we developed a model using Variational Auto Encoder (VAE) to generate and augment images, resulting in a dataset of 4000 samples. Four deep learning models were used to extract and identify deep corneal features of original and synthesized images. We demonstrated that the utilization of synthesized images during training process increased classification performance. The overall average accuracy of the deep learning models ranged from 99% for VGG16 to 95% for EfficientNet-B0. All CNN models exhibited sensitivity and specificity above 0.94, with the VGG16 model achieving an AUC of 0.99. The customized CNN model achieved satisfactory results with an accuracy and AUC of 0.97 at a much faster processing speed compared to other models. In conclusion, the DL models showed high accuracy in screening for keratoconus based on corneal topography images. This is a development toward the potential clinical implementation of a more enhanced computer-aided diagnosis (CAD) system for KCN detection, which would aid ophthalmologists in validating the clinical decision and carrying out prompt and precise KCN treatment.Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to review demographic and clinical ophthalmic examinations in order to make an accurate diagnosis. This study aims to develop and evaluate the accuracy of deep convolutional neural network (CNN) models for the detection of keratoconus (KCN) using corneal topographic maps. We retrospectively collected 1758 corneal images (978 normal and 780 keratoconus) from 1010 subjects of the KCN group with clinically evident keratoconus and the normal group with regular astigmatism. To expand the dataset, we developed a model using Variational Auto Encoder (VAE) to generate and augment images, resulting in a dataset of 4000 samples. Four deep learning models were used to extract and identify deep corneal features of original and synthesized images. We demonstrated that the utilization of synthesized images during training process increased classification performance. The overall average accuracy of the deep learning models ranged from 99% for VGG16 to 95% for EfficientNet-B0. All CNN models exhibited sensitivity and specificity above 0.94, with the VGG16 model achieving an AUC of 0.99. The customized CNN model achieved satisfactory results with an accuracy and AUC of 0.97 at a much faster processing speed compared to other models. In conclusion, the DL models showed high accuracy in screening for keratoconus based on corneal topography images. This is a development toward the potential clinical implementation of a more enhanced computer-aided diagnosis (CAD) system for KCN detection, which would aid ophthalmologists in validating the clinical decision and carrying out prompt and precise KCN treatment.
Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to review demographic and clinical ophthalmic examinations in order to make an accurate diagnosis. This study aims to develop and evaluate the accuracy of deep convolutional neural network (CNN) models for the detection of keratoconus (KCN) using corneal topographic maps. We retrospectively collected 1758 corneal images (978 normal and 780 keratoconus) from 1010 subjects of the KCN group with clinically evident keratoconus and the normal group with regular astigmatism. To expand the dataset, we developed a model using Variational Auto Encoder (VAE) to generate and augment images, resulting in a dataset of 4000 samples. Four deep learning models were used to extract and identify deep corneal features of original and synthesized images. We demonstrated that the utilization of synthesized images during training process increased classification performance. The overall average accuracy of the deep learning models ranged from 99% for VGG16 to 95% for EfficientNet-B0. All CNN models exhibited sensitivity and specificity above 0.94, with the VGG16 model achieving an AUC of 0.99. The customized CNN model achieved satisfactory results with an accuracy and AUC of 0.97 at a much faster processing speed compared to other models. In conclusion, the DL models showed high accuracy in screening for keratoconus based on corneal topography images. This is a development toward the potential clinical implementation of a more enhanced computer-aided diagnosis (CAD) system for KCN detection, which would aid ophthalmologists in validating the clinical decision and carrying out prompt and precise KCN treatment.
Abstract Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to review demographic and clinical ophthalmic examinations in order to make an accurate diagnosis. This study aims to develop and evaluate the accuracy of deep convolutional neural network (CNN) models for the detection of keratoconus (KCN) using corneal topographic maps. We retrospectively collected 1758 corneal images (978 normal and 780 keratoconus) from 1010 subjects of the KCN group with clinically evident keratoconus and the normal group with regular astigmatism. To expand the dataset, we developed a model using Variational Auto Encoder (VAE) to generate and augment images, resulting in a dataset of 4000 samples. Four deep learning models were used to extract and identify deep corneal features of original and synthesized images. We demonstrated that the utilization of synthesized images during training process increased classification performance. The overall average accuracy of the deep learning models ranged from 99% for VGG16 to 95% for EfficientNet-B0. All CNN models exhibited sensitivity and specificity above 0.94, with the VGG16 model achieving an AUC of 0.99. The customized CNN model achieved satisfactory results with an accuracy and AUC of 0.97 at a much faster processing speed compared to other models. In conclusion, the DL models showed high accuracy in screening for keratoconus based on corneal topography images. This is a development toward the potential clinical implementation of a more enhanced computer-aided diagnosis (CAD) system for KCN detection, which would aid ophthalmologists in validating the clinical decision and carrying out prompt and precise KCN treatment.
ArticleNumber 20586
Author Firouzi, Reza
Agharezaei, Zhila
Zarei-Ghanavati, Siamak
Eslami, Saeid
Bakhshali, Mohamad Amin
Akbarzadeh, Reyhaneh
Golabpour, Amin
Agharezaei, Laleh
Hassanzadeh, Samira
Bahaadinbeigy, Kambiz
Sedaghat, Mohammad Reza
Author_xml – sequence: 1
  givenname: Zhila
  surname: Agharezaei
  fullname: Agharezaei, Zhila
  organization: Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Medical Informatics Research Center, Institute for Future Studies in Health, Kerman University of Medical Sciences
– sequence: 2
  givenname: Reza
  surname: Firouzi
  fullname: Firouzi, Reza
  organization: Department of Computer Engineering, Ferdowsi University of Mashhad
– sequence: 3
  givenname: Samira
  surname: Hassanzadeh
  fullname: Hassanzadeh, Samira
  organization: School of Paramedical Sciences and Rehabilitation, Mashhad University of Medical Sciences
– sequence: 4
  givenname: Siamak
  surname: Zarei-Ghanavati
  fullname: Zarei-Ghanavati, Siamak
  organization: Eye Research Center, Mashhad University of Medical Sciences
– sequence: 5
  givenname: Kambiz
  surname: Bahaadinbeigy
  fullname: Bahaadinbeigy, Kambiz
  organization: Medical Informatics Research Center, Institute for Future Studies in Health, Kerman University of Medical Sciences
– sequence: 6
  givenname: Amin
  surname: Golabpour
  fullname: Golabpour, Amin
  organization: School of Medicine, Shahroud University of Medical Sciences
– sequence: 7
  givenname: Reyhaneh
  surname: Akbarzadeh
  fullname: Akbarzadeh, Reyhaneh
  organization: Department of Optometry, School of Paramedical Sciences, Mashhad University of Medical Sciences
– sequence: 8
  givenname: Laleh
  surname: Agharezaei
  fullname: Agharezaei, Laleh
  organization: Modeling in Health Research Center, Institute for Future Studies in Health, Kerman University of Medical Sciences
– sequence: 9
  givenname: Mohamad Amin
  surname: Bakhshali
  fullname: Bakhshali, Mohamad Amin
  organization: Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences
– sequence: 10
  givenname: Mohammad Reza
  surname: Sedaghat
  fullname: Sedaghat, Mohammad Reza
  organization: Eye Research Center, Mashhad University of Medical Sciences
– sequence: 11
  givenname: Saeid
  surname: Eslami
  fullname: Eslami, Saeid
  email: s.eslami.h@gmail.com
  organization: Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37996439$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vFSEYhYmpsbX2D7gwk7hxM8rnAMvmprZNmrhR444wwztTrjNwBWbhv5d2WjVdlA285DknB85rdBRiAITeEvyRYKY-ZU6EVi2mrOWdxqwVL9AJxVy0lFF69N_5GJ3lvMd1Cao50a_QMZNad5zpE_RjF5fDWiC11jtwjfN2CjH73MSx-QnJljjEsOam3Ka4TrfN9_OL1q7TAqFU3C92gtys2YepcQCHZgabQp3eoJejnTOcPeyn6Nvni6-7q_bmy-X17vymHbgSpSU9MMc4AeI0k93QA9eyk2K0tCcCRmBiVIpi7EbJiALe214L6JTt1SCZZqfoevN10e7NIdVE6beJ1pv7i5gmY1PxwwxGO8uo6Dl2WHGtVI8ZV5hIDG4YpXTV68PmdUjx1wq5mMXnAebZBohrNlRpplhHqazo-yfoPq4p1JfeUVQR3HFaqXcP1Nov4P7Ge_z_CqgNGFLMOcFoBl9s8TGUZP1sCDZ3bZutbVPbNvdtG1Gl9In00f1ZEdtEucJhgvQv9jOqP9Ztuqc
