A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting
In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 6834 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.08.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m
3
·Hz) and 10.92 W/(m
3
·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes.
Limited current output hinders triboelectric nanogenerators for maritime applications. Authors design a rolling-mode TENG with multi-tunnel grating electrodes, achieving 185.4 W/(m
3
·Hz) power density. They demonstrate a self-powered ocean sensing system for water quality monitoring and wireless communication. |
---|---|
AbstractList | Abstract In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m3·Hz) and 10.92 W/(m3·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes. In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m ·Hz) and 10.92 W/(m ·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes. In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m 3 ·Hz) and 10.92 W/(m 3 ·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes. Limited current output hinders triboelectric nanogenerators for maritime applications. Authors design a rolling-mode TENG with multi-tunnel grating electrodes, achieving 185.4 W/(m 3 ·Hz) power density. They demonstrate a self-powered ocean sensing system for water quality monitoring and wireless communication. In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m3·Hz) and 10.92 W/(m3·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes.Limited current output hinders triboelectric nanogenerators for maritime applications. Authors design a rolling-mode TENG with multi-tunnel grating electrodes, achieving 185.4 W/(m3·Hz) power density. They demonstrate a self-powered ocean sensing system for water quality monitoring and wireless communication. In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m3·Hz) and 10.92 W/(m3·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes.In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m3·Hz) and 10.92 W/(m3·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes. |
ArticleNumber | 6834 |
Author | Xi, Ziyue Hu, Guobiao Chuai, Xinyuan Qian, Zian Zhang, Yu Yang, Hengyi Yu, Hongyong Zhao, Cong Li, Xin Wang, Yawei Peng, Xuzhang Xu, Minyi Du, Hengxu Wang, Hao |
Author_xml | – sequence: 1 givenname: Yawei surname: Wang fullname: Wang, Yawei organization: Thrust of Internet of Things, The Hong Kong University of Science and Technology (Guangzhou), State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University – sequence: 2 givenname: Hengxu surname: Du fullname: Du, Hengxu organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University – sequence: 3 givenname: Hengyi surname: Yang fullname: Yang, Hengyi organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University – sequence: 4 givenname: Ziyue surname: Xi fullname: Xi, Ziyue organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University – sequence: 5 givenname: Cong surname: Zhao fullname: Zhao, Cong organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University – sequence: 6 givenname: Zian surname: Qian fullname: Qian, Zian organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University – sequence: 7 givenname: Xinyuan surname: Chuai fullname: Chuai, Xinyuan organization: Guangzhou Institute of Technology, Xidian University – sequence: 8 givenname: Xuzhang surname: Peng fullname: Peng, Xuzhang organization: Thrust of Internet of Things, The Hong Kong University of Science and Technology (Guangzhou) – sequence: 9 givenname: Hongyong surname: Yu fullname: Yu, Hongyong organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University – sequence: 10 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University – sequence: 11 givenname: Xin surname: Li fullname: Li, Xin organization: Guangzhou Institute of Technology, Xidian University – sequence: 12 givenname: Guobiao orcidid: 0000-0002-1288-7564 surname: Hu fullname: Hu, Guobiao email: guobiaohu@hkust-gz.edu.cn organization: Thrust of Internet of Things, The Hong Kong University of Science and Technology (Guangzhou) – sequence: 13 givenname: Hao surname: Wang fullname: Wang, Hao email: hao8901@dlmu.edu.cn organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University – sequence: 14 givenname: Minyi orcidid: 0000-0002-3772-8340 surname: Xu fullname: Xu, Minyi email: xuminyi@dlmu.edu.cn organization: State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39122713$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u3SAQha0qVZOmeYEuKqRuuqEFDDZeRlF_IkXqpl0jDGNfrmy4BZwqr5CnLr5O0yqLsGEE3zkzo5nX1YkPHqrqLSUfKanlp8Qpb1pMGMeCMi6weFGdMcIppi2rT_6LT6uLlPaknLqjkvNX1WkJGGtpfVbdX6IYpsn5Ec_BAsrR9QEmMCUwyGsfRvAQdQ4R_XZ5h-Zlyg7nxXuY0Fg-ihRtgqJPSHuLwuEQksuAzU7HETD4nfYGZvAZDauRvgW02o53qBC3kFaXN9XLQU8JLh7u8-rnl88_rr7hm-9fr68ub7DhUmRMtSUaqGRNS1nXtZb0VAoAQa3lTU0EActL3Iq2HgYjycBlLxrJu6arDZP1eXW9-dqg9-oQ3azjnQraqeNDiKPSMTszgeob0mrSGdsUl36Quh2k6ElHG9EMVvDi9WHzOsTwayl9qNklA9OkPYQlqbqwJSVltKDvn6D7sERfOj1ShHZUrNS7B2rpZ7CP5f2dWAHYBpgYUoowPCKUqHUz1LYZqmyGOm6GEkUkn4iMy2V0weeo3fS8tN6kqeTxI8R_ZT-j-gMSe82t |
CitedBy_id | crossref_primary_10_1063_5_0244410 crossref_primary_10_1016_j_nanoen_2024_110488 crossref_primary_10_1016_j_nanoen_2025_110664 crossref_primary_10_1016_j_nanoen_2025_110763 crossref_primary_10_1016_j_nanoen_2025_110746 crossref_primary_10_1016_j_nanoen_2025_110856 crossref_primary_10_1002_adfm_202425965 crossref_primary_10_1016_j_nanoen_2025_110899 crossref_primary_10_1007_s40820_024_01640_w crossref_primary_10_1016_j_cej_2025_161808 crossref_primary_10_1002_aenm_202500130 crossref_primary_10_1039_D4MH01491J crossref_primary_10_1557_s43577_024_00858_8 crossref_primary_10_3389_fchem_2024_1538660 crossref_primary_10_1016_j_cej_2025_161722 |
Cites_doi | 10.1007/s12274-022-4131-y 10.3390/jmse10050566 10.1039/D3EE01035J 10.1038/s41467-021-25753-7 10.1021/acsnano.1c00345 10.3390/jmse10040455 10.1016/j.nanoen.2012.01.004 10.1016/j.nanoen.2018.07.048 10.1021/nn5012732 10.1016/j.ijmecsci.2022.107299 10.1016/j.nanoen.2019.03.054 10.1016/j.nanoen.2021.105920 10.1016/j.nanoen.2019.02.012 10.1016/j.nanoen.2023.108222 10.3390/jmse10081025 10.1016/j.nanoen.2018.12.054 10.1038/s41467-019-09461-x 10.1002/admt.202201245 10.1016/j.oceaneng.2023.114162 10.1002/adma.201402428 10.3390/nano12040594 10.1016/j.enconman.2022.115466 10.1021/acsnano.0c04113 10.1021/acsnano.1c05127 10.1016/j.mattod.2023.02.030 10.1016/j.marpolbul.2019.05.042 10.1002/aenm.202100038 10.3390/nanoenergyadv1010003 10.1021/nn506673x 10.1016/j.nanoen.2018.03.062 10.1016/j.oceaneng.2022.111619 10.1021/acsenergylett.1c00704 10.1021/acsenergylett.1c01092 10.1007/s12274-023-6035-x 10.1016/j.apenergy.2023.121530 10.1016/j.nanoen.2023.108182 10.1016/j.oceaneng.2022.113037 10.1002/aenm.201501467 10.1038/ngeo868 10.1016/j.apenergy.2021.118037 10.1016/j.nanoen.2021.106199 10.1016/j.mattod.2019.05.016 10.1007/978-3-319-40039-6 10.1109/JIOT.2020.3016993 10.1038/s43586-023-00220-3 10.1109/JIOT.2021.3098238 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-024-51245-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_b607a09cd60f4bf8a7f85b091656fd54 39122713 10_1038_s41467_024_51245_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Key R & D Project from the Minister of Science and Technology (Grant No. 2021YFA1201604) Application Research Program of Liaoning Province (Grant No. 2022JH2/101300219) |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-1ad0ae1826712997d0b185ee51dd463050ed41dd7573ffc80f48b56849693c283 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:00:02 EDT 2025 Mon Jul 21 10:04:03 EDT 2025 Wed Aug 13 06:05:03 EDT 2025 Wed Feb 19 02:06:56 EST 2025 Tue Jul 01 02:37:27 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 Fri Feb 21 02:37:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-1ad0ae1826712997d0b185ee51dd463050ed41dd7573ffc80f48b56849693c283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3772-8340 0000-0002-1288-7564 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-51245-5 |
PMID | 39122713 |
PQID | 3091019151 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b607a09cd60f4bf8a7f85b091656fd54 proquest_miscellaneous_3091283121 proquest_journals_3091019151 pubmed_primary_39122713 crossref_primary_10_1038_s41467_024_51245_5 crossref_citationtrail_10_1038_s41467_024_51245_5 springer_journals_10_1038_s41467_024_51245_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-09 |
PublicationDateYYYYMMDD | 2024-08-09 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wang, Xu, Wang (CR17) 2021; 1 Zhang (CR32) 2022; 10 Wang (CR14) 2019; 58 Deng (CR42) 2020; 14 Li (CR35) 2023; 16 Wang, Wang (CR40) 2019; 30 Wu, Wang, Zi (CR23) 2021; 11 Wang (CR3) 2023; 8 Hu, Zhao, Yang, Li, Liang (CR11) 2022; 306 CR18 Wang, Falzarano (CR7) 2022; 257 Yang (CR30) 2019; 60 Yang, Wang, Ma, Xu (CR5) 2022; 10 Xu, Wang, Xi, Wang, Xu (CR28) 2022; 10 Zhang (CR26) 2018; 48 Wang (CR25) 2022; 12 Zhao, Zou, Xie, Guo, Gao (CR24) 2023; 108 Yu (CR13) 2023; 107 Ahmed (CR8) 2023; 275 Li, Peng, Hu, Peng (CR10) 2022; 223 Fan, Tian, Lin Wang (CR15) 2012; 1 Jing (CR39) 2022; 15 Wu, Wang, Wang, Zi (CR37) 2021; 12 Xu (CR34) 2019; 13 Zhai, Ding, Chen, Wu, Lin Wang (CR16) 2023; 65 Zhao (CR12) 2023; 348 Yang, Wang, Gao, Liu, Xu (CR6) 2022; 266 Wang (CR33) 2021; 84 Fu (CR45) 2021; 6 Cheng (CR22) 2019; 57 Xie (CR36) 2014; 26 CR47 CR46 Zhao (CR27) 2021; 88 Collins (CR1) 2010; 3 CR41 Zhu (CR19) 2014; 8 Kim (CR20) 2018; 52 Zou (CR44) 2019; 10 Li (CR9) 2022; 258 Yuan (CR21) 2021; 6 Wang (CR31) 2015; 5 Liu (CR29) 2021; 15 Wang (CR4) 2021; 15 Jepsen, De Bruyn (CR2) 2019; 145 Duan (CR38) 2023; 16 Lin (CR43) 2015; 9 H Yang (51245_CR6) 2022; 266 A Ahmed (51245_CR8) 2023; 275 EM Jepsen (51245_CR2) 2019; 145 51245_CR41 H Yu (51245_CR13) 2023; 107 H Wu (51245_CR37) 2021; 12 Y Xie (51245_CR36) 2014; 26 H Wang (51245_CR7) 2022; 257 F-R Fan (51245_CR15) 2012; 1 L Zhao (51245_CR24) 2023; 108 X Fu (51245_CR45) 2021; 6 Z Li (51245_CR9) 2022; 258 ZL Wang (51245_CR14) 2019; 58 51245_CR47 51245_CR46 X Yang (51245_CR30) 2019; 60 M Xu (51245_CR34) 2019; 13 M Collins (51245_CR1) 2010; 3 H Wang (51245_CR33) 2021; 84 Z Jing (51245_CR39) 2022; 15 C Zhao (51245_CR12) 2023; 348 Y Wang (51245_CR3) 2023; 8 H Wang (51245_CR25) 2022; 12 H Yang (51245_CR5) 2022; 10 H Zhai (51245_CR16) 2023; 65 R Xu (51245_CR28) 2022; 10 Z Yuan (51245_CR21) 2021; 6 W Deng (51245_CR42) 2020; 14 T Zhao (51245_CR27) 2021; 88 L Lin (51245_CR43) 2015; 9 51245_CR18 X Wang (51245_CR31) 2015; 5 H Zou (51245_CR44) 2019; 10 Y Wang (51245_CR4) 2021; 15 SL Zhang (51245_CR26) 2018; 48 L Liu (51245_CR29) 2021; 15 G Hu (51245_CR11) 2022; 306 H Wang (51245_CR17) 2021; 1 Z Li (51245_CR10) 2022; 223 Y Duan (51245_CR38) 2023; 16 P Cheng (51245_CR22) 2019; 57 G Zhu (51245_CR19) 2014; 8 X Li (51245_CR35) 2023; 16 ZL Wang (51245_CR40) 2019; 30 T Kim (51245_CR20) 2018; 52 H Wu (51245_CR23) 2021; 11 Z Zhang (51245_CR32) 2022; 10 |
References_xml | – volume: 15 start-page: 5098 year: 2022 end-page: 5104 ident: CR39 article-title: 3D fully-enclosed triboelectric nanogenerator with bionic fish-like structure for harvesting hydrokinetic energy publication-title: Nano Res. doi: 10.1007/s12274-022-4131-y – ident: CR18 – volume: 10 start-page: 566 year: 2022 ident: CR28 article-title: Recent progress on wave energy marine buoys publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse10050566 – volume: 16 start-page: 3040 year: 2023 end-page: 3052 ident: CR35 article-title: Three-dimensional chiral networks of triboelectric nanogenerators inspired by metamaterial’s structure publication-title: Energy Environ. Sci. doi: 10.1039/D3EE01035J – volume: 12 year: 2021 ident: CR37 article-title: Achieving ultrahigh instantaneous power density of 10 MW/m by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG) publication-title: Nat. Commun. doi: 10.1038/s41467-021-25753-7 – ident: CR47 – volume: 15 start-page: 9412 year: 2021 end-page: 9421 ident: CR29 article-title: Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting publication-title: ACS Nano doi: 10.1021/acsnano.1c00345 – volume: 10 start-page: 455 year: 2022 ident: CR32 article-title: Multi-tunnel triboelectric nanogenerator for scavenging mechanical energy in marine floating bodies publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse10040455 – volume: 1 start-page: 328 year: 2012 end-page: 334 ident: CR15 article-title: Flexible triboelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 52 start-page: 95 year: 2018 end-page: 104 ident: CR20 article-title: Direct-current triboelectric nanogenerator via water electrification and phase control publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.048 – volume: 8 start-page: 6031 year: 2014 end-page: 6037 ident: CR19 article-title: Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface publication-title: ACS Nano doi: 10.1021/nn5012732 – volume: 223 start-page: 107299 year: 2022 ident: CR10 article-title: Theoretical, numerical, and experimental studies of a frequency up-conversion piezoelectric energy harvester publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.107299 – volume: 60 start-page: 404 year: 2019 end-page: 412 ident: CR30 article-title: Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.054 – volume: 84 year: 2021 ident: CR33 article-title: Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105920 – volume: 58 start-page: 669 year: 2019 end-page: 672 ident: CR14 article-title: Entropy theory of distributed energy for internet of things publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.012 – volume: 108 start-page: 108222 year: 2023 ident: CR24 article-title: Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108222 – volume: 10 start-page: 1025 year: 2022 ident: CR5 article-title: Prediction of wave energy flux in the Bohai Sea through automated machine learning publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse10081025 – volume: 57 start-page: 432 year: 2019 end-page: 439 ident: CR22 article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.054 – volume: 10 year: 2019 ident: CR44 article-title: Quantifying the triboelectric series publication-title: Nat. Commun. doi: 10.1038/s41467-019-09461-x – volume: 8 year: 2023 ident: CR3 article-title: Highly adaptive triboelectric‐electromagnetic hybrid nanogenerator for scavenging flow energy and self‐powered marine wireless sensing publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202201245 – volume: 275 year: 2023 ident: CR8 article-title: Design of an S-shaped point-absorber wave energy converter with a non-linear PTO to power the satellite-respondent buoys in the East China Sea publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114162 – volume: 26 start-page: 6599 year: 2014 end-page: 6607 ident: CR36 article-title: Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency publication-title: Adv. Mater. doi: 10.1002/adma.201402428 – volume: 12 start-page: 594 year: 2022 ident: CR25 article-title: A stackable triboelectric nanogenerator for wave-driven marine buoys publication-title: Nanomaterials doi: 10.3390/nano12040594 – volume: 258 year: 2022 ident: CR9 article-title: Towards real-time self-powered sensing with ample redundant charges by a piezostack-based frequency-converted generator from human motions publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.115466 – volume: 14 start-page: 9050 year: 2020 end-page: 9058 ident: CR42 article-title: Ternary electrification layered architecture for high-performance triboelectric nanogenerators publication-title: ACS Nano doi: 10.1021/acsnano.0c04113 – volume: 15 start-page: 15700 year: 2021 end-page: 15709 ident: CR4 article-title: Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine Internet of Things publication-title: ACS Nano doi: 10.1021/acsnano.1c05127 – volume: 65 start-page: 166 year: 2023 end-page: 188 ident: CR16 article-title: Advances in solid–solid contacting triboelectric nanogenerator for ocean energy harvesting publication-title: Mater. Today doi: 10.1016/j.mattod.2023.02.030 – ident: CR46 – volume: 145 start-page: 295 year: 2019 end-page: 305 ident: CR2 article-title: Pinniped entanglement in oceanic plastic pollution: a global review publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2019.05.042 – volume: 11 start-page: 2100038 year: 2021 ident: CR23 article-title: Multi‐mode water‐tube‐based triboelectric nanogenerator designed for low‐frequency energy harvesting with ultrahigh volumetric charge density publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100038 – volume: 1 start-page: 32 year: 2021 end-page: 57 ident: CR17 article-title: Advances of high-performance triboelectric nanogenerators for blue energy harvesting publication-title: Nanoenergy Adv. doi: 10.3390/nanoenergyadv1010003 – volume: 13 start-page: 1932 year: 2019 ident: CR34 article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy publication-title: ACS Nano – volume: 9 start-page: 922 year: 2015 end-page: 930 ident: CR43 article-title: Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼55 publication-title: ACS Nano doi: 10.1021/nn506673x – volume: 48 start-page: 421 year: 2018 end-page: 429 ident: CR26 article-title: Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.062 – volume: 257 start-page: 111619 year: 2022 ident: CR7 article-title: Efficient assessment for the pitchpoling risks of a generic wave energy converter based on first passage statistics publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111619 – volume: 6 start-page: 2343 year: 2021 end-page: 2350 ident: CR45 article-title: Breeze-wind-energy-powered autonomous wireless anemometer based on rolling contact-electrification publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00704 – volume: 6 start-page: 2809 year: 2021 end-page: 2816 ident: CR21 article-title: Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c01092 – volume: 16 start-page: 11646 year: 2023 end-page: 11652 ident: CR38 article-title: Scalable rolling-structured triboelectric nanogenerator with high power density for water wave energy harvesting toward marine environmental monitoring publication-title: Nano Res. doi: 10.1007/s12274-023-6035-x – volume: 348 year: 2023 ident: CR12 article-title: Wide-bandwidth triboelectric energy harvester combining impact nonlinearity and multi-resonance method publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.121530 – volume: 107 year: 2023 ident: CR13 article-title: High performance additional mass enhanced film structure triboelectric nanogenerator for scavenging vibration energy in broadband frequency range publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108182 – volume: 266 start-page: 113037 year: 2022 ident: CR6 article-title: A significant wave height forecast framework with end-to-end dynamic modeling and lag features length optimization publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.113037 – volume: 5 start-page: 1501467 year: 2015 ident: CR31 article-title: Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501467 – ident: CR41 – volume: 3 start-page: 391 year: 2010 end-page: 397 ident: CR1 article-title: The impact of global warming on the tropical Pacific Ocean and El Niño publication-title: Nat. Geosci. doi: 10.1038/ngeo868 – volume: 306 start-page: 118037 year: 2022 ident: CR11 article-title: Triboelectric energy harvesting using an origami-inspired structure publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118037 – volume: 88 year: 2021 ident: CR27 article-title: Recent progress in blue energy harvesting for powering distributed sensors in ocean publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106199 – volume: 30 start-page: 34 year: 2019 end-page: 51 ident: CR40 article-title: On the origin of contact-electrification publication-title: Mater. Today doi: 10.1016/j.mattod.2019.05.016 – volume: 15 start-page: 5098 year: 2022 ident: 51245_CR39 publication-title: Nano Res. doi: 10.1007/s12274-022-4131-y – volume: 65 start-page: 166 year: 2023 ident: 51245_CR16 publication-title: Mater. Today doi: 10.1016/j.mattod.2023.02.030 – volume: 9 start-page: 922 year: 2015 ident: 51245_CR43 publication-title: ACS Nano doi: 10.1021/nn506673x – volume: 58 start-page: 669 year: 2019 ident: 51245_CR14 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.012 – volume: 108 start-page: 108222 year: 2023 ident: 51245_CR24 publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108222 – volume: 84 year: 2021 ident: 51245_CR33 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105920 – volume: 275 year: 2023 ident: 51245_CR8 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114162 – volume: 258 year: 2022 ident: 51245_CR9 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.115466 – volume: 13 start-page: 1932 year: 2019 ident: 51245_CR34 publication-title: ACS Nano – volume: 14 start-page: 9050 year: 2020 ident: 51245_CR42 publication-title: ACS Nano doi: 10.1021/acsnano.0c04113 – ident: 51245_CR41 doi: 10.1007/978-3-319-40039-6 – volume: 3 start-page: 391 year: 2010 ident: 51245_CR1 publication-title: Nat. Geosci. doi: 10.1038/ngeo868 – volume: 266 start-page: 113037 year: 2022 ident: 51245_CR6 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.113037 – volume: 107 year: 2023 ident: 51245_CR13 publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108182 – volume: 30 start-page: 34 year: 2019 ident: 51245_CR40 publication-title: Mater. Today doi: 10.1016/j.mattod.2019.05.016 – volume: 6 start-page: 2809 year: 2021 ident: 51245_CR21 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c01092 – volume: 348 year: 2023 ident: 51245_CR12 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.121530 – volume: 15 start-page: 9412 year: 2021 ident: 51245_CR29 publication-title: ACS Nano doi: 10.1021/acsnano.1c00345 – volume: 306 start-page: 118037 year: 2022 ident: 51245_CR11 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118037 – volume: 8 start-page: 6031 year: 2014 ident: 51245_CR19 publication-title: ACS Nano doi: 10.1021/nn5012732 – ident: 51245_CR46 doi: 10.1109/JIOT.2020.3016993 – volume: 12 year: 2021 ident: 51245_CR37 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25753-7 – volume: 57 start-page: 432 year: 2019 ident: 51245_CR22 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.054 – volume: 10 start-page: 1025 year: 2022 ident: 51245_CR5 publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse10081025 – volume: 60 start-page: 404 year: 2019 ident: 51245_CR30 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.054 – ident: 51245_CR18 doi: 10.1038/s43586-023-00220-3 – volume: 16 start-page: 3040 year: 2023 ident: 51245_CR35 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE01035J – volume: 10 year: 2019 ident: 51245_CR44 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09461-x – volume: 8 year: 2023 ident: 51245_CR3 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202201245 – volume: 5 start-page: 1501467 year: 2015 ident: 51245_CR31 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501467 – ident: 51245_CR47 doi: 10.1109/JIOT.2021.3098238 – volume: 223 start-page: 107299 year: 2022 ident: 51245_CR10 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.107299 – volume: 12 start-page: 594 year: 2022 ident: 51245_CR25 publication-title: Nanomaterials doi: 10.3390/nano12040594 – volume: 16 start-page: 11646 year: 2023 ident: 51245_CR38 publication-title: Nano Res. doi: 10.1007/s12274-023-6035-x – volume: 15 start-page: 15700 year: 2021 ident: 51245_CR4 publication-title: ACS Nano doi: 10.1021/acsnano.1c05127 – volume: 145 start-page: 295 year: 2019 ident: 51245_CR2 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2019.05.042 – volume: 26 start-page: 6599 year: 2014 ident: 51245_CR36 publication-title: Adv. Mater. doi: 10.1002/adma.201402428 – volume: 6 start-page: 2343 year: 2021 ident: 51245_CR45 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00704 – volume: 88 year: 2021 ident: 51245_CR27 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106199 – volume: 10 start-page: 566 year: 2022 ident: 51245_CR28 publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse10050566 – volume: 1 start-page: 32 year: 2021 ident: 51245_CR17 publication-title: Nanoenergy Adv. doi: 10.3390/nanoenergyadv1010003 – volume: 11 start-page: 2100038 year: 2021 ident: 51245_CR23 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100038 – volume: 257 start-page: 111619 year: 2022 ident: 51245_CR7 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111619 – volume: 52 start-page: 95 year: 2018 ident: 51245_CR20 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.048 – volume: 1 start-page: 328 year: 2012 ident: 51245_CR15 publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 10 start-page: 455 year: 2022 ident: 51245_CR32 publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse10040455 – volume: 48 start-page: 421 year: 2018 ident: 51245_CR26 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.062 |
SSID | ssj0000391844 |
Score | 2.6035328 |
Snippet | In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to... Abstract In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6834 |
SubjectTerms | 147/135 639/166/987 639/166/988 639/301/1005 639/4077/4072/4062 639/4077/909 Charge density Electrodes Energy charge Energy harvesting Environmental monitoring Environmental protection Flux density Humanities and Social Sciences Life span Low currents Marine ecosystems Marine technology multidisciplinary Nanogenerators Power management Remote sensors Science Science (multidisciplinary) Tunnels Water monitoring Water quality Water quality management Wave energy Wave power Wireless communications |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SEHwR766tEsE3Dd3sJrvJYxVLEfTJQt9CskmqINnSc47gX_BXd2ay51jx9uLbXiZ7yUwyM5vZ72PsRQrRIyyXAAW3QvUZ5sEuJCFDD0NrlN1IZDDvPwwnp-rdmT67RvWFNWEVHrh23GEY2tG3dopDm1XIxo_Z6ABeDgKRHDUhgcLetWSK5mC4k1Fq-Uum7c3hStGcAC5JgI9TWuifPBEB9v8uyvxlhZQcz_EddnuJGPlRfdK77EYq99jNyiH57T77fsQvK7C2QFYbjgxWcyW3-Tzx4st8TsjSkFtz_OjKqYRQrDdY4MIRKQKa8oUNJ6YV9yXy-YKKuZIgIKUkUvmE1oFfEnnGC_mviSf6bZCDBEF1lPMH7PT47cc3J2IhWBCTMnotpI-tT5hhgFKsHWMbwH2npGWMaoCZoE1Rwfaoxz7nyYAGTNCDUXaw_QSByUO2V-aSHjMOaZRGMDkZ7aBM9tZCnhmDhQQ7QsvcMLntbDct6ONIgvHF0Sp4b1xVkAMFOVKQ0w17uWtzUbE3_ir9GnW4k0TcbDoA1uQWa3L_sqaGHWwtwC2DeeV6jKkgr9WyYc93p2EY4tqKL2neVBnoENmBzKNqObsnAVvsulH2DXu1NaUfF__zCz35Hy-0z251aPNU5HLA9taXm_QUwqh1eEYj5go4zxbH priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEA66Ivgi3u26SgTfNGzTJm3yJKt4XAR9cmHfQtIkR2FJj-ci-Bf2VzuT5nQRdd9KOylt5z6ZfkPIq-C8RVguBgyumWgj2MHGBcZdC6rV86bPw2A-f-lOz8Snc3leCm6b0la5t4nZUPtxwBr5cYuODZILyd-ufjCcGoW7q2WExk1yi4OnwZYutfg411gQ_VwJUf6VqVt1vBHZMoBjYuDphGTyD3-UYfv_FWv-tU-a3c_iHrlb4kZ6MjH6PrkR0gNye5ok-eshuTyh6wlem-FsG4pzrMZpxM33gSabxmXGl4YMm2LpleZGQrbdYZsLRbwIWErLTBwfNtQmT8dVbukKLMMpBRbSN5QRrCfSiDeyPwMN-edBChQZsCMtH5GzxYev709ZGbPABqHklnHraxswzwDWaN372oETD0Fy70UH9qAOXsBxL_s2xkHVUSgnOyV0p9sBwpPH5CCNKTwlFJIpiZBy3OtOqGi1hmzTOw1ptoeVsSJ8_7HNUDDIcRTGhcl74a0yE4MMMMhkBhlZkdfzmtWEwHEt9Tvk4UyJ6Nn5xLhemqKMxnV1b2s9-A7exUVl-6ikAwGD4DZ6KSpytJcAU1R6Y64EsCIv58ugjLjDYlMYdxMNfBDeAM2TSXLmJwFZbJqetxV5sxelq5v__4UOr3-WZ-ROg9Kcm1iOyMF2vQvPIUzauhdZF34DiQYOBQ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEA61RfBFWm9d20oE3zS42U12k8ejWMoBfdFC30KySY6CZMu5CP0L_dXOZC8iVsG3ZXcSNpmZzEwy-YaQV8F5i7BcDBhcMlFHWAcrFxh3NahWy6s2F4P5-Km5uBTLK3m1R6rpLkxO2s-QlnmZnrLD3m5EVmmwKAxMlJBM3iMHCNUOsn2wWCw_L-edFcQ8V0KMN2TKWt3R-DcrlMH67_Iw_zgdzUbn_JA8HL1Fuhj-74jshfSI3B_qR948JrcLuh5AtRlWtKFYvaofCtt862iyqV9lVGmIqyluuNKcPsi2O0xuoYgSAU3pWAnHhw21ydP-OidyBZZBlAIL6StKBu4i0ogd2R-BhnxlkAJFhulIqyfk8vzDl_cXbCyuwDqh5JZx60sbMLoAhmjd-tKB6Q5Bcu9FA6tAGbyA51a2dYydKqNQTjZK6EbXHTglT8l-6lM4JhRCKIlActzrRqhotYYY0zsNwbWHlrEgfJps043I41gA47vJJ-C1MgODDDDIZAYZWZDXc5vrAXfjn9TvkIczJWJm5xf9emVGGTKuKVtb6s43MBYXlW2jkg78JXBpo5eiIKeTBJhRkTemRn8KYlrJC_Jy_gwqiOcqNoV-N9DAhPAKaJ4NkjP_CchiVbW8LsibSZR-df73AT3_P_IT8qBC6c6pLKdkf7vehTNwlrbuxagdPwF4bQ1A priority: 102 providerName: Springer Nature |
Title | A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting |
URI | https://link.springer.com/article/10.1038/s41467-024-51245-5 https://www.ncbi.nlm.nih.gov/pubmed/39122713 https://www.proquest.com/docview/3091019151 https://www.proquest.com/docview/3091283121 https://doaj.org/article/b607a09cd60f4bf8a7f85b091656fd54 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bixMxFD7sBcEX8e6sa4ngm0YnM8kk8yDSLVuXwi6iFvoWJpOkCsvMbi_i_gV_tSeZaUWsgi9tmZ6kTc5Jzjm5fB_AC2dsFWC5KCo4pTz3OA9mxlFmchxakmUyksGcXxRnUz6ZidkebOiO-g5c7kztAp_UdHH5-vv1zTsc8G-7K-PqzZLH4Y7ehqL74oKKfThEzyQDo8F5H-7HmRl_X0V-1yzljKJA3t-j2V3Nb74qQvrvikP_2EONrml8F-70MSUZdkZwD_Zccx9udSyTNw_gx5AsOuhtGnhvSOC4ajv6m681aaqmnUfsacy-SViWJfGQIV2twxEYErAksCjp-XKsW5KqsaS9ise9HI1QS4665kuwn7DWSHyoqPrmiIsXCwlKRDCPZv4QpuPTz6Mz2lMw0JorsaKssmnlQg6CaitLaVODDt45wazlBc4VqbMcP0shc-9rlXqujCgUL4syrzF0eQQHTdu4J0Aw0RIBbo7ZsuDKV2WJmag1JabgFkv6BNims3Xd45MHmoxLHffJc6U7BWlUkI4K0iKBl9syVx06xz-lT4IOt5IBWTs-aBdz3Q9UbYpUVmlZ2wLbYryqpFfCYFSFga-3gidwvLEAvbFWnYeoCzNfwRJ4vv0aB2rYfaka1647GewQlqHM485ytv8E7TLLJMsTeLUxpV-V_71BR__V_KdwOwvGHc-7HMPBarF2zzCiWpkB7MuZxFc1fj-Aw-Fw8mmC7yenFx8-4tNRMRrEtYpBHE4_AQPKHao |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC2FIAQXxE5DACPBCaz0Yne7DwiFZZiQ5ZRIuZl22x6QUPcwCyi_wMfwjVS5lwgBueU26ilb7q5nl8vLewDPnLEV0XJxdHDMReZxHEyN44nJsGsVSVoEMZiDw3x6LD6eyJMN-DXchaFjlcOYGAZq29a0Rr6dUWDD5EImr-ffOKlG0e7qIKHRwWLPnf7AlG35avcd-vd5mk7eH72d8l5VgNdCyRVPKhtXjqbV2JKyLGxsMGY5JxNrRY7wj50V-LuQReZ9rWIvlJG5EmVeZjVGY6z3ElwWGUZyupk--TCu6RDbuhKiv5sTZ2p7KcJIhIGQY2QVkss_4l-QCfjX3PavfdkQ7iY34Ho_T2U7HbBuwoZrbsGVTrny9Db83GGLjs6bk5YOI92stpPU-VKzpmraWeCzxoye0VIvCwcX-WpNx2oY8VNgUdZr8Fi3ZFVjWTsPR8gcD_RNjrvmM2GS1i-Zp4qq7465cFmRoUUgCGlmd-D4QhxwFzabtnH3gWHyJonCLrFlLpSvyhKzW2tKTOstlvQRJMPH1nXPeU7SG1912HvPlO4cpNFBOjhIywhejGXmHePHudZvyIejJbF1hwftYqb7zq9NHhdVXNY2x3cxXlWFV9IgoHEy7a0UEWwNCND9ELLUZ4CP4On4N3Z-2tGpGteuOxv8IEmKNvc65IwtQSymaZFkEbwcoHRW-f9f6MH5bXkCV6dHB_t6f_dw7yFcSwnZ4QDNFmyuFmv3CKdoK_M49AsGny66I_4GxhVJWQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ7A2DzuPA0It7aqlsKoQlXpz49hekFCy7APUv8BP4tcx4zwqBPTW2yo7tpzMeMZjj78P4LnVpiRYLo4KDrlIHPrBWFse6QSnVhbFmSeD-TBN94_FuxN5sgG_-rswVFbZ-0TvqE1T0R75OKHAhsmFjMauK4s42p28mX_jxCBFJ609nUZrIof27Aemb8vXB7uo6xdxPNn79HafdwwDvBK5XPGoNGFpaYmNoyqKzIQa45e1MjJGpDgVQmsE_s5kljhX5aETuZZpLoq0SCqMzNjvFdjMKCsawebO3vTo47DDQ9jruRDdTZ0wycdL4f0ShkWOcVZILv-Ihp404F8r3b9OaX3wm9yEG92qlW23ZnYLNmx9G662PJZnd-DnNlu04N6cmHUYsWg1LcHOl4rVZd3MPLo15veMNn6ZL2PkqzUV2TBCq8CmrGPkMXbJytqwZu4Lyiz3YE6W2_ozWSjtZjJHHZXfLbP-6iJDCQ8XUs_uwvGlqOAejOqmtg-AYSonCdAuMkUqclcWBea6RheY5Bts6QKI-o-tqg4BnYg4vip_Ep_kqlWQQgUpryAlA3g5tJm3-B8XSu-QDgdJwu72D5rFTHWuQOk0zMqwqEyK76JdXmYulxrNG5fWzkgRwFZvAapzKEt1bv4BPBv-RldA5ztlbZt1K4MfJIpR5n5rOcNI0BbjOIuSAF71pnTe-f9f6OHFY3kK13ASqvcH08NHcD0mw_bVNFswWi3W9jGu11b6STcxGJxe9lz8DdL0Tus |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rolling-mode+triboelectric+nanogenerator+with+multi-tunnel+grating+electrodes+and+opposite-charge-enhancement+for+wave+energy+harvesting&rft.jtitle=Nature+communications&rft.au=Wang%2C+Yawei&rft.au=Du%2C+Hengxu&rft.au=Yang%2C+Hengyi&rft.au=Xi%2C+Ziyue&rft.date=2024-08-09&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-51245-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_024_51245_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |