Improvement in regression of corn yield with plant height using relative data

BACKGROUND: The traditional approach of analyzing absolute variable data across multiple locations and/or years has drawbacks in precision agriculture. This study was conducted to evaluate the impacts of using relative yield and plant height data of corn (Zea mays L.) on the regression of yield with...

Full description

Saved in:
Bibliographic Details
Published inJournal of the science of food and agriculture Vol. 91; no. 14; pp. 2606 - 2612
Main Authors Yin, Xinhua, McClure, M Angela, Hayes, Robert M
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.11.2011
Wiley
John Wiley and Sons, Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND: The traditional approach of analyzing absolute variable data across multiple locations and/or years has drawbacks in precision agriculture. This study was conducted to evaluate the impacts of using relative yield and plant height data of corn (Zea mays L.) on the regression of yield with plant height using linear and exponential models in a nitrogen (N) rate field trial under four cropping systems. RESULTS: The use of relative yield to replace absolute yield frequently increased the determination coefficient (R2) values in the regression of yield with plant height on datasets combined across cropping systems or/and years. Relative yield and relative plant height sometimes further enhanced the R2 values compared with relative yield and absolute plant height. All these improvements mostly occurred when the fit of the model was not strong with absolute yield and absolute plant height or relative yield and absolute plant height. The advantages of using relative data of yield or/and plant height were similar for the two regression models. CONCLUSION: The use of relative yield or relative data of both yield and plant height may be effective in improving the regression of corn yield with plant height across multiple cropping systems/locations and years in precision agriculture. Copyright © 2011 Society of Chemical Industry
AbstractList The traditional approach of analyzing absolute variable data across multiple locations and/or years has drawbacks in precision agriculture. This study was conducted to evaluate the impacts of using relative yield and plant height data of corn (Zea mays L.) on the regression of yield with plant height using linear and exponential models in a nitrogen (N) rate field trial under four cropping systems. The use of relative yield to replace absolute yield frequently increased the determination coefficient (R...) values in the regression of yield with plant height on datasets combined across cropping systems or/and years. Relative yield and relative plant height sometimes further enhanced the R... values compared with relative yield and absolute plant height. All these improvements mostly occurred when the fit of the model was not strong with absolute yield and absolute plant height or relative yield and absolute plant height. The advantages of using relative data of yield or/and plant height were similar for the two regression models. The use of relative yield or relative data of both yield and plant height may be effective in improving the regression of corn yield with plant height across multiple cropping systems/locations and years in precision agriculture. (ProQuest: ... denotes formulae/symbols omitted.)
The traditional approach of analyzing absolute variable data across multiple locations and/or years has drawbacks in precision agriculture. This study was conducted to evaluate the impacts of using relative yield and plant height data of corn (Zea mays L.) on the regression of yield with plant height using linear and exponential models in a nitrogen (N) rate field trial under four cropping systems. The use of relative yield to replace absolute yield frequently increased the determination coefficient (R(2) ) values in the regression of yield with plant height on datasets combined across cropping systems or/and years. Relative yield and relative plant height sometimes further enhanced the R(2) values compared with relative yield and absolute plant height. All these improvements mostly occurred when the fit of the model was not strong with absolute yield and absolute plant height or relative yield and absolute plant height. The advantages of using relative data of yield or/and plant height were similar for the two regression models. The use of relative yield or relative data of both yield and plant height may be effective in improving the regression of corn yield with plant height across multiple cropping systems/locations and years in precision agriculture.
BACKGROUND: The traditional approach of analyzing absolute variable data across multiple locations and/or years has drawbacks in precision agriculture. This study was conducted to evaluate the impacts of using relative yield and plant height data of corn (Zea mays L.) on the regression of yield with plant height using linear and exponential models in a nitrogen (N) rate field trial under four cropping systems. RESULTS: The use of relative yield to replace absolute yield frequently increased the determination coefficient (R2) values in the regression of yield with plant height on datasets combined across cropping systems or/and years. Relative yield and relative plant height sometimes further enhanced the R2 values compared with relative yield and absolute plant height. All these improvements mostly occurred when the fit of the model was not strong with absolute yield and absolute plant height or relative yield and absolute plant height. The advantages of using relative data of yield or/and plant height were similar for the two regression models. CONCLUSION: The use of relative yield or relative data of both yield and plant height may be effective in improving the regression of corn yield with plant height across multiple cropping systems/locations and years in precision agriculture. Copyright © 2011 Society of Chemical Industry
BACKGROUND: The traditional approach of analyzing absolute variable data across multiple locations and/or years has drawbacks in precision agriculture. This study was conducted to evaluate the impacts of using relative yield and plant height data of corn (Zea mays L.) on the regression of yield with plant height using linear and exponential models in a nitrogen (N) rate field trial under four cropping systems. RESULTS: The use of relative yield to replace absolute yield frequently increased the determination coefficient (R2) values in the regression of yield with plant height on datasets combined across cropping systems or/and years. Relative yield and relative plant height sometimes further enhanced the R2 values compared with relative yield and absolute plant height. All these improvements mostly occurred when the fit of the model was not strong with absolute yield and absolute plant height or relative yield and absolute plant height. The advantages of using relative data of yield or/and plant height were similar for the two regression models. CONCLUSION: The use of relative yield or relative data of both yield and plant height may be effective in improving the regression of corn yield with plant height across multiple cropping systems/locations and years in precision agriculture.
BACKGROUND: The traditional approach of analyzing absolute variable data across multiple locations and/or years has drawbacks in precision agriculture. This study was conducted to evaluate the impacts of using relative yield and plant height data of corn ( Zea mays L.) on the regression of yield with plant height using linear and exponential models in a nitrogen (N) rate field trial under four cropping systems. RESULTS: The use of relative yield to replace absolute yield frequently increased the determination coefficient ( R 2 ) values in the regression of yield with plant height on datasets combined across cropping systems or/and years. Relative yield and relative plant height sometimes further enhanced the R 2 values compared with relative yield and absolute plant height. All these improvements mostly occurred when the fit of the model was not strong with absolute yield and absolute plant height or relative yield and absolute plant height. The advantages of using relative data of yield or/and plant height were similar for the two regression models. CONCLUSION: The use of relative yield or relative data of both yield and plant height may be effective in improving the regression of corn yield with plant height across multiple cropping systems/locations and years in precision agriculture. Copyright © 2011 Society of Chemical Industry
The traditional approach of analyzing absolute variable data across multiple locations and/or years has drawbacks in precision agriculture. This study was conducted to evaluate the impacts of using relative yield and plant height data of corn (Zea mays L.) on the regression of yield with plant height using linear and exponential models in a nitrogen (N) rate field trial under four cropping systems.BACKGROUNDThe traditional approach of analyzing absolute variable data across multiple locations and/or years has drawbacks in precision agriculture. This study was conducted to evaluate the impacts of using relative yield and plant height data of corn (Zea mays L.) on the regression of yield with plant height using linear and exponential models in a nitrogen (N) rate field trial under four cropping systems.The use of relative yield to replace absolute yield frequently increased the determination coefficient (R(2) ) values in the regression of yield with plant height on datasets combined across cropping systems or/and years. Relative yield and relative plant height sometimes further enhanced the R(2) values compared with relative yield and absolute plant height. All these improvements mostly occurred when the fit of the model was not strong with absolute yield and absolute plant height or relative yield and absolute plant height. The advantages of using relative data of yield or/and plant height were similar for the two regression models.RESULTSThe use of relative yield to replace absolute yield frequently increased the determination coefficient (R(2) ) values in the regression of yield with plant height on datasets combined across cropping systems or/and years. Relative yield and relative plant height sometimes further enhanced the R(2) values compared with relative yield and absolute plant height. All these improvements mostly occurred when the fit of the model was not strong with absolute yield and absolute plant height or relative yield and absolute plant height. The advantages of using relative data of yield or/and plant height were similar for the two regression models.The use of relative yield or relative data of both yield and plant height may be effective in improving the regression of corn yield with plant height across multiple cropping systems/locations and years in precision agriculture.CONCLUSIONThe use of relative yield or relative data of both yield and plant height may be effective in improving the regression of corn yield with plant height across multiple cropping systems/locations and years in precision agriculture.
Author Hayes, Robert M
Yin, Xinhua
McClure, M Angela
Author_xml – sequence: 1
  givenname: Xinhua
  surname: Yin
  fullname: Yin, Xinhua
  email: xyin2@utk.edu
  organization: Department of Plant Sciences, The University of Tennessee, Jackson, TN 38301, USA
– sequence: 2
  givenname: M Angela
  surname: McClure
  fullname: McClure, M Angela
  organization: Department of Plant Sciences, The University of Tennessee, Jackson, TN 38301, USA
– sequence: 3
  givenname: Robert M
  surname: Hayes
  fullname: Hayes, Robert M
  organization: West Tennessee Research and Education Center, The University of Tennessee, Jackson, TN 38301, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24607157$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21928390$$D View this record in MEDLINE/PubMed
BookMark eNqF0ktvEzEQB3ALFdG0cOALoBVSBRy2tb1-HquKllZNOfCSuFiOdzZx2PUGe9OSb4-jbEGqeJx88O8_Ho_mAO2FPgBCzwk-JhjTk2Vq7DFjUj5CE4K1LDEmeA9N8h0tOWF0Hx2ktMQYay3EE7RPiaaq0niCppfdKva30EEYCh-KCPMIKfk-FH1TuD6GYuOhrYs7PyyKVWszW4CfL4ZinXyY50BrB38LRW0H-xQ9bmyb4Nl4HqJP528_nr0rr99fXJ6dXpeOKS5LN5txxhiHmlSKakEaIcE1TQM1BSsaqoQAYh3UHKQUjgFVEjNZccCuIro6RK92dXPv39eQBtP55KDN7UG_TkZpqQiRXGT5-p-SVIJjxqjS_6d5mkooUW2rvnxAl_06hvzl_LTShApOM3oxovWsg9qsou9s3Jj74WdwNAKbnG2baIPz6bdjAkvCZXYnO-din1KExjg_5KH3YYjWt7kxs10Ds10Ds12DnHjzIHFf9E92rH7nW9j8HZqrD-enY6LcJXwa4MevhI3fjJCV5ObLzYX5Km-upkp-NtPqJyjIzvg
CODEN JSFAAE
CitedBy_id crossref_primary_10_1016_j_asr_2022_11_046
crossref_primary_10_1016_j_jag_2016_12_011
crossref_primary_10_1080_17538947_2024_2443470
crossref_primary_10_2134_agronj2018_12_0749
crossref_primary_10_4236_ars_2016_52009
crossref_primary_10_1109_JSTARS_2018_2878502
Cites_doi 10.1080/03650340701597251
10.2135/cropsci2002.1564
10.2134/agronj2001.931131x
10.1016/S0168-1699(99)00075-7
10.1080/00103628909368178
10.2134/agronj2002.8150
10.2134/agronj2010.0450
10.1017/S0021859607006995
10.2136/sssaj2009.0197
10.2134/agronj2003.1447
10.2134/agronj2000.923395x
10.2134/agronj2007.0145
10.1007/s11119-006-9017-6
10.2134/agronj2006.0135
10.1080/01904160802208261
10.2134/agronj2003.1000
10.2135/cropsci1994.0011183X003400030038x
10.2134/agronj2006.0103
ContentType Journal Article
Copyright Copyright © 2011 Society of Chemical Industry
2015 INIST-CNRS
Copyright © 2011 Society of Chemical Industry.
Copyright John Wiley and Sons, Limited Nov 2011
Copyright_xml – notice: Copyright © 2011 Society of Chemical Industry
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Society of Chemical Industry.
– notice: Copyright John Wiley and Sons, Limited Nov 2011
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QL
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7ST
7T5
7T7
7TA
7TB
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
SOI
7S9
L.6
7X8
DOI 10.1002/jsfa.4477
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Bacteriology Abstracts (Microbiology B)
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Immunology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

Technology Research Database
CrossRef
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Agriculture
Diet & Clinical Nutrition
EISSN 1097-0010
EndPage 2612
ExternalDocumentID 2489108951
21928390
24607157
10_1002_jsfa_4477
JSFA4477
ark_67375_WNG_Z7NJM87V_M
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Tennessee
GeographicLocations_xml – name: Tennessee
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29L
3-9
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAIKC
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACKIV
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M64
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIG
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WWF
WXSBR
WYISQ
XG1
XOL
XPP
XV2
Y6R
ZCG
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QL
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7ST
7T5
7T7
7TA
7TB
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
SOI
7S9
L.6
7X8
ID FETCH-LOGICAL-c4857-cbb54445ed1382961f67ecfffed2ea6f2866e1aced5e776c4e28704735e0c3193
IEDL.DBID DR2
ISSN 0022-5142
1097-0010
IngestDate Fri Jul 11 08:11:05 EDT 2025
Fri Jul 11 18:33:58 EDT 2025
Fri Jul 11 11:42:33 EDT 2025
Fri Jul 25 02:26:10 EDT 2025
Mon Jul 21 06:07:17 EDT 2025
Mon Jul 21 09:17:24 EDT 2025
Thu Apr 24 22:50:55 EDT 2025
Tue Jul 01 04:14:38 EDT 2025
Wed Jan 22 17:08:04 EST 2025
Wed Oct 30 09:53:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Improvement
relative yield
regression
relative plant height
Corn
Cereal
Height
Yield
plant height
Language English
License CC BY 4.0
Copyright © 2011 Society of Chemical Industry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4857-cbb54445ed1382961f67ecfffed2ea6f2866e1aced5e776c4e28704735e0c3193
Notes istex:D6975B1DFE9BD6872F587264660CB0AA5564D998
ark:/67375/WNG-Z7NJM87V-M
ArticleID:JSFA4477
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 21928390
PQID 898912652
PQPubID 37930
PageCount 7
ParticipantIDs proquest_miscellaneous_897811756
proquest_miscellaneous_1365044289
proquest_miscellaneous_1022868636
proquest_journals_898912652
pubmed_primary_21928390
pascalfrancis_primary_24607157
crossref_citationtrail_10_1002_jsfa_4477
crossref_primary_10_1002_jsfa_4477
wiley_primary_10_1002_jsfa_4477_JSFA4477
istex_primary_ark_67375_WNG_Z7NJM87V_M
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2011
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: November 2011
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Malden, MA
– name: England
– name: London
PublicationTitle Journal of the science of food and agriculture
PublicationTitleAlternate J. Sci. Food Agric
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley
John Wiley and Sons, Limited
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
– name: John Wiley and Sons, Limited
References Raun WR, Johnson GV, Stone ML, Solie JB, Lukina EV and Thomason WE, In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron J 93: 131-178 (2001).
Yau SK and Hamblin J, Relative yield as a measure of entry performance in variable environments. Crop Sci 34: 813-817 (1994).
Biermacher JT, Epplin FM, Brorsen BW, Solie JB and Raun WR, Maximum benefit of a precise nitrogen application system for wheat. Precision Agric 7: 1-12 (2006).
Machado S, Bynum ED Jr, Archer TL, Lascano RJ, Wilson LT, Bordovsky J et al, Spatial and temporal variability of corn growth and grain yield: implications for site-specific farming. Crop Sci 42: 1564-1576 (2002).
Moges SM, Girma K, Teal RK, Freeman KW, Zhang H, Arnall DB et al, In-season estimation of grain sorghum yield potential using a hand-held optical sensor. Arch Agron Soil Sci 53: 617-628 (2007).
Yin X, McClure MA, Jaja N, Tyler DD and Hayes RM, In-season prediction of corn yield using plant height under major corn production systems. Agron J 103: 923-929 (2011).
Kucharik CJ, Contribution of planting date trends to increased maize yields in the central United States. Agron J 100: 328-336 (2008).
Teal RK, Tubana B, Girma K, Freeman KW, Arnall DB, Walsh O et al, In-season prediction of corn grain yield potential using normalized difference vegetation index. Agron J 98: 1488-1494 (2006).
Blackmore S, The interpretation of trends from multiple yield maps. Comput Electron Agric 26: 37-51 (2000).
Tubana BS, Arnall DB, Walsh O, Chung B, Solie JB, Girma K et al, Adjusting midseason nitrogen rate using a sensor-based optimization algorithm to increase use efficiency in corn. J Plant Nutr 31: 1393-1419 (2008).
Freeman KW, Girma K, Arnall DB, Mullen RW, Martin KL, Teal RK et al, By-plant prediction of corn forage biomass and nitrogen uptake at various growth stages using remote sensing and plant height. Agron J 99: 530-536 (2007).
Sims JT, Comparison of Mehlich 1 and Mehlich 3 extractants for P, K, Ca, Mg, Mn, Cu and Zn in Atlantic coastal plain soils. Commun Soil Sci Plant Anal 20: 1707-1726 (1989).
Sadler EJ, Bauer PJ and Busscher WJ, Site-specific analysis of a droughted corn crop. I. Growth and grain yield. Agron J 92: 395-402 (2000).
Slaton NA, Golden BR, DeLong RE and Mozaffari M, Correlation and calibration of soil potassium availability with soybean yield and trifoliolate potassium. Soil Sci Soc Am J 74: 1642-1651 (2010).
Katsvairo TW, Cox WJ and Van Es HM, Spatial growth and nitrogen uptake variability of corn at two nitrogen levels. Agron J 95: 1000-1011 (2003).
Chang J, Clay DE, Dalsted K, Clay S and O'Neill M, Corn (Zea mays L.) yield prediction using multispectral and multidate reflectance. Agron J 95: 1447-1453 (2003).
Ortiz-Monasterio JI and Raun WR, Reduced nitrogen and improved farm income for irrigated spring wheat in the Yaqui Valley, Mexico, using sensor based nitrogen management. J Agric Sci 145: 1-8 (2007).
Raun WR, Solie JB, Johnson GV, Stone ML, Mullen RW, Freeman KW et al, Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron J 94: 815-820 (2002).
2007; 145
2001; 93
2011; 103
1989; 20
2002; 42
2000; 26
2002; 94
2006; 98
2006; 7
1994; 34
1998
2000; 92
2002
2008; 31
2007; 53
2008; 100
2003; 95
2007; 99
2010; 74
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_18_2
e_1_2_6_9_2
e_1_2_6_19_2
e_1_2_6_4_2
e_1_2_6_3_2
Watson ME (e_1_2_6_20_2) 1998
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_10_2
e_1_2_6_22_2
e_1_2_6_11_2
e_1_2_6_21_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
References_xml – reference: Machado S, Bynum ED Jr, Archer TL, Lascano RJ, Wilson LT, Bordovsky J et al, Spatial and temporal variability of corn growth and grain yield: implications for site-specific farming. Crop Sci 42: 1564-1576 (2002).
– reference: Yin X, McClure MA, Jaja N, Tyler DD and Hayes RM, In-season prediction of corn yield using plant height under major corn production systems. Agron J 103: 923-929 (2011).
– reference: Kucharik CJ, Contribution of planting date trends to increased maize yields in the central United States. Agron J 100: 328-336 (2008).
– reference: Tubana BS, Arnall DB, Walsh O, Chung B, Solie JB, Girma K et al, Adjusting midseason nitrogen rate using a sensor-based optimization algorithm to increase use efficiency in corn. J Plant Nutr 31: 1393-1419 (2008).
– reference: Raun WR, Solie JB, Johnson GV, Stone ML, Mullen RW, Freeman KW et al, Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron J 94: 815-820 (2002).
– reference: Sims JT, Comparison of Mehlich 1 and Mehlich 3 extractants for P, K, Ca, Mg, Mn, Cu and Zn in Atlantic coastal plain soils. Commun Soil Sci Plant Anal 20: 1707-1726 (1989).
– reference: Biermacher JT, Epplin FM, Brorsen BW, Solie JB and Raun WR, Maximum benefit of a precise nitrogen application system for wheat. Precision Agric 7: 1-12 (2006).
– reference: Moges SM, Girma K, Teal RK, Freeman KW, Zhang H, Arnall DB et al, In-season estimation of grain sorghum yield potential using a hand-held optical sensor. Arch Agron Soil Sci 53: 617-628 (2007).
– reference: Sadler EJ, Bauer PJ and Busscher WJ, Site-specific analysis of a droughted corn crop. I. Growth and grain yield. Agron J 92: 395-402 (2000).
– reference: Chang J, Clay DE, Dalsted K, Clay S and O'Neill M, Corn (Zea mays L.) yield prediction using multispectral and multidate reflectance. Agron J 95: 1447-1453 (2003).
– reference: Katsvairo TW, Cox WJ and Van Es HM, Spatial growth and nitrogen uptake variability of corn at two nitrogen levels. Agron J 95: 1000-1011 (2003).
– reference: Teal RK, Tubana B, Girma K, Freeman KW, Arnall DB, Walsh O et al, In-season prediction of corn grain yield potential using normalized difference vegetation index. Agron J 98: 1488-1494 (2006).
– reference: Yau SK and Hamblin J, Relative yield as a measure of entry performance in variable environments. Crop Sci 34: 813-817 (1994).
– reference: Ortiz-Monasterio JI and Raun WR, Reduced nitrogen and improved farm income for irrigated spring wheat in the Yaqui Valley, Mexico, using sensor based nitrogen management. J Agric Sci 145: 1-8 (2007).
– reference: Raun WR, Johnson GV, Stone ML, Solie JB, Lukina EV and Thomason WE, In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron J 93: 131-178 (2001).
– reference: Blackmore S, The interpretation of trends from multiple yield maps. Comput Electron Agric 26: 37-51 (2000).
– reference: Freeman KW, Girma K, Arnall DB, Mullen RW, Martin KL, Teal RK et al, By-plant prediction of corn forage biomass and nitrogen uptake at various growth stages using remote sensing and plant height. Agron J 99: 530-536 (2007).
– reference: Slaton NA, Golden BR, DeLong RE and Mozaffari M, Correlation and calibration of soil potassium availability with soybean yield and trifoliolate potassium. Soil Sci Soc Am J 74: 1642-1651 (2010).
– volume: 103
  start-page: 923
  year: 2011
  end-page: 929
  article-title: In‐season prediction of corn yield using plant height under major corn production systems
  publication-title: Agron J
– volume: 34
  start-page: 813
  year: 1994
  end-page: 817
  article-title: Relative yield as a measure of entry performance in variable environments
  publication-title: Crop Sci
– volume: 53
  start-page: 617
  year: 2007
  end-page: 628
  article-title: In‐season estimation of grain sorghum yield potential using a hand‐held optical sensor
  publication-title: Arch Agron Soil Sci
– volume: 31
  start-page: 1393
  year: 2008
  end-page: 1419
  article-title: Adjusting midseason nitrogen rate using a sensor‐based optimization algorithm to increase use efficiency in corn
  publication-title: J Plant Nutr
– volume: 98
  start-page: 1488
  year: 2006
  end-page: 1494
  article-title: In‐season prediction of corn grain yield potential using normalized difference vegetation index
  publication-title: Agron J
– volume: 26
  start-page: 37
  year: 2000
  end-page: 51
  article-title: The interpretation of trends from multiple yield maps
  publication-title: Comput Electron Agric
– volume: 145
  start-page: 1
  year: 2007
  end-page: 8
  article-title: Reduced nitrogen and improved farm income for irrigated spring wheat in the Yaqui Valley, Mexico, using sensor based nitrogen management
  publication-title: J Agric Sci
– volume: 92
  start-page: 395
  year: 2000
  end-page: 402
  article-title: Site‐specific analysis of a droughted corn crop. I. Growth and grain yield
  publication-title: Agron J
– year: 2002
– volume: 99
  start-page: 530
  year: 2007
  end-page: 536
  article-title: By‐plant prediction of corn forage biomass and nitrogen uptake at various growth stages using remote sensing and plant height
  publication-title: Agron J
– start-page: 13
  year: 1998
  end-page: 16
– volume: 100
  start-page: 328
  year: 2008
  end-page: 336
  article-title: Contribution of planting date trends to increased maize yields in the central United States
  publication-title: Agron J
– volume: 95
  start-page: 1000
  year: 2003
  end-page: 1011
  article-title: Spatial growth and nitrogen uptake variability of corn at two nitrogen levels
  publication-title: Agron J
– volume: 42
  start-page: 1564
  year: 2002
  end-page: 1576
  article-title: Spatial and temporal variability of corn growth and grain yield: implications for site‐specific farming
  publication-title: Crop Sci
– volume: 93
  start-page: 131
  year: 2001
  end-page: 178
  article-title: In‐season prediction of potential grain yield in winter wheat using canopy reflectance
  publication-title: Agron J
– volume: 95
  start-page: 1447
  year: 2003
  end-page: 1453
  article-title: Corn ( L.) yield prediction using multispectral and multidate reflectance
  publication-title: Agron J
– volume: 20
  start-page: 1707
  year: 1989
  end-page: 1726
  article-title: Comparison of Mehlich 1 and Mehlich 3 extractants for P, K, Ca, Mg, Mn, Cu and Zn in Atlantic coastal plain soils
  publication-title: Commun Soil Sci Plant Anal
– volume: 74
  start-page: 1642
  year: 2010
  end-page: 1651
  article-title: Correlation and calibration of soil potassium availability with soybean yield and trifoliolate potassium
  publication-title: Soil Sci Soc Am J
– volume: 7
  start-page: 1
  year: 2006
  end-page: 12
  article-title: Maximum benefit of a precise nitrogen application system for wheat
  publication-title: Precision Agric
– volume: 94
  start-page: 815
  year: 2002
  end-page: 820
  article-title: Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application
  publication-title: Agron J
– ident: e_1_2_6_17_2
  doi: 10.1080/03650340701597251
– ident: e_1_2_6_10_2
  doi: 10.2135/cropsci2002.1564
– ident: e_1_2_6_2_2
– ident: e_1_2_6_5_2
  doi: 10.2134/agronj2001.931131x
– ident: e_1_2_6_18_2
  doi: 10.1016/S0168-1699(99)00075-7
– ident: e_1_2_6_21_2
  doi: 10.1080/00103628909368178
– ident: e_1_2_6_23_2
– ident: e_1_2_6_6_2
  doi: 10.2134/agronj2002.8150
– ident: e_1_2_6_12_2
  doi: 10.2134/agronj2010.0450
– ident: e_1_2_6_4_2
  doi: 10.1017/S0021859607006995
– ident: e_1_2_6_19_2
  doi: 10.2136/sssaj2009.0197
– ident: e_1_2_6_22_2
– ident: e_1_2_6_14_2
  doi: 10.2134/agronj2003.1447
– ident: e_1_2_6_11_2
  doi: 10.2134/agronj2000.923395x
– ident: e_1_2_6_16_2
  doi: 10.2134/agronj2007.0145
– ident: e_1_2_6_3_2
  doi: 10.1007/s11119-006-9017-6
– ident: e_1_2_6_15_2
  doi: 10.2134/agronj2006.0135
– start-page: 13
  volume-title: Recommended Chemical Soil Test Procedures for the North Central Region
  year: 1998
  ident: e_1_2_6_20_2
– ident: e_1_2_6_8_2
  doi: 10.1080/01904160802208261
– ident: e_1_2_6_9_2
  doi: 10.2134/agronj2003.1000
– ident: e_1_2_6_13_2
  doi: 10.2135/cropsci1994.0011183X003400030038x
– ident: e_1_2_6_7_2
  doi: 10.2134/agronj2006.0103
SSID ssj0009966
Score 2.0158107
Snippet BACKGROUND: The traditional approach of analyzing absolute variable data across multiple locations and/or years has drawbacks in precision agriculture. This...
BACKGROUND: The traditional approach of analyzing absolute variable data across multiple locations and/or years has drawbacks in precision agriculture. This...
The traditional approach of analyzing absolute variable data across multiple locations and/or years has drawbacks in precision agriculture. This study was...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2606
SubjectTerms Agricultural production
Agriculture
Agriculture - methods
Biological and medical sciences
Cereal and baking product industries
Coefficients
Corn
Crop science
Crops, Agricultural
Crops, Agricultural - growth & development
Effectiveness studies
field experimentation
Food industries
Foods
Fundamental and applied biological sciences. Psychology
Glycine max - growth & development
Gossypium
Gossypium - growth & development
growth & development
linear models
methods
Models, Biological
multiple cropping
nitrogen
Nitrogen Cycle
Plant growth
plant height
precision agriculture
Regression
Regression analysis
relative plant height
relative yield
Reproducibility of Results
Soybeans
Statistics as Topic
Tennessee
yield
Zea mays
Zea mays - growth & development
Title Improvement in regression of corn yield with plant height using relative data
URI https://api.istex.fr/ark:/67375/WNG-Z7NJM87V-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjsfa.4477
https://www.ncbi.nlm.nih.gov/pubmed/21928390
https://www.proquest.com/docview/898912652
https://www.proquest.com/docview/1022868636
https://www.proquest.com/docview/1365044289
https://www.proquest.com/docview/897811756
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9N4wF44KPACIPJIDTx0i5N_JGKpwooU6X2ARhMCMlyHLuMVenUtAj46_HZSaqiDSHeIuVsJeez_fP57ncAz2PNFNNYAzAzWZdayrq5Smg3GwhFuUqptujvmEz58Qkdn7LTHXjZ5MIEfojW4YYzw6_XOMFVXh1tSEO_VVb1KBWYSY6xWgiI3m2ooxDHN0zhDhQkDatQnBy1Lbf2omuo1h8YG6kqpx4b6lpcBjy3cazfiEa34UvzCyH-5Ly3XuU9_esPdsf__Mc7cKsGqGQYLOou7JiyAzeHs2VN0mE6EL0-MytySGpO0TmZNpT-HbjeZDpX92ASPBbeAUnOSrI0sxB1W5KFJe7YW5KfGEBH0BlMLuZukMlX76olGI4_IyHR5rshGMd6H05Gbz68Ou7W5Ru6miLBlM5zRillpkCewwHvWy6MttaaIjGK2yTj3PSVNgUzQnBNDV66YilkE2u3MqQPYLdclOYhEMaF4qlifc8vWBTKcFE48KfdVlukcR7Bi2Ygpa65zbHExlwGVuZEoiYlajKCZ63oRSD0uEzo0FtDK6GW5xgBJ5j8NH0rP4vpeJKJj3ISwcGWubQNEorEfcz1tN_Yj6xXh0piyc5-wlkSwdP2rZvWeFejSrNYVxIP4hnPeMr_IuOsPqbu_DiIgFwhkw18KjFz3ewF6918ogP3Dh7HTnneBq9Whxy_Hw3x4dG_i-7DDe9-92mbj2F3tVybJw6_rfIDP1F_AwuSQLg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6V9lA48AgvUygLQhUXp4m9D0fiElFCCLUP0NIKCa3W63UojZwqDwT8enbWjyioRYibJY8te3Zm99vZmW8AXnQ0U0xjD8DIRD7NKfNTFVA_6glFuQqpzjHeESd8eExHp-x0A17VtTAlP0QTcEPPcPM1OjgGpPdXrKHf5rlqUyrENdjCjt7InH_wYUUehUi-5gq3d4OaV6gT7DePrq1GW6jYH5gdqeZWQXnZ2eIy6LmOZN1SNLgFX-qfKDNQztvLRdrWv_7gd_zfv7wNNyuMSvqlUd2BDVO04EZ_PKt4OkwLvIMzsyB7pKIVnZCkZvVvwXZd7Dy_C3EZtHAxSHJWkJkZl4m3BZnmxO58C_ITc-gIxoPJxcSOM_nqorUEM_LHpKy1-W4IprLeg-PBm6PXQ7_q4OBrihxTOk0ZpZSZDKkOe7ybc2F0nucmC4zieRBxbrpKm4wZIbimBs9dsRuy6Wg7OYT3YbOYFuYhEMaF4qFiXUcxmGXKcJFZ_KftapuFndSDl_VISl3Rm2OXjYksiZkDiZqUqEkPnjeiFyWnx2VCe84cGgk1O8ckOMHkSfJWfhbJKI7EJxl7sLtmL80DAUXuPmbftFMbkKwmiLnErp3dgLPAg2fNXevZeFyjCjNdziXuxSMe8ZD_RSa0CJvaLWTPA3KFTNRz1cTMvuZBab6rT7T43iLkjlWeM8Kr1SFHHwd9vHj076JPYXt4FB_Kw3fJ-x247qLxrorzMWwuZkvzxMK5RbrrvPY38QNE1A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxEB6VVuJ44AjXUigGoYqXpJtdHxvxFBFCCSRCQKFCSJbXa4fSaBPlQMCvx-M9oqAWId5W2rG1Ox7bn8cz3wA8CTVTTGMNwMQkTWopa6Yqos2kIxTlKqbaor9jOOKHR3RwzI634FmVC1PwQ9QON5wZfr3GCT7L7MGaNPTbwqoWpUJcgB3Kww7Wbei9W3NHIZCvqMIdKogqWqEwOqibbmxGO6jXHxgcqRZOP7YobHEW8twEsn4n6l-DL9U_FAEop63VMm3pX3_QO_7nT16HqyVCJd3CpG7AlskbcKU7npcsHaYBQe_ELMk-KUlFJ2RUcfo34FKV6ry4CcPCZeE9kOQkJ3MzLsJuczK1xJ17c_ITI-gIeoPJbOJGmXz1vlqC8fhjUmTafDcEA1lvwVH_xYfnh82yfkNTU2SY0mnKKKXMZEh02OFty4XR1lqTRUZxGyWcm7bSJmNGCK6pwVtXrIVsQu2Whvg2bOfT3NwFwrhQPFas7QkGs0wZLjKH_rTba7M4TAN4Wg2k1CW5OdbYmMiCljmSqEmJmgzgcS06Kxg9zhLa99ZQS6j5KYbACSY_jV7Kz2I0GCbioxwGsLdhLnWDiCJzH3M97Vb2I8vlYSGxZmc74iwK4FH91s1rvKxRuZmuFhJP4glPeMz_IhM7fE3dAbITADlHJun4XGLmurlTWO_6Ex26d_g4dMrzNni-OuTgfb-LD_f-XfQhXHzb68s3r0avd-Gyd8X7FM77sL2cr8wDh-WW6Z6fs78B74xDgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+in+regression+of+corn+yield+with+plant+height+using+relative+data&rft.jtitle=Journal+of+the+science+of+food+and+agriculture&rft.au=Yin%2C+Xinhua&rft.au=McClure%2C+M+Angela&rft.au=Hayes%2C+Robert+M&rft.date=2011-11-01&rft.issn=1097-0010&rft.eissn=1097-0010&rft.volume=91&rft.issue=14&rft.spage=2606&rft_id=info:doi/10.1002%2Fjsfa.4477&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5142&client=summon