CitedBy_id crossref_primary_10_1097_ICU_0000000000001090
crossref_primary_10_2478_ijanmc_2024_0037
crossref_primary_10_1016_j_rineng_2025_104158
crossref_primary_10_3389_fopht_2024_1497848
crossref_primary_10_1371_journal_pone_0297268
crossref_primary_10_1016_j_bspc_2025_107664
Cites_doi 10.1016/j.ajo.2013.03.034
10.1016/j.joco.2019.01.013
10.1364/BOE.10.000622
10.1016/j.cmpb.2021.106086
10.1097/ICO.0000000000002420
10.1167/tvst.9.2.30
10.1097/ICO.0000000000000834
10.1186/s40662-022-00277-3
10.1007/s00521-021-05826-w
10.1186/s40662-020-00213-3
10.1155/2019/8162567
10.1007/s12559-021-09880-3
10.1038/nature14539
10.1136/bmjopen-2019-031313
10.1109/ACCESS.2020.3034828
10.1038/eye.2015.63
10.1016/j.media.2019.101552
10.1167/tvst.9.2.53
10.1016/j.ophtha.2012.06.005
10.1001/archophthalmol.2011.7
10.1097/ICO.0000000000001194
10.1002/jbio.201900126
10.1136/bjophthalmol-2018-313173
10.3390/diagnostics9020038
10.1016/j.compbiomed.2019.04.024
10.3390/biom12121888
10.1016/j.preteyeres.2018.05.002
10.1186/s40662-020-00183-6
10.1167/tvst.10.14.16
10.1167/tvst.10.7.21
10.1016/j.ajo.2020.06.005
10.1038/sj.eye.6700652
10.1111/opo.12369
10.1162/neco_a_00990
10.1016/j.ajo.2020.02.017
10.21123/bsj.2019.16.4(Suppl.).1022
10.1609/aaai.v33i01.33015885
10.1109/ICCV.2019.00140
ContentType Journal Article
Copyright The Author(s) 2023. corrected publication 2023
2023. The Author(s).
The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023. corrected publication 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-023-46903-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_9da325b40d084988b03480170edcf77d
37996439
10_1038_s41598_023_46903_5
Genre Journal Article
GrantInformation_xml – fundername: Mashhad University of Medical Sciences
  grantid: 981511
  funderid: http://dx.doi.org/10.13039/501100004748
– fundername: Mashhad University of Medical Sciences
  grantid: 981511
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c485t-1be3d341e1d9376cbe497675fa2b15efe35f88200df7318e4bab95e68ab8c7393
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:09:42 EDT 2025
Fri Jul 11 05:43:10 EDT 2025
Wed Aug 13 01:45:26 EDT 2025
Thu Apr 03 07:05:21 EDT 2025
Thu Apr 24 23:07:24 EDT 2025
Tue Jul 01 03:57:56 EDT 2025
Fri Feb 21 02:39:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-1be3d341e1d9376cbe497675fa2b15efe35f88200df7318e4bab95e68ab8c7393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/9da325b40d084988b03480170edcf77d
PMID 37996439
PQID 2892810642
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_9da325b40d084988b03480170edcf77d
proquest_miscellaneous_2893836227
proquest_journals_2892810642
pubmed_primary_37996439
crossref_citationtrail_10_1038_s41598_023_46903_5
crossref_primary_10_1038_s41598_023_46903_5
springer_journals_10_1038_s41598_023_46903_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-23
PublicationDateYYYYMMDD 2023-11-23
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Al-Timemy, Ghaeb, Mosa, Escudero (CR23) 2022; 14
Goodfellow (CR26) 2014; 27
Goodfellow, Bengio, Courville (CR18) 2016
CR39
Hidalgo (CR34) 2016; 35
Tong, Lu, Yu, Shen (CR9) 2020; 7
Rawat, Wang (CR17) 2017; 29
Galvis (CR6) 2015; 29
Zéboulon, Debellemanière, Bouvet, Gatinel (CR22) 2020; 219
Kelly, Williams, Coster (CR2) 2011; 129
Issarti (CR14) 2019; 109
Kim, Rajaraman, Antani (CR49) 2019; 9
Al-Timemy (CR40) 2021; 10
Asperti, Trentin (CR44) 2020; 8
LeCun, Bengio, Hinton (CR15) 2015; 521
CR7
Lavric, Valentin (CR21) 2019
Velázquez-Blázquez, Bolarín, Cavas-Martínez, Alió (CR35) 2020; 9
CR48
CR47
CR46
Kuo (CR20) 2020; 9
CR45
Georgiou, Funnell, Cassels-Brown, O'conor (CR4) 2004; 18
Cemgil, Ghaisas, Dvijotham, Gowal, Kohli (CR25) 2020; 33
CR43
CR42
Shi (CR38) 2020; 7
Chandapura (CR36) 2019; 12
Ting (CR50) 2019; 103
Smadja (CR12) 2013; 156
Abdelmotaal, Abdou, Omar, El-Sebaity, Abdelazeem (CR31) 2021; 10
Dos Santos (CR16) 2019; 10
You, Kim, Ryu, Yoo (CR8) 2022; 9
CR55
CR54
Jameel (CR28) 2022; 12
CR53
CR52
CR51
Kugelman (CR29) 2021; 33
Hidalgo (CR13) 2017; 36
Kojima (CR32) 2020; 215
Kamiya (CR19) 2019; 9
Sharif, Bak-Nielsen, Hjortdal, Karamichos (CR1) 2018; 67
Rozema (CR41) 2017; 37
Rafati (CR5) 2019; 31
Arbelaez, Versaci, Vestri, Barboni, Savini (CR11) 2012; 119
Mosa, Ghaeb, Ali (CR37) 2019; 16
CR24
Yoo, Choi, Kim, Ryu, Kim (CR30) 2021; 205
Yi, Walia, Babyn (CR27) 2019; 58
Maeda, Klyce, Smolek (CR33) 1995; 36
Buzzonetti, Bohringer, Liskova, Lang, Valente (CR3) 2020; 39
Smolek, Klyce (CR10) 1997; 38
I Issarti (46903_CR14) 2019; 109
K Kamiya (46903_CR19) 2019; 9
IR Hidalgo (46903_CR13) 2017; 36
SK Jameel (46903_CR28) 2022; 12
MK Smolek (46903_CR10) 1997; 38
W Rawat (46903_CR17) 2017; 29
N Maeda (46903_CR33) 1995; 36
46903_CR48
A Asperti (46903_CR44) 2020; 8
46903_CR42
46903_CR43
A You (46903_CR8) 2022; 9
H Abdelmotaal (46903_CR31) 2021; 10
Y LeCun (46903_CR15) 2015; 521
46903_CR46
I Kim (46903_CR49) 2019; 9
46903_CR47
MC Arbelaez (46903_CR11) 2012; 119
46903_CR45
P Zéboulon (46903_CR22) 2020; 219
A Lavric (46903_CR21) 2019
VA Dos Santos (46903_CR16) 2019; 10
TK Yoo (46903_CR30) 2021; 205
AH Al-Timemy (46903_CR40) 2021; 10
46903_CR7
JS Velázquez-Blázquez (46903_CR35) 2020; 9
X Yi (46903_CR27) 2019; 58
46903_CR53
R Sharif (46903_CR1) 2018; 67
46903_CR54
46903_CR51
46903_CR52
46903_CR55
R Chandapura (46903_CR36) 2019; 12
ZM Mosa (46903_CR37) 2019; 16
AH Al-Timemy (46903_CR23) 2022; 14
JJ Rozema (46903_CR41) 2017; 37
T Cemgil (46903_CR25) 2020; 33
J Kugelman (46903_CR29) 2021; 33
B-I Kuo (46903_CR20) 2020; 9
D Smadja (46903_CR12) 2013; 156
S Rafati (46903_CR5) 2019; 31
Y Tong (46903_CR9) 2020; 7
46903_CR24
L Buzzonetti (46903_CR3) 2020; 39
DSW Ting (46903_CR50) 2019; 103
I Goodfellow (46903_CR26) 2014; 27
T Kojima (46903_CR32) 2020; 215
T Georgiou (46903_CR4) 2004; 18
C Shi (46903_CR38) 2020; 7
46903_CR39
V Galvis (46903_CR6) 2015; 29
T-L Kelly (46903_CR2) 2011; 129
IR Hidalgo (46903_CR34) 2016; 35
I Goodfellow (46903_CR18) 2016
38129562 - Sci Rep. 2023 Dec 21;13(1):22914
References_xml – ident: CR45
– volume: 156
  start-page: 237
  year: 2013
  end-page: 246.e231
  ident: CR12
  article-title: Detection of subclinical keratoconus using an automated decision tree classification
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2013.03.034
– volume: 31
  start-page: 268
  year: 2019
  end-page: 274
  ident: CR5
  article-title: Demographic profile, clinical, and topographic characteristics of keratoconus patients attending at a tertiary eye center
  publication-title: J. Curr. Ophthalmol.
  doi: 10.1016/j.joco.2019.01.013
– volume: 10
  start-page: 622
  year: 2019
  end-page: 641
  ident: CR16
  article-title: CorneaNet: Fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.10.000622
– volume: 205
  start-page: 106086
  year: 2021
  ident: CR30
  article-title: Adopting low-shot deep learning for the detection of conjunctival melanoma using ocular surface images
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2021.106086
– ident: CR39
– ident: CR51
– volume: 39
  start-page: 1592
  year: 2020
  end-page: 1598
  ident: CR3
  article-title: Keratoconus in children: A literature review
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000002420
– volume: 9
  start-page: 30
  year: 2020
  end-page: 30
  ident: CR35
  article-title: EMKLAS: A new automatic scoring system for early and mild keratoconus detection
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.9.2.30
– volume: 35
  start-page: 827
  year: 2016
  end-page: 832
  ident: CR34
  article-title: Evaluation of a machine-learning classifier for keratoconus detection based on Scheimpflug tomography
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000000834
– ident: CR54
– volume: 9
  start-page: 1
  year: 2022
  end-page: 19
  ident: CR8
  article-title: Application of generative adversarial networks (GAN) for ophthalmology image domains: A survey
  publication-title: Eye Vis.
  doi: 10.1186/s40662-022-00277-3
– volume: 33
  start-page: 7393
  year: 2021
  end-page: 7408
  ident: CR29
  article-title: Data augmentation for patch-based OCT chorio-retinal segmentation using generative adversarial networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05826-w
– volume: 7
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR38
  article-title: Machine learning helps improve diagnostic ability of subclinical keratoconus using Scheimpflug and OCT imaging modalities
  publication-title: Eye Vis.
  doi: 10.1186/s40662-020-00213-3
– ident: CR42
– year: 2019
  ident: CR21
  article-title: KeratoDetect: Keratoconus detection algorithm using convolutional neural networks
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/8162567
– volume: 14
  start-page: 1627
  year: 2022
  end-page: 1642
  ident: CR23
  article-title: Deep transfer learning for improved detection of keratoconus using corneal topographic maps
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-021-09880-3
– ident: CR46
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR15
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 9
  start-page: e031313
  year: 2019
  ident: CR19
  article-title: Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: A diagnostic accuracy study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2019-031313
– volume: 8
  start-page: 199440
  year: 2020
  end-page: 199448
  ident: CR44
  article-title: Balancing reconstruction error and Kullback-Leibler divergence in variational autoencoders
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3034828
– volume: 29
  start-page: 843
  year: 2015
  end-page: 859
  ident: CR6
  article-title: Keratoconus: An inflammatory disorder?
  publication-title: Eye
  doi: 10.1038/eye.2015.63
– volume: 58
  start-page: 101552
  year: 2019
  ident: CR27
  article-title: Generative adversarial network in medical imaging: A review
  publication-title: Med. Image Analy.
  doi: 10.1016/j.media.2019.101552
– volume: 9
  start-page: 53
  year: 2020
  end-page: 53
  ident: CR20
  article-title: Keratoconus screening based on deep learning approach of corneal topography
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.9.2.53
– ident: CR43
– volume: 119
  start-page: 2231
  year: 2012
  end-page: 2238
  ident: CR11
  article-title: Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2012.06.005
– ident: CR47
– volume: 129
  start-page: 691
  year: 2011
  end-page: 697
  ident: CR2
  article-title: Corneal transplantation for keratoconus: A registry study
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archophthalmol.2011.7
– ident: CR53
– volume: 38
  start-page: 2290
  year: 1997
  end-page: 2299
  ident: CR10
  article-title: Current keratoconus detection methods compared with a neural network approach
  publication-title: Investig. Ophthalmol. Vis. Sci.
– year: 2016
  ident: CR18
  publication-title: Deep Learning
– volume: 36
  start-page: 689
  year: 2017
  end-page: 695
  ident: CR13
  article-title: Validation of an objective keratoconus detection system implemented in a Scheimpflug tomographer and comparison with other methods
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000001194
– volume: 12
  start-page: e201900126
  year: 2019
  ident: CR36
  article-title: Bowman’s topography for improved detection of early Ectasia
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201900126
– volume: 103
  start-page: 167
  year: 2019
  end-page: 175
  ident: CR50
  article-title: Artificial intelligence and deep learning in ophthalmology
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2018-313173
– volume: 9
  start-page: 38
  year: 2019
  ident: CR49
  article-title: Visual interpretation of convolutional neural network predictions in classifying medical image modalities
  publication-title: Diagnostics
  doi: 10.3390/diagnostics9020038
– volume: 109
  start-page: 33
  year: 2019
  end-page: 42
  ident: CR14
  article-title: Computer aided diagnosis for suspect keratoconus detection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.04.024
– volume: 12
  start-page: 1888
  year: 2022
  ident: CR28
  article-title: Exploiting the generative adversarial network approach to create a synthetic topography corneal image
  publication-title: Biomolecules
  doi: 10.3390/biom12121888
– ident: CR48
– volume: 67
  start-page: 150
  year: 2018
  end-page: 167
  ident: CR1
  article-title: Pathogenesis of Keratoconus: The intriguing therapeutic potential of Prolactin-inducible protein
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2018.05.002
– volume: 7
  start-page: 1
  year: 2020
  end-page: 15
  ident: CR9
  article-title: Application of machine learning in ophthalmic imaging modalities
  publication-title: Eye Vis.
  doi: 10.1186/s40662-020-00183-6
– volume: 10
  start-page: 16
  year: 2021
  end-page: 16
  ident: CR40
  article-title: A hybrid deep learning construct for detecting keratoconus from corneal maps
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.10.14.16
– volume: 36
  start-page: 1327
  year: 1995
  end-page: 1335
  ident: CR33
  article-title: Neural network classification of corneal topography. Preliminary demonstration
  publication-title: Investig. Ophthalmol. Vis. Sci.
– ident: CR52
– volume: 10
  start-page: 21
  year: 2021
  end-page: 21
  ident: CR31
  article-title: Pix2pix conditional generative adversarial networks for scheimpflug camera color-coded corneal tomography image generation
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.10.7.21
– volume: 219
  start-page: 33
  year: 2020
  end-page: 39
  ident: CR22
  article-title: Corneal topography raw data classification using a convolutional neural network
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2020.06.005
– volume: 33
  start-page: 15077
  year: 2020
  end-page: 15087
  ident: CR25
  article-title: The autoencoding variational autoencoder
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 18
  start-page: 379
  year: 2004
  end-page: 383
  ident: CR4
  article-title: Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asians and white patients
  publication-title: Eye
  doi: 10.1038/sj.eye.6700652
– ident: CR55
– ident: CR7
– volume: 27
  start-page: 1
  year: 2014
  end-page: 9
  ident: CR26
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 37
  start-page: 358
  year: 2017
  end-page: 365
  ident: CR41
  article-title: SyntEyes KTC: Higher order statistical eye model for developing keratoconus
  publication-title: Ophthalmic Physiol. Opt.
  doi: 10.1111/opo.12369
– volume: 29
  start-page: 2352
  year: 2017
  end-page: 2449
  ident: CR17
  article-title: Deep convolutional neural networks for image classification: A comprehensive review
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_00990
– ident: CR24
– volume: 215
  start-page: 127
  year: 2020
  end-page: 134
  ident: CR32
  article-title: Keratoconus screening using values derived from auto-keratometer measurements: A multicenter study
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2020.02.017
– volume: 16
  start-page: 1022
  year: 2019
  end-page: 1029
  ident: CR37
  article-title: Detecting keratoconus by using SVM and decision tree classifiers with the aid of image processing
  publication-title: Baghdad Sci. J.
  doi: 10.21123/bsj.2019.16.4(Suppl.).1022
– ident: 46903_CR43
– volume-title: Deep Learning
  year: 2016
  ident: 46903_CR18
– volume: 7
  start-page: 1
  year: 2020
  ident: 46903_CR38
  publication-title: Eye Vis.
  doi: 10.1186/s40662-020-00213-3
– volume: 119
  start-page: 2231
  year: 2012
  ident: 46903_CR11
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2012.06.005
– year: 2019
  ident: 46903_CR21
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/8162567
– ident: 46903_CR47
– volume: 35
  start-page: 827
  year: 2016
  ident: 46903_CR34
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000000834
– volume: 10
  start-page: 21
  year: 2021
  ident: 46903_CR31
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.10.7.21
– volume: 8
  start-page: 199440
  year: 2020
  ident: 46903_CR44
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3034828
– volume: 219
  start-page: 33
  year: 2020
  ident: 46903_CR22
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2020.06.005
– volume: 31
  start-page: 268
  year: 2019
  ident: 46903_CR5
  publication-title: J. Curr. Ophthalmol.
  doi: 10.1016/j.joco.2019.01.013
– volume: 67
  start-page: 150
  year: 2018
  ident: 46903_CR1
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2018.05.002
– volume: 9
  start-page: e031313
  year: 2019
  ident: 46903_CR19
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2019-031313
– volume: 7
  start-page: 1
  year: 2020
  ident: 46903_CR9
  publication-title: Eye Vis.
  doi: 10.1186/s40662-020-00183-6
– volume: 103
  start-page: 167
  year: 2019
  ident: 46903_CR50
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2018-313173
– volume: 37
  start-page: 358
  year: 2017
  ident: 46903_CR41
  publication-title: Ophthalmic Physiol. Opt.
  doi: 10.1111/opo.12369
– ident: 46903_CR48
– volume: 9
  start-page: 38
  year: 2019
  ident: 46903_CR49
  publication-title: Diagnostics
  doi: 10.3390/diagnostics9020038
– volume: 109
  start-page: 33
  year: 2019
  ident: 46903_CR14
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.04.024
– ident: 46903_CR55
– ident: 46903_CR7
– volume: 9
  start-page: 30
  year: 2020
  ident: 46903_CR35
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.9.2.30
– volume: 205
  start-page: 106086
  year: 2021
  ident: 46903_CR30
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2021.106086
– ident: 46903_CR51
– ident: 46903_CR24
  doi: 10.1609/aaai.v33i01.33015885
– volume: 10
  start-page: 16
  year: 2021
  ident: 46903_CR40
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.10.14.16
– volume: 29
  start-page: 2352
  year: 2017
  ident: 46903_CR17
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_00990
– ident: 46903_CR45
– volume: 36
  start-page: 1327
  year: 1995
  ident: 46903_CR33
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 27
  start-page: 1
  year: 2014
  ident: 46903_CR26
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 53
  year: 2020
  ident: 46903_CR20
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.9.2.53
– volume: 12
  start-page: e201900126
  year: 2019
  ident: 46903_CR36
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201900126
– volume: 29
  start-page: 843
  year: 2015
  ident: 46903_CR6
  publication-title: Eye
  doi: 10.1038/eye.2015.63
– volume: 36
  start-page: 689
  year: 2017
  ident: 46903_CR13
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000001194
– ident: 46903_CR54
– volume: 33
  start-page: 7393
  year: 2021
  ident: 46903_CR29
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05826-w
– volume: 521
  start-page: 436
  year: 2015
  ident: 46903_CR15
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 18
  start-page: 379
  year: 2004
  ident: 46903_CR4
  publication-title: Eye
  doi: 10.1038/sj.eye.6700652
– ident: 46903_CR39
– volume: 33
  start-page: 15077
  year: 2020
  ident: 46903_CR25
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 156
  start-page: 237
  year: 2013
  ident: 46903_CR12
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2013.03.034
– ident: 46903_CR42
– volume: 39
  start-page: 1592
  year: 2020
  ident: 46903_CR3
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000002420
– volume: 9
  start-page: 1
  year: 2022
  ident: 46903_CR8
  publication-title: Eye Vis.
  doi: 10.1186/s40662-022-00277-3
– ident: 46903_CR46
– ident: 46903_CR52
  doi: 10.1109/ICCV.2019.00140
– volume: 16
  start-page: 1022
  year: 2019
  ident: 46903_CR37
  publication-title: Baghdad Sci. J.
  doi: 10.21123/bsj.2019.16.4(Suppl.).1022
– ident: 46903_CR53
– volume: 58
  start-page: 101552
  year: 2019
  ident: 46903_CR27
  publication-title: Med. Image Analy.
  doi: 10.1016/j.media.2019.101552
– volume: 215
  start-page: 127
  year: 2020
  ident: 46903_CR32
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2020.02.017
– volume: 12
  start-page: 1888
  year: 2022
  ident: 46903_CR28
  publication-title: Biomolecules
  doi: 10.3390/biom12121888
– volume: 129
  start-page: 691
  year: 2011
  ident: 46903_CR2
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archophthalmol.2011.7
– volume: 38
  start-page: 2290
  year: 1997
  ident: 46903_CR10
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 14
  start-page: 1627
  year: 2022
  ident: 46903_CR23
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-021-09880-3
– volume: 10
  start-page: 622
  year: 2019
  ident: 46903_CR16
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.10.000622
– reference: 38129562 - Sci Rep. 2023 Dec 21;13(1):22914
SSID ssj0000529419
Score 2.4660857
Snippet Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to review...
Abstract Detecting clinical keratoconus (KCN) poses a challenging and time-consuming task. During the diagnostic process, ophthalmologists are required to...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20586
SubjectTerms 631/114/2164
692/700/1421
Accuracy
Computers
Cornea
Deep Learning
Diagnosis
Humanities and Social Sciences
Humans
Keratoconus
Keratoconus - diagnostic imaging
Medical personnel
multidisciplinary
Neural networks
Neural Networks, Computer
Retrospective Studies
Science
Science (multidisciplinary)
Topographic mapping
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgCIkL4ptAQUbiBlYTf8T2CRXUqkKCE0V7s-zYXlXAZml2D_x7ZhInFQJ6ixIncsZj-43Hfo-Q117yGKIXzAIYggAlJrjS4MsZYqAsANIKPI386XN7di4_rtSqLLgNZVvlPCaOA3XsO1wjP4LAgJsG4fK77U-GqlGYXS0SGjfJLaQuwy1deqWXNRbMYsnGlrMytTBHA8xXeKaMC4ZxoWDqj_lopO3_F9b8K086Tj-n98jdghvp8dTQ98mNtHlAbk9Kkr8ektWszsCQ8jHSOO2guxhon-k3JE7uIfDdD7To8tCvxyfM79cjJWekFz9gWBkoboJf05jSlhY1ifUjcn568uXDGSuiCayTRu1YE5KIMDWlJgLyaLuQpEXClux5aFTKSagMqLquY9bQn5MMPliVWuOD6ZAe7zE52PSb9JRQQCeBZ55EHWspPUAH0yltjeqy8dG3FWlm07muMIqjsMV3N2a2hXGTuR2Y243mdqoib5Z3thOfxrWl32OLLCWRC3u80V-uXelazoKrcRXAz2ojrTGhFsiJo-sUu6x1rMjh3J6udNDBXblTRV4tj6FrYb7Eb1K_H8tA_N5yrivyZPKDpSZCW2QysxV5OzvG1cf__0PPrq_Lc3IH5ezxrCMXh-Rgd7lPLwD07MLL0bN_AyPF-8I
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2VIiQuiG8CBRmJGxgSO47tA0IFtaqQyolFe7Ps2F5VlE3Z7Ertv-84cRYhFk7cosSO4vFM5o1svwfwytbMO2851QiGsEDxAa8k-nLEGihyhLQ8nUY-_dKczOrPczHfg0nuKBuw31naJT2p2er87eXPqw8Y8O_HI-PqXY9JKB0UY5ymYo9TcQNuYmaSKVBPM9wfub6Zriudz87s7vpbfhpo_Hdhzz_WTYd0dHwX7mQcSQ7Hib8He2F5H26NypJXD2A-qTXQRAHpiR931J31pIvkeyJS7rAQ3vQk6_SQb4dH1G4WA0WnJ2c_8DfTk7QpfkF8CBckq0ssHsLs-OjrpxOaRRRoWyuxppUL3GOqCpVHJNK0LtQ6EbhEy1wlQgxcRETZZemjxPgOtbNOi9Ao61Sb6PIewf6yW4YnQBCtOBZZ4KUv69oilFCtkFqJNirrbVNANZnOtJlhPAldnJthpZsrM5rboLnNYG4jCni97XMx8mv8s_XHNCPblokbe7jRrRYmh5rR6HpMOPS7UtVaKVfyxJEjy-DbKKUv4GCaTzP5m8G6k6kqVWMFvNw-xlBL6yd2GbrN0Abr-YYxWcDj0Q-2X8KlTsxmuoA3k2P8evnfB_T0fwzoGdxmyYOrijJ-APvr1SY8R6i0di8G_78Gus4Lsg
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBgozEDSISPxL7WFatKiQ4UbQ3y47tVQXdVM3ugX_PjPNAiILELUrGkWOPPd_EM98AvHGSBx-cKA2CIXRQQsSrFnU5oQ-UBEJaQdnInz43Z-fy41qtD4DPuTA5aD9TWuZteo4Oez-goaFkMC5KcuhEqW7BbaJuJ61eNavlvwqdXMnaTPkxldA3NP3NBmWq_pvw5R9no9nknN6HexNWZMdj7x7AQdw-hDtj9cgfj2A9V2QoieYxsDBGzV0MrE_sG5El9-js7gc21eJhX49PSrffZBrOwC4ucSsZGAW-b1iI8YpNFSQ2j-H89OTL6qycCiWUndRqV9Y-ioDmKNYB0UbT-SgNkbQkx32tYopCJUTSVRVSi2s4Su-8UbHRzuuOKPGewOG238ZnwBCReJ54FFWopHQIF3SnWqNVl7QLrimgnofOdhOLOBWz-G7zabbQdhxui8Nt83BbVcDbpc3VyKHxT-kPNCOLJPFf5xv99cZO-mANqhdXHnWr0tJo7StBPDhtFUOX2jYUcDTPp50W5WDRt-S6Jo-rgNfLY1xOdEbitrHfZxn02RvO2wKejnqw9ES0htjLTAHvZsX49fK_f9Dz_xN_AXeppD3lO3JxBIe76318icBn519lTf8Jpev5mA
  priority: 102
  providerName: Springer Nature
Title Computer-aided diagnosis of keratoconus through VAE-augmented images using deep learning
URI https://link.springer.com/article/10.1038/s41598-023-46903-5
https://www.ncbi.nlm.nih.gov/pubmed/37996439
https://www.proquest.com/docview/2892810642
https://www.proquest.com/docview/2893836227
https://doaj.org/article/9da325b40d084988b03480170edcf77d
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BIiQuiDeBpTISN4g28SO2j92qq1WlXSFgUW-WHdvVCmhXtD3w75lJ0rKI14VLEjmOZY_HmW9kzzcAr7zkMUQvSotgCB2UmPBJoy5n9IGyQEgrKBr57Lw5vZCzuZpfS_VFZ8J6euBecEcWG-IqYCuVkdaYUAliPNFVim3WOtLfF23eNWeqZ_XmVtZ2iJKphDlao6WiaDIuSvIIRal-skQdYf_vUOYvO6Sd4Tm5B3cHxMjGfU_vw420fAC3-xyS3x7CfJeXoSSyx8hif3bucs1WmX0iyuQVurzbNRsy8rCP42npt4uOjDOyyy_4Q1kzOv6-YDGlKzbkkVg8gouT6YfJaTmkSyhbadSmrEMSEY1SqiNijqYNSVqiasmeh1qlnITKiKerKmaNKznJ4INVqTE-mJaI8R7DwXK1TE-BIS4JPPMkUOpSegQNplXaGtVm46NvCqh3onPtwCVOKS0-u25PWxjXi9uhuF0nbqcKeL3_5qpn0vhr7WOakX1NYsHuClA33KAb7l-6UcDhbj7dsDTXDj1Mbmryuwp4uX-Ni4p2SvwyrbZdHfTcG851AU96Pdj3RGhLHGa2gDc7xfjR-J8H9Ox_DOg53KF09xQLycUhHGy-btMLBEWbMIKbeq5HcGs8nr2f4f14ev72HZZOmsmoWxt4PZPmO0xtCW4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrRBcEN8EChgJThA1seONc0Coha22tF0h1KK9uXbsrCrazdLsCvVP8RuZyVeFgN56ixInSsbP4zcZ-w3Aa5NwZ50RYYZkCAMU5_EoRSwXGAMVAimtoN3IB5Ph-Cj5PJXTNfjV7YWhZZWdT6wdtStz-ke-iYEBVzHR5Q-LHyFVjaLsaldCo4HFnr_4iSFb9X73E_bvG853Rocfx2FbVSDMEyWXYWy9cOi7fexwah7m1icZKZoUhttY-sILWSDtjCJXpAh4n1hjM-mHyliVk34cPvcGrCcCQ5kBrG-PJl--9n91KG-WxFm7OycSarPCGZJ2sXERUiQqQvnHDFgXCvgXu_0rM1tPeDt34U7LVNlWA617sObn9-FmU7vy4gFMu3oQIYlMOuaaNXsnFSsL9p2kmksMtVcVaysBsW9bo9CsZrUIqGMnZ-jIKkbL7mfMeb9gbf2K2UM4uhaDPoLBvJz7J8CQD1lecC8iFyWJQbKicplmSuaFMs4MA4g70-m81TCnUhqnus6lC6Ubc2s0t67NrWUAb_t7Fo2Cx5Wtt6lH-pakvl2fKM9nuh3MOkNwc2kR2ZFKMqVsJEiFJ428y4s0dQFsdP2pW5dQ6UsAB_Cqv4yDmTI0Zu7LVd1GKKQUPA3gcYOD_k1EmpF2WhbAuw4Ylw___wc9vfpdXsKt8eHBvt7fnew9g9uccBrHIRcbMFier_xzpFxL-6LFOYPj6x5avwFEXjpm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIhAXxDeBAkaCE0Sb2PHaOSBUaFcthYoDRXszdmyvKmCzNLtC_Wv8OmbysRUCeuttteuNkvGb8ZuM_QbgmS24d96KtEQyhAmKD_hJIZYj5kBRIKUVdBr5w-F476h4N5XTDfg1nIWhbZVDTGwDta8rekc-wsSA65zo8ij22yI-7kxeL36k1EGKKq1DO40OIgfh9Cemb82r_R2c6-ecT3Y_vd1L-w4DaVVouUxzF4THOB5yj8v0uHKhKEndJFruchliEDIiBc0yHxWCPxTOulKGsbZOV6Qlh9e9BJeVkDn5mJqq9fsdqqAVedmf08mEHjW4VtJ5Ni5SyklFKv9YC9uWAf_iuX_VaNulb3IDrveclW13ILsJG2F-C650XSxPb8N06AyRktykZ77bvXfcsDqyryTaXGPSvWpY3xOIfd7eTe1q1sqBenb8HUNaw2gD_oz5EBas72QxuwNHF2LOu7A5r-fhPjBkRo5HHkTms6KwSFt0JVWpZRW19XacQD6YzlS9mjk11fhm2qq60KYzt0Fzm9bcRibwYv2fRaflce7oNzQj65Gkw91-UZ_MTO_WpkSYc-kQ45kuSq1dJkiPR2XBV1Epn8DWMJ-mDw6NOYNyAk_XP6NbU63GzkO9ascIjeSCqwTudThY34lQJamolQm8HIBxdvH_P9CD8-_lCVxFhzLv9w8PHsI1TjDN85SLLdhcnqzCI-ReS_e4BTmDLxftVb8Bn6Q9Ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+diagnosis+of+keratoconus+through+VAE-augmented+images+using+deep+learning&rft.jtitle=Scientific+reports&rft.au=Zhila+Agharezaei&rft.au=Reza+Firouzi&rft.au=Samira+Hassanzadeh&rft.au=Siamak+Zarei-Ghanavati&rft.date=2023-11-23&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1038%2Fs41598-023-46903-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9da325b40d084988b03480170edcf77d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon