A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting

In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 6834 - 11
Main Authors Wang, Yawei, Du, Hengxu, Yang, Hengyi, Xi, Ziyue, Zhao, Cong, Qian, Zian, Chuai, Xinyuan, Peng, Xuzhang, Yu, Hongyong, Zhang, Yu, Li, Xin, Hu, Guobiao, Wang, Hao, Xu, Minyi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.08.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m 3 ·Hz) and 10.92 W/(m 3 ·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes. Limited current output hinders triboelectric nanogenerators for maritime applications. Authors design a rolling-mode TENG with multi-tunnel grating electrodes, achieving 185.4 W/(m 3 ·Hz) power density. They demonstrate a self-powered ocean sensing system for water quality monitoring and wireless communication.
AbstractList Abstract In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m3·Hz) and 10.92 W/(m3·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes.
In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m ·Hz) and 10.92 W/(m ·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes.
In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m 3 ·Hz) and 10.92 W/(m 3 ·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes. Limited current output hinders triboelectric nanogenerators for maritime applications. Authors design a rolling-mode TENG with multi-tunnel grating electrodes, achieving 185.4 W/(m 3 ·Hz) power density. They demonstrate a self-powered ocean sensing system for water quality monitoring and wireless communication.
In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m3·Hz) and 10.92 W/(m3·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes.Limited current output hinders triboelectric nanogenerators for maritime applications. Authors design a rolling-mode TENG with multi-tunnel grating electrodes, achieving 185.4 W/(m3·Hz) power density. They demonstrate a self-powered ocean sensing system for water quality monitoring and wireless communication.
In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m3·Hz) and 10.92 W/(m3·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes.In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m3·Hz) and 10.92 W/(m3·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes.
ArticleNumber 6834
Author Xi, Ziyue
Hu, Guobiao
Chuai, Xinyuan
Qian, Zian
Zhang, Yu
Yang, Hengyi
Yu, Hongyong
Zhao, Cong
Li, Xin
Wang, Yawei
Peng, Xuzhang
Xu, Minyi
Du, Hengxu
Wang, Hao
Author_xml – sequence: 1
  givenname: Yawei
  surname: Wang
  fullname: Wang, Yawei
  organization: Thrust of Internet of Things, The Hong Kong University of Science and Technology (Guangzhou), State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University
– sequence: 2
  givenname: Hengxu
  surname: Du
  fullname: Du, Hengxu
  organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University
– sequence: 3
  givenname: Hengyi
  surname: Yang
  fullname: Yang, Hengyi
  organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University
– sequence: 4
  givenname: Ziyue
  surname: Xi
  fullname: Xi, Ziyue
  organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University
– sequence: 5
  givenname: Cong
  surname: Zhao
  fullname: Zhao, Cong
  organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University
– sequence: 6
  givenname: Zian
  surname: Qian
  fullname: Qian, Zian
  organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University
– sequence: 7
  givenname: Xinyuan
  surname: Chuai
  fullname: Chuai, Xinyuan
  organization: Guangzhou Institute of Technology, Xidian University
– sequence: 8
  givenname: Xuzhang
  surname: Peng
  fullname: Peng, Xuzhang
  organization: Thrust of Internet of Things, The Hong Kong University of Science and Technology (Guangzhou)
– sequence: 9
  givenname: Hongyong
  surname: Yu
  fullname: Yu, Hongyong
  organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University
– sequence: 10
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University
– sequence: 11
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: Guangzhou Institute of Technology, Xidian University
– sequence: 12
  givenname: Guobiao
  orcidid: 0000-0002-1288-7564
  surname: Hu
  fullname: Hu, Guobiao
  email: guobiaohu@hkust-gz.edu.cn
  organization: Thrust of Internet of Things, The Hong Kong University of Science and Technology (Guangzhou)
– sequence: 13
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  email: hao8901@dlmu.edu.cn
  organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University
– sequence: 14
  givenname: Minyi
  orcidid: 0000-0002-3772-8340
  surname: Xu
  fullname: Xu, Minyi
  email: xuminyi@dlmu.edu.cn
  organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39122713$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u3SAQha0qVZOmeYEuKqRuuqEFDDZeRlF_IkXqpl0jDGNfrmy4BZwqr5CnLr5O0yqLsGEE3zkzo5nX1YkPHqrqLSUfKanlp8Qpb1pMGMeCMi6weFGdMcIppi2rT_6LT6uLlPaknLqjkvNX1WkJGGtpfVbdX6IYpsn5Ec_BAsrR9QEmMCUwyGsfRvAQdQ4R_XZ5h-Zlyg7nxXuY0Fg-ihRtgqJPSHuLwuEQksuAzU7HETD4nfYGZvAZDauRvgW02o53qBC3kFaXN9XLQU8JLh7u8-rnl88_rr7hm-9fr68ub7DhUmRMtSUaqGRNS1nXtZb0VAoAQa3lTU0EActL3Iq2HgYjycBlLxrJu6arDZP1eXW9-dqg9-oQ3azjnQraqeNDiKPSMTszgeob0mrSGdsUl36Quh2k6ElHG9EMVvDi9WHzOsTwayl9qNklA9OkPYQlqbqwJSVltKDvn6D7sERfOj1ShHZUrNS7B2rpZ7CP5f2dWAHYBpgYUoowPCKUqHUz1LYZqmyGOm6GEkUkn4iMy2V0weeo3fS8tN6kqeTxI8R_ZT-j-gMSe82t
CitedBy_id crossref_primary_10_1063_5_0244410
crossref_primary_10_1016_j_nanoen_2024_110488
crossref_primary_10_1016_j_nanoen_2025_110664
crossref_primary_10_1016_j_nanoen_2025_110763
crossref_primary_10_1016_j_nanoen_2025_110746
crossref_primary_10_1016_j_nanoen_2025_110856
crossref_primary_10_1002_adfm_202425965
crossref_primary_10_1016_j_nanoen_2025_110899
crossref_primary_10_1007_s40820_024_01640_w
crossref_primary_10_1016_j_cej_2025_161808
crossref_primary_10_1002_aenm_202500130
crossref_primary_10_1039_D4MH01491J
crossref_primary_10_1557_s43577_024_00858_8
crossref_primary_10_3389_fchem_2024_1538660
crossref_primary_10_1016_j_cej_2025_161722
Cites_doi 10.1007/s12274-022-4131-y
10.3390/jmse10050566
10.1039/D3EE01035J
10.1038/s41467-021-25753-7
10.1021/acsnano.1c00345
10.3390/jmse10040455
10.1016/j.nanoen.2012.01.004
10.1016/j.nanoen.2018.07.048
10.1021/nn5012732
10.1016/j.ijmecsci.2022.107299
10.1016/j.nanoen.2019.03.054
10.1016/j.nanoen.2021.105920
10.1016/j.nanoen.2019.02.012
10.1016/j.nanoen.2023.108222
10.3390/jmse10081025
10.1016/j.nanoen.2018.12.054
10.1038/s41467-019-09461-x
10.1002/admt.202201245
10.1016/j.oceaneng.2023.114162
10.1002/adma.201402428
10.3390/nano12040594
10.1016/j.enconman.2022.115466
10.1021/acsnano.0c04113
10.1021/acsnano.1c05127
10.1016/j.mattod.2023.02.030
10.1016/j.marpolbul.2019.05.042
10.1002/aenm.202100038
10.3390/nanoenergyadv1010003
10.1021/nn506673x
10.1016/j.nanoen.2018.03.062
10.1016/j.oceaneng.2022.111619
10.1021/acsenergylett.1c00704
10.1021/acsenergylett.1c01092
10.1007/s12274-023-6035-x
10.1016/j.apenergy.2023.121530
10.1016/j.nanoen.2023.108182
10.1016/j.oceaneng.2022.113037
10.1002/aenm.201501467
10.1038/ngeo868
10.1016/j.apenergy.2021.118037
10.1016/j.nanoen.2021.106199
10.1016/j.mattod.2019.05.016
10.1007/978-3-319-40039-6
10.1109/JIOT.2020.3016993
10.1038/s43586-023-00220-3
10.1109/JIOT.2021.3098238
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-024-51245-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_b607a09cd60f4bf8a7f85b091656fd54
39122713
10_1038_s41467_024_51245_5
Genre Journal Article
GrantInformation_xml – fundername: National Key R & D Project from the Minister of Science and Technology (Grant No. 2021YFA1201604) Application Research Program of Liaoning Province (Grant No. 2022JH2/101300219)
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c485t-1ad0ae1826712997d0b185ee51dd463050ed41dd7573ffc80f48b56849693c283
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:00:02 EDT 2025
Mon Jul 21 10:04:03 EDT 2025
Wed Aug 13 06:05:03 EDT 2025
Wed Feb 19 02:06:56 EST 2025
Tue Jul 01 02:37:27 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
Fri Feb 21 02:37:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-1ad0ae1826712997d0b185ee51dd463050ed41dd7573ffc80f48b56849693c283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3772-8340
0000-0002-1288-7564
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-51245-5
PMID 39122713
PQID 3091019151
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_b607a09cd60f4bf8a7f85b091656fd54
proquest_miscellaneous_3091283121
proquest_journals_3091019151
pubmed_primary_39122713
crossref_primary_10_1038_s41467_024_51245_5
crossref_citationtrail_10_1038_s41467_024_51245_5
springer_journals_10_1038_s41467_024_51245_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-09
PublicationDateYYYYMMDD 2024-08-09
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wang, Xu, Wang (CR17) 2021; 1
Zhang (CR32) 2022; 10
Wang (CR14) 2019; 58
Deng (CR42) 2020; 14
Li (CR35) 2023; 16
Wang, Wang (CR40) 2019; 30
Wu, Wang, Zi (CR23) 2021; 11
Wang (CR3) 2023; 8
Hu, Zhao, Yang, Li, Liang (CR11) 2022; 306
CR18
Wang, Falzarano (CR7) 2022; 257
Yang (CR30) 2019; 60
Yang, Wang, Ma, Xu (CR5) 2022; 10
Xu, Wang, Xi, Wang, Xu (CR28) 2022; 10
Zhang (CR26) 2018; 48
Wang (CR25) 2022; 12
Zhao, Zou, Xie, Guo, Gao (CR24) 2023; 108
Yu (CR13) 2023; 107
Ahmed (CR8) 2023; 275
Li, Peng, Hu, Peng (CR10) 2022; 223
Fan, Tian, Lin Wang (CR15) 2012; 1
Jing (CR39) 2022; 15
Wu, Wang, Wang, Zi (CR37) 2021; 12
Xu (CR34) 2019; 13
Zhai, Ding, Chen, Wu, Lin Wang (CR16) 2023; 65
Zhao (CR12) 2023; 348
Yang, Wang, Gao, Liu, Xu (CR6) 2022; 266
Wang (CR33) 2021; 84
Fu (CR45) 2021; 6
Cheng (CR22) 2019; 57
Xie (CR36) 2014; 26
CR47
CR46
Zhao (CR27) 2021; 88
Collins (CR1) 2010; 3
CR41
Zhu (CR19) 2014; 8
Kim (CR20) 2018; 52
Zou (CR44) 2019; 10
Li (CR9) 2022; 258
Yuan (CR21) 2021; 6
Wang (CR31) 2015; 5
Liu (CR29) 2021; 15
Wang (CR4) 2021; 15
Jepsen, De Bruyn (CR2) 2019; 145
Duan (CR38) 2023; 16
Lin (CR43) 2015; 9
H Yang (51245_CR6) 2022; 266
A Ahmed (51245_CR8) 2023; 275
EM Jepsen (51245_CR2) 2019; 145
51245_CR41
H Yu (51245_CR13) 2023; 107
H Wu (51245_CR37) 2021; 12
Y Xie (51245_CR36) 2014; 26
H Wang (51245_CR7) 2022; 257
F-R Fan (51245_CR15) 2012; 1
L Zhao (51245_CR24) 2023; 108
X Fu (51245_CR45) 2021; 6
Z Li (51245_CR9) 2022; 258
ZL Wang (51245_CR14) 2019; 58
51245_CR47
51245_CR46
X Yang (51245_CR30) 2019; 60
M Xu (51245_CR34) 2019; 13
M Collins (51245_CR1) 2010; 3
H Wang (51245_CR33) 2021; 84
Z Jing (51245_CR39) 2022; 15
C Zhao (51245_CR12) 2023; 348
Y Wang (51245_CR3) 2023; 8
H Wang (51245_CR25) 2022; 12
H Yang (51245_CR5) 2022; 10
H Zhai (51245_CR16) 2023; 65
R Xu (51245_CR28) 2022; 10
Z Yuan (51245_CR21) 2021; 6
W Deng (51245_CR42) 2020; 14
T Zhao (51245_CR27) 2021; 88
L Lin (51245_CR43) 2015; 9
51245_CR18
X Wang (51245_CR31) 2015; 5
H Zou (51245_CR44) 2019; 10
Y Wang (51245_CR4) 2021; 15
SL Zhang (51245_CR26) 2018; 48
L Liu (51245_CR29) 2021; 15
G Hu (51245_CR11) 2022; 306
H Wang (51245_CR17) 2021; 1
Z Li (51245_CR10) 2022; 223
Y Duan (51245_CR38) 2023; 16
P Cheng (51245_CR22) 2019; 57
G Zhu (51245_CR19) 2014; 8
X Li (51245_CR35) 2023; 16
ZL Wang (51245_CR40) 2019; 30
T Kim (51245_CR20) 2018; 52
H Wu (51245_CR23) 2021; 11
Z Zhang (51245_CR32) 2022; 10
References_xml – volume: 15
  start-page: 5098
  year: 2022
  end-page: 5104
  ident: CR39
  article-title: 3D fully-enclosed triboelectric nanogenerator with bionic fish-like structure for harvesting hydrokinetic energy
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4131-y
– ident: CR18
– volume: 10
  start-page: 566
  year: 2022
  ident: CR28
  article-title: Recent progress on wave energy marine buoys
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse10050566
– volume: 16
  start-page: 3040
  year: 2023
  end-page: 3052
  ident: CR35
  article-title: Three-dimensional chiral networks of triboelectric nanogenerators inspired by metamaterial’s structure
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE01035J
– volume: 12
  year: 2021
  ident: CR37
  article-title: Achieving ultrahigh instantaneous power density of 10 MW/m by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG)
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25753-7
– ident: CR47
– volume: 15
  start-page: 9412
  year: 2021
  end-page: 9421
  ident: CR29
  article-title: Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00345
– volume: 10
  start-page: 455
  year: 2022
  ident: CR32
  article-title: Multi-tunnel triboelectric nanogenerator for scavenging mechanical energy in marine floating bodies
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse10040455
– volume: 1
  start-page: 328
  year: 2012
  end-page: 334
  ident: CR15
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 52
  start-page: 95
  year: 2018
  end-page: 104
  ident: CR20
  article-title: Direct-current triboelectric nanogenerator via water electrification and phase control
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.048
– volume: 8
  start-page: 6031
  year: 2014
  end-page: 6037
  ident: CR19
  article-title: Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface
  publication-title: ACS Nano
  doi: 10.1021/nn5012732
– volume: 223
  start-page: 107299
  year: 2022
  ident: CR10
  article-title: Theoretical, numerical, and experimental studies of a frequency up-conversion piezoelectric energy harvester
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2022.107299
– volume: 60
  start-page: 404
  year: 2019
  end-page: 412
  ident: CR30
  article-title: Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.054
– volume: 84
  year: 2021
  ident: CR33
  article-title: Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105920
– volume: 58
  start-page: 669
  year: 2019
  end-page: 672
  ident: CR14
  article-title: Entropy theory of distributed energy for internet of things
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.012
– volume: 108
  start-page: 108222
  year: 2023
  ident: CR24
  article-title: Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108222
– volume: 10
  start-page: 1025
  year: 2022
  ident: CR5
  article-title: Prediction of wave energy flux in the Bohai Sea through automated machine learning
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse10081025
– volume: 57
  start-page: 432
  year: 2019
  end-page: 439
  ident: CR22
  article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.054
– volume: 10
  year: 2019
  ident: CR44
  article-title: Quantifying the triboelectric series
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09461-x
– volume: 8
  year: 2023
  ident: CR3
  article-title: Highly adaptive triboelectric‐electromagnetic hybrid nanogenerator for scavenging flow energy and self‐powered marine wireless sensing
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202201245
– volume: 275
  year: 2023
  ident: CR8
  article-title: Design of an S-shaped point-absorber wave energy converter with a non-linear PTO to power the satellite-respondent buoys in the East China Sea
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.114162
– volume: 26
  start-page: 6599
  year: 2014
  end-page: 6607
  ident: CR36
  article-title: Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402428
– volume: 12
  start-page: 594
  year: 2022
  ident: CR25
  article-title: A stackable triboelectric nanogenerator for wave-driven marine buoys
  publication-title: Nanomaterials
  doi: 10.3390/nano12040594
– volume: 258
  year: 2022
  ident: CR9
  article-title: Towards real-time self-powered sensing with ample redundant charges by a piezostack-based frequency-converted generator from human motions
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2022.115466
– volume: 14
  start-page: 9050
  year: 2020
  end-page: 9058
  ident: CR42
  article-title: Ternary electrification layered architecture for high-performance triboelectric nanogenerators
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c04113
– volume: 15
  start-page: 15700
  year: 2021
  end-page: 15709
  ident: CR4
  article-title: Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine Internet of Things
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05127
– volume: 65
  start-page: 166
  year: 2023
  end-page: 188
  ident: CR16
  article-title: Advances in solid–solid contacting triboelectric nanogenerator for ocean energy harvesting
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2023.02.030
– ident: CR46
– volume: 145
  start-page: 295
  year: 2019
  end-page: 305
  ident: CR2
  article-title: Pinniped entanglement in oceanic plastic pollution: a global review
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2019.05.042
– volume: 11
  start-page: 2100038
  year: 2021
  ident: CR23
  article-title: Multi‐mode water‐tube‐based triboelectric nanogenerator designed for low‐frequency energy harvesting with ultrahigh volumetric charge density
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100038
– volume: 1
  start-page: 32
  year: 2021
  end-page: 57
  ident: CR17
  article-title: Advances of high-performance triboelectric nanogenerators for blue energy harvesting
  publication-title: Nanoenergy Adv.
  doi: 10.3390/nanoenergyadv1010003
– volume: 13
  start-page: 1932
  year: 2019
  ident: CR34
  article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy
  publication-title: ACS Nano
– volume: 9
  start-page: 922
  year: 2015
  end-page: 930
  ident: CR43
  article-title: Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼55
  publication-title: ACS Nano
  doi: 10.1021/nn506673x
– volume: 48
  start-page: 421
  year: 2018
  end-page: 429
  ident: CR26
  article-title: Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.062
– volume: 257
  start-page: 111619
  year: 2022
  ident: CR7
  article-title: Efficient assessment for the pitchpoling risks of a generic wave energy converter based on first passage statistics
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111619
– volume: 6
  start-page: 2343
  year: 2021
  end-page: 2350
  ident: CR45
  article-title: Breeze-wind-energy-powered autonomous wireless anemometer based on rolling contact-electrification
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00704
– volume: 6
  start-page: 2809
  year: 2021
  end-page: 2816
  ident: CR21
  article-title: Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c01092
– volume: 16
  start-page: 11646
  year: 2023
  end-page: 11652
  ident: CR38
  article-title: Scalable rolling-structured triboelectric nanogenerator with high power density for water wave energy harvesting toward marine environmental monitoring
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-6035-x
– volume: 348
  year: 2023
  ident: CR12
  article-title: Wide-bandwidth triboelectric energy harvester combining impact nonlinearity and multi-resonance method
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.121530
– volume: 107
  year: 2023
  ident: CR13
  article-title: High performance additional mass enhanced film structure triboelectric nanogenerator for scavenging vibration energy in broadband frequency range
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108182
– volume: 266
  start-page: 113037
  year: 2022
  ident: CR6
  article-title: A significant wave height forecast framework with end-to-end dynamic modeling and lag features length optimization
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.113037
– volume: 5
  start-page: 1501467
  year: 2015
  ident: CR31
  article-title: Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501467
– ident: CR41
– volume: 3
  start-page: 391
  year: 2010
  end-page: 397
  ident: CR1
  article-title: The impact of global warming on the tropical Pacific Ocean and El Niño
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo868
– volume: 306
  start-page: 118037
  year: 2022
  ident: CR11
  article-title: Triboelectric energy harvesting using an origami-inspired structure
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118037
– volume: 88
  year: 2021
  ident: CR27
  article-title: Recent progress in blue energy harvesting for powering distributed sensors in ocean
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106199
– volume: 30
  start-page: 34
  year: 2019
  end-page: 51
  ident: CR40
  article-title: On the origin of contact-electrification
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.05.016
– volume: 15
  start-page: 5098
  year: 2022
  ident: 51245_CR39
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4131-y
– volume: 65
  start-page: 166
  year: 2023
  ident: 51245_CR16
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2023.02.030
– volume: 9
  start-page: 922
  year: 2015
  ident: 51245_CR43
  publication-title: ACS Nano
  doi: 10.1021/nn506673x
– volume: 58
  start-page: 669
  year: 2019
  ident: 51245_CR14
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.012
– volume: 108
  start-page: 108222
  year: 2023
  ident: 51245_CR24
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108222
– volume: 84
  year: 2021
  ident: 51245_CR33
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105920
– volume: 275
  year: 2023
  ident: 51245_CR8
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.114162
– volume: 258
  year: 2022
  ident: 51245_CR9
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2022.115466
– volume: 13
  start-page: 1932
  year: 2019
  ident: 51245_CR34
  publication-title: ACS Nano
– volume: 14
  start-page: 9050
  year: 2020
  ident: 51245_CR42
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c04113
– ident: 51245_CR41
  doi: 10.1007/978-3-319-40039-6
– volume: 3
  start-page: 391
  year: 2010
  ident: 51245_CR1
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo868
– volume: 266
  start-page: 113037
  year: 2022
  ident: 51245_CR6
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.113037
– volume: 107
  year: 2023
  ident: 51245_CR13
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108182
– volume: 30
  start-page: 34
  year: 2019
  ident: 51245_CR40
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.05.016
– volume: 6
  start-page: 2809
  year: 2021
  ident: 51245_CR21
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c01092
– volume: 348
  year: 2023
  ident: 51245_CR12
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.121530
– volume: 15
  start-page: 9412
  year: 2021
  ident: 51245_CR29
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00345
– volume: 306
  start-page: 118037
  year: 2022
  ident: 51245_CR11
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118037
– volume: 8
  start-page: 6031
  year: 2014
  ident: 51245_CR19
  publication-title: ACS Nano
  doi: 10.1021/nn5012732
– ident: 51245_CR46
  doi: 10.1109/JIOT.2020.3016993
– volume: 12
  year: 2021
  ident: 51245_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25753-7
– volume: 57
  start-page: 432
  year: 2019
  ident: 51245_CR22
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.054
– volume: 10
  start-page: 1025
  year: 2022
  ident: 51245_CR5
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse10081025
– volume: 60
  start-page: 404
  year: 2019
  ident: 51245_CR30
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.054
– ident: 51245_CR18
  doi: 10.1038/s43586-023-00220-3
– volume: 16
  start-page: 3040
  year: 2023
  ident: 51245_CR35
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE01035J
– volume: 10
  year: 2019
  ident: 51245_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09461-x
– volume: 8
  year: 2023
  ident: 51245_CR3
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202201245
– volume: 5
  start-page: 1501467
  year: 2015
  ident: 51245_CR31
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501467
– ident: 51245_CR47
  doi: 10.1109/JIOT.2021.3098238
– volume: 223
  start-page: 107299
  year: 2022
  ident: 51245_CR10
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2022.107299
– volume: 12
  start-page: 594
  year: 2022
  ident: 51245_CR25
  publication-title: Nanomaterials
  doi: 10.3390/nano12040594
– volume: 16
  start-page: 11646
  year: 2023
  ident: 51245_CR38
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-6035-x
– volume: 15
  start-page: 15700
  year: 2021
  ident: 51245_CR4
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05127
– volume: 145
  start-page: 295
  year: 2019
  ident: 51245_CR2
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2019.05.042
– volume: 26
  start-page: 6599
  year: 2014
  ident: 51245_CR36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402428
– volume: 6
  start-page: 2343
  year: 2021
  ident: 51245_CR45
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00704
– volume: 88
  year: 2021
  ident: 51245_CR27
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106199
– volume: 10
  start-page: 566
  year: 2022
  ident: 51245_CR28
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse10050566
– volume: 1
  start-page: 32
  year: 2021
  ident: 51245_CR17
  publication-title: Nanoenergy Adv.
  doi: 10.3390/nanoenergyadv1010003
– volume: 11
  start-page: 2100038
  year: 2021
  ident: 51245_CR23
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100038
– volume: 257
  start-page: 111619
  year: 2022
  ident: 51245_CR7
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111619
– volume: 52
  start-page: 95
  year: 2018
  ident: 51245_CR20
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.048
– volume: 1
  start-page: 328
  year: 2012
  ident: 51245_CR15
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 10
  start-page: 455
  year: 2022
  ident: 51245_CR32
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse10040455
– volume: 48
  start-page: 421
  year: 2018
  ident: 51245_CR26
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.062
SSID ssj0000391844
Score 2.6035328
Snippet In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to...
Abstract In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6834
SubjectTerms 147/135
639/166/987
639/166/988
639/301/1005
639/4077/4072/4062
639/4077/909
Charge density
Electrodes
Energy charge
Energy harvesting
Environmental monitoring
Environmental protection
Flux density
Humanities and Social Sciences
Life span
Low currents
Marine ecosystems
Marine technology
multidisciplinary
Nanogenerators
Power management
Remote sensors
Science
Science (multidisciplinary)
Tunnels
Water monitoring
Water quality
Water quality management
Wave energy
Wave power
Wireless communications
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SEHwR766tEsE3Dd3sJrvJYxVLEfTJQt9CskmqINnSc47gX_BXd2ay51jx9uLbXiZ7yUwyM5vZ72PsRQrRIyyXAAW3QvUZ5sEuJCFDD0NrlN1IZDDvPwwnp-rdmT67RvWFNWEVHrh23GEY2tG3dopDm1XIxo_Z6ABeDgKRHDUhgcLetWSK5mC4k1Fq-Uum7c3hStGcAC5JgI9TWuifPBEB9v8uyvxlhZQcz_EddnuJGPlRfdK77EYq99jNyiH57T77fsQvK7C2QFYbjgxWcyW3-Tzx4st8TsjSkFtz_OjKqYRQrDdY4MIRKQKa8oUNJ6YV9yXy-YKKuZIgIKUkUvmE1oFfEnnGC_mviSf6bZCDBEF1lPMH7PT47cc3J2IhWBCTMnotpI-tT5hhgFKsHWMbwH2npGWMaoCZoE1Rwfaoxz7nyYAGTNCDUXaw_QSByUO2V-aSHjMOaZRGMDkZ7aBM9tZCnhmDhQQ7QsvcMLntbDct6ONIgvHF0Sp4b1xVkAMFOVKQ0w17uWtzUbE3_ir9GnW4k0TcbDoA1uQWa3L_sqaGHWwtwC2DeeV6jKkgr9WyYc93p2EY4tqKL2neVBnoENmBzKNqObsnAVvsulH2DXu1NaUfF__zCz35Hy-0z251aPNU5HLA9taXm_QUwqh1eEYj5go4zxbH
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEA66Ivgi3u26SgTfNGzTJm3yJKt4XAR9cmHfQtIkR2FJj-ci-Bf2VzuT5nQRdd9KOylt5z6ZfkPIq-C8RVguBgyumWgj2MHGBcZdC6rV86bPw2A-f-lOz8Snc3leCm6b0la5t4nZUPtxwBr5cYuODZILyd-ufjCcGoW7q2WExk1yi4OnwZYutfg411gQ_VwJUf6VqVt1vBHZMoBjYuDphGTyD3-UYfv_FWv-tU-a3c_iHrlb4kZ6MjH6PrkR0gNye5ok-eshuTyh6wlem-FsG4pzrMZpxM33gSabxmXGl4YMm2LpleZGQrbdYZsLRbwIWErLTBwfNtQmT8dVbukKLMMpBRbSN5QRrCfSiDeyPwMN-edBChQZsCMtH5GzxYev709ZGbPABqHklnHraxswzwDWaN372oETD0Fy70UH9qAOXsBxL_s2xkHVUSgnOyV0p9sBwpPH5CCNKTwlFJIpiZBy3OtOqGi1hmzTOw1ptoeVsSJ8_7HNUDDIcRTGhcl74a0yE4MMMMhkBhlZkdfzmtWEwHEt9Tvk4UyJ6Nn5xLhemqKMxnV1b2s9-A7exUVl-6ikAwGD4DZ6KSpytJcAU1R6Y64EsCIv58ugjLjDYlMYdxMNfBDeAM2TSXLmJwFZbJqetxV5sxelq5v__4UOr3-WZ-ROg9Kcm1iOyMF2vQvPIUzauhdZF34DiQYOBQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEA61RfBFWm9d20oE3zS42U12k8ejWMoBfdFC30KySY6CZMu5CP0L_dXOZC8iVsG3ZXcSNpmZzEwy-YaQV8F5i7BcDBhcMlFHWAcrFxh3NahWy6s2F4P5-Km5uBTLK3m1R6rpLkxO2s-QlnmZnrLD3m5EVmmwKAxMlJBM3iMHCNUOsn2wWCw_L-edFcQ8V0KMN2TKWt3R-DcrlMH67_Iw_zgdzUbn_JA8HL1Fuhj-74jshfSI3B_qR948JrcLuh5AtRlWtKFYvaofCtt862iyqV9lVGmIqyluuNKcPsi2O0xuoYgSAU3pWAnHhw21ydP-OidyBZZBlAIL6StKBu4i0ogd2R-BhnxlkAJFhulIqyfk8vzDl_cXbCyuwDqh5JZx60sbMLoAhmjd-tKB6Q5Bcu9FA6tAGbyA51a2dYydKqNQTjZK6EbXHTglT8l-6lM4JhRCKIlActzrRqhotYYY0zsNwbWHlrEgfJps043I41gA47vJJ-C1MgODDDDIZAYZWZDXc5vrAXfjn9TvkIczJWJm5xf9emVGGTKuKVtb6s43MBYXlW2jkg78JXBpo5eiIKeTBJhRkTemRn8KYlrJC_Jy_gwqiOcqNoV-N9DAhPAKaJ4NkjP_CchiVbW8LsibSZR-df73AT3_P_IT8qBC6c6pLKdkf7vehTNwlrbuxagdPwF4bQ1A
  priority: 102
  providerName: Springer Nature
Title A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting
URI https://link.springer.com/article/10.1038/s41467-024-51245-5
https://www.ncbi.nlm.nih.gov/pubmed/39122713
https://www.proquest.com/docview/3091019151
https://www.proquest.com/docview/3091283121
https://doaj.org/article/b607a09cd60f4bf8a7f85b091656fd54
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bixMxFD7sBcEX8e6sa4ngm0YnM8kk8yDSLVuXwi6iFvoWJpOkCsvMbi_i_gV_tSeZaUWsgi9tmZ6kTc5Jzjm5fB_AC2dsFWC5KCo4pTz3OA9mxlFmchxakmUyksGcXxRnUz6ZidkebOiO-g5c7kztAp_UdHH5-vv1zTsc8G-7K-PqzZLH4Y7ehqL74oKKfThEzyQDo8F5H-7HmRl_X0V-1yzljKJA3t-j2V3Nb74qQvrvikP_2EONrml8F-70MSUZdkZwD_Zccx9udSyTNw_gx5AsOuhtGnhvSOC4ajv6m681aaqmnUfsacy-SViWJfGQIV2twxEYErAksCjp-XKsW5KqsaS9ise9HI1QS4665kuwn7DWSHyoqPrmiIsXCwlKRDCPZv4QpuPTz6Mz2lMw0JorsaKssmnlQg6CaitLaVODDt45wazlBc4VqbMcP0shc-9rlXqujCgUL4syrzF0eQQHTdu4J0Aw0RIBbo7ZsuDKV2WJmag1JabgFkv6BNims3Xd45MHmoxLHffJc6U7BWlUkI4K0iKBl9syVx06xz-lT4IOt5IBWTs-aBdz3Q9UbYpUVmlZ2wLbYryqpFfCYFSFga-3gidwvLEAvbFWnYeoCzNfwRJ4vv0aB2rYfaka1647GewQlqHM485ytv8E7TLLJMsTeLUxpV-V_71BR__V_KdwOwvGHc-7HMPBarF2zzCiWpkB7MuZxFc1fj-Aw-Fw8mmC7yenFx8-4tNRMRrEtYpBHE4_AQPKHao
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC2FIAQXxE5DACPBCaz0Yne7DwiFZZiQ5ZRIuZl22x6QUPcwCyi_wMfwjVS5lwgBueU26ilb7q5nl8vLewDPnLEV0XJxdHDMReZxHEyN44nJsGsVSVoEMZiDw3x6LD6eyJMN-DXchaFjlcOYGAZq29a0Rr6dUWDD5EImr-ffOKlG0e7qIKHRwWLPnf7AlG35avcd-vd5mk7eH72d8l5VgNdCyRVPKhtXjqbV2JKyLGxsMGY5JxNrRY7wj50V-LuQReZ9rWIvlJG5EmVeZjVGY6z3ElwWGUZyupk--TCu6RDbuhKiv5sTZ2p7KcJIhIGQY2QVkss_4l-QCfjX3PavfdkQ7iY34Ho_T2U7HbBuwoZrbsGVTrny9Db83GGLjs6bk5YOI92stpPU-VKzpmraWeCzxoye0VIvCwcX-WpNx2oY8VNgUdZr8Fi3ZFVjWTsPR8gcD_RNjrvmM2GS1i-Zp4qq7465cFmRoUUgCGlmd-D4QhxwFzabtnH3gWHyJonCLrFlLpSvyhKzW2tKTOstlvQRJMPH1nXPeU7SG1912HvPlO4cpNFBOjhIywhejGXmHePHudZvyIejJbF1hwftYqb7zq9NHhdVXNY2x3cxXlWFV9IgoHEy7a0UEWwNCND9ELLUZ4CP4On4N3Z-2tGpGteuOxv8IEmKNvc65IwtQSymaZFkEbwcoHRW-f9f6MH5bXkCV6dHB_t6f_dw7yFcSwnZ4QDNFmyuFmv3CKdoK_M49AsGny66I_4GxhVJWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ7A2DzuPA0It7aqlsKoQlXpz49hekFCy7APUv8BP4tcx4zwqBPTW2yo7tpzMeMZjj78P4LnVpiRYLo4KDrlIHPrBWFse6QSnVhbFmSeD-TBN94_FuxN5sgG_-rswVFbZ-0TvqE1T0R75OKHAhsmFjMauK4s42p28mX_jxCBFJ609nUZrIof27Aemb8vXB7uo6xdxPNn79HafdwwDvBK5XPGoNGFpaYmNoyqKzIQa45e1MjJGpDgVQmsE_s5kljhX5aETuZZpLoq0SCqMzNjvFdjMKCsawebO3vTo47DDQ9jruRDdTZ0wycdL4f0ShkWOcVZILv-Ihp404F8r3b9OaX3wm9yEG92qlW23ZnYLNmx9G662PJZnd-DnNlu04N6cmHUYsWg1LcHOl4rVZd3MPLo15veMNn6ZL2PkqzUV2TBCq8CmrGPkMXbJytqwZu4Lyiz3YE6W2_ozWSjtZjJHHZXfLbP-6iJDCQ8XUs_uwvGlqOAejOqmtg-AYSonCdAuMkUqclcWBea6RheY5Bts6QKI-o-tqg4BnYg4vip_Ep_kqlWQQgUpryAlA3g5tJm3-B8XSu-QDgdJwu72D5rFTHWuQOk0zMqwqEyK76JdXmYulxrNG5fWzkgRwFZvAapzKEt1bv4BPBv-RldA5ztlbZt1K4MfJIpR5n5rOcNI0BbjOIuSAF71pnTe-f9f6OHFY3kK13ASqvcH08NHcD0mw_bVNFswWi3W9jGu11b6STcxGJxe9lz8DdL0Tus
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rolling-mode+triboelectric+nanogenerator+with+multi-tunnel+grating+electrodes+and+opposite-charge-enhancement+for+wave+energy+harvesting&rft.jtitle=Nature+communications&rft.au=Wang%2C+Yawei&rft.au=Du%2C+Hengxu&rft.au=Yang%2C+Hengyi&rft.au=Xi%2C+Ziyue&rft.date=2024-08-09&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-51245-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_024_51245_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon