Nanoparticles Synergize Ferroptosis and Cuproptosis to Potentiate Cancer Immunotherapy
The recent discovery of copper‐mediated and mitochondrion‐dependent cuproptosis has aroused strong interest in harnessing this novel mechanism of cell death for cancer therapy. Here the design of a core‐shell nanoparticle, CuP/Er, for the co‐delivery of copper (Cu) and erastin (Er) to cancer cells f...
Saved in:
Published in | Advanced science Vol. 11; no. 23; pp. e2310309 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.06.2024
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The recent discovery of copper‐mediated and mitochondrion‐dependent cuproptosis has aroused strong interest in harnessing this novel mechanism of cell death for cancer therapy. Here the design of a core‐shell nanoparticle, CuP/Er, for the co‐delivery of copper (Cu) and erastin (Er) to cancer cells for synergistic cuproptosis and ferroptosis is reported. The anti‐Warburg effect of Er sensitizes tumor cells to Cu‐mediated cuproptosis, leading to irreparable mitochondrial damage by depleting glutathione and enhancing lipid peroxidation. CuP/Er induces strong immunogenic cell death, enhances antigen presentation, and upregulates programmed death‐ligand 1 expression. Consequently, CuP/Er promotes proliferation and infiltration of T cells, and when combined with immune checkpoint blockade, effectively reinvigorates T cells to mediate the regression of murine colon adenocarcinoma and triple‐negative breast cancer and prevent tumor metastasis. This study suggests a unique opportunity to synergize cuproptosis and ferroptosis with combination therapy nanoparticles to elicit strong antitumor effects and potentiate current cancer immunotherapies.
This paper reports a core‐shell nanoparticle, CuP/Er, for the co‐delivery of copper (Cu) and erastin (Er) to cancer cells for synergistic cuproptosis and ferroptosis. CuP/Er induces strong immunogenic cell death, and when combined with immune checkpoint blockade, effectively reinvigorates T cells to mediate the regression of murine colon adenocarcinoma and triple‐negative breast cancer and prevent tumor metastasis. |
---|---|
AbstractList | The recent discovery of copper‐mediated and mitochondrion‐dependent cuproptosis has aroused strong interest in harnessing this novel mechanism of cell death for cancer therapy. Here the design of a core‐shell nanoparticle, CuP/Er, for the co‐delivery of copper (Cu) and erastin (Er) to cancer cells for synergistic cuproptosis and ferroptosis is reported. The anti‐Warburg effect of Er sensitizes tumor cells to Cu‐mediated cuproptosis, leading to irreparable mitochondrial damage by depleting glutathione and enhancing lipid peroxidation. CuP/Er induces strong immunogenic cell death, enhances antigen presentation, and upregulates programmed death‐ligand 1 expression. Consequently, CuP/Er promotes proliferation and infiltration of T cells, and when combined with immune checkpoint blockade, effectively reinvigorates T cells to mediate the regression of murine colon adenocarcinoma and triple‐negative breast cancer and prevent tumor metastasis. This study suggests a unique opportunity to synergize cuproptosis and ferroptosis with combination therapy nanoparticles to elicit strong antitumor effects and potentiate current cancer immunotherapies.
This paper reports a core‐shell nanoparticle, CuP/Er, for the co‐delivery of copper (Cu) and erastin (Er) to cancer cells for synergistic cuproptosis and ferroptosis. CuP/Er induces strong immunogenic cell death, and when combined with immune checkpoint blockade, effectively reinvigorates T cells to mediate the regression of murine colon adenocarcinoma and triple‐negative breast cancer and prevent tumor metastasis. The recent discovery of copper-mediated and mitochondrion-dependent cuproptosis has aroused strong interest in harnessing this novel mechanism of cell death for cancer therapy. Here the design of a core-shell nanoparticle, CuP/Er, for the co-delivery of copper (Cu) and erastin (Er) to cancer cells for synergistic cuproptosis and ferroptosis is reported. The anti-Warburg effect of Er sensitizes tumor cells to Cu-mediated cuproptosis, leading to irreparable mitochondrial damage by depleting glutathione and enhancing lipid peroxidation. CuP/Er induces strong immunogenic cell death, enhances antigen presentation, and upregulates programmed death-ligand 1 expression. Consequently, CuP/Er promotes proliferation and infiltration of T cells, and when combined with immune checkpoint blockade, effectively reinvigorates T cells to mediate the regression of murine colon adenocarcinoma and triple-negative breast cancer and prevent tumor metastasis. This study suggests a unique opportunity to synergize cuproptosis and ferroptosis with combination therapy nanoparticles to elicit strong antitumor effects and potentiate current cancer immunotherapies.The recent discovery of copper-mediated and mitochondrion-dependent cuproptosis has aroused strong interest in harnessing this novel mechanism of cell death for cancer therapy. Here the design of a core-shell nanoparticle, CuP/Er, for the co-delivery of copper (Cu) and erastin (Er) to cancer cells for synergistic cuproptosis and ferroptosis is reported. The anti-Warburg effect of Er sensitizes tumor cells to Cu-mediated cuproptosis, leading to irreparable mitochondrial damage by depleting glutathione and enhancing lipid peroxidation. CuP/Er induces strong immunogenic cell death, enhances antigen presentation, and upregulates programmed death-ligand 1 expression. Consequently, CuP/Er promotes proliferation and infiltration of T cells, and when combined with immune checkpoint blockade, effectively reinvigorates T cells to mediate the regression of murine colon adenocarcinoma and triple-negative breast cancer and prevent tumor metastasis. This study suggests a unique opportunity to synergize cuproptosis and ferroptosis with combination therapy nanoparticles to elicit strong antitumor effects and potentiate current cancer immunotherapies. The recent discovery of copper‐mediated and mitochondrion‐dependent cuproptosis has aroused strong interest in harnessing this novel mechanism of cell death for cancer therapy. Here the design of a core‐shell nanoparticle, CuP/Er, for the co‐delivery of copper (Cu) and erastin (Er) to cancer cells for synergistic cuproptosis and ferroptosis is reported. The anti‐Warburg effect of Er sensitizes tumor cells to Cu‐mediated cuproptosis, leading to irreparable mitochondrial damage by depleting glutathione and enhancing lipid peroxidation. CuP/Er induces strong immunogenic cell death, enhances antigen presentation, and upregulates programmed death‐ligand 1 expression. Consequently, CuP/Er promotes proliferation and infiltration of T cells, and when combined with immune checkpoint blockade, effectively reinvigorates T cells to mediate the regression of murine colon adenocarcinoma and triple‐negative breast cancer and prevent tumor metastasis. This study suggests a unique opportunity to synergize cuproptosis and ferroptosis with combination therapy nanoparticles to elicit strong antitumor effects and potentiate current cancer immunotherapies. Abstract The recent discovery of copper‐mediated and mitochondrion‐dependent cuproptosis has aroused strong interest in harnessing this novel mechanism of cell death for cancer therapy. Here the design of a core‐shell nanoparticle, CuP/Er, for the co‐delivery of copper (Cu) and erastin (Er) to cancer cells for synergistic cuproptosis and ferroptosis is reported. The anti‐Warburg effect of Er sensitizes tumor cells to Cu‐mediated cuproptosis, leading to irreparable mitochondrial damage by depleting glutathione and enhancing lipid peroxidation. CuP/Er induces strong immunogenic cell death, enhances antigen presentation, and upregulates programmed death‐ligand 1 expression. Consequently, CuP/Er promotes proliferation and infiltration of T cells, and when combined with immune checkpoint blockade, effectively reinvigorates T cells to mediate the regression of murine colon adenocarcinoma and triple‐negative breast cancer and prevent tumor metastasis. This study suggests a unique opportunity to synergize cuproptosis and ferroptosis with combination therapy nanoparticles to elicit strong antitumor effects and potentiate current cancer immunotherapies. |
Author | Weichselbaum, Ralph R. Chen, Yimei Lin, Wenbin Liu, Jing Li, Youyou |
AuthorAffiliation | 1 Department of Chemistry The University of Chicago Chicago IL 60637 USA 2 Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research The University of Chicago Chicago IL 60637 USA |
AuthorAffiliation_xml | – name: 2 Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research The University of Chicago Chicago IL 60637 USA – name: 1 Department of Chemistry The University of Chicago Chicago IL 60637 USA |
Author_xml | – sequence: 1 givenname: Youyou surname: Li fullname: Li, Youyou organization: The University of Chicago – sequence: 2 givenname: Jing surname: Liu fullname: Liu, Jing organization: The University of Chicago – sequence: 3 givenname: Yimei surname: Chen fullname: Chen, Yimei organization: The University of Chicago – sequence: 4 givenname: Ralph R. surname: Weichselbaum fullname: Weichselbaum, Ralph R. organization: The University of Chicago – sequence: 5 givenname: Wenbin orcidid: 0000-0001-7035-7759 surname: Lin fullname: Lin, Wenbin email: wenbinlin@uchicago.edu organization: The University of Chicago |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38477411$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1vFCEYh4mpsR_26tFM4sXLrnwOcDLNanWTRk2qvRIG3tnOZhZGmKnZ_vVSd920XjwBLw9P-MF7io5CDIDQK4LnBGP6zvq7PKeYMoIZ1s_QCSVazZji_OjR_Bid57zGGBPBJCfqBTouZVmm5ATdfLEhDjaNneshV9fbAGnV3UN1CSnFYYy5y5UNvlpMw2E9xupbHCGMnR2hWtjgIFXLzWYKcbyFZIftS_S8tX2G8_14hn5cfvy--Dy7-vppubi4mjmuhJo1LaV1o5Qg0lMteKubFkusFNaEOyuc0L6WrQCnnG6d9FwQYL6x2NaYK8fO0HLn9dGuzZC6jU1bE21n_hRiWpl9NtPImminRKtIwy0FK4DZ2ragGRbe-eJ6v3MNU7MB70q-ZPsn0qc7obs1q3hnCCFKKs2L4e3ekOLPCfJoNl120Pc2QJyyKRHrWlFZq4K--QddxymF8laG4VoLqoiWhZrvKJdizgnaw20INg8tYB5awBxaoBx4_TjDAf_74QXgO-BX18P2Pzpz8eHmWkqh2G_2TsAp |
Cites_doi | 10.1038/s41568-021-00339-z 10.1038/nrd.2017.22 10.1016/j.immuni.2022.04.016 10.1021/acsnano.3c00891 10.1038/s41573-022-00520-5 10.1146/annurev-immunol-032712-100008 10.1002/adfm.202214998 10.1038/nri3754 10.1016/j.addr.2022.114115 10.1111/imr.13276 10.1186/s12951-022-01719-9 10.1038/s41586-022-05661-6 10.1016/j.cell.2013.12.010 10.1158/1078-0432.CCR-19-2230 10.1002/adma.202212267 10.1126/science.abf0529 10.7554/eLife.02523 10.1016/j.cell.2015.07.017 10.1158/jcr.1925.148 10.1038/nnano.2017.113 10.1038/s41565-019-0485-z 10.1016/j.chembiol.2019.01.008 10.1038/nature05859 10.1016/j.tibs.2015.12.001 10.1038/nature13611 10.1016/S1535-6108(03)00050-3 10.1039/c0cs00227e 10.1186/s13045-022-01392-3 10.1016/j.ccell.2015.05.007 10.1021/ja106855m 10.1038/s41565-018-0271-3 10.1186/s12951-021-01073-2 10.1021/acs.chemrev.5b00125 10.1016/j.cell.2012.03.042 10.1038/ncomms5182 10.3390/cancers12123594 10.1038/nature24057 10.1038/s41598-022-22962-y 10.1016/0022-1759(83)90308-3 10.1074/jbc.M112.433847 10.1002/advs.201802012 10.1002/advs.202201614 10.1016/j.molcel.2014.09.025 10.1016/j.cell.2015.07.016 10.1124/mol.109.063172 10.1186/s13046-023-02720-2 10.1021/jacs.6b09538 10.1016/j.addr.2022.114357 10.1038/s41571-020-0341-y 10.1002/0471142735.im2002s39 10.1021/jacs.9b03457 10.1038/s41565-022-01225-x 10.1186/s12943-018-0928-4 10.1038/s41587-020-0707-9 10.1038/nnano.2016.164 10.3390/ijms21031069 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202310309 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library website Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database Research Library (Corporate) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_b7619c85f81b4a2ea5e3a6afe9305dcd 10_1002_advs_202310309 38477411 ADVS7758 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Cancer Institute funderid: 1R01CA279802; 1R01CA276307 – fundername: NCI NIH HHS grantid: R01 CA276307 – fundername: NCI NIH HHS grantid: R01 CA279802 – fundername: NCI NIH HHS grantid: 1R01CA276307 – fundername: NCI NIH HHS grantid: 1R01CA279802 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACGFS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN CGR CUY CVF ECM EIF EJD ITC NPM AAYXX CITATION 3V. 7XB 8FK MBDVC PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c4858-bf226b88517d2954f9bf070880914ca5c59d67f5ec8c9fc7d451e3dba0a6048c3 |
IEDL.DBID | RPM |
ISSN | 2198-3844 |
IngestDate | Tue Oct 22 15:02:22 EDT 2024 Tue Sep 17 21:28:56 EDT 2024 Sat Oct 26 04:52:41 EDT 2024 Thu Oct 10 18:09:00 EDT 2024 Fri Dec 06 09:48:32 EST 2024 Sat Nov 02 12:30:53 EDT 2024 Sat Aug 24 00:57:38 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | ferroptosis nanoparticles cuproptosis immunotherapy |
Language | English |
License | Attribution 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4858-bf226b88517d2954f9bf070880914ca5c59d67f5ec8c9fc7d451e3dba0a6048c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7035-7759 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187894/ |
PMID | 38477411 |
PQID | 3069528197 |
PQPubID | 4365299 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b7619c85f81b4a2ea5e3a6afe9305dcd pubmedcentral_primary_oai_pubmedcentral_nih_gov_11187894 proquest_miscellaneous_2956682768 proquest_journals_3069528197 crossref_primary_10_1002_advs_202310309 pubmed_primary_38477411 wiley_primary_10_1002_advs_202310309_ADVS7758 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2022; 375 2023; 35 2021; 21 2023; 33 2019; 14 2020; 17 2013; 288 2019; 18 2020; 12 2022; 20 2022; 21 2017; 551 2014; 5 2014; 3 2021; 39 2019; 26 2003; 3 1983; 65 2016; 41 2014; 14 2023; 614 2014; 56 2015; 162 2014; 514 2010; 77 2019; 6 2007; 447 2023; 17 2011; 40 2024; 321 2019; 141 2012; 149 2014; 156 2016; 11 2023; 42 2022; 187 2015; 28 1925; 9 2022; 182 2000; 39 2015; 115 2017; 16 2013; 31 2022; 9 2017; 12 2021; 19 2010; 132 2022; 12 2020; 26 2022; 15 2016; 138 2022; 55 2020; 21 2022; 17 2018; 13 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 614 start-page: 349 year: 2023 publication-title: Nature. – volume: 13 start-page: 1174 year: 2018 publication-title: Nat. Nanotechnol. – volume: 3 year: 2014 publication-title: eLife. – volume: 11 start-page: 977 year: 2016 publication-title: Nat. Nanotechnol. – volume: 77 start-page: 887 year: 2010 publication-title: Mol. Pharmacol. – volume: 447 start-page: 865 year: 2007 publication-title: Nature. – volume: 39 year: 2000 publication-title: Curr. Protoc. Immunol. – volume: 514 start-page: 628 year: 2014 publication-title: Nature. – volume: 141 start-page: 9937 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 395 year: 2020 publication-title: Nat. Rev. Clin. Oncol. – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 513 year: 2022 publication-title: J. Nanobiotechnol. – volume: 5 start-page: 4182 year: 2014 publication-title: Nat. Commun. – volume: 12 start-page: 3594 year: 2020 publication-title: Cancers. – volume: 16 start-page: 487 year: 2017 publication-title: Nat. Rev. Drug Discovery. – volume: 288 year: 2013 publication-title: J. Biol. Chem. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 42 year: 2015 publication-title: Cancer Cell. – volume: 162 start-page: 552 year: 2015 publication-title: Cell. – volume: 182 year: 2022 publication-title: Adv. Drug Delivery Rev. – volume: 551 start-page: 115 year: 2017 publication-title: Nature. – volume: 12 year: 2022 publication-title: Sci. Rep. – volume: 115 year: 2015 publication-title: Chem. Rev. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 17 start-page: 7979 year: 2023 publication-title: ACS Nano. – volume: 14 start-page: 799 year: 2019 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 285 year: 2003 publication-title: Cancer Cell. – volume: 55 start-page: 982 year: 2022 publication-title: Immunity. – volume: 15 start-page: 174 year: 2022 publication-title: J. Hematol. Oncol. – volume: 26 start-page: P623 year: 2019 publication-title: Cell Chem. Biol. – volume: 17 start-page: 1322 year: 2022 publication-title: Nat. Nanotechnol. – volume: 14 start-page: 719 year: 2014 publication-title: Nat. Rev. Immunol. – volume: 39 start-page: 357 year: 2021 publication-title: Nat. Biotechnol. – volume: 162 start-page: 540 year: 2015 publication-title: Cell. – volume: 56 start-page: 414 year: 2014 publication-title: Mol. Cell. – volume: 12 start-page: 877 year: 2017 publication-title: Nat. Nanotechnol. – volume: 375 start-page: 1254 year: 2022 publication-title: Science. – volume: 149 start-page: 1060 year: 2012 publication-title: Cell. – volume: 321 start-page: 211 year: 2024 publication-title: Immunol. Rev. – volume: 26 start-page: 2065 year: 2020 publication-title: Clin. Cancer Res. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 187 year: 2022 publication-title: Adv. Drug Delivery Rev. – volume: 21 start-page: 1069 year: 2020 publication-title: Int. J. Mol. Sci. – volume: 65 start-page: 109 year: 1983 publication-title: J. Immunol. Methods. – volume: 31 start-page: 51 year: 2013 publication-title: Annu. Rev. Immunol. – volume: 18 start-page: 10 year: 2019 publication-title: Mol. Cancer. – volume: 21 start-page: 799 year: 2022 publication-title: Nat. Rev. Drug Discovery. – volume: 9 start-page: 148 year: 1925 publication-title: J. Cancer Res. – volume: 40 start-page: 3638 year: 2011 publication-title: Chem. Soc. Rev. – volume: 42 start-page: 142 year: 2023 publication-title: J. Exp. Clin. Cancer Res. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 211 year: 2016 publication-title: Trends Biochem. Sci. – volume: 21 start-page: 298 year: 2021 publication-title: Nat. Rev. Cancer. – volume: 19 start-page: 328 year: 2021 publication-title: J. Nanobiotechnol. – volume: 156 start-page: 317 year: 2014 publication-title: Cell. – ident: e_1_2_7_40_1 doi: 10.1038/s41568-021-00339-z – ident: e_1_2_7_53_1 doi: 10.1038/nrd.2017.22 – ident: e_1_2_7_39_1 doi: 10.1016/j.immuni.2022.04.016 – ident: e_1_2_7_19_1 doi: 10.1021/acsnano.3c00891 – ident: e_1_2_7_44_1 doi: 10.1038/s41573-022-00520-5 – ident: e_1_2_7_38_1 doi: 10.1146/annurev-immunol-032712-100008 – ident: e_1_2_7_30_1 doi: 10.1002/adfm.202214998 – ident: e_1_2_7_41_1 doi: 10.1038/nri3754 – ident: e_1_2_7_23_1 doi: 10.1016/j.addr.2022.114115 – ident: e_1_2_7_32_1 doi: 10.1111/imr.13276 – ident: e_1_2_7_56_1 doi: 10.1186/s12951-022-01719-9 – ident: e_1_2_7_4_1 doi: 10.1038/s41586-022-05661-6 – ident: e_1_2_7_17_1 doi: 10.1016/j.cell.2013.12.010 – ident: e_1_2_7_43_1 doi: 10.1158/1078-0432.CCR-19-2230 – ident: e_1_2_7_33_1 doi: 10.1002/adma.202212267 – ident: e_1_2_7_3_1 doi: 10.1126/science.abf0529 – ident: e_1_2_7_15_1 doi: 10.7554/eLife.02523 – ident: e_1_2_7_10_1 doi: 10.1016/j.cell.2015.07.017 – ident: e_1_2_7_6_1 doi: 10.1158/jcr.1925.148 – ident: e_1_2_7_21_1 doi: 10.1038/nnano.2017.113 – ident: e_1_2_7_27_1 doi: 10.1038/s41565-019-0485-z – ident: e_1_2_7_18_1 doi: 10.1016/j.chembiol.2019.01.008 – ident: e_1_2_7_16_1 doi: 10.1038/nature05859 – ident: e_1_2_7_5_1 doi: 10.1016/j.tibs.2015.12.001 – ident: e_1_2_7_12_1 doi: 10.1038/nature13611 – ident: e_1_2_7_13_1 doi: 10.1016/S1535-6108(03)00050-3 – ident: e_1_2_7_26_1 doi: 10.1039/c0cs00227e – ident: e_1_2_7_1_1 doi: 10.1186/s13045-022-01392-3 – ident: e_1_2_7_11_1 doi: 10.1016/j.ccell.2015.05.007 – ident: e_1_2_7_24_1 doi: 10.1021/ja106855m – ident: e_1_2_7_20_1 doi: 10.1038/s41565-018-0271-3 – ident: e_1_2_7_55_1 doi: 10.1186/s12951-021-01073-2 – ident: e_1_2_7_28_1 doi: 10.1021/acs.chemrev.5b00125 – ident: e_1_2_7_14_1 doi: 10.1016/j.cell.2012.03.042 – ident: e_1_2_7_29_1 doi: 10.1038/ncomms5182 – ident: e_1_2_7_47_1 doi: 10.3390/cancers12123594 – ident: e_1_2_7_7_1 doi: 10.1038/nature24057 – ident: e_1_2_7_34_1 doi: 10.1038/s41598-022-22962-y – ident: e_1_2_7_45_1 doi: 10.1016/0022-1759(83)90308-3 – ident: e_1_2_7_37_1 doi: 10.1074/jbc.M112.433847 – ident: e_1_2_7_54_1 doi: 10.1002/advs.201802012 – ident: e_1_2_7_52_1 doi: 10.1002/advs.202201614 – ident: e_1_2_7_8_1 doi: 10.1016/j.molcel.2014.09.025 – ident: e_1_2_7_9_1 doi: 10.1016/j.cell.2015.07.016 – ident: e_1_2_7_48_1 doi: 10.1124/mol.109.063172 – ident: e_1_2_7_35_1 doi: 10.1186/s13046-023-02720-2 – ident: e_1_2_7_51_1 doi: 10.1021/jacs.6b09538 – ident: e_1_2_7_22_1 doi: 10.1016/j.addr.2022.114357 – ident: e_1_2_7_2_1 doi: 10.1038/s41571-020-0341-y – ident: e_1_2_7_46_1 doi: 10.1002/0471142735.im2002s39 – ident: e_1_2_7_36_1 doi: 10.1021/jacs.9b03457 – ident: e_1_2_7_31_1 doi: 10.1038/s41565-022-01225-x – ident: e_1_2_7_42_1 doi: 10.1186/s12943-018-0928-4 – ident: e_1_2_7_49_1 doi: 10.1038/s41587-020-0707-9 – ident: e_1_2_7_25_1 doi: 10.1038/nnano.2016.164 – ident: e_1_2_7_50_1 doi: 10.3390/ijms21031069 |
SSID | ssj0001537418 |
Score | 2.4101133 |
Snippet | The recent discovery of copper‐mediated and mitochondrion‐dependent cuproptosis has aroused strong interest in harnessing this novel mechanism of cell death... The recent discovery of copper-mediated and mitochondrion-dependent cuproptosis has aroused strong interest in harnessing this novel mechanism of cell death... Abstract The recent discovery of copper‐mediated and mitochondrion‐dependent cuproptosis has aroused strong interest in harnessing this novel mechanism of cell... |
SourceID | doaj pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2310309 |
SubjectTerms | Animals Cancer therapies Cell death Cell Line, Tumor Copper cuproptosis Disease Models, Animal Female Ferroptosis Ferroptosis - drug effects Humans Immunotherapy Immunotherapy - methods Lipid peroxidation Lipids Metabolism Mice Microemulsions Nanoparticles Piperazines Proteins Triple Negative Breast Neoplasms - drug therapy Triple Negative Breast Neoplasms - immunology Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KTr2Upm1aN2lRIJD0YGJbkiUd26VLmkMpJCm5CX3SvdjLrreQ_vqObK_ZpYVccrRlmWFGo3mDRm8AznjpMagXMXeSupzRIHJraJnXNCqR4ilOS9UW3-urO3Z9z-93Wn2lmrCBHnhQ3KVNebaTPCK-YqYKhgdqahODwpXqne9336LaSaaG-8E00bJsWRqL6tL434mdu-r7aqm9KNST9f8PYf5bKLkLYPsINH8JL0boSD4PIh_Cs9C8gsPROdfkYmSQ_vQafuKeicnwWPNGbh7SBb_Fn0DmYbVql127XqyJaTyZbZbTc9eSH22XiocQfpJZWg0r8i1dHxkvaT28gbv519vZVT42UMgdk1zmNqIdrERQJXw6z4vKRnRxdFlVMme448rXIvLgpFPRCc94Gai3pjA1erajR3DQtE14B8QwwXB-ZMxEZmlp0b6mEsEWtPKIajI43ypULweeDD0wIlc6qV5Pqs_gS9L39FXit-5foNX1qBn9mNUzONlaS49Ot9aY_SieDgZFBqfTMLpLOgMxTWg3KAbmg7WsMMnK4O1g3EkSipEaV02Zgdwz-56o-yPN4ldPyV2mru1SsQzyfoU8ogONmONGYKr2_imUcQzP8c9sKGA7gYNutQkfECp19mPvFX8BuOgS2Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB7B9sIFUZ6BgoyEBBysbmI7cU4VXXVVOFQVpai3yE_YS7IkWaTy6ztOvCkrEBwTx5IzD89ne_wNwBuRWgzqc0-NZIZy5gqqFUtpznxZhHiK3UK2xVl-esk_XYmruOHWxbTK7Zw4TNS2MWGP_BChbSnCqU9xtP5BQ9WocLoaS2jchb0sZVLOYO_45Oz88-0ui2CBnmXL1jjPDpX9GVi6s6G-VrkTjQbS_r8hzT8TJn8HskMkWj6A-xFCkg-jzvfhjqsfwn500o68i0zS7x_BV5w7cVEcc9_IxXW46Lf65cjStW2z7ptu1RFVW7LYrKfnviHnTR-SiBCGkkWwipZ8DNdI4mWt68dwuTz5sjilsZACNVwKSbVHfWiJ4Kqw4VzPl9qjq6Prlik3ShhR2rzwwhlpSm8Ky0XqmNVqrnL0cMOewKxuavcMiOIFx_6ec-W5ZqlGPauscHrOMovoJoG3W4FW65EvoxqZkbMqiL6aRJ_AcZD39FXguR5eNO23Kkqm0mGXxUjhEV1zlTklHFO58q7Eecoam8DBVltVdL6uujWVBF5Pzeg24SxE1a7Z4DBwXZjLDBdbCTwdlTuNhGHERqtJE5A7at8Z6m5Lvfo-UHOnoXq7LHkCdLCQ_8igQuxxUeCS7fm__-MF3MM-fExRO4BZ327cSwRDvX4VLf4GUpsKnQ priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BuXBBlGdoQUZCAg5RN7GdOMd2xapwQJVKUW-Rn7CXZJVkK7W_vjNJNm0EEuKYp6wZf_Y39vgbgA8ycTipL0JsFbex4D6PjeZJnPFQ5DSf4meUbfE9O70Q3y7l5b1T_IM-xLTgRsjox2sCuDbt0Z1oqHZXJLed9oWyiofwCLlNRjUMUnF2t8oiOcmzUIU5jK5jroTYKTcu0qP5L2YzUy_g_zfW-Wfy5H1S289Kq6fwZKST7Hjw_z488NUz2B8B27JPo6r05-fwE8dRDJDHPDh2fk2H_tY3nq1809Sbrm7XLdOVY8vtZrruanZWd5RQhJSULamHNOwrHSkZD25dv4CL1Zcfy9N4LKoQW6Gkik1A3xiFRCt3tMcXChMQ9gjjIhFWSysLl-VBeqtsEWzuhEw8d0YvdIZot_wl7FV15V8D0yIX-H0QQgdheGLQ5zrNvVnw1CHTieDjzqDlZtDOKAeV5LQk05eT6SM4IXtPb5HmdX-jbn6Vo2VKQysuVsmATFvo1Gvpuc508AWOWc66CA533ipHILYlRkSFpM3CPIL302OEEO2L6MrXW2wGxoiZSjHwiuDV4NypJdhjkCAnSQRq5vZZU-dPqvXvXqY7oUruqhARxH0P-YcNSuQh5zmGb2_-8_0DeIw3xZC_dgh7XbP1b5EpdeZdD4ZbHmwNpg priority: 102 providerName: Wiley-Blackwell |
Title | Nanoparticles Synergize Ferroptosis and Cuproptosis to Potentiate Cancer Immunotherapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202310309 https://www.ncbi.nlm.nih.gov/pubmed/38477411 https://www.proquest.com/docview/3069528197 https://www.proquest.com/docview/2956682768 https://pubmed.ncbi.nlm.nih.gov/PMC11187894 https://doaj.org/article/b7619c85f81b4a2ea5e3a6afe9305dcd |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6y6aWX0vTpJllUKLQ9OLu2JD-OyZIlLTQsTVNyM3qmC429eL2B9Nd3JD_I0kAhR79lzYzmG2nmE8AHHml06lMbqoyqkFGThlLQKEyozVPnT_Exl21xnpxdsq9X_GoHkr4WxiftK7k8Kn_fHJXLXz63cnWjJn2e2GTxbRa5PbKznE1GMEL_ey9Gb2uDqaNk6Rkap_FE6FvHzB37PbUcTyjFMRnvibackefsfwho_psveR_Hekc0fw7POgRJjtuW7sGOKV_AXmeja_KpI5L-_BJ-4tCJMXH3S-TiztX5Lf8YMjd1Xa2aar1cE1FqMtushuOmIouqcTlEiELJzClFTb64KpKuVuvuFVzOT3_MzsJuH4VQsYxnobQoDpkhtkq1W9azubRo6Wi5ecSU4IrnOkktNypTuVWpZjwyVEsxFQkauKKvYbesSvMWiGApw-ctY8IySSOJYhZxauSUxhrBTQAf-w4tVi1dRtESI8eFk0IxSCGAE9ffw12O5tqfqOrrouuZQrpJFpVxi-CaidgIbqhIhDU5DlNa6QAOemkVne2tCwyCcu7WB9MA3g-X0WrcUogoTbXBZmBYmGQxxloBvGmFO7SkV44Asi2xbzV1-woqqmfm7hUzgNBryH_6oEDocZFixPbu8Z_ah6f4PtZmrx3AblNvzCHipEaOYRSzxRienJyeL76P_WzD2JvKXyChFfY |
link.rule.ids | 230,314,727,780,784,864,885,2102,11562,21388,27924,27925,33744,33745,43805,46052,46476,50814,50923,53791,53793,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB7B9gAXRHmmFDASEnCIuontPE6IrrraQllVtEW9WX7CXpLtJotUfj3jxJuyAsExcSw58_B8tsffALzmicGgPnaxLqiOGbV5rCRN4oy6MvfxFLv5bIt5NrtgHy_5Zdhwa0Ja5WZO7CZqU2u_R36A0Lbk_tQnf7-8in3VKH-6Gkpo3IYdz5zOR7BzeDQ__XKzy8Kpp2fZsDWO0wNpfniW7rSrr1VuRaOOtP9vSPPPhMnfgWwXiab34V6AkORDr_NduGWrB7AbnLQhbwOT9LuH8BXnTlwUh9w3cnbtL_otfloytatVvWzrZtEQWRkyWS-H57Ymp3Xrk4gQhpKJt4oVOfbXSMJlretHcDE9Op_M4lBIIdas4EWsHOpDFQiucuPP9VypHLo6um6ZMC255qXJcsetLnTpdG4YTyw1So5lhh6u6WMYVXVlnwKRLGfY3zEmHVM0UahnmeZWjWlqEN1E8GYjULHs-TJEz4ycCi96MYg-gkMv7-Erz3PdvahX30SQjFB-l0UX3CG6ZjK1klsqM-lsifOU0SaC_Y22RHC-RtyYSgSvhmZ0G38WIitbr3EYuC7MihQXWxE86ZU7jIRixEarSSIottS-NdTtlmrxvaPmTnz19qJkEcSdhfxHBgKxx1mOS7a9f__HS7gzO_98Ik6O55-ewV3sz_p0tX0Ytau1fY7AqFUvgvX_AutPDYU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB7BVkJcEOWZUsBISMAh2iS28zghunTVAlqtKEW9RX7CXpJtkkUqv55x4k1ZgeCYOJaceXg-2-NvAF7yWGNQj2yocqpCRk0WSkHjMKW2yFw8xW4u22KRnpyzDxf8wuc_tT6tcjsn9hO1rpXbI58itC24O_XJptanRSzfz9-uL0NXQcqdtPpyGjdhD6NilExg7-h4sfx8vePCqaNq2TI3RslU6B-OsTvpa20VO5GpJ_D_G-r8M3nyd1DbR6X5Xbjj4SR5N-h_H26Y6h7se4dtyWvPKv3mPnzFeRQXyD4PjpxduUt_q5-GzE3T1OuublctEZUms816fO5qsqw7l1CEkJTMnIU05NRdKfEXt64ewPn8-MvsJPRFFULFcp6H0qJuZI5AK9PujM8W0qLboxsXMVOCK17oNLPcqFwVVmWa8dhQLUUkUvR2RR_CpKor8xiIYBnD_pYxYZmksUSdiyQzMqKJRqQTwKutQMv1wJ1RDizJSelEX46iD-DIyXv8ynFe9y_q5lvpJVNKt-Oicm4RaTORGMENFamwpsA5SysdwOFWW6V3xLa8NpsAXozN6ELuXERUpt7gMHCNmOYJLrwCeDQodxwJxeiNVhMHkO-ofWeouy3V6ntP0x27Su55wQIIewv5jwxKxCFnGS7fDv79H8_hFhp--el08fEJ3MbubMhcO4RJ12zMU8RInXzmjf8XbDARsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticles+Synergize+Ferroptosis+and+Cuproptosis+to+Potentiate+Cancer+Immunotherapy&rft.jtitle=Advanced+science&rft.au=Li%2C+Youyou&rft.au=Liu%2C+Jing&rft.au=Chen%2C+Yimei&rft.au=Weichselbaum%2C+Ralph+R.&rft.date=2024-06-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=11&rft.issue=23&rft_id=info:doi/10.1002%2Fadvs.202310309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202310309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |